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1. Introduction

Let @ be a Dynkin quiver of type A,,+2. Thus @ is an oriented graph whose underlying
unoriented graph is the Dynkin diagram of type A, 2. In [25], Reading introduced a
family of lattices called Cambrian lattices which depend on a choice of Dynkin diagram
together with an orientation of that diagram. In this paper we focus on the type A case,
and use the orientation given by @. In this context, Reading defined an (n+3)-gon P(Q)
and a surjective map

Ng: Sn+1 — {triangulations of P(Q)}

from permutations to triangulations, following and modifying an explication [27, Sec. 4.3]
of an iterated fiber-polytope construction given in [11]. In the special case where @Q is
linearly oriented, this map had been well-studied as a map to various Catalan objects
— see [36], [12, Sec. 9], [35, Sec. 1.5].

One of the objectives of this paper is to give a representation theoretic interpretation
of the map 7¢g. In order to achieve this goal, we develop several other concepts and
results along the way.

Inspired by the map 7q, we define a category Cp(g) whose objects are line segments
in the polygon P(Q) and whose morphisms are generated by pivots of line segments
modulo mesh relations. We show that the category Cp(q) is equivalent to the abelian
category ind ) of indecomposable representations of the quiver Q.

Theorem A (Theorem 4.6). There is an equivalence of categories I': Cp(g) — ind Q.
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The reader familiar with the construction of the cluster category of type A, as the
category of diagonals in an (n+ 3)-gon in [13] will notice a strong similarity between the
two constructions. Note however that our construction here is different in several ways.
For one, we include the boundary edges, which was not the case in [13], and secondly,
our category is hereditary and contains no cycles.

On the other hand, the result of Theorem A is very similar to the construction of
the derived category of @ by Opper, Plamondon and Schroll in [21]. In that paper, the
authors give a geometric model for the derived category of an arbitrary gentle algebra.
Since the path algebra of a quiver @ of type A is a special kind of gentle algebra, the
category of representations of () can be recovered as a heart of the derived category
n [21]. However, the two constructions have some fundamental differences. While our
polygon P(Q) is homeomorphic to the surface of [21], our construction is rigid in the
sense that it fixes the relative position of each vertex of the polygon in the plane. This
rigidity is essential here, since we are using the geometric data of the slope of the line
segments in P(Q) to describe the morphisms in the category.

The slope is also the key to our next result proving that the functor F' naturally
induces a stability condition on the category of representations of ). First, a central
charge is obtained by considering each oriented line segment in P(Q) as a complex
number. Then the stability function of an indecomposable module is given by the angle
of the oriented line segment with the positive real axis. This stability function has the
property that every indecomposable representation is stable. Reineke conjectured in [28]
that every Dynkin quiver admits a stability function with that property and Apruzzese
and Igusa proved the conjecture in type A in [4].

Theorem B (Theorem 5.3). Let Q be a Dynkin quiver of type A. Then the function
that associates to every indecomposable representation M the angle of the corresponding
oriented line segment F~Y(M) is a stability function for which every indecomposable
representation of @ is stable.

Using the stability function, we extend our model to a model of the derived category
of rep @ recovering the (special case of) the result in [21].

We then introduce a class of representations which we call mazimal almost rigid
representations. We say that the direct sum of two indecomposable representations M
and N is almost rigid if they do not have any nonsplit extensions, or if all extensions
between M and N are indecomposable. We say that a representation T is maximal almost
rigid if, for every nonzero representation M, the representation T'® M is not almost rigid.
Let mar(Q) denote the set of all maximal almost rigid representations of Q.

Our third main result is the following.

Theorem C (Theorem 6.8). The functor F induces a bijection

F': {triangulations of P(Q)} — mar(Q).
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By definition the notion of an almost rigid representation is a generalization of that
of a rigid representation. For quivers without oriented cycles, the maximal rigid repre-
sentations are precisely the tilting modules over the path algebra of the quiver, and their
endomorphism algebras are the tilted algebras introduced in [16]. On the other hand, the
endomorphism algebras of triangulations in cluster categories from marked surfaces are
cluster-tilted algebras, or more generally, 2-Calabi-Yau tilted algebras, [13,8,33,1,20]. It
is shown in [3] that if C' is a tilted algebra, then its trivial extension C' x ExtZ(DC,C)
is cluster-tilted, and every cluster-tilted algebra arises this way.

Both tilted and cluster-tilted algebras are extensively studied and occupy a central
place in the representation theory of finite dimensional algebras. It is therefore natural
to consider the endomorphism algebras of maximal almost rigid representations. Our
fourth main result is the following.

Theorem D (Theorem 7.3). Let Q be a Dynkin quiver of type Ao and T a mazimal
almost rigid representation of Q). Then the endomorphism algebra C' = End,ep, T is a
tilted algebra of type Aoy, i3. Moreover, the quiver of its associated cluster-tilted algebra
C x ExtZ(DC,C) is the adjacency quiver of the triangulation F~'(T).

We then come back to our original goal to give a representation theoretic interpreta-
tion of Cambrian lattices and the map 7¢g. In general, a Cambrian lattice is a certain
quotient of the weak order on a finite Coxeter group. The Tamari lattice is an example
in type A. The Cambrian lattice for type A is a partial order on triangulations of a
polygon whose cover relations are given by diagonal flips. The Hasse diagram for each
Cambrian lattice is isomorphic to the 1-skeleton of the generalized associahedron for
the corresponding Coxeter group, see [30]. Furthermore, the elements of each Cambrian
lattice of a finite Coxeter group are in bijection with several families of objects related to
cluster algebras. For example, the clusters of the corresponding cluster algebra of finite
type, the (isoclasses of) cluster-tilting objects in the corresponding cluster category, the
finitely generated torsion classes over the path algebra of the Dynkin quiver, as well as
the non-crossing partitions associated with the quiver, see [17].

We add a new item to this list by proving the following.

Theorem E (Theorem 8.4). If Q is a Dynkin quiver of type A, the set of mazimal almost
rigid representations of Q with the covering relation given in Definition 8.1 is isomorphic
to the Cambrian lattice coming from Q.

We also introduce the representation theoretic map ngp as the composition F ong of
the map ng with our functor F'. We show that ngp is described via degenerations and
extensions of representations of @ of dimension vector (1,1...,1).

The paper is organized as follows. We start by recalling the construction of the polygon
P(Q) and the map 7 in section 2. In section 3, we review several facts on representations
of quivers of type A. Section 4 is devoted to the construction of the category Cp(q) of line
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Fig. 1. Quiver Q with [6] = {4,6} and 6] = {1,2,3,5} and the polygon P(Q).

segments in P(Q) and the proof of Theorem A. We introduce the stability function in
section 5 and prove Theorem B. In the same section, we extend our model to the derived
category. In section 6, we define maximal almost rigid representations and prove Theo-
rem C, and in section 7, we study their endomorphism algebras and prove Theorem D.
In the last section, we give our representation theoretic interpretations of the Cambrian
lattice and the g map and prove Theorem E. We also produce the interpretation of the
1o map via degenerations and extensions in that section.

2. Construction of the polygon P(Q) and the map 7q

We recall the construction of the (n + 3)-gon P(Q) from [25], where @ is a Dynkin
quiver of type A, yo. Label the vertices 1,2,...,n + 2 in linear order as in Fig. 1(left).
Let [n + 1] denote the set {1,2,...,n+ 1} and let S,,+1 be the symmetric group.

First, use @ to partition the set [n+ 1] into two sets, the upper-barred integers [n + 1]

and the lower-barred integers [n + 1], as follows. Let [n + 1] be the set of all vertices ¢
such that ¢ — (i+1) is in @ and let [n + 1] be the set of all vertices ¢ such that ¢ < (i+1)
is in Q.

Next, associate to @ an (n+3)-gon P(Q) with vertex labels 0,1,2, ... ,n+2. Draw the
vertices 0, 1,...,n+ 2 in order from left to right so that: (1) the vertices 0 and n + 2 are

placed on the same horizontal line L; (2) the upper-barred vertices are placed above L;
(3) the lower-barred vertices are placed below L. See Fig. 1.

Given a permutation 7 € S;, 1, we write 7 in one-line notation as my 7y ... T,41, where
m; = 7(4) for i € [n+ 1]. For each i € {0,...,n + 1}, define \;(7) to be a path from the
left-most vertex 0 to the right-most vertex n + 2 as follows. Let Ag(7) be the path from
the vertex 0 to the vertex n + 2 passing through all lower-barred vertices i € [n + 1] in

numerical order. Thus Ag(7) is the path along the lower boundary edges of P(Q). Define
A1(7) as the piecewise linear path from 0 to n + 2 passing through the vertices

{MU{TH}, if m €

[n+1;
[n+ 1]\ {m}, if ;€ [n+1],

maintaining the numerical order of the vertices visited. Repeating this process recursively,

the final path A, 11 (7) passes from 0 to n+2 through all upper-barred vertices i € [n + 1].
Thus A,+1(7) is the path along the upper boundary edges of P(Q).
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Definition 2.1. [25] Define a map ng: S,+1 — {triangulations of P(Q)}, @ — ng(m),
where ng () is the triangulation (including the boundary edges) of P(Q) that arises as
the union of the paths Ag(7),..., Apt1(7).

Remark 2.2. It is shown in [25] that g is surjective and that its fibers correspond to the
congruence classes of a certain lattice congruence on the weak order on the symmetric
group. The induced poset structure is a lattice called a Cambrian lattice of type A. More
precisely, two triangulations are ordered 7 < 7" if there exist permutations 7 < 7’ in
the weak order such that ng(m) = T and ng(n’') = T'.

Example 2.3. Let Q be the quiver in Fig. 1, where n = 5. Then [6] = {1,2,3,5} and
@ ={4,6}. Let 7 =453126 € Sg, written in one-line notation.
Then the paths \;(7) described above are as follows.

Ao(m) =0,4,6,7

Ai(m) =0,6,7 delete 7(1) = 4 from Ag(m)
Ao(m) =0,5,6,7 add 7(2) =5 to A\ (7)
A3(m) =0,3,5,6,7 add 7(3) = 3 to \a(m)
Ay(m) =0,1,3,5,6,7 add 7(4) =1 to A\3(m)
As(m) =0,1,2,3,5,6,7 add 7(5) = 2 to \y(m)
Xe(m) =0,1,2,3,5,7 delete m(6) = 6 from As(m)

The triangulation 7 = ng(w) is given in Fig. 2. Note that the fiber of T is

ng' (T) = {453126, 453162, 453612, 456312} .

3. Representations of quivers of type A

Let k be an algebraically closed field, for example, k = C. Given a quiver @, we
denote by Qg the set of its vertices and by @) its set of arrows. For a € @1, let s(a) be
the source of « and t(«) be its target. A path from i to j in Q is a sequence of arrows
ajag ... ap such that s(ay) =4, t(ar) = J, and t(ar) = s(apt1), forall 1 <h <€ —1.
The integer ¢ is called the length of the path. Paths of length zero are called constant
paths and are denoted by e;, 1 € Q.

A representation M = (M;,p.) of @ consists of a k-vector space M;, for each ver-
tex i € Qo, and a k-linear map o : M) — My(q), for each arrow o € Q1. If each
vector space M; is finite dimensional, we say that M is finite dimensional, and the di-
mension vector dim M of M is the vector (dim M;);eq, of the dimensions of the vector
spaces. For example, the representation in Fig. 3 is a representation with dimension vec-
tor (0,1,1,1,1,0,0) of the type A7 quiver in Fig. 1. Let rep @ denote the category of
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Fig. 3. A representation of the quiver in Fig. 1.

finite dimensional representations of @ and let ind @) denote a full subcategory whose
objects are one representative of the isoclass of each indecomposable representation. The
category rep () is equivalent to the category of finitely generated modules over the path
algebra k@ of Q). The Auslander—Reiten quiver I'.ep g of rep @ has the isoclasses of inde-
composable representations as vertices and irreducible morphisms as arrows. For more
information about representations of quivers we refer to the textbooks [5,34].

From now on, let ) be a Dynkin quiver of type A, 2, labeled as before (see Fig. 1).

In the remainder of this section, we recall the classification of indecomposable repre-
sentations and irreducible morphisms in rep ), and give an interpretation of hooks and
cohooks as boundary edges of the polygon P(Q).

3.1. Indecomposable representations

For each 1 < i < j < n—+ 2, let M(i,j) denote the indecomposable representation
supported on the vertices between ¢ and j. Thus M (i,5) = (Mg, vo) with
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k ifi<t<yj;
M, = - =
‘ {O otherwise;

and ¢, = 1, whenever M) and M) are nonzero, and ¢, = 0, otherwise. The
representations M (i,4) are simple representations (containing no proper nonzero sub-
representations) and are denoted by S(i), i € Q.

We have the following proposition, which is a special case of Gabriel’s theorem [14].

Proposition 3.1. Let Q be a Dynkin quiver of type A,io. Up to isomorphism, the
indecomposable representations of Q) are precisely the representations M(i,j) with
1<i<j<n+2.

3.2. Irreducible morphisms in terms of hooks and cohooks

A morphism from a representation (My,d,) to (Ng,1,) is a sequence of linear
maps (f¢) such that for each arrow o € @ the following diagram commutes.

M () N My(a)

fs(a) ft(a)

Ns(a) e, Ni(a)

In this subsection, we describe irreducible morphisms in type A.

Roughly speaking, an irreducible morphism between indecomposable representations
is a morphism that does not factor non-trivially. For a precise definition, see for example
the textbooks [5,34]. The work of Butler and Ringel from [9] shows how each irreducible
morphism in a string algebra is determined by adding a hook or removing a cohook from
an indecomposable representation to produce a new representation. Recall that each
irreducible morphism in rep (@) is an arrow in the Auslander-Reiten quiver. In Fig. 5
we show an example. Each (blue) h and (red) ¢ indicates an arrow that corresponds
to adding a hook and removing a cohook, respectively. In the following, we recall this
construction in the special case of type A.

Definition 3.2 (/9]). Let @ be a quiver of type A and let a be an arrow in Q). The hook
of a, denoted by hook(«) is given by the maximal path of @ starting at = s(«) that
does not use a. Note that this maximal path may consist of only one vertex z = s(«)
and no arrows.

The cohook of «, denoted by cohook(«) is given by the maximal path of @ ending
at y = t(«) that does not use «. Note that this maximal path may consist of only one
vertex y = t(«) and no arrows.

That is, hook(«) and cohook(«) are of the form shown in Fig. 4 (without the arrow «).
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N a

i1 ji—1

ji—1 i1

NN

Fig. 4. The hook of the arrow «, starting from ¢ = s(a) (left); the cohook of the arrow a, ending at i = t(«)
(right).

Denote by H («), respectively C'(«), the indecomposable representation of Q) supported
on the hook, respectively cohook, of the arrow a, more precisely

H(a), = k if z is a vertex in hook(«);
0 otherwise;

k if x is a vertex in cohook(a);
0 otherwise.

Remark 3.3. It may happen that H(a) = C(f). For the quiver in Fig. 1, we have

H2 — 3) = C(1 — 2) = S(2) is the simple representation at vertex 2, and

H(4 < 5) = C(6 < 7) = M(5,6) is the indecomposable representation supported

at vertices 5 and 6.

Let a be an arrow in )7 whose target or source is either i or j, and assume that
a does not lie in the support of M = M(i,j). Adding a hook to M is an operation
which produces a new indecomposable representation N whose support is supp(M) U
supp(H («)). Similarly removing a cohook from a representation N = M (i,£) or M (h, j)
is an operation which produces a new indecomposable representation M whose support
is supp(N) \ supp(C(«)). In the following proposition, we fix the representation M, and
we either add a hook to M to produce a “bigger” representation, or we remove a cohook

from a “bigger” representation to obtain M.

Proposition 3.4. Let Q be a quiver of type A, let M = M(i,7), and let N be an indecom-
posable representation satisfying supp(M) C supp(V).

(1) If f : M — N is an irreducible morphism then N is obtained by adding a hook to M.
This can be done in at most two ways.
(a) Ifa:j« (j+1) and H(a) = M(j + 1,£) then N = M (i,£).
(b) Ifa:(i—1) =i and H(a) = M (h,i — 1) then N = M (h,j).
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(2) If f: N - M is an irreducible morphism then M is obtained by removing a cohook
from N. This can be done in at most two ways.
(@) Ifa:j— (j+1) and Cla) = M(j + 1,£) then N = M(i,£).
(b) Ifa:(i—1) < i and C(a) = M(h,i—1) then N = M(h, j).

Moreover all irreducible morphisms between indecomposable representations are of this
form.

Example 3.5. In the example of Fig. 5, we can illustrate the four different types of
irreducible morphisms as follows. In each example, M is the representation with the
smaller support.

(1)(a) §% 23,5, @: 54, H(a) =3 2)(a) 57 =5, a:5—6, Cla)=1

2 L L 5

(1)(b) i—>§,a:1—>2, H(a)=1 (2)(b) %25 — 5, a:b—4, C(a):i
4 4

3.83. Mazimal increasing and decreasing paths

A pathi— ... — jin Q is said to be increasing if i < j, and decreasing if i > j. Note
that the constant paths e; are both increasing and decreasing. A decreasing path is called
a mazimal decreasing path if it is not a proper subpath of a decreasing path. Similarly,
an increasing path is called a mazimal increasing path if it is not a proper subpath of
an increasing path. Note that if ¢ is a maximal increasing path or a maximal decreasing
path in a Dynkin quiver of type A, then ¢ is a maximal path of Q) or a constant path.
See Example 3.8.

The following lemma gives an interpretation of maximal increasing paths and maximal
decreasing paths as boundary edges in the labeled polygon P(Q). In the polygon P(Q),
let v(a,b) denote the line segment between vertices a and b for 0 < a <b < n+ 2.

Lemma 3.6. Let QQ be a Dynkin quiver of type A, yo.

(1) The map (i — ... = j) = y(i — 1,7) is a bijection between the maximal increasing
paths in Q and the lower boundary edges of P(Q).

(2) The map (i — ... — j) — v(j — 1,4) is bijection between the maximal decreasing

paths in Q and the upper boundary edges of P(Q).

Proof. Recall that [n+ 1] is the set of vertices on the lower part of the boundary of

P(Q) and [n 4+ 1] is the set of vertices on the upper part of the boundary.
(1) Let ¢ be a maximal increasing path in @. Since @ is of type A, either ¢ = ¢; is
constant or ¢ is a maximal path in Q.
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First, suppose ¢ = e; is a maximal increasing path which is constant. Then either
(i+1) > i— (i—1) is a decreasing path in @, or i =1 and is a sink, or i = n + 2 and
is a source. Therefore i € [n+ 1] (if ¢ #n+2) and i — 1 € [n+ 1] (if ¢ # 1). Then the

line segment ~y(i — 1,1) is a lower boundary edge.

Next, let ¢ be a non-constant maximal increasing path ¢ — -+ — j in Q. Then ¢
is a maximal path in @, so the vertex i is a source and the vertex j is a sink of Q.
We want to show that the line segment (i — 1,7) is a bottom boundary edge. Note

that the vertices ¢,...,j — 1 are in [n + 1], by construction. Since 7 is a source, either
i=1ori—1¢€ [n+1]. Since j is a sink, either j € [n+1] or j = n + 2. Then the
vertices i, ..., (j — 1) form a maximal consecutive sequence of integers which label j — i

consecutive vertices of the upper boundary of the polygon P(Q), so y(i — 1, j) is a lower
boundary edge. It follows from the construction that this map is a bijection.
The proof of (2) is analogous to part (1). O

Corollary 3.7. A Dynkin quiver of type A,12 has exactly n + 3 mazimal increasing and
mazimal decreasing paths.

Proof. This follows from Lemma 3.6, since P(Q) has exactly n + 3 boundary edges. O

Example 3.8. Let @ be the quiver 1 — 2, so n = 0. Then there is exactly one maximal
increasing path 1 — 2, and two maximal decreasing paths, namely the two constant
paths e; and es.

If @ is the quiver from Fig. 1, then n = 5 and there are n 4+ 3 = 8 maximal increasing
and maximal decreasing paths.

Recall that for each o € @1, the hook(a) and cohook(«) are defined to be maximal
paths. Therefore, in type A each hook and cohook is a maximal increasing or a maximal
decreasing path. We make this precise in the next lemma.

Lemma 3.9. Let QQ be a quiver of type A, yo. Then the set

U {H(a),C()}

a€Q1

of all indecomposable representations supported on the hooks and cohooks is in bijection
with

(a) the set {S(1),...,S(n+ 2)} of all simple representations of Q, if Q is the linear
orientation of A, 1o (all arrows pointing in the same direction);

(b) the set of mazimal increasing paths and mazimal decreasing paths, for all other
choices of Q.
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Proof. We have noted earlier that every hook and every cohook is either a maximal
increasing path or a maximal decreasing path. To prove (a) it suffices to notice that for
a linearly oriented quiver, say, 1 — 2 — ... — n + 2, the maximal decreasing paths are
the n + 2 constant paths, and the unique maximal increasing path from 1 to n + 2 is
neither a hook nor a cohook.

To prove (b) it remains to show that if @ is not the linear orientation then every
maximal increasing path and every maximal decreasing path is a hook or cohook. Suppose
¢ is a maximal increasing path in Q. Since @ is of type A, either ¢ is constant or ¢ is a
(non-constant) maximal path in Q.

First, suppose ¢ = e; is a maximal increasing path which is constant. Then either
(i—1) i< (i+1) is a decreasing path in @, or i« = 1 and is a sink, or i = n+ 2 and is
a source. In the first situation, ¢ is the hook of the arrow (i — 1) +— ¢ in @ (and also the
cohook of the arrow i «+— (i+1) in Q). If i = 1 is a sink, then ¢ is the cohook of the arrow
1+ 2in Q. If i = n+ 2 is a source, then c is the hook of the arrow (n+ 1) + (n + 2)
in Q.

Next, suppose ¢c= ¢ — --- — j is a non-constant maximal increasing path in Q.
Then, as noted earlier, ¢ must be a maximal path in @), so the vertex i is a source and
the vertex j is a sink of @). By assumption, the quiver @ is not the linear orientation
1—-2—= .- = n+2 Thusif ¢« > 1 we have an arrow «: (i — 1) « ¢ in @Q, since i is
a source. In this case, ¢ is the hook of the arrow «, as illustrated in the left picture of
Fig. 4. On the other hand, if ¢ = 1 then j < n + 2 and we have an arrow 3: j < (j + 1)
in @, since j is a sink. In this case, ¢ is the cohook of the arrow 8 (not illustrated).

The proof that a maximal decreasing path corresponds to a hook or cohook is simi-
lar. O

Corollary 3.10. Let @ be a quiver of type A,ys. Then the set of all representations
supported on the hooks and cohooks is in bijection with

(a) the set of all boundary edges of the polygon P(Q) except for the long boundary edge
v(0,n + 2), if Q is the linear orientation;
(b) the set of all boundary edges of the polygon P(Q), for all other choices of Q.

Proof. This follows from Lemmas 3.9 and 3.6. O

4. A geometric model for rep QQ

In this section, we construct a category of line segments in the polygon P(Q) and
prove that it is equivalent to the category ind @) of indecomposable representations of Q.
The construction is illustrated in an example in Figs. 5 and 6.
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Fig. 5. Auslander—Reiten quiver I';ep @ of rep Q for the quiver @Q in Fig. 1.
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Fig. 6. Translation quiver of the category Cp(q) for the quiver Q in Fig. 1.
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4.1. The category of line segments Cp(q)

In this subsection, we construct a category Cp(g) whose objects are line segments in
the polygon P(Q) and whose morphisms are generated by pivots of line segments modulo
mesh relations.

4.1.1. Translation quivers and mesh categories

We start by reviewing the notions of translation quiver and mesh category, from
[29,15]. Recall that for any quiver I, we denote the set of vertices by I'g and the set of
arrows by I'y. A loop is an arrow that starts and ends at the same vertex.

A translation quiver (T',7) is a quiver I' = (I'g, 1) without loops together with an
injective map 7: I', = T'g (the translation) from a subset I'y of T'y to Iy such that, for
all vertices x € I, y € T'g, the number of arrows from y — z is equal to the number of
arrows from 7z — y. Given a translation quiver (I', 7), a polarization of T is an injective
map o : Iy = T'y, where I'} is the set of all arrows a: y — x with x € T}, such that
o(a): T — y for every arrow a: y — x € I'y.

From now on we assume that I' has no multiple arrows. In that case, there is a unique
polarization of T'.

The path category of a translation quiver (I', 7) is the category whose objects are the
vertices I'g of I', and, given x,y € 'y, the k-vector space of morphisms from z to y is
given by the k-vector space with basis the set of all paths from z to y. The composition
of morphisms is induced from the usual composition of paths. The mesh ideal in the
path category of I' is the ideal generated by the mesh relations

for all z € T,
For example, in the Auslander—Reiten quiver in Fig. 5, we have the commutativity
relation

m =(4 = 5% = 3%)+ (e =3 = 3%%)

35
46
and the zero relation my = (3 — 2 — 2).

The mesh category M(T',7) of (', 7) is the quotient of the path category of (T, 7) by
the mesh ideal.

Example 4.1. If @) is a quiver of Dynkin type then its Auslander-Reiten quiver I'icp g
together with the Auslander—Reiten translation 7 is a translation quiver, where I'j is the
set of all non-projective indecomposable representations. In this case, the mesh category
M(Trep g, T) is equivalent to the category ind (), and the additive closure of M(T'yep g, T)
is equivalent to rep Q.
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4.1.2. Definition of Cp(q)
We define the set £ of all line segments (i, j) of P(Q) as follows

E=1{v(i,j) |0<i<j<n+2}, (4.1)

where (i, j) denotes the line segment between the vertices i and j. Notice that £ contains
all boundary edges and all diagonals of P(Q). Also notice that our line segments are
oriented by our choice of labeling, and that ~(i,5) € £ if and only if v(j,7) ¢ .

For any vertex £ of P(Q), denote by R(£) and by R~1({), respectively, the clockwise
and counterclockwise neighbor of ¢ on the boundary of P(Q).

Definition 4.2. Let v(i,5) € £. The line segment (i, R~1(5)) is called a pivot of (i, 5)
if it lies in the set &, that is, if i < R71(j). Similarly, the line segment v(R™1(4),) is
called a pivot of ¥(i, j) if it lies in the set &, that is, if R71(i) < j.

Thus a pivot of a line segment v is given by fixing one of the endpoints of v while
moving the other endpoint to its counterclockwise neighbor.

Remark 4.3. Notice that a line segment (¢, 7) may have two, one or zero pivots. In the
example in Fig. 6, the line segment (3,4) has the two pivots v(2,4) and v(3,6). On
the other hand, the line segment +(0,4) has only one pivot v(0,6), and the line segment
~(4,5) has no pivots at all.

We now define a translation quiver (I'p(g), I?). The vertices of the quiver are the line
! ") if and only if (i, j') is a pivot of

segments in . There is an arrow ~(i,7) — 'y(z
(R™*(i),4) or (¢, ') = (i, R"'(j)). Finally,

(i, 7), thus if and only if ¢ < j" and (¢/,j') =
the translation R is defined by

Rir(i. 1)) = {v(R(z‘)O, RUY) i RG) < R )

Thus R acts on £ by rotation.
The following is the main definition of this section.

Definition 4.4. Let Cp(¢) be the mesh category of the translation quiver (I'p(g), R). We
call Cp () the category of line segments of P(Q).

4.2. The functor F: Cp(g) — ind Q
In this subsection, we construct an equivalence of categories between Cp() and ind Q.

Definition 4.5. Let F': Cp(g) — ind @ be the functor defined as follows. On objects, let

F(y(i,5)) = M(i+1, ).
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To define F' on morphisms, it suffices to define it on the pivots introduced in Defini-
tion 4.2. Define F (v(i,5) — v(R™*(i),)) to be the irreducible morphism M (i + 1, j) —
M(R™Y(i) +1,5) given by

(a) adding the hook corresponding to the boundary edge v(R™1(4),14), if R71(i) < 4;
(b) removing the cohook corresponding to the boundary edge (i, R1(4)), if i < R71(i).

Similarly, let F(fy(z‘,j) — 'y(i,Rfl(j))) be the irreducible morphism M(i + 1,7) —
M(i+1,R71(j)) given by

(a) adding the hook corresponding to the boundary edge v(j, R=1(5)), if < R71(j);
(b) removing the cohook corresponding to the boundary edge v(R~1(35), j), if R~1(j) < j.

We are now ready for our first main result.
Theorem 4.6. The functor F is an equivalence of categories
F:Cpg) — indQ.
In particular,

(1) F induces an isomorphism of translation quivers (I'p(q), R) = (Tepq,T);
(2) F induces bijections

{line segments in P(Q)} — ind Q;
{pivots in P(Q)} — {irreducible morphisms in Q};

(3) the rotation R corresponds to the Auslander—Reiten translation T in the following
sense

FoR=71oF;
(4) F is an exact functor with respect to the induced abelian structure on Cp(q).

Proof. Proposition 3.1 implies that the indecomposable representations are of the form
M(i,7) with 1 < i < j < n+ 2. On the other hand, the line segments (¢, j) € & are
parametrized by 0 < i < j < n+ 2 by equation (4.1). Thus F is a bijection between the
objects of the categories Cp(g) and ind @ and thus a bijection between the vertices of
the translation quivers.

Proposition 3.4 combined with Corollary 3.10 shows that F' is a bijection between
pivots and irreducible morphisms, hence a bijection between the arrows of the trans-
lation quivers. Moreover, f: v(i,j) — ~(i',j') is an arrow in I'ppy if and only if
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F(f): M(i+1,j) — M+ 1,7') is an arrow in I'tepg. Thus F is an isomorphism
of quivers I'p(g) = T'rep q-

Next we check that the translations of the two quivers correspond to each other. Let
v(i,j) € € and assume that R=1(v(i,5)) € € as well. Note that

F(R™'(v(i,4)) = F(y(R™'(i), R7'(j))) = M(R™'(i) + 1, R™* (j))- (4.3)

Since R (7(i, 7)) € € then (i, j) has at least one pivot, see Definition 4.2. Without loss
of generality, we may assume that (i, j) — v(R™1(i), ) is a pivot. Then v(R™1(3),j) —
y(R71(i), R71(j)) is a pivot too. Under F, the composition of these two pivots is mapped
to the composition of two irreducible morphisms

M(i+1,5) = M(R™'(i) +1,§) = M(R™(i) + 1, R"'(5)).

Since i # R71(i) and j # R™(j), it follows from the structure of the Auslander—Reiten
quivers of type A that the last representation in this sequence is the inverse Auslander—
Reiten translate of the first, thus

M(R™H(i) + 1L, R7'(j)) = 7'M (i +1,j) = 77 F(7(5, j))-

Now Equation (4.3) yields F(R™(v(4,7))) = 71 F(v(4,7)). This proves (1), (2) and (3).

Since both categories Cp(g) and ind @ are the mesh categories of their translation
quivers I'p(g) and I'i¢p @, statement (1) implies that F' is an equivalence of categories. In
particular, this equivalence induces the structure of an abelian category on Cp(q). With
respect to this structure F' is exact, since every equivalence between abelian categories
is exact. O

Remark 4.7. In [13], the authors defined a category of unoriented diagonals (no boundary
edges) in an (n 4 3)-gon, whose morphisms are also generated by pivots modulo mesh
relations. That construction yields the cluster category of type A,. Our construction
here is different in the following sense. First, we also include boundary edges, and our
quiver is of rank n+ 2. Second, our line segments are oriented, which implies that certain
pivots that are allowed in the cluster category are not allowed in the category Cp(q)-
This is the reason why Cp(q) is a hereditary abelian category, while the cluster category
is triangulated and not abelian.
We investigate the relation between the two constructions further in section 7.

5. Stability function
Stability conditions were introduced in [32,18,31,10] and have important applications

in algebraic geometry and representation theory. We recall the definition in the setting
of the category rep @ of finite-dimensional representations of a quiver Q.
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Let K denote the Grothendieck group of rep ). For M € rep ), we denote its class in
Ky by [M]. Thus for M, N € rep @, we have [M] = [N] if and only if M and N have the
same dimension vector. K has a basis given by the classes of the simple representations

S(x), z € Qo.

Definition 5.1. (1) A central charge is a group homomorphism Z: Ky — C such that for
all nonzero representations M the complex number Z([M]) lies in the strict right half
plane?

H={re" |r>0and —1<¢<i}

(2) Given a central charge Z, we obtain an associated stability function

H(M) = ~ arg(Z([M))).

(3) Given a stability function ¢, a nonzero representation M is called ¢-stable if every
nonzero proper subrepresentation L C M satisfies ¢(L) < ¢(M).

Remark 5.2. (1) Since Z is a group homomorphism it is determined by its values on the
classes of simple representations.

(2) If M is ¢-stable then M is indecomposable. Indeed, since direct summands are
subrepresentations, this follows directly from the additivity of the central charge.

It is natural to ask if there exist stability functions for which all indecomposable rep-
resentations are stable. Reineke conjectured in [28, Conjecture 7.1] that such a stability
function exists for every Dynkin quiver. In the same paper, he gave a stability function
for the linearly oriented type A quiver. Apruzzese and Igusa proved the conjecture for
all type A quivers in [4], and, very recently, Kinser described all such stability functions
for type A in [19], see also [22-24].

We are going to show that our geometric model also provides such a stability function
for every quiver of Dynkin type A. The stability function is given via the functor F'
of Theorem 4.6 simply by the slope of the oriented line segment of an indecomposable
representation.

From now on let ) be a quiver of type A, 5 and let P(Q) be the (n + 3)-gon con-
structed in Section 2. Let £ be the set of oriented line segments

E={14,k)|0<j<k<n+2}
as in section 4. Recall that v(j, k) denotes the oriented line segment from vertex j to

vertex k of the polygon P(Q). Since the vertices of P(Q) are points in the plane, we can

define a map vec: & — C,v(j, k) — 7(j, k), where ¥(j, k) is the complex number re?

2 [10] uses the strict upper half plane.
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31501 46

401,61

Fig. 7. Line segments of the form ~(z,z + 1) in the polygon P(Q) (left); the corresponding central charges
of the simple representations in black as well as their first shifts in the derived category in red (right).

given by the vector with the same direction and magnitude as the oriented line segment
from point j to point k.

Let F: £ — ind @ be the bijection of Theorem 4.6 and denote its inverse by G.
Furthermore, let G = veco G denote its composition with the map defined above. Thus,
for a representation M = M(j, k) we have

G(M) =7(j = 1.k) = r(M) @D,
where r(M) is the length of the vector G(M) = 5(j — 1, k) and (M) is the angle from
the positive real axis to the vector G (M) in the complex plane. An example is given in
Fig. 7.

Then G induces a group homomorphism Z: Ky — C defined on the basis of simples
by Z([S(z)]) = ¥(x — 1, z) and extended additively to all of Ky. By definition, we have

k

k
Z(MGRD =2 (Y [S@]] = Zi(x - L) =750G—-1k),

=3

where the last identity is the addition in C. Thus for every indecomposable representation
M, we have

Z(M]) = G(M) = r(M) ™M), (5.1)
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Note that Z maps every representation of @ to the strict right half plane, and thus Z is
a central charge. The corresponding stability function ¢ is given by

Now, for every nonzero proper subrepresentation L C M, the inclusion is a nonzero
morphism in Hom(L, M). Thus the slope of G(L) is strictly smaller than the slope of
G(M), by the same argument as in the proof of Lemma 8.5. Therefore ¢(L) < ¢(M)
and it follows that M is ¢-stable. We have shown the following.

Theorem 5.3. Let Q be a Dynkin quiver of type A. Then the function that associates
to every indecomposable representation M the angle of the corresponding oriented line

segment G(M) is a stability function for which every indecomposable representation of
Q is stable.

Remark 5.4. In [19], Kinser characterizes the stability conditions in question by two sets
of inequalities that are formulated using a decomposition of the quiver into horizontal
and vertical segments. The horizontal segments in Kinser’s quiver correspond to the
lower boundary segments in our polygon in order from left to right, and his vertical
segments correspond to our upper boundary segments also in order from left to right.
Kinser’s inequalities in [19, Theorem 1.13] translate in our setting to the condition that
the central charge (=slope) of the upper boundary segments is decreasing when moving
along the upper boundary from left to right, and the central charge of the lower boundary
segments is increasing.

5.1. A geometric model for the derived category

The stability function naturally allows for a geometric model for the derived category
which we describe in this subsection. Geometric models for derived categories for arbi-
trary gentle algebras were given in [21], and our result here is equivalent to (a special
case) of their construction. Note however, that the stability function is new.

Let D = D®(rep Q) be the derived category of bounded complexes in rep Q. Since rep Q
is a hereditary category, the indecomposable objects of D are of the form M[i], with M
an indecomposable representation of () and i an integer, called the shift. Moreover if
M, N are indecomposable representations then

Hom,cp (M, N) if j =1
Homp (M[i], N[j]) = ¢ Exty,o(M,N) ifj=i+1:
0 otherwise.

In particular, the Auslander-Reiten quiver of D is the translation quiver Z@), and in this
quiver, each arrow corresponds either to (a shift of) an irreducible morphism in rep @ or
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to (a shift of) a short exact sequence of the form 0 — P(x) - E — I(y) — 0 with P(z)
an indecomposable projective, I(y) an indecomposable injective, E an indecomposable
representation and there exists an arrow y — x in Q.

We know from Theorem 4.6 that the irreducible morphisms in rep @ correspond to
the pivots v(i,7) — v(R™1(i),7) or (i, 5) — v(i, R"1(j)) of oriented line segments in &,
and these are defined only if R~1(i) < j or i < R71(j), respectively. This condition can
be reformulated by saying that the stability function ¢ evaluated on the line segment
after the pivot is still between —% and %

Now let us consider a pivot (i, j) — v(R™1(i),j) that violates this condition, thus
R~1(i) > j. This happens precisely when i lies on the lower boundary (or i = 0), all
vertices i + 1,7 +2,...,j lie on the upper boundary, so that R71(i) = k > j + 1 is the
first vertex after ¢ on the lower boundary (possibly k = n + 2). In particular, the quiver
contains the following subquiver

i+1)—>-=i=>0G+) > ok,

where the vertex (i + 1) is a source and the vertex k is a sink. In particular, the
representation F'(y(i,5)) = M(i + 1,5) = I(j) is the injective at vertex j, and the
reverse v(j, R71(i)) € & of the pivot v(R~1(i),7) corresponds to the representation
F(y(j,R71(i))) = M(j + 1,k) = P(j + 1), which is the projective at vertex j + 1. In
particular, there is an arrow 7 — 7 + 1 and a short exact sequence

g9

0~ PG+1) = M@i+1k) 16) 0.
Moreover, the line segment corresponding to the middle term of this sequence is (i, k)
is a boundary segment on the lower boundary.

We define a generalized pivot to be a map ~(i,7) — ~Y(R™(4),5) or ~(i,7) —
y(i, R71(j)) with 0 < i, j < n+1 but without any other condition on i and j. Thus in the
derived category a generalized pivot (i,7) — y(R™1(i),) with i < j and R™'(i) > j
corresponds to a morphism 7(j) — P(j+1)[1]. Note that P(j+41) and its shift P(j+1)[1]
are represented by the same line segment, but with opposite orientations. Similarly, a
generalized pivot ~(i,7) — (i, R71(j)) with i < j and i > R™!(j) corresponds to a
morphism I(j) — P(j — 1)[1].

More generally, consider the following translation quiver (FIZD(Q)7RZ). The quiver
FIZ_-,(Q) has as vertices the pairs (vy,7) € £ x Z, and there is an arrow (v,j) — (7/,J)
if there is a pivot v — 7/, and there is an arrow (7, 5) — (7', + 1) if there is a general-
ized pivot v — 7/ but 7/ ¢ &, where 4/ is the same line segment as ' but in the opposite
direction. The translation RZ is defined by

(R(7),7) if R(y) €¢&;

RE(y,5)=¢ __
07 { @5 —1) i R(y) ¢ £,

where R is the rotation of a line segment defined in equation (4.2).
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Let C%(Q) be the mesh category of F;ZD(Q). Then the functor F' of Theorem 4.6 induces
an equivalence of categories

F%:CE o) — indD

that maps the pair (7, j) to the object F(v)[j].

Our stability function ¢ on rep @ induces a stability function on the derived category
which we also denote by ¢, see [10, Proposition 5.3]. This stability function is again given
by the angle of the corresponding line segment. More precisely, for every indecomposable
representation M we define the angle §(M[j]) and the stability function ¢(M[j]) of the
j-th shift of M in D as

6. Maximal almost rigid representations

In this section, we give a characterization of the representations that correspond to
the triangulations of P(Q) under the equivalence F': Cp(g) — ind Q. It seems that this
class of representations has not been studied so far.

Recall that for A, B € rep @, the vector space Ext(B, A) can be identified with the
space of all short exact sequences of the form 0 - A — EF — B — 0. Given such
a short exact sequence, we call A, B the end terms and E the middle term of the se-
quence. Recall further that a representation is called basic if it has no repeated direct
summands.

Definition 6.1. We say that a quiver representation T is almost rigid if it is basic and
satisfies the following: For each pair A, B of indecomposable summands of T, either
Ext(A, B) = 0 or Ext(A, B) = k and it is generated by a short exact sequence of the
form 0 - B — E — A — 0 whose middle term FE is indecomposable.

We say that a representation T is mazimal almost rigid if, for every nonzero repre-
sentation M, the representation T'® M is not almost rigid.

Let mar(Q) be the set of all maximal almost rigid representations of Q.

Example 6.2. Let @ be the quiver 1 — 2 of type As. Up to isomorphism, there are pre-
cisely three indecomposable representations of @, namely 1,2 and }. The representation
T' =12 is almost rigid since the extension } is indecomposable. The representation
T =1® ! @2 is the only maximal almost rigid representation (up to isomorphism).

Example 6.3. Let @ be the quiver 1 — 2 — 3. Then the representation 3 @ 2 is not
almost rigid, because there is an extension
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2 1 1
0—=—2®2—=5;—=0
3 3 2
whose middle term is not indecomposable.

Remark 6.4. At first sight, the definition of maximal almost rigid representations does
not seem very natural from a representation theoretical perspective. However, at least
for the path algebras of a Dynkin type A quiver, our Theorem 6.8 shows that these
representations are important from a combinatorial perspective, since they do correspond
to the triangulations of the polygon.

It would be interesting to see if this correlation extends to other types of algebras
beyond the path algebras of type A. As we shall see in Example 7.7, this does not seem
to be the case for path algebras of Dynkin type ID. The reason for this difference is that
an indecomposable representation in type D may contain a vertex with an incoming
arrow and two outgoing arrows such that the composition of the incoming arrow with
either one of the outgoing arrows is nonzero.

Therefore, in order to find a more general class of algebras for which the maximal
almost rigid representations may play a similar combinatorial role as in type A, we need
to look for algebras whose indecomposable representations are locally of the same form
as those of type A. These algebras are known as gentle algebras. They are given by quiv-
ers with relations (see Example 7.8). A combinatorial model for the module category
of a gentle algebra has been found in [6] by Baur and Coelho Simé&es, and a combina-
torial model for the derived category of a gentle algebra in [21] by Opper, Plamondon
and Schroll. It would be interesting to see if the maximal almost rigid representations
(or complexes) of a gentle algebra realize combinatorially notable configurations in this
model.

In order to prove Theorem 6.8, we first need to recall the structure of extensions in
type A. The following result is well-known. For a proof see for example [34, Chapter 3].

Proposition 6.5. Let QQ be a quiver of type A, 42, and let A, B be indecomposable repre-
sentations of Q.

(a) There exists a non-split short exact sequence with end terms A, B and indecompos-
able middle term E if and only if the relative position of A, B, E in the Auslander—
Reiten quiver defines a rectangle with one point missing as on the left of Fig. 8.

(b) There exists a non-split short exact sequence with endterms A, B and decomposable
middle term E if and only if E has two indecomposable summands Eq, Eo, and the
relative position of A, B, F, Fo in the Auslander—Reiten quiver defines a rectangle
as on the right of Fig. §.
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Fig. 8. Short exact sequences 0 - A — E — B — 0 seen in the Auslander—Reiten quiver. On the left, the
middle term FE is indecomposable, on the right £ = E; @ E>.
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Fig. 9. Line segments ~v(1,2) and (2,4) share an endpoint at the vertex 2, and their extension is the line
segment v(1,4). Applying F yields the short exact sequence 0 — M (3,4) — M(2,4) — S(2) — 0.
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Fig. 10. Diagonals v(2,4) and (0, 5) cross each other, and their extension is the direct sum of v(0,4) and
v(2,5). Applying F yields the short exact sequence 0 — M (3,4) — M(1,4) ¢ M(3,5) — M(1,5) — 0.

Example 6.6. Consider P», Iy, Ig and I7 in Fig. 5. The rectangle defined by P, and Iy
lies completely within the AR-quiver and therefore there is an extension 0 — P, —
M(1,4)® M(2,5) — I, — 0.

The rectangle defined by P, and Ig is missing precisely one point, thus there is an
extension 0 — P, — M(2,7) — Is — 0 with indecomposable middle term.

On the other hand, the rectangle defined by P, and I7 is missing three points, and
hence Ext(I7, P») = 0.

Example 6.7. Figs. 9 and 10 illustrate short exact sequences in terms of line segments. It
may happen that two line segments share an endpoint but there is no extension between
them. See Fig. 11.
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Fig. 11. Ext' (A, B) = 0 for all A, B in {S(1), M(1,4), M(3,4), M(3,7), M(3,5), M(4,5), S(7)} which
corresponds to the set of illustrated line segments.

We have the following realization of maximal almost rigid representations.
Theorem 6.8. I’ induces a bijection also denoted by F
F': {triangulations of P(Q)} — mar(Q).

Proof. Let M(i,5), M(i,7') be two non-isomorphic indecomposable representations
of Q. Using Theorem 4.6 and Proposition 6.5 (b), we see that there is a short exact
sequence of the form

0— M(i,j) - E1®FEy — M(',j') =0

if and only if there exist positive integers s,¢ such that By = M(i, R7'(j)), F2 =
M(R™%(i),j) and M(7,j") = M(R %(i), R7%(j)). In particular, i < R™%(j) and
R75(i) < j and thus the line segments F~1(M(i,5)) = (i — 1,j) and F~Y(M (', ")) =
Y(R™%(i) — 1, R7*(j)) are crossing diagonals in P(Q).

This shows that the sum of two indecomposable representations is almost rigid if and
only if the corresponding line segments in P(Q) do not cross. Consequently, maximal
almost rigid representations correspond to maximal sets of noncrossing line segments,
hence triangulations. O

Corollary 6.9. If Q is of type A, 12, every mazximal almost rigid representation of Q) has

exactly 2n + 3 summands. The mazimal almost rigid representations of @ are counted
2n+2) 1

n+1

by the Catalan number ( —t

Proof. The first statement follows from the theorem, because each triangulation of the
(n+3)-gon P(Q) has n diagonals and n+ 3 boundary edges. The second statement holds
because the number of triangulations of P(Q) is given by the Catalan number. O

7. Endomorphism algebras of maximal almost rigid representations

Recall that a module T is rigid provided that Ext(7T,T) = 0. We say that T is a
mazimal rigid module if T ® M is not rigid for any nonzero module M. A maximal
rigid module over the path algebra k@ of a quiver @ is called a tilting module, and the
endomorphism algebras of tilting modules over path algebras are called tilted algebras,
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Q= 1 —>2~<—3 Q= 1 3 2 2 3
M(2,3) M(2,3)
2 M(1,3) / M2 M(1,3)

2

\/'\/ N\
N NN

M(1,2) 3 M(1,2)

Fig. 12. A quiver @ and its Auslander—Reiten quiver on the left; the corresponding quiveLa and its
Auslander—Reiten quiver on the right. The image of the functor G are the representation M (i, j) with
i and j integers.

see [16]. On the other hand, the endomorphism algebras of triangulations of polygons
are cluster-tilted algebras [13]. Both tilted algebras and cluster-tilted algebras have been
studied extensively.

It is therefore natural to study the endomorphism algebras of the maximal almost
rigid representations. The purpose of this section is to show that in type A, ;o these
algebras are tilted algebras of type Ag, 3. For more details on endomorphism algebras
and tilted algebras, see textbooks [5, Chapter 8] and [34, Chapter 6].

To every quiver Q of type A, 2 we associate a quiver @ of type A, 3 by replacing
each arrow i — (i + 1) by a path of length two i — (251) — (i + 1) and each arrow
i < (i + 1) by a path of length two ¢ « (%) + (i+ 1), see Fig. 12 for an example.
Since Q has n + 2 vertices and n + 1 arrows, @ has 2n + 3 vertices which are labeled by
the half-integers ¢ € %Z with 1 < i < n + 2. Note that Proposition 3.1 implies that the
indecomposable representations of @ are of the form M (i, j) with i < j and 4,5 € %Z.

Define a functor G: rep@ — rep @ as follows. On indecomposable objects, we let
G(M(i,7)) = M(i,7) and we extend it additively to all objects. If f: M(i,j) — M(i', ')
is a morphism between indecomposables in rep Q, we let G(f) = f: M(i,5) — M(i’,j')
defined by f; = f; if i € Z, and for the new vertices we let

0 otherwise.

_{1 1ff1:1andfz+1:1,

For example, the irreducible morphism 2 — M (2, 3) in rep @ in the example of Fig. 12
is mapped under G to the composition of two irreducible morphisms 2 — M (2, %) —
M (2,3).

Lemma 7.1. The functor G is full and faithful.
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~(0,1) ~(1,3)
\ /
— ~(1,2)
/ \
~(0,2) ~(2,3)

Fig. 13. Left: The embedding of a polygon P(Q) with triangulation 7 into the polygon P. Right: The quiver
Q(T).

Proof. Faithfulness is clear from the definition. To show that G is full, take a nonzero
morphism f € Homg(G(M (i, 5)), G(M(i',5'))), thus fiM(@i,5) — M(i',5'). We want
to show that f = G(f) for some f € Homg(M(i,j), M(i',5')). Let I C @Q, be the
set of all vertices on which both M(i,j) and M(i',j') are nonzero. Then f, = 1, if
x € I,and f, = 0, otherwise. Let I C I be the subset of vertices from Q and define
fiM(@i,j) = M@, 5") by f =1,if 2 € I, and f, = 0, otherwise. Then f is a morphism

inrep@ and G(f)=f. O
Corollary 7.2. For all T € rep Q, we have Endrep @ T = End, ., 5 G(T).
Proof. This follows since G is full and faithful. 0O

To state our next result, we recall that the trivial extension C' x E of an algebra C' by
a C-bimodule F is the algebra whose underlying vector space is the direct sum C' & E,
and whose multiplication is defined as (¢, e)(c/,e’) = (cc’, ce’ + ec’). For more details, see
for example the textbook [34, Chapter 6.2]

We also need the notion of the adjacency quiver Q(T) of a triangulation T of a
polygon. The vertices of Q(T) are given by the line segments in 7. And there is an arrow
v = v in Q(T) if the line segments v, bound the same triangle in 7 such that +/
follows v when going along the boundary of the triangle in counterclockwise direction.
For an example see Fig. 13.

We are ready for the main theorem of this section.

Theorem 7.3. Let QQ be a quiver of type A,io, and let T be a mazimal almost rigid
representation of Q with endomorphism algebra C = End,cp g T. Then

(1) C is a tilted algebra of type Q.

(2) The quiver of the cluster-tilted algebra B = C x ExtZ(DC, C) is the adjacency
quiver Q(T) of the triangulation T = F~Y(T). Moreover, every arrow of Q(T) lies in a
(unique) 3-cycle.

(3) The quiver Q(C) of C is obtained from T by deleting the arrows of Q(T) of the
form v(i,5) — ~v(4, k) and v(4,k) = ~(i,7), i < j < k. Moreover, every arrow of Q(C)
lies in a (unique) relation.



28 E. Barnard et al. / Advances in Applied Mathematics 143 (2023) 102428

Q(C) 3% M2,3) =2 = M(1,2) =1
/—\ /\
Q(B) 35 - M(2,3) —= 2% M(1,2) <=1
@ B ) ~

Fig. 14. The quivers of C and B in Example 7.4. To obtain Q(C) from Q(B) remove the arrows € and o as
described in part (3) of Theorem 7.3.

Example 7.4. Let @ be the quiver of Fig. 12 and let T' be the maximal almost rigid
representation 7' =2 @ M(1,2) ® M(2,3) ® 1 ® 3. The corresponding triangulation 7T is
shown left in Fig. 13. Then C' = End,ep T is given by the quiver in Fig. 14(top) bound
by the relations af = 0 and vd = 0. Its cluster-tilted algebra B = C' x Ext%(DC, C) is
given by the quiver in Fig. 14(bottom) bound by the relations af = fe = e« = 0 and
v =00 = oy =0.

Proof of Theorem 7.3. Let @ be the quiver of type As, 3 defined in the beginning of
this section. The cluster category C of @ can be realized in two ways. For one, C =
Db(rep Q) /7~ 1[1] is an orbit category of the bounded derived category of representations
of Q, see [7]. On the other hand, C is the category of diagonals in a (2n+6)-gon P, see [13].
Using the realization via the derived category, we get a functor G: rep@ — C, which
maps a representation to its orbit in the cluster category. This functor is not full, since,
in the cluster category, there exist morphisms between the orbits of two representations
that are not given by morphisms between the representations themselves.

On the other hand, using the realization via diagonals of P, we see that the composi-
tion Go F: C P@Q) — C is a functor from the category of line segments (=diagonals and
boundary edges) in the (n + 3)-gon P(Q) to the category of diagonals (not including
boundary edges) in the (2n + 6)-gon P. We now explain this construction on the level
of the polygons. We embed P(Q) into P by adding one vertex for each boundary edge;
thus each boundary edge of P(Q) becomes an interior edge of P which bounds a triangle
whose other two sides are boundary edges, as follows, see Fig. 13 for an example.

P— > e

The functor G o F' induces a map T — 7 from triangulations of P(Q) that include
all boundary edges to triangulations of P that do not include any boundary edges.

Now let T' be a maximal almost rigid representation of Q. By Theorem 6.8, there exists
a triangulation 7 of P(Q) such that T' = F(T). Let C = End,cp ¢ T be its endomorphism
algebra. Denote by T the triangulation (without boundary edges) of P given as the image
of 7 under G o F. We have the following commutative diagram.
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Cr()

|

rep Q)

Thus the object G (T) = 1oG(T) in the cluster category is given by the triangulation 7.
Therefore G(T) is a cluster-tilting object in C, by [13]. Let B = Endgz G(T) denote its
cluster-tilted algebra.

Furthermore, we know that G(T) is induced from the representation G(T') € rep Q,
and therefore G(T) is a tilting module over the path algebra kQ of @, by [7,2]. Its
endomorphism algebra C' = End,., g G(T) is a tilted algebra of type @ and its trivial
extension C x Ext% (DC, C) is the cluster-tilted algebra B, by [3]. Corollary 7.2 implies
that C = C, so C is tilted of type @ and B = C x ExtZ (DC, C). The quiver of B is the
quiver of the triangulation 7, by [13], and thus it is also the quiver of the triangulation 7.
This shows (1) and (2).

To show (3) we need to consider the morphisms in the category Cp(q). By definition,
they are given by composition of pivots of the form ~(i,5) — (i, R71(j)) or v(i,5) —
y(R71(i), j). Given a triangle in 7 with vertices i < j < k in the labeling of P(Q), and
such that traveling from i to j to k to i is going counterclockwise around the triangle,
there exists a morphism ~y(i,7) — ~(i,k) given by a sequence of pivots that fix the
endpoint ¢, and a morphism (i, k) — (j, k) given by a sequence of pivots that fix the
endpoint k. In the cluster category C there also is a nonzero morphism ~(j, k) — (3, 1)
given by a sequence of pivots fixing the endpoint j, however, this morphism is zero in
the category Cp(q) because the diagonal (j,) is not in &, since j > i.

Similarly, when the triangle 7 has vertices i < j < k in the labeling of P(Q) such that
traveling from 7 to j to k is going clockwise around the triangle, there is a morphism
~v(i, k) — ~(i,j) given by a sequence of pivots that fix ¢, and there is a morphism
~v(k,j) — (i, k) given by a sequence of pivots that fix k. O

Remark 7.5. Not every tilted algebra of type A, 13 is realizable as the endomorphism
algebra of a maximal almost rigid representation of type A, ;2. For example the tilted

a B
algebra given by the quiver 1 2 3 4 5 with relation af = 0

is not, because not every arrow lies in a relation.

Remark 7.6. It would be interesting to see how the maximal almost rigid representations
behave for other quivers or more generally for bound quiver algebras. The first example
below shows that in Dynkin type D4 the number of summands in a maximal almost rigid
representation is not always the same.
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Fig. 15. Auslander—Reiten quiver for the bound quiver in Example 7.8.

I3

Example 7.7. The D4 quiver @

admits the following maximal almost rigid representations, one of which has 7 direct
summands and the other has 9.

T=Pl)oPR2)@PB)oPA)®2®2d1  and

1 1
T’:P(l)@P(S)@P(4)@Z@3@31@%@2@1

The endomorphism algebra of T is tilted of affine type Eg = Q, which is encouraging
for a possible generalization of the type A results. However, the endomorphism algebra
of T” does not seem to be a tilted algebra.

Example 7.8. Consider the D4 quiver

bound by the relation a8 = 0. The Auslander—Reiten quiver is illustrated in Fig. 15.

If an indecomposable representation M has at most one incoming arrow and one
outgoing arrow in the Auslander—Reiten quiver, then M is a direct summand of every
maximal almost rigid representation. Therefore, the five indecomposable representations
written in bold in Fig. 15 are direct summands of every maximal almost rigid represen-
tation.

The maximal almost rigid representations are as follows. Each of them has 7 direct

summands.
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1
3@4@%@2@1@Z@§4

2 1 2
3040302010102

2 1 1
304036201028,

8. Representation theoretic version of the Cambrian lattice and the n map

In this section, we come back to our initial motivation and give a new realization of
the n map in terms of maximal almost rigid representations.

8.1. Poset structure on mar(Q)

A flip is a transformation of a triangulation 7 that removes a diagonal v and replaces
it with a (unique) different diagonal 4’ that, together with the remaining diagonals,
forms a new triangulation 7”. Note that the two diagonals v and 4" involved in such a
flip must cross.

In [25], Reading defined the following poset structure on the set of triangulations of
P(Q). A triangulation 7; is said to be covered by a triangulation T3 if there exist two
diagonals 71 # 72 such that 71\ {71} = 72 \ {12} and the slope of 7, is smaller than the
slope of 5. This covering relation induces a partial order on the set of triangulations,
and the resulting poset is called the Cambrian lattice of type A. See also the survey
paper [26].

Definition 8.1. We define a partial order on mar(Q) as follows. For T, T» € mar(Q), we
say that T7 is covered by T3 if there exist indecomposable summands M; of T; such that
Ty /My = T /M5 and there is a non-split short exact sequence

0 M - Eap My — 0
with E, E’ indecomposable summands of T} /M.

Remark 8.2. In the short exact sequence in Definition 8.1, the morphism f is a minimal
add(Ty /M) approximation of M;. For a definition, see for example [7].

Remark 8.3. It follows from Theorem 6.8 that every maximal almost rigid representa-
tion contains all hooks and all cohooks of @, since these correspond to boundary edges
of the triangulation of P(Q) by Corollary 3.10. Therefore, there is a unique minimal
element in the poset mar(Q) given by the basic representation whose direct summands
are the indecomposable projective representations together with the hooks and cohooks.
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The covering relation given by the short exact sequence in Definition 8.1 then gives an
algorithm to construct all maximal almost rigid representations using approximations.
The unique maximal element in the poset on mar(Q) is given by the basic representation
whose direct summands are the indecomposable injective representations together with
the hooks and cohooks.

8.2. The poset on mar(Q) is a Cambrian lattice

We have the following result.

Theorem 8.4. Let Q be a Dynkin quiver of type A,y2. Then the poset on mar(Q) is
isomorphic to a Cambrian lattice.

Proof. By Theorem 6.8, the functor F' is a bijection from triangulations of P(Q) to
mar(Q). It only remains to prove that F' preserves the covering relations. This is done
in the next lemma. O

Lemma 8.5. Let Q) be a quiver of type A, yo. Let My, My be two indecomposable repre-
sentations of Q and 1,72 be the line segments in P(Q) such that F(v;) = M;, i = 1,2.
Suppose there is a non-split short exact sequence 0 — My — E — My — 0. Then the
following conditions are equivalent.

(1) HOIIl(Ml,MQ) 7é 0.
(2) E is decomposable.
(3) 71 and 2 cross and the slope of v2 is larger than the slope of 1.

Proof. (1)<(2). Applying the functor Hom(M7, —) to the short exact sequence yields
an exact sequence

0—>k= HOIIl(Ml, Ml) — Hom(Ml,E) — HOHl(Ml, Mg) — EXt(Ml, Ml) = O, (81)

where the first term is one-dimensional and the last term is zero, because M; is an
indecomposable representation of a Dynkin quiver. Since M7 and Ms are indecomposable
and the short exact sequence is non-split, there is a nonzero morphism from M; to every
indecomposable summand of E. Thus the dimension of Hom(M;, E) is at least equal to
the number of indecomposable summands of E. However, @ being of type A implies that
the dimension of Hom between indecomposables is at most one, and thus the dimension
of Hom(My, E) is ezactly equal to the number of indecomposable summands of E. Thus
the exactness of (8.1) implies that F is decomposable if and only if Hom(M;j, M) # 0.
(1)&(2)=(3). Suppose there is a nonzero morphism from M; to M. By Theorem 4.6,
this means that we can get from ; to 72 by a sequence of pivots, each of which is
moving one of the endpoints of a diagonal to its counterclockwise neighbor (in a way
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that preserves the ordering of the endpoints). Each such pivot increases the slope of a
diagonal, thus the slope of 7, is larger than the slope of ;. Furthermore v; and -2 must
cross, because otherwise the extension E would be indecomposable.

(3)=(1). Suppose 71 and 79 cross and that v, has larger slope than ~7. Then it is
possible to get from 1 to 72 by a sequence of counterclockwise pivots which preserve
the ordering of the endpoints. By Theorem 4.6, there is a nonzero morphism from M;
to Ms. O

8.3. The n map

Recall the map ng from the symmetric group S,11 to the set of triangulations of
P(Q) from Definition 2.1. We define a new realization of this map via the composition
of g with the equivalence F' of Theorem 4.6.

Definition 8.6. Let 7," = F ong: Spy1 — mar(Q).

P using extensions and de-

We shall give an alternate, equivalent description of 7722e
generations. A representation M is an extension of a representation N if there exists
a non-split short exact sequence 0 — Ny —- M — N; — 0 such that N = N; & Ns.
A representation M is a degeneration of a representation N if M is contained in the
Zariski closure of the isomorphism class of N. In Dynkin type A, a representation M
is a degeneration of a representation IV if there exists a non-split short exact sequence
0— My - N — My — 0 with M = My & M. Note that in both cases, the dimension
vectors of M and N are equal.

Recall that the map ng is defined by taking the union of a list of paths. This list
is created by a recursive process of removing and adding a vertex of P(Q) to a path.
Instead of a list of paths, we will now create a list of representations of @ each of which
has dimension vector (1,1,...,1). Instead of removing (respectively adding) a vertex, we
will now apply an extension (respectively a degeneration) to a representation. Because
every representation on this list has dimension vector (1,1,...,1), an extension is the
same as changing the assignment of the linear map on an arrow in @ from the zero
map to the identity map. Conversely, a degeneration is simply changing the assignment
of the linear map on an arrow in ) from the identity map to the zero map. Finally,
instead of taking the union of the list of paths, we take the direct sum of the union of
all indecomposable summands of our list of representations.

Let «y denote the arrow of @) between vertices ¢ and (¢ 4+ 1) for all £. Given a per-
mutation m = 7 T 73 ... Ty41 Written in one-line notation, we define a representation
AP (m) of @ for each i € {0,...,n+1}. Let Ay’ () be the representation with dimension
(1,1,...,1) with the 0 map on each arrow «; for all ¢ € [n + 1], and the identity map ev-

erywhere else. That is, it is the direct sum of the indecomposable representations which
correspond to the lower boundary edges of P(Q) (or maximal increasing paths in @, due
to Lemma 3.6). These indecomposable representations are the ones in the 7-orbit of the
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projective at 1. In the Auslander—Reiten quiver example of Fig. 5, they are drawn at the
bottom row.
Define AI*P () to be

rep

(a) the degeneration of Ay (7) obtained by replacing the identity map on ., with the

zero map, if 71 € [n+ 1], or
(b) the extension of A\j™” (7) obtained by replacing the zero map on o, with the identity
map, if 7 € [n + 1].

rep
n+1
with dimension vector (1,1,...,1) with the 0 map on all arrows «; with i € [n + 1], and

the identity map everywhere else. That is, A7, () is the direct sum of the indecompos-

Repeat this process recursively, until we get to AP, (7) which is the representation

able representations which correspond to the upper boundary edges of P(Q) (or maximal
decreasing paths in @, due to Lemma 3.6). These indecomposable representations are
the ones in the 7-orbit of the projective at n+2. In the Auslander—Reiten quiver example
of Fig. 5, they are drawn at the top row.

Proposition 8.7. ngp(w) 1s the maximal almost rigid representation of QQ whose indecom-
posable direct summands are exactly those appearing in the list \g™® (7), ..., A0 (7).

Proof. We need to check that the recursive definition of A, corresponds to the recursive
definition of A, under the functor F. For £ = 0, this is clear. Suppose £ > 0 and that
F(Xe) = AP We want to show F(Agq1) = A, . Suppose first that mo1 € [+ 1]. Then
the difference between the paths Ay and Ag4q is that A1 passes through the vertex mp41
of P(@). This means that A\, contains a line segment (¢, j) which is replaced in Ag4+1 by
two line segments (4, wp11), V(7Tet1,7), where i < 711 < j. Applying the functor F', the
indecomposable direct summand M (i + 1,7) is replaced by two indecomposable direct
summands M (i + 1,7p41), M (711 + 1,7). This change coincides with the difference
between \,”” and A5 which is given by a degeneration that replaces the identity map
on the arrow au,,, by the zero map.

Now suppose that 711 € [n + 1]. Then the difference between the paths Ay and Ap41
is that Ay passes through the vertex m,y; of P(Q). This means that Ay contains two
line segments (4, wo11), ¥(mer1,7), with ¢ < mpy1 < j, which are replaced in Agyq1 by a
single line segment (7, j). Applying the functor F', two indecomposable direct summands
M@i+1,741), M (711 + 1, §) are replaced by a single indecomposable direct summand
M (i + 1,7). This change coincides with the difference between A" and X, which is
given by an extension that replaces the zero map on the arrow a,, , by the identity
map. 0O

Example 8.8. Let @ be the quiver in Fig. 1. Then [6] = {1,2,3,5} and [6] = {4,6}.

Let m = 453126 € Sg. The paths \;(m) are listed in Example 2.3. The list of the
representations A" () is as follows; see also Fig. 16.
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Fig. 16. The four maximal chains correspond to the four permutations in the fiber of ng’p (m) given in
Example 8.8. The left-most maximal chain corresponds to the permutation 453126.

AP = M(1,4) ® M(5,6) ® S(7)

AP = M(1,6) @ S(7)

AP = M(1,5) @ 5(6) @ S(7)

AsP = M(1,3)® M(4,5) @ S(6) @ S(7)

AP = S(1) e M(2,3) & M(4,5) & S(6) @ S(7)
AP =851)a S(2) e S(3) @ M(4,5) @ S(6)d S(7)
AP =S(1)©S(2)eS3)eM4,5) e M(6,7)

As we have seen earlier the fiber of 7 (453126) is the set {453126, 453162, 453612, 456312} .
These four permutations correspond to the four maximal chains in Fig. 16.
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