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1. Introduction

Let Q be a Dynkin quiver of type An+2. Thus Q is an oriented graph whose underlying 
unoriented graph is the Dynkin diagram of type An+2. In [25], Reading introduced a 
family of lattices called Cambrian lattices which depend on a choice of Dynkin diagram 
together with an orientation of that diagram. In this paper we focus on the type A case, 
and use the orientation given by Q. In this context, Reading defined an (n +3)-gon P (Q)
and a surjective map

ηQ : Sn+1 → {triangulations of P (Q)}

from permutations to triangulations, following and modifying an explication [27, Sec. 4.3]
of an iterated fiber-polytope construction given in [11]. In the special case where Q is 
linearly oriented, this map had been well-studied as a map to various Catalan objects 
— see [36], [12, Sec. 9], [35, Sec. 1.5].

One of the objectives of this paper is to give a representation theoretic interpretation 
of the map ηQ. In order to achieve this goal, we develop several other concepts and 
results along the way.

Inspired by the map ηQ, we define a category CP (Q) whose objects are line segments 
in the polygon P (Q) and whose morphisms are generated by pivots of line segments 
modulo mesh relations. We show that the category CP (Q) is equivalent to the abelian 
category indQ of indecomposable representations of the quiver Q.

Theorem A (Theorem 4.6). There is an equivalence of categories F : CP (Q) → indQ.



E. Barnard et al. / Advances in Applied Mathematics 143 (2023) 102428 3
The reader familiar with the construction of the cluster category of type An as the 
category of diagonals in an (n +3)-gon in [13] will notice a strong similarity between the 
two constructions. Note however that our construction here is different in several ways. 
For one, we include the boundary edges, which was not the case in [13], and secondly, 
our category is hereditary and contains no cycles.

On the other hand, the result of Theorem A is very similar to the construction of 
the derived category of Q by Opper, Plamondon and Schroll in [21]. In that paper, the 
authors give a geometric model for the derived category of an arbitrary gentle algebra. 
Since the path algebra of a quiver Q of type A is a special kind of gentle algebra, the 
category of representations of Q can be recovered as a heart of the derived category 
in [21]. However, the two constructions have some fundamental differences. While our 
polygon P (Q) is homeomorphic to the surface of [21], our construction is rigid in the 
sense that it fixes the relative position of each vertex of the polygon in the plane. This 
rigidity is essential here, since we are using the geometric data of the slope of the line 
segments in P (Q) to describe the morphisms in the category.

The slope is also the key to our next result proving that the functor F naturally 
induces a stability condition on the category of representations of Q. First, a central 
charge is obtained by considering each oriented line segment in P (Q) as a complex 
number. Then the stability function of an indecomposable module is given by the angle 
of the oriented line segment with the positive real axis. This stability function has the 
property that every indecomposable representation is stable. Reineke conjectured in [28]
that every Dynkin quiver admits a stability function with that property and Apruzzese 
and Igusa proved the conjecture in type A in [4].

Theorem B (Theorem 5.3). Let Q be a Dynkin quiver of type A. Then the function 
that associates to every indecomposable representation M the angle of the corresponding 
oriented line segment F−1(M) is a stability function for which every indecomposable 
representation of Q is stable.

Using the stability function, we extend our model to a model of the derived category 
of repQ recovering the (special case of) the result in [21].

We then introduce a class of representations which we call maximal almost rigid
representations. We say that the direct sum of two indecomposable representations M
and N is almost rigid if they do not have any nonsplit extensions, or if all extensions 
between M and N are indecomposable. We say that a representation T is maximal almost 
rigid if, for every nonzero representation M , the representation T⊕M is not almost rigid. 
Let mar(Q) denote the set of all maximal almost rigid representations of Q.

Our third main result is the following.

Theorem C (Theorem 6.8). The functor F induces a bijection

F : {triangulations of P (Q)} → mar(Q).
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By definition the notion of an almost rigid representation is a generalization of that 
of a rigid representation. For quivers without oriented cycles, the maximal rigid repre-
sentations are precisely the tilting modules over the path algebra of the quiver, and their 
endomorphism algebras are the tilted algebras introduced in [16]. On the other hand, the 
endomorphism algebras of triangulations in cluster categories from marked surfaces are 
cluster-tilted algebras, or more generally, 2-Calabi-Yau tilted algebras, [13,8,33,1,20]. It 
is shown in [3] that if C is a tilted algebra, then its trivial extension C � Ext2C(DC, C)
is cluster-tilted, and every cluster-tilted algebra arises this way.

Both tilted and cluster-tilted algebras are extensively studied and occupy a central 
place in the representation theory of finite dimensional algebras. It is therefore natural 
to consider the endomorphism algebras of maximal almost rigid representations. Our 
fourth main result is the following.

Theorem D (Theorem 7.3). Let Q be a Dynkin quiver of type An+2 and T a maximal 
almost rigid representation of Q. Then the endomorphism algebra C = EndrepQT is a 
tilted algebra of type A2n+3. Moreover, the quiver of its associated cluster-tilted algebra 
C � Ext2C(DC, C) is the adjacency quiver of the triangulation F−1(T ).

We then come back to our original goal to give a representation theoretic interpreta-
tion of Cambrian lattices and the map ηQ. In general, a Cambrian lattice is a certain 
quotient of the weak order on a finite Coxeter group. The Tamari lattice is an example 
in type A. The Cambrian lattice for type A is a partial order on triangulations of a 
polygon whose cover relations are given by diagonal flips. The Hasse diagram for each 
Cambrian lattice is isomorphic to the 1-skeleton of the generalized associahedron for 
the corresponding Coxeter group, see [30]. Furthermore, the elements of each Cambrian 
lattice of a finite Coxeter group are in bijection with several families of objects related to 
cluster algebras. For example, the clusters of the corresponding cluster algebra of finite 
type, the (isoclasses of) cluster-tilting objects in the corresponding cluster category, the 
finitely generated torsion classes over the path algebra of the Dynkin quiver, as well as 
the non-crossing partitions associated with the quiver, see [17].

We add a new item to this list by proving the following.

Theorem E (Theorem 8.4). If Q is a Dynkin quiver of type A, the set of maximal almost 
rigid representations of Q with the covering relation given in Definition 8.1 is isomorphic 
to the Cambrian lattice coming from Q.

We also introduce the representation theoretic map ηrep
Q as the composition F ◦ ηQ of 

the map ηQ with our functor F . We show that ηrep
Q is described via degenerations and 

extensions of representations of Q of dimension vector (1, 1 . . . , 1).
The paper is organized as follows. We start by recalling the construction of the polygon 

P (Q) and the map ηQ in section 2. In section 3, we review several facts on representations 
of quivers of type A. Section 4 is devoted to the construction of the category CP (Q) of line 
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Fig. 1. Quiver Q with [6] = {4, 6} and [6] = {1, 2, 3, 5} and the polygon P (Q).

segments in P (Q) and the proof of Theorem A. We introduce the stability function in 
section 5 and prove Theorem B. In the same section, we extend our model to the derived 
category. In section 6, we define maximal almost rigid representations and prove Theo-
rem C, and in section 7, we study their endomorphism algebras and prove Theorem D. 
In the last section, we give our representation theoretic interpretations of the Cambrian 
lattice and the ηQ map and prove Theorem E. We also produce the interpretation of the 
ηQ map via degenerations and extensions in that section.

2. Construction of the polygon P (Q) and the map ηQ

We recall the construction of the (n + 3)-gon P (Q) from [25], where Q is a Dynkin 
quiver of type An+2. Label the vertices 1, 2, . . . , n + 2 in linear order as in Fig. 1(left). 
Let [n + 1] denote the set {1, 2, . . . , n + 1} and let Sn+1 be the symmetric group.

First, use Q to partition the set [n +1] into two sets, the upper-barred integers [n + 1]
and the lower-barred integers [n + 1], as follows. Let [n + 1] be the set of all vertices i
such that i → (i +1) is in Q and let [n + 1] be the set of all vertices i such that i ← (i +1)
is in Q.

Next, associate to Q an (n +3)-gon P (Q) with vertex labels 0, 1, 2, . . . , n +2. Draw the 
vertices 0, 1, . . . , n + 2 in order from left to right so that: (1) the vertices 0 and n + 2 are 
placed on the same horizontal line L; (2) the upper-barred vertices are placed above L; 
(3) the lower-barred vertices are placed below L. See Fig. 1.

Given a permutation π ∈ Sn+1, we write π in one-line notation as π1π2 . . . πn+1, where 
πi = π(i) for i ∈ [n + 1]. For each i ∈ {0, . . . , n + 1}, define λi(π) to be a path from the 
left-most vertex 0 to the right-most vertex n + 2 as follows. Let λ0(π) be the path from 
the vertex 0 to the vertex n + 2 passing through all lower-barred vertices i ∈ [n + 1] in 
numerical order. Thus λ0(π) is the path along the lower boundary edges of P (Q). Define 
λ1(π) as the piecewise linear path from 0 to n + 2 passing through the vertices{

[n + 1] ∪ {π1}, if π1 ∈ [n + 1];

[n + 1] \ {π1}, if π1 ∈ [n + 1],

maintaining the numerical order of the vertices visited. Repeating this process recursively, 
the final path λn+1(π) passes from 0 to n +2 through all upper-barred vertices i ∈ [n + 1]. 
Thus λn+1(π) is the path along the upper boundary edges of P (Q).
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Definition 2.1. [25] Define a map ηQ : Sn+1 → {triangulations of P (Q)}, π �→ ηQ(π), 
where ηQ(π) is the triangulation (including the boundary edges) of P (Q) that arises as 
the union of the paths λ0(π), . . . , λn+1(π).

Remark 2.2. It is shown in [25] that ηQ is surjective and that its fibers correspond to the 
congruence classes of a certain lattice congruence on the weak order on the symmetric 
group. The induced poset structure is a lattice called a Cambrian lattice of type A. More 
precisely, two triangulations are ordered T ≤ T ′ if there exist permutations π ≤ π′ in 
the weak order such that ηQ(π) = T and ηQ(π′) = T ′.

Example 2.3. Let Q be the quiver in Fig. 1, where n = 5. Then [6] = {1, 2, 3, 5} and 
[6] = {4, 6}. Let π = 4 5 3 1 2 6 ∈ S6, written in one-line notation.

Then the paths λi(π) described above are as follows.

λ0(π) = 0, 4, 6, 7

λ1(π) = 0, 6, 7 delete π(1) = 4 from λ0(π)

λ2(π) = 0, 5, 6, 7 add π(2) = 5 to λ1(π)

λ3(π) = 0, 3, 5, 6, 7 add π(3) = 3 to λ2(π)

λ4(π) = 0, 1, 3, 5, 6, 7 add π(4) = 1 to λ3(π)

λ5(π) = 0, 1, 2, 3, 5, 6, 7 add π(5) = 2 to λ4(π)

λ6(π) = 0, 1, 2, 3, 5, 7 delete π(6) = 6 from λ5(π)

The triangulation T = ηQ(π) is given in Fig. 2. Note that the fiber of T is

η−1
Q (T ) = {453126, 453162, 453612, 456312} .

3. Representations of quivers of type A

Let k be an algebraically closed field, for example, k = C. Given a quiver Q, we 
denote by Q0 the set of its vertices and by Q1 its set of arrows. For α ∈ Q1, let s(α) be 
the source of α and t(α) be its target. A path from i to j in Q is a sequence of arrows 
α1α2 . . . α� such that s(α1) = i, t(α�) = j, and t(αh) = s(αh+1), for all 1 ≤ h ≤ � − 1. 
The integer � is called the length of the path. Paths of length zero are called constant 
paths and are denoted by ei, i ∈ Q0.

A representation M = (Mi, ϕα) of Q consists of a k-vector space Mi, for each ver-
tex i ∈ Q0, and a k-linear map ϕα : Ms(α) → Mt(α), for each arrow α ∈ Q1. If each 
vector space Mi is finite dimensional, we say that M is finite dimensional, and the di-
mension vector dimM of M is the vector (dimMi)i∈Q0 of the dimensions of the vector 
spaces. For example, the representation in Fig. 3 is a representation with dimension vec-
tor (0, 1, 1, 1, 1, 0, 0) of the type A7 quiver in Fig. 1. Let repQ denote the category of 
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Fig. 2. The paths λi(453126) and triangulation for ηQ(453126) from Example 2.3.
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Fig. 3. A representation of the quiver in Fig. 1.

finite dimensional representations of Q and let indQ denote a full subcategory whose 
objects are one representative of the isoclass of each indecomposable representation. The 
category repQ is equivalent to the category of finitely generated modules over the path 
algebra kQ of Q. The Auslander–Reiten quiver ΓrepQ of repQ has the isoclasses of inde-
composable representations as vertices and irreducible morphisms as arrows. For more 
information about representations of quivers we refer to the textbooks [5,34].

From now on, let Q be a Dynkin quiver of type An+2, labeled as before (see Fig. 1).
In the remainder of this section, we recall the classification of indecomposable repre-

sentations and irreducible morphisms in repQ, and give an interpretation of hooks and 
cohooks as boundary edges of the polygon P (Q).

3.1. Indecomposable representations

For each 1 ≤ i ≤ j ≤ n + 2, let M(i, j) denote the indecomposable representation 
supported on the vertices between i and j. Thus M(i, j) = (M�, ϕα) with
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M� =
{

k if i ≤ � ≤ j;
0 otherwise;

and ϕα = 1, whenever Ms(α) and Mt(α) are nonzero, and ϕα = 0, otherwise. The 
representations M(i, i) are simple representations (containing no proper nonzero sub-
representations) and are denoted by S(i), i ∈ Q0.

We have the following proposition, which is a special case of Gabriel’s theorem [14].

Proposition 3.1. Let Q be a Dynkin quiver of type An+2. Up to isomorphism, the 
indecomposable representations of Q are precisely the representations M(i, j) with 
1 ≤ i ≤ j ≤ n + 2.

3.2. Irreducible morphisms in terms of hooks and cohooks

A morphism from a representation (M�, φα) to (N�, ψα) is a sequence of linear 
maps (f�) such that for each arrow α ∈ Q1 the following diagram commutes.

Ms(α) Mt(α)

Ns(α) Nt(α)
ψα

φα

fs(α) ft(α)

In this subsection, we describe irreducible morphisms in type A.
Roughly speaking, an irreducible morphism between indecomposable representations 

is a morphism that does not factor non-trivially. For a precise definition, see for example 
the textbooks [5,34]. The work of Butler and Ringel from [9] shows how each irreducible 
morphism in a string algebra is determined by adding a hook or removing a cohook from 
an indecomposable representation to produce a new representation. Recall that each 
irreducible morphism in rep (Q) is an arrow in the Auslander–Reiten quiver. In Fig. 5
we show an example. Each (blue) h and (red) c indicates an arrow that corresponds 
to adding a hook and removing a cohook, respectively. In the following, we recall this 
construction in the special case of type A.

Definition 3.2 ([9]). Let Q be a quiver of type A and let α be an arrow in Q. The hook
of α, denoted by hook(α) is given by the maximal path of Q starting at x = s(α) that 
does not use α. Note that this maximal path may consist of only one vertex x = s(α)
and no arrows.

The cohook of α, denoted by cohook(α) is given by the maximal path of Q ending 
at y = t(α) that does not use α. Note that this maximal path may consist of only one 
vertex y = t(α) and no arrows.

That is, hook(α) and cohook(α) are of the form shown in Fig. 4 (without the arrow α).
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i
α

· i + 1

j − 1

j

j

j − 1

·

α

i + 1

i

Fig. 4. The hook of the arrow α, starting from i = s(α) (left); the cohook of the arrow α, ending at i = t(α)
(right).

Denote by H(α), respectively C(α), the indecomposable representation of Q supported 
on the hook, respectively cohook, of the arrow α, more precisely

H(α)x =
{

k if x is a vertex in hook(α);
0 otherwise;

C(α)x =
{

k if x is a vertex in cohook(α);
0 otherwise.

Remark 3.3. It may happen that H(α) = C(β). For the quiver in Fig. 1, we have
H(2 → 3) = C(1 → 2) = S(2) is the simple representation at vertex 2, and 
H(4 ← 5) = C(6 ← 7) = M(5, 6) is the indecomposable representation supported 
at vertices 5 and 6.

Let α be an arrow in Q1 whose target or source is either i or j, and assume that 
α does not lie in the support of M = M(i, j). Adding a hook to M is an operation 
which produces a new indecomposable representation N whose support is supp(M) 

supp(H(α)). Similarly removing a cohook from a representation N = M(i, �) or M(h, j)
is an operation which produces a new indecomposable representation M whose support 
is supp(N) \ supp(C(α)). In the following proposition, we fix the representation M , and 
we either add a hook to M to produce a “bigger” representation, or we remove a cohook 
from a “bigger” representation to obtain M .

Proposition 3.4. Let Q be a quiver of type A, let M = M(i, j), and let N be an indecom-
posable representation satisfying supp(M) ⊂ supp(N).

(1) If f : M → N is an irreducible morphism then N is obtained by adding a hook to M . 
This can be done in at most two ways.
(a) If α : j ← (j + 1) and H(α) = M(j + 1, �) then N = M(i, �).
(b) If α : (i − 1) → i and H(α) = M(h, i − 1) then N = M(h, j).
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(2) If f : N → M is an irreducible morphism then M is obtained by removing a cohook 
from N . This can be done in at most two ways.
(a) If α : j → (j + 1) and C(α) = M(j + 1, �) then N = M(i, �).
(b) If α : (i − 1) ← i and C(α) = M(h, i − 1) then N = M(h, j).

Moreover all irreducible morphisms between indecomposable representations are of this 
form.

Example 3.5. In the example of Fig. 5, we can illustrate the four different types of 
irreducible morphisms as follows. In each example, M is the representation with the 
smaller support.

(1)(a) 2
3
4
→ 2 3 54 6 , α : 5 → 4, H(α) = 5

6 (2)(a) 5 7
6 → 5 , α : 5 → 6, C(α) = 7

6

(1)(b) 2
3
4
→

1
2
3
4
, α : 1 → 2, H(α) = 1 (2)(b)

1
2
3 5
4

→ 5 , α : 5 → 4, C(α) =
1
2
3
4

3.3. Maximal increasing and decreasing paths

A path i → . . . → j in Q is said to be increasing if i ≤ j, and decreasing if i ≥ j. Note 
that the constant paths ei are both increasing and decreasing. A decreasing path is called 
a maximal decreasing path if it is not a proper subpath of a decreasing path. Similarly, 
an increasing path is called a maximal increasing path if it is not a proper subpath of 
an increasing path. Note that if c is a maximal increasing path or a maximal decreasing 
path in a Dynkin quiver of type A, then c is a maximal path of Q or a constant path. 
See Example 3.8.

The following lemma gives an interpretation of maximal increasing paths and maximal 
decreasing paths as boundary edges in the labeled polygon P (Q). In the polygon P (Q), 
let γ(a, b) denote the line segment between vertices a and b for 0 ≤ a < b ≤ n + 2.

Lemma 3.6. Let Q be a Dynkin quiver of type An+2.

(1) The map (i → . . . → j) �→ γ(i − 1, j) is a bijection between the maximal increasing 
paths in Q and the lower boundary edges of P (Q).

(2) The map (i → . . . → j) �→ γ(j − 1, i) is bijection between the maximal decreasing 
paths in Q and the upper boundary edges of P (Q).

Proof. Recall that [n + 1] is the set of vertices on the lower part of the boundary of 
P (Q) and [n + 1] is the set of vertices on the upper part of the boundary.

(1) Let c be a maximal increasing path in Q. Since Q is of type A, either c = ei is 
constant or c is a maximal path in Q.
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First, suppose c = ei is a maximal increasing path which is constant. Then either 
(i + 1) → i → (i − 1) is a decreasing path in Q, or i = 1 and is a sink, or i = n + 2 and 
is a source. Therefore i ∈ [n + 1] (if i 
= n + 2) and i− 1 ∈ [n + 1] (if i 
= 1). Then the 
line segment γ(i − 1, i) is a lower boundary edge.

Next, let c be a non-constant maximal increasing path i → · · · → j in Q. Then c
is a maximal path in Q, so the vertex i is a source and the vertex j is a sink of Q. 
We want to show that the line segment γ(i − 1, j) is a bottom boundary edge. Note 
that the vertices i, . . . , j − 1 are in [n + 1], by construction. Since i is a source, either 
i = 1 or i− 1 ∈ [n + 1]. Since j is a sink, either j ∈ [n + 1] or j = n + 2. Then the 
vertices i, . . . , (j − 1) form a maximal consecutive sequence of integers which label j − i

consecutive vertices of the upper boundary of the polygon P (Q), so γ(i − 1, j) is a lower 
boundary edge. It follows from the construction that this map is a bijection.

The proof of (2) is analogous to part (1). �
Corollary 3.7. A Dynkin quiver of type An+2 has exactly n + 3 maximal increasing and 
maximal decreasing paths.

Proof. This follows from Lemma 3.6, since P (Q) has exactly n + 3 boundary edges. �
Example 3.8. Let Q be the quiver 1 → 2, so n = 0. Then there is exactly one maximal 
increasing path 1 → 2, and two maximal decreasing paths, namely the two constant 
paths e1 and e2.

If Q is the quiver from Fig. 1, then n = 5 and there are n +3 = 8 maximal increasing 
and maximal decreasing paths.

Recall that for each α ∈ Q1, the hook(α) and cohook(α) are defined to be maximal 
paths. Therefore, in type A each hook and cohook is a maximal increasing or a maximal 
decreasing path. We make this precise in the next lemma.

Lemma 3.9. Let Q be a quiver of type An+2. Then the set

⋃
α∈Q1

{H(α), C(α)}

of all indecomposable representations supported on the hooks and cohooks is in bijection 
with

(a) the set {S(1), . . . , S(n + 2)} of all simple representations of Q, if Q is the linear 
orientation of An+2 (all arrows pointing in the same direction);

(b) the set of maximal increasing paths and maximal decreasing paths, for all other 
choices of Q.
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Proof. We have noted earlier that every hook and every cohook is either a maximal 
increasing path or a maximal decreasing path. To prove (a) it suffices to notice that for 
a linearly oriented quiver, say, 1 → 2 → . . . → n + 2, the maximal decreasing paths are 
the n + 2 constant paths, and the unique maximal increasing path from 1 to n + 2 is 
neither a hook nor a cohook.

To prove (b) it remains to show that if Q is not the linear orientation then every 
maximal increasing path and every maximal decreasing path is a hook or cohook. Suppose 
c is a maximal increasing path in Q. Since Q is of type A, either c is constant or c is a 
(non-constant) maximal path in Q.

First, suppose c = ei is a maximal increasing path which is constant. Then either 
(i − 1) ← i ← (i +1) is a decreasing path in Q, or i = 1 and is a sink, or i = n +2 and is 
a source. In the first situation, c is the hook of the arrow (i − 1) ← i in Q (and also the 
cohook of the arrow i ← (i +1) in Q). If i = 1 is a sink, then c is the cohook of the arrow 
1 ← 2 in Q. If i = n + 2 is a source, then c is the hook of the arrow (n + 1) ← (n + 2)
in Q.

Next, suppose c= i → · · · → j is a non-constant maximal increasing path in Q. 
Then, as noted earlier, c must be a maximal path in Q, so the vertex i is a source and 
the vertex j is a sink of Q. By assumption, the quiver Q is not the linear orientation 
1 → 2 → · · · → n + 2. Thus if i > 1 we have an arrow α : (i − 1) ← i in Q, since i is 
a source. In this case, c is the hook of the arrow α, as illustrated in the left picture of 
Fig. 4. On the other hand, if i = 1 then j < n + 2 and we have an arrow β : j ← (j + 1)
in Q, since j is a sink. In this case, c is the cohook of the arrow β (not illustrated).

The proof that a maximal decreasing path corresponds to a hook or cohook is simi-
lar. �

Corollary 3.10. Let Q be a quiver of type An+2. Then the set of all representations 
supported on the hooks and cohooks is in bijection with

(a) the set of all boundary edges of the polygon P (Q) except for the long boundary edge 
γ(0, n + 2), if Q is the linear orientation;

(b) the set of all boundary edges of the polygon P (Q), for all other choices of Q.

Proof. This follows from Lemmas 3.9 and 3.6. �

4. A geometric model for repQ

In this section, we construct a category of line segments in the polygon P (Q) and 
prove that it is equivalent to the category indQ of indecomposable representations of Q. 
The construction is illustrated in an example in Figs. 5 and 6.
2 E. Barnard et al. / Advances in Applied Mathematics 143 (2023) 102428
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Fig. 5. Auslander–Reiten quiver ΓrepQ of rep Q for the quiver Q in Fig. 1.

Fig. 6. Translation quiver of the category CP (Q) for the quiver Q in Fig. 1.
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4.1. The category of line segments CP (Q)

In this subsection, we construct a category CP (Q) whose objects are line segments in 
the polygon P (Q) and whose morphisms are generated by pivots of line segments modulo 
mesh relations.

4.1.1. Translation quivers and mesh categories
We start by reviewing the notions of translation quiver and mesh category, from 

[29,15]. Recall that for any quiver Γ, we denote the set of vertices by Γ0 and the set of 
arrows by Γ1. A loop is an arrow that starts and ends at the same vertex.

A translation quiver (Γ, τ) is a quiver Γ = (Γ0, Γ1) without loops together with an 
injective map τ : Γ′

0 → Γ0 (the translation) from a subset Γ′
0 of Γ0 to Γ0 such that, for 

all vertices x ∈ Γ′
0, y ∈ Γ0, the number of arrows from y → x is equal to the number of 

arrows from τx → y. Given a translation quiver (Γ, τ), a polarization of Γ is an injective 
map σ : Γ′

1 → Γ1, where Γ′
1 is the set of all arrows α : y → x with x ∈ Γ′

0, such that 
σ(α) : τx → y for every arrow α : y → x ∈ Γ1.

From now on we assume that Γ has no multiple arrows. In that case, there is a unique 
polarization of Γ.

The path category of a translation quiver (Γ, τ) is the category whose objects are the 
vertices Γ0 of Γ, and, given x, y ∈ Γ0, the k-vector space of morphisms from x to y is 
given by the k-vector space with basis the set of all paths from x to y. The composition 
of morphisms is induced from the usual composition of paths. The mesh ideal in the 
path category of Γ is the ideal generated by the mesh relations

mx =
∑

α:y→x

σ(α)α.

for all x ∈ Γ′
0

For example, in the Auslander–Reiten quiver in Fig. 5, we have the commutativity 
relation

m 3 5
4 6

= ( 4 → 5
4 6 → 3 5

4 6 ) + ( 4 → 3
4 → 3 5

4 6 )

and the zero relation m2 = ( 3 → 2
3 → 2 ).

The mesh category M(Γ, τ) of (Γ, τ) is the quotient of the path category of (Γ, τ) by 
the mesh ideal.

Example 4.1. If Q is a quiver of Dynkin type then its Auslander–Reiten quiver ΓrepQ

together with the Auslander–Reiten translation τ is a translation quiver, where Γ′
0 is the 

set of all non-projective indecomposable representations. In this case, the mesh category 
M(ΓrepQ, τ) is equivalent to the category indQ, and the additive closure of M(ΓrepQ, τ)
is equivalent to repQ.
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4.1.2. Definition of CP (Q)
We define the set E of all line segments γ(i, j) of P (Q) as follows

E = {γ(i, j) | 0 ≤ i < j ≤ n + 2}, (4.1)

where γ(i, j) denotes the line segment between the vertices i and j. Notice that E contains 
all boundary edges and all diagonals of P (Q). Also notice that our line segments are 
oriented by our choice of labeling, and that γ(i, j) ∈ E if and only if γ(j, i) /∈ E .

For any vertex � of P (Q), denote by R(�) and by R−1(�), respectively, the clockwise 
and counterclockwise neighbor of � on the boundary of P (Q).

Definition 4.2. Let γ(i, j) ∈ E . The line segment γ(i, R−1(j)) is called a pivot of γ(i, j)
if it lies in the set E , that is, if i < R−1(j). Similarly, the line segment γ(R−1(i), j) is 
called a pivot of γ(i, j) if it lies in the set E , that is, if R−1(i) < j.

Thus a pivot of a line segment γ is given by fixing one of the endpoints of γ while 
moving the other endpoint to its counterclockwise neighbor.

Remark 4.3. Notice that a line segment γ(i, j) may have two, one or zero pivots. In the 
example in Fig. 6, the line segment γ(3, 4) has the two pivots γ(2, 4) and γ(3, 6). On 
the other hand, the line segment γ(0, 4) has only one pivot γ(0, 6), and the line segment 
γ(4, 5) has no pivots at all.

We now define a translation quiver (ΓP (Q), R). The vertices of the quiver are the line 
segments in E . There is an arrow γ(i, j) → γ(i′, j′) if and only if γ(i′, j′) is a pivot of 
γ(i, j), thus if and only if i′ < j′ and (i′, j′) = (R−1(i), j) or (i′, j′) = (i, R−1(j)). Finally, 
the translation R is defined by

R(γ(i, j)) =
{

γ(R(i), R(j)) if R(i) < R(j);
0 otherwise.

(4.2)

Thus R acts on E by rotation.
The following is the main definition of this section.

Definition 4.4. Let CP (Q) be the mesh category of the translation quiver (ΓP (Q), R). We 
call CP (Q) the category of line segments of P (Q).

4.2. The functor F : CP (Q) → indQ

In this subsection, we construct an equivalence of categories between CP (Q) and indQ.

Definition 4.5. Let F : CP (Q) → indQ be the functor defined as follows. On objects, let

F (γ(i, j)) = M(i + 1, j).
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To define F on morphisms, it suffices to define it on the pivots introduced in Defini-
tion 4.2. Define F

(
γ(i, j) → γ(R−1(i), j)

)
to be the irreducible morphism M(i +1, j) →

M(R−1(i) + 1, j) given by

(a) adding the hook corresponding to the boundary edge γ(R−1(i), i), if R−1(i) < i;
(b) removing the cohook corresponding to the boundary edge γ(i, R−1(i)), if i < R−1(i).

Similarly, let F
(
γ(i, j) → γ(i, R−1(j))

)
be the irreducible morphism M(i + 1, j) →

M(i + 1, R−1(j)) given by

(a) adding the hook corresponding to the boundary edge γ(j, R−1(j)), if j < R−1(j);
(b) removing the cohook corresponding to the boundary edge γ(R−1(j), j), if R−1(j) < j.

We are now ready for our first main result.

Theorem 4.6. The functor F is an equivalence of categories

F : CP (Q) → indQ.

In particular,

(1) F induces an isomorphism of translation quivers 
(
ΓP (Q), R

)
→ (ΓrepQ, τ);

(2) F induces bijections

{line segments in P (Q)} → indQ;
{pivots in P (Q)} → {irreducible morphisms in Q};

(3) the rotation R corresponds to the Auslander–Reiten translation τ in the following 
sense

F ◦R = τ ◦ F ;

(4) F is an exact functor with respect to the induced abelian structure on CP (Q).

Proof. Proposition 3.1 implies that the indecomposable representations are of the form 
M(i, j) with 1 ≤ i ≤ j ≤ n + 2. On the other hand, the line segments γ(i, j) ∈ E are 
parametrized by 0 ≤ i < j ≤ n + 2 by equation (4.1). Thus F is a bijection between the 
objects of the categories CP (Q) and indQ and thus a bijection between the vertices of 
the translation quivers.

Proposition 3.4 combined with Corollary 3.10 shows that F is a bijection between 
pivots and irreducible morphisms, hence a bijection between the arrows of the trans-
lation quivers. Moreover, f : γ(i, j) → γ(i′, j′) is an arrow in ΓP (Q) if and only if 
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F (f) : M(i + 1, j) → M(i′ + 1, j′) is an arrow in ΓrepQ. Thus F is an isomorphism 
of quivers ΓP (Q) → ΓrepQ.

Next we check that the translations of the two quivers correspond to each other. Let 
γ(i, j) ∈ E and assume that R−1(γ(i, j)) ∈ E as well. Note that

F (R−1(γ(i, j))) = F (γ(R−1(i), R−1(j))) = M(R−1(i) + 1, R−1(j)). (4.3)

Since R−1(γ(i, j)) ∈ E then γ(i, j) has at least one pivot, see Definition 4.2. Without loss 
of generality, we may assume that γ(i, j) → γ(R−1(i), j) is a pivot. Then γ(R−1(i), j) →
γ(R−1(i), R−1(j)) is a pivot too. Under F , the composition of these two pivots is mapped 
to the composition of two irreducible morphisms

M(i + 1, j) → M(R−1(i) + 1, j) → M(R−1(i) + 1, R−1(j)).

Since i 
= R−1(i) and j 
= R−1(j), it follows from the structure of the Auslander–Reiten 
quivers of type A that the last representation in this sequence is the inverse Auslander–
Reiten translate of the first, thus

M(R−1(i) + 1, R−1(j)) = τ−1M(i + 1, j) = τ−1F (γ(i, j)).

Now Equation (4.3) yields F (R−1(γ(i, j))) = τ−1F (γ(i, j)). This proves (1), (2) and (3).
Since both categories CP (Q) and indQ are the mesh categories of their translation 

quivers ΓP (Q) and ΓrepQ, statement (1) implies that F is an equivalence of categories. In 
particular, this equivalence induces the structure of an abelian category on CP (Q). With 
respect to this structure F is exact, since every equivalence between abelian categories 
is exact. �
Remark 4.7. In [13], the authors defined a category of unoriented diagonals (no boundary 
edges) in an (n + 3)-gon, whose morphisms are also generated by pivots modulo mesh 
relations. That construction yields the cluster category of type An. Our construction 
here is different in the following sense. First, we also include boundary edges, and our 
quiver is of rank n +2. Second, our line segments are oriented, which implies that certain 
pivots that are allowed in the cluster category are not allowed in the category CP (Q). 
This is the reason why CP (Q) is a hereditary abelian category, while the cluster category 
is triangulated and not abelian.

We investigate the relation between the two constructions further in section 7.

5. Stability function

Stability conditions were introduced in [32,18,31,10] and have important applications 
in algebraic geometry and representation theory. We recall the definition in the setting 
of the category repQ of finite-dimensional representations of a quiver Q.
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Let K0 denote the Grothendieck group of repQ. For M ∈ repQ, we denote its class in 
K0 by [M ]. Thus for M, N ∈ repQ, we have [M ] = [N ] if and only if M and N have the 
same dimension vector. K0 has a basis given by the classes of the simple representations 
S(x), x ∈ Q0.

Definition 5.1. (1) A central charge is a group homomorphism Z : K0 → C such that for 
all nonzero representations M the complex number Z([M ]) lies in the strict right half 
plane2

H = {r eiπφ | r > 0 and − 1
2 < φ < 1

2}.

(2) Given a central charge Z, we obtain an associated stability function

φ(M) = 1
π

arg(Z([M ])).

(3) Given a stability function φ, a nonzero representation M is called φ-stable if every 
nonzero proper subrepresentation L � M satisfies φ(L) < φ(M).

Remark 5.2. (1) Since Z is a group homomorphism it is determined by its values on the 
classes of simple representations.

(2) If M is φ-stable then M is indecomposable. Indeed, since direct summands are 
subrepresentations, this follows directly from the additivity of the central charge.

It is natural to ask if there exist stability functions for which all indecomposable rep-
resentations are stable. Reineke conjectured in [28, Conjecture 7.1] that such a stability 
function exists for every Dynkin quiver. In the same paper, he gave a stability function 
for the linearly oriented type A quiver. Apruzzese and Igusa proved the conjecture for 
all type A quivers in [4], and, very recently, Kinser described all such stability functions 
for type A in [19], see also [22–24].

We are going to show that our geometric model also provides such a stability function 
for every quiver of Dynkin type A. The stability function is given via the functor F
of Theorem 4.6 simply by the slope of the oriented line segment of an indecomposable 
representation.

From now on let Q be a quiver of type An+2 and let P (Q) be the (n + 3)-gon con-
structed in Section 2. Let E be the set of oriented line segments

E = {γ(j, k) | 0 ≤ j < k ≤ n + 2}

as in section 4. Recall that γ(j, k) denotes the oriented line segment from vertex j to 
vertex k of the polygon P (Q). Since the vertices of P (Q) are points in the plane, we can 
define a map vec: E → C, γ(j, k) �→ �γ(j, k), where �γ(j, k) is the complex number reiθ

2 [10] uses the strict upper half plane.
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Fig. 7. Line segments of the form γ(x, x + 1) in the polygon P (Q) (left); the corresponding central charges 
of the simple representations in black as well as their first shifts in the derived category in red (right).

given by the vector with the same direction and magnitude as the oriented line segment 
from point j to point k.

Let F : E → indQ be the bijection of Theorem 4.6 and denote its inverse by G. 
Furthermore, let �G = vec ◦G denote its composition with the map defined above. Thus, 
for a representation M = M(j, k) we have

�G(M) = �γ(j − 1, k) = r(M) eiθ(M),

where r(M) is the length of the vector �G(M) = �γ(j − 1, k) and θ(M) is the angle from 
the positive real axis to the vector �G(M) in the complex plane. An example is given in 
Fig. 7.

Then �G induces a group homomorphism Z : K0 → C defined on the basis of simples 
by Z([S(x)]) = �γ(x − 1, x) and extended additively to all of K0. By definition, we have

Z([M(j, k)]) = Z

⎛⎝ k∑
x=j

[S(x)]

⎞⎠ =
k∑

x=j

�γ(x− 1, x) = �γ(j − 1, k),

where the last identity is the addition in C. Thus for every indecomposable representation 
M , we have

Z([M ]) = �G(M) = r(M) eiθ(M). (5.1)
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Note that Z maps every representation of Q to the strict right half plane, and thus Z is 
a central charge. The corresponding stability function φ is given by

φ(M) = 1
π
θ(M) ∈

(
−1

2 ,
1
2
)
.

Now, for every nonzero proper subrepresentation L � M , the inclusion is a nonzero 
morphism in Hom(L, M). Thus the slope of G(L) is strictly smaller than the slope of 
G(M), by the same argument as in the proof of Lemma 8.5. Therefore φ(L) < φ(M)
and it follows that M is φ-stable. We have shown the following.

Theorem 5.3. Let Q be a Dynkin quiver of type A. Then the function that associates 
to every indecomposable representation M the angle of the corresponding oriented line 
segment G(M) is a stability function for which every indecomposable representation of 
Q is stable.

Remark 5.4. In [19], Kinser characterizes the stability conditions in question by two sets 
of inequalities that are formulated using a decomposition of the quiver into horizontal 
and vertical segments. The horizontal segments in Kinser’s quiver correspond to the 
lower boundary segments in our polygon in order from left to right, and his vertical 
segments correspond to our upper boundary segments also in order from left to right. 
Kinser’s inequalities in [19, Theorem 1.13] translate in our setting to the condition that 
the central charge (=slope) of the upper boundary segments is decreasing when moving 
along the upper boundary from left to right, and the central charge of the lower boundary 
segments is increasing.

5.1. A geometric model for the derived category

The stability function naturally allows for a geometric model for the derived category 
which we describe in this subsection. Geometric models for derived categories for arbi-
trary gentle algebras were given in [21], and our result here is equivalent to (a special 
case) of their construction. Note however, that the stability function is new.

Let D = Db(repQ) be the derived category of bounded complexes in repQ. Since repQ

is a hereditary category, the indecomposable objects of D are of the form M [i], with M
an indecomposable representation of Q and i an integer, called the shift. Moreover if 
M, N are indecomposable representations then

HomD(M [i], N [j]) =

⎧⎪⎨⎪⎩
HomrepQ(M,N) if j = i;
Ext1repQ(M,N) if j = i + 1 :
0 otherwise.

In particular, the Auslander-Reiten quiver of D is the translation quiver ZQ, and in this 
quiver, each arrow corresponds either to (a shift of) an irreducible morphism in repQ or 
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to (a shift of) a short exact sequence of the form 0 → P (x) → E → I(y) → 0 with P (x)
an indecomposable projective, I(y) an indecomposable injective, E an indecomposable 
representation and there exists an arrow y → x in Q.

We know from Theorem 4.6 that the irreducible morphisms in repQ correspond to 
the pivots γ(i, j) → γ(R−1(i), j) or γ(i, j) → γ(i, R−1(j)) of oriented line segments in E , 
and these are defined only if R−1(i) < j or i < R−1(j), respectively. This condition can 
be reformulated by saying that the stability function φ evaluated on the line segment 
after the pivot is still between −1

2 and 1
2 .

Now let us consider a pivot γ(i, j) → γ(R−1(i), j) that violates this condition, thus 
R−1(i) > j. This happens precisely when i lies on the lower boundary (or i = 0), all 
vertices i + 1, i + 2, . . . , j lie on the upper boundary, so that R−1(i) = k ≥ j + 1 is the 
first vertex after i on the lower boundary (possibly k = n + 2). In particular, the quiver 
contains the following subquiver

(i + 1) → · · · → j → (j + 1) → · · · → k,

where the vertex (i + 1) is a source and the vertex k is a sink. In particular, the 
representation F (γ(i, j)) = M(i + 1, j) = I(j) is the injective at vertex j, and the 
reverse γ(j, R−1(i)) ∈ E of the pivot γ(R−1(i), j) corresponds to the representation 
F (γ(j, R−1(i))) = M(j + 1, k) = P (j + 1), which is the projective at vertex j + 1. In 
particular, there is an arrow j → j + 1 and a short exact sequence

0 P (j + 1)
f

M(i + 1, k)
g

I(j) 0 .

Moreover, the line segment corresponding to the middle term of this sequence is γ(i, k)
is a boundary segment on the lower boundary.

We define a generalized pivot to be a map γ(i, j) → γ(R−1(i), j) or γ(i, j) →
γ(i, R−1(j)) with 0 ≤ i, j ≤ n +1 but without any other condition on i and j. Thus in the 
derived category a generalized pivot γ(i, j) → γ(R−1(i), j) with i < j and R−1(i) > j

corresponds to a morphism I(j) → P (j+1)[1]. Note that P (j+1) and its shift P (j+1)[1]
are represented by the same line segment, but with opposite orientations. Similarly, a 
generalized pivot γ(i, j) → γ(i, R−1(j)) with i < j and i > R−1(j) corresponds to a 
morphism I(j) → P (j − 1)[1].

More generally, consider the following translation quiver (ΓZ
P (Q), R

Z). The quiver 
ΓZ
P (Q) has as vertices the pairs (γ, j) ∈ E × Z, and there is an arrow (γ, j) → (γ′, j)

if there is a pivot γ → γ′, and there is an arrow (γ, j) → (γ′, j + 1) if there is a general-
ized pivot γ → γ′ but γ′ /∈ E , where γ′ is the same line segment as γ′ but in the opposite 
direction. The translation RZ is defined by

RZ(γ, j) =
{

(R(γ), j) if R(γ) ∈ E ;

(R(γ), j − 1) if R(γ) /∈ E ,

where R is the rotation of a line segment defined in equation (4.2).
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Let CZP (Q) be the mesh category of ΓZ
P (Q). Then the functor F of Theorem 4.6 induces 

an equivalence of categories

FZ : CZP (Q) → indD

that maps the pair (γ, j) to the object F (γ)[j].
Our stability function φ on repQ induces a stability function on the derived category 

which we also denote by φ, see [10, Proposition 5.3]. This stability function is again given 
by the angle of the corresponding line segment. More precisely, for every indecomposable 
representation M we define the angle θ(M [j]) and the stability function φ(M [j]) of the 
j-th shift of M in D as

θ(M [j]) = θ(M) + jπ and φ(M [j]) = φ(M) + j.

Note that φ(M [j]) = 1
π θ(M [j]).

6. Maximal almost rigid representations

In this section, we give a characterization of the representations that correspond to 
the triangulations of P (Q) under the equivalence F : CP (Q) → indQ. It seems that this 
class of representations has not been studied so far.

Recall that for A, B ∈ repQ, the vector space Ext(B, A) can be identified with the 
space of all short exact sequences of the form 0 → A → E → B → 0. Given such 
a short exact sequence, we call A, B the end terms and E the middle term of the se-
quence. Recall further that a representation is called basic if it has no repeated direct 
summands.

Definition 6.1. We say that a quiver representation T is almost rigid if it is basic and 
satisfies the following: For each pair A, B of indecomposable summands of T , either 
Ext(A, B) = 0 or Ext(A, B) = k and it is generated by a short exact sequence of the 
form 0 → B → E → A → 0 whose middle term E is indecomposable.

We say that a representation T is maximal almost rigid if, for every nonzero repre-
sentation M , the representation T ⊕M is not almost rigid.

Let mar(Q) be the set of all maximal almost rigid representations of Q.

Example 6.2. Let Q be the quiver 1 → 2 of type A2. Up to isomorphism, there are pre-
cisely three indecomposable representations of Q, namely 1, 2 and 1

2 . The representation 
T ′ = 1 ⊕ 2 is almost rigid since the extension 1

2 is indecomposable. The representation 
T = 1 ⊕ 1

2 ⊕ 2 is the only maximal almost rigid representation (up to isomorphism).

Example 6.3. Let Q be the quiver 1 → 2 → 3. Then the representation 1
2 ⊕ 2

3 is not 
almost rigid, because there is an extension
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0 → 2
3 → 1

2
3
⊕ 2 → 1

2 → 0

whose middle term is not indecomposable.

Remark 6.4. At first sight, the definition of maximal almost rigid representations does 
not seem very natural from a representation theoretical perspective. However, at least 
for the path algebras of a Dynkin type A quiver, our Theorem 6.8 shows that these 
representations are important from a combinatorial perspective, since they do correspond 
to the triangulations of the polygon.

It would be interesting to see if this correlation extends to other types of algebras 
beyond the path algebras of type A. As we shall see in Example 7.7, this does not seem 
to be the case for path algebras of Dynkin type D. The reason for this difference is that 
an indecomposable representation in type D may contain a vertex with an incoming 
arrow and two outgoing arrows such that the composition of the incoming arrow with 
either one of the outgoing arrows is nonzero.

Therefore, in order to find a more general class of algebras for which the maximal 
almost rigid representations may play a similar combinatorial role as in type A, we need 
to look for algebras whose indecomposable representations are locally of the same form 
as those of type A. These algebras are known as gentle algebras. They are given by quiv-
ers with relations (see Example 7.8). A combinatorial model for the module category 
of a gentle algebra has been found in [6] by Baur and Coelho Simões, and a combina-
torial model for the derived category of a gentle algebra in [21] by Opper, Plamondon 
and Schroll. It would be interesting to see if the maximal almost rigid representations 
(or complexes) of a gentle algebra realize combinatorially notable configurations in this 
model.

In order to prove Theorem 6.8, we first need to recall the structure of extensions in 
type A. The following result is well-known. For a proof see for example [34, Chapter 3].

Proposition 6.5. Let Q be a quiver of type An+2, and let A, B be indecomposable repre-
sentations of Q.

(a) There exists a non-split short exact sequence with end terms A, B and indecompos-
able middle term E if and only if the relative position of A, B, E in the Auslander–
Reiten quiver defines a rectangle with one point missing as on the left of Fig. 8.

(b) There exists a non-split short exact sequence with endterms A, B and decomposable 
middle term E if and only if E has two indecomposable summands E1, E2, and the 
relative position of A, B, E1, E2 in the Auslander–Reiten quiver defines a rectangle 
as on the right of Fig. 8.
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E E1

· · · ·

· · · ·

A B A B

· · · · ·

· · · ·

E2

Fig. 8. Short exact sequences 0 → A → E → B → 0 seen in the Auslander–Reiten quiver. On the left, the 
middle term E is indecomposable, on the right E = E1 ⊕ E2.

Fig. 9. Line segments γ(1, 2) and γ(2, 4) share an endpoint at the vertex 2, and their extension is the line 
segment γ(1, 4). Applying F yields the short exact sequence 0 → M(3, 4) → M(2, 4) → S(2) → 0.

Fig. 10. Diagonals γ(2, 4) and γ(0, 5) cross each other, and their extension is the direct sum of γ(0, 4) and 
γ(2, 5). Applying F yields the short exact sequence 0 → M(3, 4) → M(1, 4) ⊕ M(3, 5) → M(1, 5) → 0.

Example 6.6. Consider P2, I4, I6 and I7 in Fig. 5. The rectangle defined by P2 and I4
lies completely within the AR-quiver and therefore there is an extension 0 → P2 →
M(1, 4) ⊕M(2, 5) → I4 → 0.

The rectangle defined by P2 and I6 is missing precisely one point, thus there is an 
extension 0 → P2 → M(2, 7) → I6 → 0 with indecomposable middle term.

On the other hand, the rectangle defined by P2 and I7 is missing three points, and 
hence Ext(I7, P2) = 0.

Example 6.7. Figs. 9 and 10 illustrate short exact sequences in terms of line segments. It 
may happen that two line segments share an endpoint but there is no extension between 
them. See Fig. 11.
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Fig. 11. Ext1(A, B) = 0 for all A, B in {S(1), M(1, 4), M(3, 4), M(3, 7), M(3, 5), M(4, 5), S(7)} which 
corresponds to the set of illustrated line segments.

We have the following realization of maximal almost rigid representations.

Theorem 6.8. F induces a bijection also denoted by F

F : {triangulations of P (Q)} → mar(Q).

Proof. Let M(i, j), M(i′, j′) be two non-isomorphic indecomposable representations 
of Q. Using Theorem 4.6 and Proposition 6.5 (b), we see that there is a short exact 
sequence of the form

0 → M(i, j) → E1 ⊕ E2 → M(i′, j′) → 0

if and only if there exist positive integers s, t such that E1 = M(i, R−t(j)), E2 =
M(R−s(i), j) and M(i′, j′) = M(R−s(i), R−t(j)). In particular, i ≤ R−t(j) and 
R−s(i) ≤ j and thus the line segments F−1(M(i, j)) = γ(i − 1, j) and F−1(M(i′, j′)) =
γ(R−s(i) − 1, R−t(j)) are crossing diagonals in P (Q).

This shows that the sum of two indecomposable representations is almost rigid if and 
only if the corresponding line segments in P (Q) do not cross. Consequently, maximal 
almost rigid representations correspond to maximal sets of noncrossing line segments, 
hence triangulations. �
Corollary 6.9. If Q is of type An+2, every maximal almost rigid representation of Q has 
exactly 2n + 3 summands. The maximal almost rigid representations of Q are counted 
by the Catalan number 

(2n+2
n+1

) 1
n+2 .

Proof. The first statement follows from the theorem, because each triangulation of the 
(n +3)-gon P (Q) has n diagonals and n +3 boundary edges. The second statement holds 
because the number of triangulations of P (Q) is given by the Catalan number. �
7. Endomorphism algebras of maximal almost rigid representations

Recall that a module T is rigid provided that Ext(T, T ) = 0. We say that T is a 
maximal rigid module if T ⊕ M is not rigid for any nonzero module M . A maximal 
rigid module over the path algebra kQ of a quiver Q is called a tilting module, and the 
endomorphism algebras of tilting modules over path algebras are called tilted algebras, 
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Q = 1 2 3 Q = 1 3
2 2 5

2 3

M(2, 3) 1 M(2, 3) · 1

M(2, 5
2 ) · ·

2 M(1, 3) 2 M( 3
2 ,

5
2 ) M(1, 3)

M( 3
2 , 2) · ·

M(1, 2) 3 M(1, 2) · 3

Fig. 12. A quiver Q and its Auslander–Reiten quiver on the left; the corresponding quiver Q and its 
Auslander–Reiten quiver on the right. The image of the functor G are the representation M(i, j) with 
i and j integers.

see [16]. On the other hand, the endomorphism algebras of triangulations of polygons 
are cluster-tilted algebras [13]. Both tilted algebras and cluster-tilted algebras have been 
studied extensively.

It is therefore natural to study the endomorphism algebras of the maximal almost
rigid representations. The purpose of this section is to show that in type An+2 these 
algebras are tilted algebras of type A2n+3. For more details on endomorphism algebras 
and tilted algebras, see textbooks [5, Chapter 8] and [34, Chapter 6].

To every quiver Q of type An+2 we associate a quiver Q of type A2n+3 by replacing 
each arrow i → (i + 1) by a path of length two i →

( 2i+1
2

)
→ (i + 1) and each arrow 

i ← (i + 1) by a path of length two i ←
( 2i+1

2
)
← (i + 1), see Fig. 12 for an example. 

Since Q has n + 2 vertices and n + 1 arrows, Q has 2n + 3 vertices which are labeled by 
the half-integers i ∈ 1

2Z with 1 ≤ i ≤ n + 2. Note that Proposition 3.1 implies that the 
indecomposable representations of Q are of the form M(i, j) with i ≤ j and i, j ∈ 1

2Z.
Define a functor G : repQ → repQ as follows. On indecomposable objects, we let 

G(M(i, j)) = M(i, j) and we extend it additively to all objects. If f : M(i, j) → M(i′, j′)
is a morphism between indecomposables in repQ, we let G(f) = f : M(i, j) → M(i′, j′)
defined by f i = fi if i ∈ Z, and for the new vertices we let

f 2i+1
2

=
{

1 if fi = 1 and fi+1 = 1;
0 otherwise.

For example, the irreducible morphism 2 → M(2, 3) in repQ in the example of Fig. 12
is mapped under G to the composition of two irreducible morphisms 2 → M(2, 52 ) →
M(2, 3).

Lemma 7.1. The functor G is full and faithful.
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Fig. 13. Left: The embedding of a polygon P (Q) with triangulation T into the polygon P . Right: The quiver 
Q(T ).

Proof. Faithfulness is clear from the definition. To show that G is full, take a nonzero 
morphism f ∈ HomQ(G(M(i, j)), G(M(i′, j′))), thus f : M(i, j) → M(i′, j′). We want 
to show that f = G(f) for some f ∈ HomQ(M(i, j), M(i′, j′)). Let I ⊂ Q0 be the 
set of all vertices on which both M(i, j) and M(i′, j′) are nonzero. Then fx = 1, if 
x ∈ I, and fx = 0, otherwise. Let I ⊂ I be the subset of vertices from Q and define 
f : M(i, j) → M(i′, j′) by fx = 1, if x ∈ I, and fx = 0, otherwise. Then f is a morphism 
in repQ and G(f) = f . �
Corollary 7.2. For all T ∈ repQ, we have EndrepQ T ∼= EndrepQ G(T ).

Proof. This follows since G is full and faithful. �
To state our next result, we recall that the trivial extension C�E of an algebra C by 

a C-bimodule E is the algebra whose underlying vector space is the direct sum C ⊕ E, 
and whose multiplication is defined as (c, e)(c′, e′) = (cc′, ce′ + ec′). For more details, see 
for example the textbook [34, Chapter 6.2]

We also need the notion of the adjacency quiver Q(T ) of a triangulation T of a 
polygon. The vertices of Q(T ) are given by the line segments in T . And there is an arrow 
γ → γ′ in Q(T ) if the line segments γ, γ′ bound the same triangle in T such that γ′

follows γ when going along the boundary of the triangle in counterclockwise direction. 
For an example see Fig. 13.

We are ready for the main theorem of this section.

Theorem 7.3. Let Q be a quiver of type An+2, and let T be a maximal almost rigid 
representation of Q with endomorphism algebra C = EndrepQ T . Then

(1) C is a tilted algebra of type Q.
(2) The quiver of the cluster-tilted algebra B = C � Ext2C(DC, C) is the adjacency 

quiver Q(T ) of the triangulation T = F−1(T ). Moreover, every arrow of Q(T ) lies in a 
(unique) 3-cycle.

(3) The quiver Q(C) of C is obtained from T by deleting the arrows of Q(T ) of the 
form γ(i, j) → γ(j, k) and γ(j, k) → γ(i, j), i < j < k. Moreover, every arrow of Q(C)
lies in a (unique) relation.
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Q(C) 3
α

M(2, 3)
β

2 M(1, 2)
δ

1
γ

Q(B) 3
α

M(2, 3)
β

2

ε σ

M(1, 2)
δ

1
γ

Fig. 14. The quivers of C and B in Example 7.4. To obtain Q(C) from Q(B) remove the arrows ε and σ as 
described in part (3) of Theorem 7.3.

Example 7.4. Let Q be the quiver of Fig. 12 and let T be the maximal almost rigid 
representation T = 2 ⊕M(1, 2) ⊕M(2, 3) ⊕ 1 ⊕ 3. The corresponding triangulation T is 
shown left in Fig. 13. Then C = EndrepQ T is given by the quiver in Fig. 14(top) bound 
by the relations αβ = 0 and γδ = 0. Its cluster-tilted algebra B = C � Ext2C(DC, C) is 
given by the quiver in Fig. 14(bottom) bound by the relations αβ = βε = εα = 0 and 
γδ = δσ = σγ = 0.

Proof of Theorem 7.3. Let Q be the quiver of type A2n+3 defined in the beginning of 
this section. The cluster category C of Q can be realized in two ways. For one, C =
Db(repQ)/τ−1[1] is an orbit category of the bounded derived category of representations 
of Q, see [7]. On the other hand, C is the category of diagonals in a (2n +6)-gon P , see [13]. 
Using the realization via the derived category, we get a functor G̃ : repQ → C, which 
maps a representation to its orbit in the cluster category. This functor is not full, since, 
in the cluster category, there exist morphisms between the orbits of two representations 
that are not given by morphisms between the representations themselves.

On the other hand, using the realization via diagonals of P , we see that the composi-
tion G̃ ◦ F : CP (Q) → C is a functor from the category of line segments (=diagonals and 
boundary edges) in the (n + 3)-gon P (Q) to the category of diagonals (not including 
boundary edges) in the (2n + 6)-gon P . We now explain this construction on the level 
of the polygons. We embed P (Q) into P by adding one vertex for each boundary edge; 
thus each boundary edge of P (Q) becomes an interior edge of P which bounds a triangle 
whose other two sides are boundary edges, as follows, see Fig. 13 for an example.

•
i j �→ i j

The functor G̃ ◦ F induces a map T → T from triangulations of P (Q) that include 
all boundary edges to triangulations of P that do not include any boundary edges.

Now let T be a maximal almost rigid representation of Q. By Theorem 6.8, there exists 
a triangulation T of P (Q) such that T = F (T ). Let C = EndrepQ T be its endomorphism 
algebra. Denote by T the triangulation (without boundary edges) of P given as the image 
of T under G̃ ◦ F . We have the following commutative diagram.
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CP (Q)

F
G̃◦F

repQ

G̃

G repQ
ι C

Thus the object G̃(T ) = ι ◦G(T ) in the cluster category is given by the triangulation T . 
Therefore G̃(T ) is a cluster-tilting object in C, by [13]. Let B = EndC G̃(T ) denote its 
cluster-tilted algebra.

Furthermore, we know that G̃(T ) is induced from the representation G(T ) ∈ repQ, 
and therefore G(T ) is a tilting module over the path algebra kQ of Q, by [7,2]. Its 
endomorphism algebra C = EndrepQ G(T ) is a tilted algebra of type Q and its trivial 
extension C �Ext2C (DC, C) is the cluster-tilted algebra B, by [3]. Corollary 7.2 implies 
that C ∼= C, so C is tilted of type Q and B ∼= C �Ext2C(DC, C). The quiver of B is the 
quiver of the triangulation T , by [13], and thus it is also the quiver of the triangulation T . 
This shows (1) and (2).

To show (3) we need to consider the morphisms in the category CP (Q). By definition, 
they are given by composition of pivots of the form γ(i, j) → γ(i, R−1(j)) or γ(i, j) →
γ(R−1(i), j). Given a triangle in T with vertices i < j < k in the labeling of P (Q), and 
such that traveling from i to j to k to i is going counterclockwise around the triangle, 
there exists a morphism γ(i, j) → γ(i, k) given by a sequence of pivots that fix the 
endpoint i, and a morphism γ(i, k) → γ(j, k) given by a sequence of pivots that fix the 
endpoint k. In the cluster category C there also is a nonzero morphism γ(j, k) → γ(j, i)
given by a sequence of pivots fixing the endpoint j, however, this morphism is zero in 
the category CP (Q) because the diagonal γ(j, i) is not in E , since j > i.

Similarly, when the triangle T has vertices i < j < k in the labeling of P (Q) such that 
traveling from i to j to k is going clockwise around the triangle, there is a morphism 
γ(i, k) → γ(i, j) given by a sequence of pivots that fix i, and there is a morphism 
γ(k, j) → γ(i, k) given by a sequence of pivots that fix k. �
Remark 7.5. Not every tilted algebra of type A2n+3 is realizable as the endomorphism 
algebra of a maximal almost rigid representation of type An+2. For example the tilted 

algebra given by the quiver 1 α 2
β

3 4 5 with relation αβ = 0
is not, because not every arrow lies in a relation.

Remark 7.6. It would be interesting to see how the maximal almost rigid representations 
behave for other quivers or more generally for bound quiver algebras. The first example 
below shows that in Dynkin type D4 the number of summands in a maximal almost rigid 
representation is not always the same.
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P1 =
1
2
4

= I4

P3 = 3 rad P1 = 2
4

1
2 = I2

P2 = 2
3 4 2 1 = I1

P4 = 4 2
3 = I3

Fig. 15. Auslander–Reiten quiver for the bound quiver in Example 7.8.

Example 7.7. The D4 quiver Q

3
1 2

4

admits the following maximal almost rigid representations, one of which has 7 direct 
summands and the other has 9.

T = P (1) ⊕ P (2) ⊕ P (3) ⊕ P (4) ⊕ 2
4 ⊕ 2

3 ⊕ 1 and

T ′ = P (1) ⊕ P (3) ⊕ P (4) ⊕ 2
4 ⊕ 2

3 ⊕ 1
2
4
⊕ 1

2
3
⊕ 2 ⊕ 1

The endomorphism algebra of T is tilted of affine type Ẽ6 = Q, which is encouraging 
for a possible generalization of the type A results. However, the endomorphism algebra 
of T ′ does not seem to be a tilted algebra.

Example 7.8. Consider the D4 quiver

3
1 α 2

β

4

bound by the relation αβ = 0. The Auslander–Reiten quiver is illustrated in Fig. 15.
If an indecomposable representation M has at most one incoming arrow and one 

outgoing arrow in the Auslander–Reiten quiver, then M is a direct summand of every 
maximal almost rigid representation. Therefore, the five indecomposable representations 
written in bold in Fig. 15 are direct summands of every maximal almost rigid represen-
tation.

The maximal almost rigid representations are as follows. Each of them has 7 direct 
summands.
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3 ⊕ 4 ⊕ 2
3 ⊕

1
2
4
⊕ 1 ⊕ 2

4 ⊕ 2
3 4

3 ⊕ 4 ⊕ 2
3 ⊕

1
2
4
⊕ 1 ⊕ 2

4 ⊕ 2

3 ⊕ 4 ⊕ 2
3 ⊕

1
2
4
⊕ 1 ⊕ 2 ⊕ 1

2

8. Representation theoretic version of the Cambrian lattice and the η map

In this section, we come back to our initial motivation and give a new realization of 
the η map in terms of maximal almost rigid representations.

8.1. Poset structure on mar(Q)

A flip is a transformation of a triangulation T that removes a diagonal γ and replaces 
it with a (unique) different diagonal γ′ that, together with the remaining diagonals, 
forms a new triangulation T ′. Note that the two diagonals γ and γ′ involved in such a 
flip must cross.

In [25], Reading defined the following poset structure on the set of triangulations of 
P (Q). A triangulation T1 is said to be covered by a triangulation T2 if there exist two 
diagonals γ1 
= γ2 such that T1 \ {γ1} = T2 \ {γ2} and the slope of γ1 is smaller than the 
slope of γ2. This covering relation induces a partial order on the set of triangulations, 
and the resulting poset is called the Cambrian lattice of type A. See also the survey 
paper [26].

Definition 8.1. We define a partial order on mar(Q) as follows. For T1, T2 ∈ mar(Q), we 
say that T1 is covered by T2 if there exist indecomposable summands Mi of Ti such that 
T1/M1 ∼= T2/M2 and there is a non-split short exact sequence

0 M1
f

E ⊕ E′ g
M2 0

with E, E′ indecomposable summands of T1/M1.

Remark 8.2. In the short exact sequence in Definition 8.1, the morphism f is a minimal 
add(T1/M1) approximation of M1. For a definition, see for example [7].

Remark 8.3. It follows from Theorem 6.8 that every maximal almost rigid representa-
tion contains all hooks and all cohooks of Q, since these correspond to boundary edges 
of the triangulation of P (Q) by Corollary 3.10. Therefore, there is a unique minimal 
element in the poset mar(Q) given by the basic representation whose direct summands 
are the indecomposable projective representations together with the hooks and cohooks. 
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The covering relation given by the short exact sequence in Definition 8.1 then gives an 
algorithm to construct all maximal almost rigid representations using approximations. 
The unique maximal element in the poset on mar(Q) is given by the basic representation 
whose direct summands are the indecomposable injective representations together with 
the hooks and cohooks.

8.2. The poset on mar(Q) is a Cambrian lattice

We have the following result.

Theorem 8.4. Let Q be a Dynkin quiver of type An+2. Then the poset on mar(Q) is 
isomorphic to a Cambrian lattice.

Proof. By Theorem 6.8, the functor F is a bijection from triangulations of P (Q) to 
mar(Q). It only remains to prove that F preserves the covering relations. This is done 
in the next lemma. �
Lemma 8.5. Let Q be a quiver of type An+2. Let M1, M2 be two indecomposable repre-
sentations of Q and γ1, γ2 be the line segments in P (Q) such that F (γi) = Mi, i = 1, 2. 
Suppose there is a non-split short exact sequence 0 → M1 → E → M2 → 0. Then the 
following conditions are equivalent.

(1) Hom(M1, M2) 
= 0.
(2) E is decomposable.
(3) γ1 and γ2 cross and the slope of γ2 is larger than the slope of γ1.

Proof. (1)⇔(2). Applying the functor Hom(M1, −) to the short exact sequence yields 
an exact sequence

0 → k = Hom(M1,M1) → Hom(M1, E) → Hom(M1,M2) → Ext(M1,M1) = 0, (8.1)

where the first term is one-dimensional and the last term is zero, because M1 is an 
indecomposable representation of a Dynkin quiver. Since M1 and M2 are indecomposable 
and the short exact sequence is non-split, there is a nonzero morphism from M1 to every 
indecomposable summand of E. Thus the dimension of Hom(M1, E) is at least equal to 
the number of indecomposable summands of E. However, Q being of type A implies that 
the dimension of Hom between indecomposables is at most one, and thus the dimension 
of Hom(M1, E) is exactly equal to the number of indecomposable summands of E. Thus 
the exactness of (8.1) implies that E is decomposable if and only if Hom(M1, M2) 
= 0.

(1)&(2)⇒(3). Suppose there is a nonzero morphism from M1 to M2. By Theorem 4.6, 
this means that we can get from γ1 to γ2 by a sequence of pivots, each of which is 
moving one of the endpoints of a diagonal to its counterclockwise neighbor (in a way 
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that preserves the ordering of the endpoints). Each such pivot increases the slope of a 
diagonal, thus the slope of γ2 is larger than the slope of γ1. Furthermore γ1 and γ2 must 
cross, because otherwise the extension E would be indecomposable.

(3)⇒(1). Suppose γ1 and γ2 cross and that γ2 has larger slope than γ1. Then it is 
possible to get from γ1 to γ2 by a sequence of counterclockwise pivots which preserve 
the ordering of the endpoints. By Theorem 4.6, there is a nonzero morphism from M1
to M2. �
8.3. The η map

Recall the map ηQ from the symmetric group Sn+1 to the set of triangulations of 
P (Q) from Definition 2.1. We define a new realization of this map via the composition 
of ηQ with the equivalence F of Theorem 4.6.

Definition 8.6. Let ηrep
Q = F ◦ ηQ : Sn+1 → mar(Q).

We shall give an alternate, equivalent description of ηrep
Q using extensions and de-

generations. A representation M is an extension of a representation N if there exists 
a non-split short exact sequence 0 → N1 → M → N2 → 0 such that N = N1 ⊕ N2. 
A representation M is a degeneration of a representation N if M is contained in the 
Zariski closure of the isomorphism class of N . In Dynkin type A, a representation M
is a degeneration of a representation N if there exists a non-split short exact sequence 
0 → M1 → N → M2 → 0 with M = M1 ⊕M2. Note that in both cases, the dimension 
vectors of M and N are equal.

Recall that the map ηQ is defined by taking the union of a list of paths. This list 
is created by a recursive process of removing and adding a vertex of P (Q) to a path. 
Instead of a list of paths, we will now create a list of representations of Q each of which 
has dimension vector (1, 1, . . . , 1). Instead of removing (respectively adding) a vertex, we 
will now apply an extension (respectively a degeneration) to a representation. Because 
every representation on this list has dimension vector (1, 1, . . . , 1), an extension is the 
same as changing the assignment of the linear map on an arrow in Q from the zero 
map to the identity map. Conversely, a degeneration is simply changing the assignment 
of the linear map on an arrow in Q from the identity map to the zero map. Finally, 
instead of taking the union of the list of paths, we take the direct sum of the union of 
all indecomposable summands of our list of representations.

Let α� denote the arrow of Q between vertices � and (� + 1) for all �. Given a per-
mutation π = π1 π2 π3 . . . πn+1 written in one-line notation, we define a representation 
λrep
i (π) of Q for each i ∈ {0, . . . , n +1}. Let λrep

0 (π) be the representation with dimension 
(1, 1, . . . , 1) with the 0 map on each arrow αi for all i ∈ [n + 1], and the identity map ev-
erywhere else. That is, it is the direct sum of the indecomposable representations which 
correspond to the lower boundary edges of P (Q) (or maximal increasing paths in Q, due 
to Lemma 3.6). These indecomposable representations are the ones in the τ -orbit of the 
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projective at 1. In the Auslander–Reiten quiver example of Fig. 5, they are drawn at the 
bottom row.

Define λrep
1 (π) to be

(a) the degeneration of λrep
0 (π) obtained by replacing the identity map on απ1 with the 

zero map, if π1 ∈ [n + 1], or
(b) the extension of λrep

0 (π) obtained by replacing the zero map on απ1 with the identity 
map, if π1 ∈ [n + 1].

Repeat this process recursively, until we get to λrep
n+1(π) which is the representation 

with dimension vector (1, 1, . . . , 1) with the 0 map on all arrows αi with i ∈ [n + 1], and 
the identity map everywhere else. That is, λrep

n+1(π) is the direct sum of the indecompos-
able representations which correspond to the upper boundary edges of P (Q) (or maximal 
decreasing paths in Q, due to Lemma 3.6). These indecomposable representations are 
the ones in the τ -orbit of the projective at n +2. In the Auslander–Reiten quiver example 
of Fig. 5, they are drawn at the top row.

Proposition 8.7. ηrepQ (π) is the maximal almost rigid representation of Q whose indecom-
posable direct summands are exactly those appearing in the list λrep

0 (π), . . . , λrep
n+1(π).

Proof. We need to check that the recursive definition of λrep
� corresponds to the recursive 

definition of λ� under the functor F . For � = 0, this is clear. Suppose � > 0 and that 
F (λ�) = λrep

� . We want to show F (λ�+1) = λrep
�+1. Suppose first that π�+1 ∈ [n + 1]. Then 

the difference between the paths λ� and λ�+1 is that λ�+1 passes through the vertex π�+1
of P (Q). This means that λ� contains a line segment γ(i, j) which is replaced in λ�+1 by 
two line segments γ(i, π�+1), γ(π�+1, j), where i < π�+1 < j. Applying the functor F , the 
indecomposable direct summand M(i + 1, j) is replaced by two indecomposable direct 
summands M(i + 1, π�+1), M(π�+1 + 1, j). This change coincides with the difference 
between λrep

� and λrep
�+1 which is given by a degeneration that replaces the identity map 

on the arrow απ�+1 by the zero map.
Now suppose that π�+1 ∈ [n + 1]. Then the difference between the paths λ� and λ�+1

is that λ� passes through the vertex π�+1 of P (Q). This means that λ� contains two 
line segments γ(i, π�+1), γ(π�+1, j), with i < π�+1 < j, which are replaced in λ�+1 by a 
single line segment γ(i, j). Applying the functor F , two indecomposable direct summands 
M(i + 1, π�+1), M(π�+1 + 1, j) are replaced by a single indecomposable direct summand 
M(i + 1, j). This change coincides with the difference between λrep

� and λrep
�+1 which is 

given by an extension that replaces the zero map on the arrow απ�+1 by the identity 
map. �
Example 8.8. Let Q be the quiver in Fig. 1. Then [6] = {1, 2, 3, 5} and [6] = {4, 6}. 
Let π = 4 5 3 1 2 6 ∈ S6. The paths λi(π) are listed in Example 2.3. The list of the 
representations λrep

i (π) is as follows; see also Fig. 16.
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4
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3 5
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3
⊕ 5

4
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1
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3
⊕ 5

4
⊕ 7

6

1 ⊕ 2 ⊕ 3 ⊕ 5
4
⊕ 6 ⊕ 7 1 ⊕ 2

3
⊕ 5

4
⊕ 7

6

1 ⊕ 2 ⊕ 3 ⊕ 5
4
⊕ 7

6

ext(4)

deg(5)

deg(3) ext(6)

deg(1) ext(6) deg(3)

deg(2) ext(6) deg(1)

ext(6) deg(2)

Fig. 16. The four maximal chains correspond to the four permutations in the fiber of ηrep
Q (π) given in 

Example 8.8. The left-most maximal chain corresponds to the permutation 453126.

λrep
0 = M(1, 4) ⊕M(5, 6) ⊕ S(7)

λrep
1 = M(1, 6) ⊕ S(7)

λrep
2 = M(1, 5) ⊕ S(6) ⊕ S(7)

λrep
3 = M(1, 3) ⊕M(4, 5) ⊕ S(6) ⊕ S(7)

λrep
4 = S(1) ⊕M(2, 3) ⊕M(4, 5) ⊕ S(6) ⊕ S(7)

λrep
5 = S(1) ⊕ S(2) ⊕ S(3) ⊕M(4, 5) ⊕ S(6) ⊕ S(7)

λrep
6 = S(1) ⊕ S(2) ⊕ S(3) ⊕M(4, 5) ⊕M(6, 7)

As we have seen earlier the fiber of ηQ(453126) is the set {453126, 453162, 453612, 456312}.
These four permutations correspond to the four maximal chains in Fig. 16.
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