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Abstract

We consider the estimation and uncertainty quantification of the tail spectral

density, which provide a foundation for tail spectral analysis of tail dependent time

series. The tail spectral density has a particular focus on serial dependence in the

tail, and can reveal dependence information that is otherwise not discoverable by

the traditional spectral analysis. Understanding the convergence rate of tail spectral

density estimators and finding rigorous ways to quantify their statistical uncertainty,

however, still stand as a somewhat open problem. The current article aims to fill this

gap by providing a novel asymptotic theory on quadratic forms of tail statistics in

the double asymptotic setting, based on which we develop the consistency and the

long desired central limit theorem for tail spectral density estimators. The results are

then used to devise a clean and effective method for constructing confidence intervals

to gauge the statistical uncertainty of tail spectral density estimators, and it can be

turned into a visualization tool to aid practitioners in examining the tail dependence

for their data of interest. Numerical examples including data applications are pre-

sented to illustrate the developed results.

Keywords: central limit theorem, quadratic forms, tail adversarial stability, tail de-

pendent time series, tail spectral density.
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1 Introduction

A fundamental problem in spectral analysis of time series is to estimate the spectral density

function that relates to the discrete-time Fourier transform of autocovariances at different

lags. Spectral density estimators and their asymptotic theory have been extensively studied

in the literature; see for example Bentkus and Rudzkis (1982), Rosenblatt (1984), Dahlhaus

(1985), Velasco and Robinson (2001), Phillips et al. (2006, 2007), Wu and Shao (2007), Liu

and Wu (2010), Xiao and Wu (2011), and references therein. We shall here also refer to the

books by Grenander and Rosenblatt (1957), Hannan (1970), Anderson (1971), Brillinger

(1975), Priestley (1981), Rosenblatt (1985), and Brockwell and Davis (1991) for additional

discussions and references. When evaluated at frequency zero, the spectral density becomes

the so called long-run variance, which is an important quantity for mean inference of time

series data and its estimation has been widely studied in the literature; see for example

Newey and West (1987), Andrews (1991), Song and Schmeiser (1995), Lahiri (2003), Wu

(2009), Flegal and Jones (2010), Politis (2011), Zhang (2018), and references therein. In

the aforementioned works, the batch means method in Song and Schmeiser (1995) is related

to the technique of subsampling of Politis and Romano (1994) and Politis et al. (1999), and

an alternative to Flegal and Jones (2010) was given by Giakoumatos et al. (1999). Since

the conventional spectral density is constructed using the traditional autocovariances, it

mainly concerns the dependence in terms of comovements with respect to the mean and

therefore may not be suitable for studying tail dependence.

Tail dependence, or extremal dependence, refers to the dependence in the joint extremes

of the underlying distribution. The phenomenon has been extensively studied in bivariate

or finite-dimensional multivariate distributions; see for example Sibuya (1960), de Haan

and Resnick (1977), Joe (1993), Ledford and Tawn (1996), Coles et al. (1999), Embrechts
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et al. (2002), Draisma et al. (2004), Poon et al. (2004), McNeil et al. (2005), Zhang (2008),

Balla et al. (2014), Hoga (2018), and references therein. Zhang (2005) considered a lag-k

tail dependence index that summarizes the degree of tail dependence at different lags for

a time series; see also the quantilogram of Linton and Whang (2007), the extremogram of

Davis and Mikosch (2009) and Hill (2009), and the tail autocorrelation of Zhang (2022)

for additional results along this direction. Unlike the traditional autocorrelations, the

asymptotic behavior of their tail counterparts can be much more complicated due to the

double asymptotic scheme necessary for capturing the tail phenomena. To be more specific,

sample tail autocorrelations no longer share a universal convergence rate as traditional

autocorrelations otherwise do, and their asymptotic behavior can transit from one phase

to the other once the lag index passes the point beyond which tail dependence vanishes;

see for example Zhang (2022). This can pose a challenge on studying their infinite sum, a

quantity that appears in the central limit theorem of high quantile regression estimators

(Zhang, 2021a), or more generally their Fourier transforms that lead to the tail spectral

density.

Davis and Mikosch (2009) considered estimating the tail spectral density using the

truncated periodogram, and proved its estimation consistency. The associated convergence

rate and asymptotic distribution, however, were still unknown at the time and left as an

open problem; see the discussion in their Section 5. Mikosch and Zhao (2014) obtained an

asymptotic theory on periodogram ordinates at fixed frequencies, which was then used to

show that the smoothed periodogram provides a consistent estimator of the tail spectral

density. However, their Theorem 5.1 only concerned the estimation consistency and did

not provide any information about the convergence rate or the asymptotic distribution of

the smoothed periodogram. Mikosch and Zhao (2015) studied the integrated periodogram,
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but did not cover triangular array weight functions with shrinking support that are needed

for consistent estimation of the spectral tail density. To the best of our knowledge, the

problem of developing a more comprehensive asymptotic theory on tail spectral density

estimators to understand their convergence rate and asymptotic distribution for a general

class of tail dependent time series has not been well addressed. The current article aims at

filling this gap, for which there are three major difficulties. First, unlike the periodogram

ordinates in Mikosch and Zhao (2014) or the leading diagonal term in Mikosch and Zhao

(2015) that can be handled by linear forms, the study of tail spectral density estimators be-

yond their consistency typically requires an asymptotic theory on non-degenerate quadratic

forms of tail statistics which has not been well explored and can be more challenging to

deal with. Second, compared with traditional spectral density estimators in which sam-

ple autocovariances share a universal convergence rate, sample tail autocorrelations can

exhibit a two-phase asymptotic behavior with dichotomous convergence rates at different

lags (Zhang, 2022), which makes it difficult to analyze their infinite sums or Fourier trans-

forms in the tail setting that relate to the tail spectral density. Third, existing results

in this direction were mostly developed under the strong mixing framework of Rosenblatt

(1956), which typically had to be used together with additional anti-clustering conditions

and regularly varying conditions to handle tail events. As a result, it can often lead to non-

trivial conditions that involve the interplay between how fast the strong mixing coefficient

decays and how extremal the tail can be, and can result in strong conditions for common

extreme value time series models described in a recent review by Zhang (2021b).

We in the current article provide a novel asymptotic theory on quadratic forms of tail

statistics in the double asymptotic setting, based on which we develop the consistency and

the long desired central limit theorem for tail spectral density estimators. The results are
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then used to devise a clean and effective method for constructing confidence intervals to

gauge the statistical uncertainty of tail spectral density estimators, and it can be turned

into a visualization tool to aid practitioners in examining the tail dependence for their

data of interest. It can be seen from our data applications that the tail spectral analysis

as considered in the current article can be useful in revealing dependence information

that is otherwise not discoverable by the traditional spectral analysis. Results developed

in the current article provide a foundation for tail spectral analysis and its uncertainty

quantification for a general class of tail dependent time series, and shed new light on the

difficult problem of handling quadratic forms of tail statistics in the double asymptotic

scheme.

The remaining of the article is organized as follows. Section 2 introduces our tail

adversarial stability framework, and provides examples to illustrate its difference from the

strong mixing framework. Section 3 contains our main results, with proofs provided in the

Supplementary Material. Section 4 contains a simulation study and real data applications

to illustrate the developed results. Section 5 concludes the article.

2 Framework

2.1 Tail Adversarial Stability

Suppose we observe a stationary time series X1, . . . , Xn with marginal distribution function

F (x) = pr(X1 ≤ x), x ∈ R, according to

Xi = G(Fi), Fi = (. . . , ϵi−1, ϵi), (1)

where ϵj, j ∈ Z, are independent and identically distributed (i.i.d.) innovations, and G is

a measurable function such that Xi is properly defined. The causal representation (1) is

5



very general and covers a huge class of stationary processes; see for example the discussions

in Wiener (1958), Tong (1990), Wu (2005), and Zhang (2021a). An example of a certain

stationary process with trivial backward tail field that is not covered by (1) was given by

Rosenblatt (2009). Let F−1(u) = inf{x : F (x) ≥ u}, then UF = limu↑1 F
−1(u) represents

the upper end point of the distribution and can take the value of infinity if the distribution

is not bounded. Then as x approaches UF , data points exceeding x can be viewed as tail

events, and Zhang (2005) considered the lag-k tail dependence index

νk = lim
x↑UF

νk,x, νk,x = pr(X1+k > x | X1 > x), (2)

which naturally extends the foundational metric of Sibuya (1960) to the time series setting.

Although the quantities in (2) provide a straightforward summary of the underlying serial

tail dependence, similar to the traditional autocorrelations, they are typically not directly

useful for developing an asymptotic theory for tail dependent time series. We shall here

adopt the tail adversarial stability framework of Zhang (2021a), which has been proven

to be useful in obtaining limit theorems of tail dependent processes under interpretable

conditions. Existing results on tail adversarial stability mainly concern limit theorems

of linear forms, and we shall here focus on the more challenging topic of obtaining limit

theorems for quadratic forms of tail statistics.

Let ϵ⋆0 be an innovation that has the same distribution as ϵ0 but independent of (ϵk)k∈Z,

then F⋆
i = (F−1, ϵ

⋆
0, ϵ1, . . . , ϵi) is the coupled shift process and X⋆

i = G(F⋆
i ) represents the

coupled output at time i when the innovation at time zero is replaced by its i.i.d. copy.

We consider

θx(i) = sup
z≥x

pr(X⋆
i ≤ z | Xi > z),

which quantifies the degree to which the innovation at time zero affects whether the output

data at time i is a tail observation. Note that if Xi does not depend on ϵ0, then X
⋆
i = Xi
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and θx(i) = 0, meaning that ϵ0 will not have any tail adversarial effect on Xi. Let

Θx,q(m) =
∞∑

i=m

{θx(i)}1/q, m ≥ 0,

which measures the cumulative tail adversarial effect of ϵ0 on future observations with gap

i ≥ m, then we say that the process (Xi) is tail adversarial q-stable or (Xi) ∈ TASq if

lim
x↑UF

Θx,q(0) <∞;

and geometrically tail adversarial stable or (Xi) ∈ GTAS if there exist constants c⋆ ∈ (0,∞)

and ϕ ∈ (0, 1) such that

θx(i) ≤ c⋆ϕi, i ≥ 0,

holds for some x that is close enough to UF . Additional discussions on the tail adversarial

stability coefficient and its calculation can be found in Zhang (2021a). A geometric moment

contraction condition was adopted by Shao and Wu (2007) for studying asymptotic theory

of conventional spectral density estimators, and we shall here focus on the tail setting.

2.2 Examples: Illustration and Comparison

We shall here illustrate our tail adversarial stability framework and make a comparison with

conditions under the strong mixing framework. We first consider the autoregressive moving

average (ARMA) model with regularly varying innovations as considered in Mikosch and

Zhao (2014).

Example 2.1. Let (ϵi) be a sequence of i.i.d. regularly varying random variables with index

γ > 0 and

Xi =
∞∑
l=0

alϵi−l,

where the coefficients (al) are chosen from the ARMA equation
∑∞

l=0 alz
l = β(z)/ψ(z),

z ∈ C, with β(z) = 1+ β1z + · · ·+ βrz
r and ψ(z) = 1−ψ1z − · · · − ψsz

s for some r, s ≥ 0.
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Following Mikosch and Zhao (2014), we assume that β(z) and ψ(z) do not have common

zeros and ψ(z) ̸= 0 for |z| ≤ 1, then by the argument in the aforementioned paper the

process (Xi) is also regularly varying with the same index γ > 0 and we can write pr(Xi >

x) = x−γℓ(x) for some slowly varying function ℓ(·). Under certain regularity conditions

on the innovation density, Mikosch and Zhao (2014) showed that the conditions needed

for their Theorem 5.1 to guarantee the estimation consistency of the smoothed periodogram

are satisfied for the ARMA model. Their derivation largely benefited from the fact that

the strong mixing coefficients decay geometrically fast under the ARMA structure, which

simplified the verification of some of their key conditions.

For the tail adversarial stability framework, by Theorem 3.9 of Bai and Zhang (2022)

we can show that under certain regularity conditions the tail adversarial stability measure

satisfies

θx(i) ≤ c|ai|γ
′

for sufficiently large x, where γ′ < γ can be chosen arbitrarily close to γ when γ ≤ 1 and

γ′ = 1 if γ > 1. Under the ARMA structure, the coefficients ai, i ≥ 0, decay geometrically

fast, and thus (Xi) ∈ TASq for any q > 0 and in addition (Xi) ∈ GTAS. Note that the

consistency result in our Theorem 3.1 only requires that (Xi) ∈ TASq for some q ≥ 4 and

npr(Xi > xn) → ∞. In comparison, the consistency result in Theorem 5.1 of Mikosch and

Zhao (2014) requires that n1/3pr(Xi > xn) → ∞ which can be much stronger; see their

condition (M1). We also remark that the conditions employed by Mikosch and Zhao (2014)

in general involve nontrivial interplays between how fast the strong mixing coefficient decays

to zero and how extremal the tail can be and thus can be difficult to be made explicit for

processes without a geometric decay.

We shall then consider the moving-maximum process of Hall et al. (2002) that has been
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widely adopted for extreme value time series modeling. As commented in a recent review

paper by Zhang (2021b), the additive structure in traditional time series models cannot

describe the extremal clusters and tail dependence satisfactorily in many applications, and

the moving-maximum model and its variants and generalizations have been recognized as

powerful alternatives for extreme value time series modeling; see also the references therein

for additional discussions.

Example 2.2. Let (ϵi) be a sequence of independent Fréchet random variables with distri-

bution function pr(ϵi ≤ z) = exp(−z−γ) for some γ > 0, we consider the moving-maximum

process

Xi = max
0≤l<∞

alϵi−l,

which is well defined if the nonnegative coefficients satisfy
∑∞

l=0 a
γ
l <∞; see the discussion

in Hall et al. (2002). The aforementioned paper also showed that the moving-maximum

process is dense in the class of stationary processes whose finite-dimensional distributions

are extreme-value of a given type; see also Zhang and Smith (2004), Zhang (2005) and

Zhang et al. (2017) for additional discussions. Mikosch and Zhao (2014) verified conditions

for their Theorem 5.1 regarding the estimation consistency of the smoothed periodogram

when the coefficients (ai) follow a geometric decay.

As a comparison, our consistency result in Theorem 3.1 only requires that (Xi) ∈ TASq

for some q ≥ 4, for which by the elementary calculation as in Zhang (2021a) a sufficient

condition is given by
∞∑
l=0

a
γ/q
l <∞.

Compared with the existence condition
∑∞

l=0 a
γ
l < ∞ under which the moving-maximum

process is well defined, our tail adversarial stability condition seems to be reasonably mild.

Although Mikosch and Zhao (2014) only considered the case when (ai) decay geometrically
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fast, we shall here provide additional insights into the conditions of their Theorem 5.1 by

considering the case when the coefficients (ai) only follow an algebraic decay. For this,

we consider the simple setting when γ = 1 and ai = ci−τ for some 0 < c < ∞ and

τ > 1, then by Corollary 2.2 of Dombry and Eyi-Minko (2012) and Karamata’s theorem,

the conditions in Theorem 5.1 of Mikosch and Zhao (2014) requires at least τ > 10. Note

that this is only a necessary condition, as it is very complicated to work out exactly what a

sufficient condition on τ is due to the nontrivial interplay with how extremal the tail can

be under their framework. In contrast, for the current tail adversarial stability framework,

it suffices to require that τ > 4 to guarantee the estimation consistency; see Theorem 3.1.

In addition, our results allow more extremal tails in the sense that our Theorem 3.1 only

requires npr(Xi > xn) → ∞ while Theorem 5.1 of Mikosch and Zhao (2014) requires that

n1/3pr(Xi > xn) → ∞.

Therefore, the tail adversarial stability framework in Section 2.1 seems to provide an

alternative mathematical foundation for asymptotic theory of tail dependent time series,

which can possibly lead to more explicit but weaker conditions than the strong mixing

framework. In addition, it does not require the use of additional anti-clustering condi-

tions such as the one in (2.4) of Mikosch and Zhao (2014), and can be used to guide the

development of asymptotic theory for processes that are not necessarily regularly varying.

3 Main Results

Let xn → UF , we consider the tail autocorrelation

ρk,n =
pr(X1+k > xn | X1 > xn)− pr(X1+k > xn)

1− pr(X1 > xn)
, (3)
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which can be viewed as a standardized pre-asymptotic version of the lag-k tail dependence

index of Zhang (2005). Zhang (2022) provided a two-phase asymptotic theory on sample

tail autocorrelations and used it to guide the construction of a visualization tool with lines

of significance. Let ι =
√
−1 be the imaginary unit, we shall here focus on the frequency

domain and consider the tail spectral density

fn(λ) =
1

2π

∑
|k|<n

ρk,ne
ιkλ, (4)

which naturally extends the conventional spectral density to the tail setting using the tail

autocorrelations (3). Let I(·) be the indicator function, F̄ (x) = 1 − F (x) and ˆ̄Fn(x) =

n−1
∑n

i=1 I(Xi > x), then a sample version of (3) is given by

ρ̂k,n =
µ̂k,n

µ̂0,n

, µ̂k,n =
1

n

n−|k|∑
i=1

{I(Xi > xn)− ˆ̄Fn(xn)}{I(Xi+|k| > xn)− ˆ̄Fn(xn)}.

To estimate the tail spectral density (4), we consider the lag-window estimator

f̂n(λ) =
1

2π

∑
|k|<n

ρ̂k,ne
ιkλK

(
k

Bn

)
, (5)

where K : R → R is a kernel function and Bn → ∞ is a positive bandwidth sequence. In

the non-tail setting, lag-window estimators for the conventional spectral density function

have been extensively studied in the literature; see for example Anderson (1971), Rosen-

blatt (1984), Phillips et al. (2006), Shao and Wu (2007), Liu and Wu (2010), and references

therein. Although developing a central limit theorem for the conventional spectral density

estimator is already a highly nontrivial problem as commented by Liu and Wu (2010),

achieving it in the current tail setting with the double asymptotic scheme can be even

more challenging. Zhang (2022) provided an asymptotic theory for sample tail autocorre-

lations, whose unusual two-phase asymptotic behavior distinguishes them from traditional

autocorrelations. We shall here provide an asymptotic theory on their infinite sums that

lead to the tail spectral density estimator (5). Unlike Zhang (2022) which only focused
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on individual sample autocorrelations at a fixed lag, the current problem requires the han-

dling of a growing number of sample tail autocorrelations at the same time, which is more

challenging and requires a new asymptotic theory on quadratic forms of tail statistics.

Throughout the article, we assume that the kernel function K ∈ K, the class of sym-

metric nonnegative functions with κ̄ = supu∈RK(u) < ∞ and κ =
∫
RK

2(u)du < ∞. We

first consider a proxy of (5) given by

f̃n(λ) =
1

2π

∑
|k|<n

ρ̃k,ne
ιkλK

(
k

Bn

)
,

where

ρ̃k,n =
1

nF (xn)F̄ (xn)

n−|k|∑
i=1

{I(Xi > xn)− F̄ (xn)}{I(Xi+|k| > xn)− F̄ (xn)}.

Theorem 3.1 provides the consistency of f̃n(λ) and quantifies its distance from f̂n(λ).

Theorem 3.1. Assume that (Xi) ∈ TAS4 and K ∈ K. If F (xn) → 1, Bn → ∞ and

{nF̄ (xn)}−1Bn → 0, then for any λ ∈ [0, 2π),

f̃n(λ)− E{f̃n(λ)} →p 0,

and

f̂n(λ) = {f̃n(λ) + Op(n
−1Bn)}(1 + Op[{nF̄ (xn)}−1/2]).

By Theorem 3.1, the tail spectral density estimator (5) also satisfies

f̂n(λ)− E{f̃n(λ)} →p 0,

where the asymptotic center

E{f̃n(λ)} = fn(λ) +
1

2π

∑
|k|<n

ρk,ne
ιkλ

{(
1− |k|

n

)
K

(
k

Bn

)
− 1

}
.
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Therefore, if we choose a kernel function that satisfies K(u) = 1 when |u| ≤ cK for some

0 < cK <∞, which is referred to as the class of flat-top kernels (Politis, 2011), then

|E{f̃n(λ)} − fn(λ)| ≤
1

π

⌊cKBn⌋∑
k=1

|kρk,n|
n

+
1

π

n−1∑
k=⌊cKBn⌋+1

(κ̄+ 1)|ρk,n| → 0

by the dominated convergence theorem and the proof of Lemma 3 in Zhang (2021a). This

leads to the consistency of the tail spectral density estimator (5). As discussed in Section

2.2, our Theorem 3.1 complements the consistency results in Davis and Mikosch (2009)

and Mikosch and Zhao (2014) in the sense that our tail adversarial stability framework

can possibly lead to weaker conditions on the degree of tail dependence and allow more

extremal tails.

We shall now provide a central limit theorem for the tail spectral density estimator (5),

which has not been well addressed in the literature. In the following, we use KFT to denote

the class of flat-top kernel functions in K that have bounded support and are Lipschitz

continuous except for a finite number of points. Shao and Wu (2007) provided a central

limit theorem for the conventional spectral density estimator under a geometric moment

contraction condition, and their proof was based on a big-block-small-block argument,

which splits the summation into alternating big and small blocks to take advantage of the

asymptotic independence between well separated blocks. We shall here focus on the tail

setting under the double asymptotic scheme where the tail level xn → UF = limu↑1 F
−1(u)

is allowed to approach the end point of the distribution as n→ ∞, and the proof is based

on using quadratic forms of m-dependent tail martingale differences to approximate the

tail spectral density estimator.

Theorem 3.2. Assume that (Xi) ∈ GTAS and K ∈ K has bounded support and is Lipschitz

continuous except for a finite number of points. If F (xn) → 1, BnF̄ (xn)(log n)
−7 → ∞ and

{nF̄ (xn)}−1Bn(log n)
8 → 0, then (i) for λ ∈ [0, 2π) \ {0, π} where fn(λ) is bounded away
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from zero for all large n,

{κ1/2fn(λ)}−1(B−1
n n)1/2[f̃n(λ)− E{f̃n(λ)}] →d N(0, 1);

and (ii) for λ ∈ {0, π} where fn(λ) is bounded away from zero for all large n,

{κ1/2fn(λ)}−1(B−1
n n)1/2[f̃n(λ)− E{f̃n(λ)}] →d N(0, 2).

Theorem 3.2 discovers a somewhat surprising and unexpected limiting behavior of tail

spectral density estimators, and we shall here provide a brief discussion. In particular,

unlike traditional autocorrelations that share the universal n1/2-convergence rate, the con-

vergence rate of sample tail autocorrelations can be affected by the tail setting and slowed

to {nF̄ (xn)}1/2; see for example Davis and Mikosch (2009), Mikosch and Zhao (2014) and

Zhang (2022). As a result, the rate of convergence for tail spectral density estimators in the

form of their infinite sums was conjectured to be {nF̄ (xn)/Bn}1/2, where the additional

Bn term is due to the use of kernel tapering. However, Theorem 3.2 discovers that the

convergence rate of tail spectral density estimators can actually attain (n/Bn)
1/2, which

is faster than the conjectured rate. This seems a bit surprising, but is intuitively related

to the dichotomous asymptotic behavior of sample tail autocorrelations whose convergence

rate can transit from {nF̄ (xn)}1/2 to n1/2 for different lags; see for example Zhang (2022).

The aforementioned paper considered individual sample tail autocorrelations that can be

handled by linear forms, and the results are not directly useful for the current problem

but offer a possible intuitive explanation from a different perspective. Corollary 3.1 states

that the central limit theorems in Theorem 3.2 will continue to hold for f̂n(λ)− fn(λ) if a

flat-top kernel function is used.

Corollary 3.1. Assume conditions of Theorem 3.2. If in addition K ∈ KFT , then (i) for
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λ ∈ [0, 2π) \ {0, π} where fn(λ) is bounded away from zero for all large n,

{κ1/2fn(λ)}−1(B−1
n n)1/2{f̂n(λ)− fn(λ)} →d N(0, 1);

and (ii) for λ ∈ {0, π} where fn(λ) is bounded away from zero for all large n,

{κ1/2fn(λ)}−1(B−1
n n)1/2{f̂n(λ)− fn(λ)} →d N(0, 2).

Corollary 3.1 can be used to guide the construction of confidence intervals for the

tail spectral density. The special case when λ = 0 relates to estimating the asymptotic

variance in high quantile regression problems for tail dependent time series; see for example

Zhang (2021a). The aforementioned paper considered lag-window estimation of fn(0), but

did not explore the difficult problem about how to quantify the uncertainty of such an

estimator. Theorem 3.3 states that tail spectral density estimators at different frequencies

are asymptotically independent of each other.

Theorem 3.3. Assume conditions of Theorem 3.2. Let λ1, . . . , λL be different frequen-

cies in [0, 2π) with (λl + λl′)/π /∈ Z and (λl − λl′)/π /∈ Z for any 1 ≤ l < l′ ≤ L. If

K ∈ KFT and fn(λl) is bounded away from zero for all large n for l = 1, . . . , L, then

{fn(λl)}−1(B−1
n n)1/2{f̂n(λl)−fn(λl)}, l = 1, . . . , L, converge jointly to independent normal

random variables.

4 Statistical Practice

4.1 Tail Spectral Analysis with Uncertainty Quantification

The results developed in Section 3 can be used to devise a clean and effective method

for uncertainty quantification in tail spectral analysis, which adds a valuable piece to the
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toolbox for practitioners to examine the tail dependence of a given data. In particular, by

Corollary 3.1, a (1− α)-th confidence interval for fn(λ) can then be constructed as

f̂n(λ)± (n−1Bn)
1/2κ1/2f̂n(λ)Φ

−1(1− α/2)

if λ/π /∈ Z; and

f̂n(λ)± (n−1Bn)
1/2(2κ)1/2f̂n(λ)Φ

−1(1− α/2)

if λ/π ∈ Z, where Φ(·) denotes the cumulative distribution function of the standard normal.

Therefore, similar to the traditional spectral density plot, one can construct its tail counter-

part using the tail spectral density estimator and the constructed confidence intervals can

assist the practitioner in understanding the associated estimation uncertainty. We would

like to emphasize that, without the confidence interval to gauge the statistical uncertainty,

it can be very difficult to conduct any meaningful assessment of the tail spectral density,

as it remains unknown or at least ambiguous if an observed pattern is indeed systematic or

simply due to estimation errors. It can be seen from our data applications in Sections 4.3

and 4.4 that the tail spectral density plot with uncertainty quantification can be useful in

revealing dependence information that otherwise cannot be discovered by the traditional

spectral analysis, and we expect it to become a routine statistical tool for practitioners to

examine dependence in the tail for time series data.

4.2 A Simulation Study

We shall here conduct a simulation study to illustrate the developed results and examine the

finite-sample performance of confidence intervals constructed using the developed central

limit theorem. For this, we follow Zhang (2022) and consider the moving-maximum process

Xi = max(ϵi, ϵi−1/2), i = 1, . . . , n, (6)
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where (ϵi) is a sequence of independent Fréchet random variables with distribution function

pr(ϵi ≤ z) = exp(−z−γ) for some γ > 0. Let n ∈ {1000, 2000} and γ ∈ {1, 2, 3}, we use

the developed central limit theorem to construct confidence intervals for the tail spectral

density of (6) at frequencies λ ∈ {0, 0.25π, 0.5π}. By Theorem 3.2 and Corollary 3.1, the

asymptotic variance is estimated as 2n−1Bnκ{f̂n(λ)}2 for λ = 0 and n−1Bnκ{f̂n(λ)}2 for

λ ∈ {0.25π, 0.5π}. We consider Bn ∈ {15, 30} and chose the tail threshold xn as the

90% and 95% quantiles. Throughout our numerical experiments, the trapezoidal kernel

K(u) = max[min{2(1 − |u|), 1}, 0] is used, which belongs to the family of flat-top kernels

and possesses certain favorable properties; see for example the discussion in Politis and

Romano (1995), Politis (2011), and references therein. The results are summarized in

Tables 1 and 2, from which we can see that the empirical coverage probabilities are mostly

reasonably close to their nominal levels as long as the sample size is reasonably large. Note

that a sample size of n = 200 is in general a challenging case for tail inference, for which

we can also observe a certain degree of size distortion in our numerical results. However,

as the sample increases, the size distortion generally gets smaller and the results also seem

to become more robust to the choice of Bn. Additional simulation results concerning other

settings can be found in the supplementary material. We shall in the following consider

two data applications to further illustrate the developed results and make a comparison

with the traditional spectral density analysis.

4.3 Application to A Temperature Data

We in this section consider an application to a temperature data that contains the anomaly

series of monthly averages of daily high temperatures in the United States from 03/1840

to 05/2016. The data and its detailed description are available through Berkeley Earth at
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γ = 1 γ = 2 γ = 3

n λ/π 90% 95% 90% 95% 90% 95%

xn chosen as the 90% quantile

200 0 0.861(0.346) 0.892(0.412) 0.838(0.290) 0.867(0.345) 0.825(0.252) 0.864(0.301)

0.25 0.900(0.238) 0.935(0.284) 0.883(0.213) 0.907(0.254) 0.873(0.191) 0.905(0.228)

0.50 0.882(0.167) 0.916(0.198) 0.896(0.165) 0.920(0.196) 0.895(0.167) 0.924(0.199)

500 0 0.888(0.231) 0.924(0.275) 0.884(0.194) 0.912(0.231) 0.880(0.174) 0.920(0.208)

0.25 0.915(0.154) 0.950(0.184) 0.910(0.133) 0.939(0.159) 0.908(0.121) 0.942(0.144)

0.50 0.907(0.103) 0.940(0.123) 0.892(0.106) 0.932(0.126) 0.900(0.105) 0.932(0.125)

1000 0 0.893(0.169) 0.937(0.202) 0.901(0.140) 0.933(0.167) 0.888(0.124) 0.921(0.148)

0.25 0.909(0.108) 0.949(0.129) 0.924(0.094) 0.951(0.112) 0.914(0.085) 0.948(0.101)

0.50 0.908(0.075) 0.950(0.089) 0.906(0.074) 0.957(0.088) 0.920(0.075) 0.957(0.089)

2000 0 0.913(0.120) 0.949(0.143) 0.919(0.101) 0.957(0.120) 0.887(0.089) 0.937(0.106)

0.25 0.910(0.076) 0.947(0.091) 0.909(0.067) 0.952(0.079) 0.920(0.060) 0.959(0.072)

0.50 0.900(0.052) 0.945(0.062) 0.917(0.052) 0.952(0.063) 0.909(0.053) 0.952(0.063)

xn chosen as the 95% quantile

200 0 0.881(0.342) 0.910(0.408) 0.862(0.296) 0.894(0.353) 0.877(0.249) 0.906(0.297)

0.25 0.905(0.243) 0.932(0.290) 0.877(0.207) 0.913(0.247) 0.883(0.189) 0.910(0.225)

0.50 0.908(0.166) 0.921(0.198) 0.900(0.164) 0.927(0.196) 0.901(0.168) 0.927(0.200)

500 0 0.914(0.232) 0.947(0.276) 0.890(0.195) 0.936(0.233) 0.881(0.172) 0.920(0.205)

0.25 0.921(0.154) 0.943(0.183) 0.884(0.134) 0.921(0.159) 0.894(0.121) 0.932(0.144)

0.50 0.911(0.104) 0.941(0.124) 0.896(0.105) 0.930(0.125) 0.922(0.105) 0.950(0.125)

1000 0 0.888(0.171) 0.942(0.204) 0.893(0.142) 0.940(0.170) 0.889(0.126) 0.928(0.150)

0.25 0.892(0.108) 0.938(0.128) 0.896(0.094) 0.944(0.112) 0.894(0.085) 0.932(0.101)

0.50 0.902(0.074) 0.945(0.088) 0.897(0.074) 0.947(0.088) 0.891(0.074) 0.946(0.088)

2000 0 0.898(0.122) 0.938(0.145) 0.903(0.102) 0.955(0.121) 0.882(0.889) 0.937(0.106)

0.25 0.902(0.076) 0.949(0.091) 0.896(0.067) 0.953(0.079) 0.915(0.060) 0.955(0.072)

0.50 0.900(0.052) 0.946(0.062) 0.910(0.052) 0.959(0.062) 0.928(0.052) 0.960(0.062)

Table 1: Empirical coverage probabilities (with average lengths in parentheses) of confidence

intervals at 90% and 95% nominal levels constructed using the developed central limit theorem

for n ∈ {200, 500, 1000, 2000}, γ ∈ {1, 2, 3}, and Bn = 15 when the trapezoidal kernel is used.
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γ = 1 γ = 2 γ = 3

n λ/π 90% 95% 90% 95% 90% 95%

xn chosen as the 90% quantile

200 0 0.802(0.421) 0.836(0.502) 0.798(0.365) 0.824(0.435) 0.791(0.312) 0.823(0.371)

0.25 0.861(0.340) 0.901(0.405) 0.847(0.289) 0.881(0.345) 0.866(0.272) 0.895(0.324)

0.50 0.869(0.235) 0.889(0.280) 0.860(0.232) 0.886(0.277) 0.856(0.234) 0.892(0.279)

500 0 0.879(0.318) 0.904(0.379) 0.858(0.266) 0.888(0.317) 0.849(0.237) 0.879(0.282)

0.25 0.878(0.215) 0.916(0.257) 0.880(0.186) 0.912(0.222) 0.886(0.169) 0.919(0.202)

0.50 0.890(0.149) 0.925(0.178) 0.877(0.149) 0.910(0.178) 0.884(0.148) 0.908(0.176)

1000 0 0.878(0.233) 0.917(0.277) 0.895(0.195) 0.923(0.233) 0.884(0.173) 0.923(0.207)

0.25 0.905(0.152) 0.937(0.181) 0.913(0.136) 0.943(0.162) 0.914(0.121) 0.952(0.144)

0.50 0.896(0.105) 0.939(0.125) 0.905(0.105) 0.936(0.125) 0.894(0.105) 0.935(0.125)

2000 0 0.909(0.168) 0.944(0.201) 0.881(0.142) 0.931(0.169) 0.887(0.124) 0.925(0.147)

0.25 0.903(0.107) 0.949(0.128) 0.907(0.095) 0.943(0.113) 0.907(0.085) 0.951(0.102)

0.50 0.902(0.073) 0.956(0.087) 0.912(0.074) 0.954(0.089) 0.906(0.074) 0.940(0.088)

xn chosen as the 95% quantile

200 0 0.808(0.427) 0.839(0.508) 0.816(0.363) 0.846(0.432) 0.803(0.313) 0.827(0.373)

0.25 0.881(0.342) 0.902(0.408) 0.870(0.295) 0.889(0.351) 0.874(0.267) 0.896(0.319)

0.50 0.871(0.238) 0.895(0.284) 0.885(0.236) 0.913(0.281) 0.867(0.234) 0.889(0.279)

500 0 0.855(0.311) 0.894(0.370) 0.860(0.271) 0.891(0.323) 0.854(0.227) 0.882(0.271)

0.25 0.893(0.216) 0.917(0.258) 0.886(0.190) 0.916(0.227) 0.891(0.173) 0.917(0.206)

0.50 0.896(0.150) 0.926(0.179) 0.886(0.148) 0.918(0.176) 0.883(0.148) 0.914(0.177)

1000 0 0.882(0.230) 0.924(0.274) 0.888(0.193) 0.925(0.230) 0.863(0.172) 0.900(0.204)

0.25 0.913(0.154) 0.935(0.183) 0.899(0.133) 0.937(0.158) 0.881(0.121) 0.930(0.144)

0.50 0.899(0.105) 0.945(0.125) 0.908(0.105) 0.949(0.126) 0.891(0.106) 0.932(0.127)

2000 0 0.896(0.169) 0.936(0.201) 0.875(0.142) 0.919(0.170) 0.892(0.125) 0.931(0.149)

0.25 0.905(0.109) 0.948(0.129) 0.895(0.095) 0.945(0.113) 0.886(0.086) 0.933(0.102)

0.50 0.893(0.074) 0.943(0.088) 0.902(0.074) 0.939(0.089) 0.907(0.075) 0.952(0.089)

Table 2: Empirical coverage probabilities (with average lengths in parentheses) of confidence

intervals at 90% and 95% nominal levels constructed using the developed central limit theorem

for n ∈ {200, 500, 1000, 2000}, γ ∈ {1, 2, 3}, and Bn = 30 when the trapezoidal kernel is used.
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http://berkeleyearth.lbl.gov/regions/united-states. A time series plot is provided

in Figure 1, and we shall here provide a tail spectral analysis to study the tail dependence

among temperatures from the hottest months. For this, we set the tail threshold as the 95%

quantile, and we first apply the high quantile trend analysis procedure of Zhang (2021a)

which identified a linear trend. We then apply the developed results to perform a tail

spectral analysis on the residuals to study the underlying tail dependence, and make a

comparison with the traditional spectral analysis. We use the trapezoidal kernel K(u) =

max[min{2(1 − |u|), 1}, 0] from Politis (2011) and the rule of thumb bandwidth choice

Bn = ⌊n1/3⌋ = 12 of Zhang and Wu (2011) for both the tail and traditional spectral

analyses so that a comparison can be made. Figure 2 provides the tail spectral density

plot (left) and the traditional spectral density plot (right), from which we can see that

the tail spectral density function seems to be quite different from the traditional spectral

density function indicating that the dependence structure in the tail can be very different

from that in the non-tail regions. In addition, there seems to be a peak around 0.5 for the

tail spectral density function in the left panel of Figure 2, which relates to a period of 12

months or a yearly cycle. Such a peak does not exist in the traditional spectral density

function as plotted in the right panel of Figure 2. This is mainly because the data is an

anomaly series, where seasonal patterns have already been removed according to certain

climate science calibrations. However, our analysis indicates that, although existing climate

science calibrations are able to remove seasonal patterns in the mean, they may not be able

to remove patterns in high quantiles at the same time as the seasonal pattern may not be

homogeneous across different quantiles. This is in line with the finding of Zhang (2021a),

which discovered that the temperature of the hottest days may require a more complicated

model than that for modeling the average temperature; see also Eastoe and Tawn (2009)
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Figure 1: Monthly average anomalies of daily high temperatures in the United States from

03/1840 to 05/2016.
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Figure 2: Tail spectral density plot (left) and traditional spectral density plot (right) for the

temperature data. In both plots, the two dashed curves correspond to the 95% confidence intervals

based on the central limit theorem of (tail) spectral density estimators.

for a discussion on an ozone data.

4.4 Application to A Financial Data

We in this section further illustrate the developed results by considering an application to

a financial data that contains the daily adjusted closing price of JPMorgan Chase & Co.
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(JPM) from 03/17/1980 to 10/15/2021. The data is available through Yahoo! Finance, and

a time series plot is provided in Figure 3. We shall here provide a tail spectral analysis on the

lower tail part of the log return series to study the tail dependence among big price drops.

The analysis on the upper tail part can be found in the supplementary material. To focus on

the lower tail, we set the tail threshold as the 99% quantile of the negative log return series,

and use the same kernel and bandwidth choice as in Section 4.3 so that a comparison can

be made with the traditional spectral analysis. Figure 4 provides the tail spectral density

plot (left) and the traditional spectral density plot (right), from which we can see that

the tail spectral density function seems to deviate from a constant more significantly than

the traditional spectral density function indicating a higher degree of dependence in the

tail. The peak near frequency zero can be related to a positive tail dependence, meaning

that big price drops are more often associated with further big price drops. This does

not seem to be shared by the traditional spectral density function, indicating that the

dependence structure in the tail can be different from that in the mean. In addition, there

seems to exist another peak around 0.45 for the tail spectral density function, which can be

related to a period of 14 days in tail dependence. In contrast, for the traditional spectral

density function, it can be difficult to identify any significant peaks around 0.5 given the

confidence interval widths. Even if one chooses to ignore the confidence interval or the

associated uncertainty, the first peak of the traditional spectral density estimate seems to

be around 0.6 indicating at least a shorter period (if it ever exists). Therefore, the tail

spectral density estimation and its uncertainty quantification as considered in the current

article seems to provide the practitioners with a useful tool for analyzing tail dependence

in the spectral domain, and can lead to discoveries that otherwise cannot be made by the

traditional spectral density estimate.
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Figure 3: Daily adjusted closing price of JPMorgan Chase & Co. (JPM) from 03/17/1980 to

10/15/2021.
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Figure 4: Tail spectral density plot (left) and traditional spectral density plot (right) for the

negative log return series of the JPM stock. In both plots, the two dashed curves correspond

to the 95% confidence intervals based on the central limit theorem of (tail) spectral density

estimators.

5 Conclusion

In the current article, we provide a foundational step toward spectral analysis of tail depen-

dent time series by developing an asymptotic theory on tail spectral density estimators. It

is remarkable that developing a central limit theorem for the conventional spectral density
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estimator is already a highly nontrivial problem as commented by Liu and Wu (2010),

and achieving it in the current tail setting can be even more challenging due to the fol-

lowing major difficulties. First, the study of tail phenomena requires a double asymptotic

scheme, which, similar to the role of a growing dimension in high-dimensional problems,

is typically quite demanding to deal with. Second, unlike the traditional autocorrelations

that share a universal convergence rate, sample tail autocorrelations at different lags can

exhibit a two-phase asymptotic behavior with different convergence rates (Zhang, 2022),

which can pose a challenge to understand the asymptotic behavior of their infinite sums.

Third, the study of tail spectral density estimators requires a limit theorem on quadratic

forms of tail statistics, which, to the best of our knowledge, still remains largely unknown

in the literature and stands as an open problem. We in the current article provide a novel

asymptotic theory on quadratic forms of tail statistics in the double asymptotic setting,

and use it to develop the desired consistency and central limit theorem for tail spectral

density estimators. Apart from the new central limit theorem result that has not been well

addressed in the literature, our consistency result itself has already improved over existing

ones by allowing more extremal tails and possibly a weaker notion of tail dependence; see

the discussions in Section 2.2. Our results provide a foundation for tail spectral analysis

of tail dependent time series, and shed new lights on the difficult problem of handling

quadratic forms of tail statistics in the double asymptotic scheme. It can be seen from

the data applications in Sections 4.3 and 4.4 that the tail spectral density and its uncer-

tainty quantification as considered in the current article is expected to become a useful and

powerful tool for practitioners to study tail dependence in the time series setting, and can

potentially lead to new scientific discoveries in any discipline that may involve the analysis

of tail dependent time series data.
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We shall here conclude the article by posing an open question regarding the tail spectral

density estimator. In particular, it was shown in the current article that the tail spectral

density estimator enjoys a central limit theorem under the geometric tail adversarial stabil-

ity condition. When the tail adversarial stability measure follows only an algebraic decay

as in Theorem 3.1, the tail spectral density estimator is still shown to be consistent but

it remains unknown if the central limit theorem will continue to hold in this case. This is

intuitively due to the nontrivial asymptotic behavior of sample tail autocorrelations that

appear in the construction of tail spectral density estimators. Unlike traditional sample

autocorrelations that share a universal convergence rate, sample tail autocorrelations can

exhibit a two-phase asymptotic behavior (Zhang, 2022) with dichotomous convergence rates

in the current double asymptotic setting. In the algebraic tail adversarial stability case, it

becomes nontrivial to quantify the tradeoff between the two phases, and the tradeoff can

become ambiguous when a growing number of lags are involved at the same time as in the

current problem. We conjecture that the asymptotic distribution of tail spectral density

estimators in this case may possibly belong to the more general normal mixture family,

and shall here pose it as an open question for future investigation.
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Supplementary Material

Supplementary material contains proofs for our main results in Section 3, where some of

the results can be useful on their own. It also contains additional simulation results and a

supplementary analysis on the financial data studied in Section 4.4.
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