
Statistica Sinica

TIME-VARYING CORRELATION FOR

NONCENTERED NONSTATIONARY TIME

SERIES: SIMULTANEOUS INFERENCE

AND VISUALIZATION

Ting Zhang∗ and Yu Shao†

University of Georgia∗ and Boston University†

Abstract: We consider simultaneous inference of the time-varying correlation as a

function of time between two nonstationary time series when their trend functions

are unknown. Unlike the stationary setting where the effect of precentering using

the sample mean is trivially negligible, in the nonstationary setting it is difficult

to quantify the impact from precentering using nonparametric trend function es-

timators. This is mainly due to the trend estimators being time-varying across

different time points, which makes it difficult to quantify their cumulative inter-

action with the error process in the time series setting. We propose to fix this

unpleasant issue by using a centering scheme that, instead of aligning with the

time point at which the data is observed, aligns with the time point at which

the local correlation estimation is performed. We show that this new center-

ing scheme can lead to simultaneous confidence bands with a solid theoretical

guarantee for the time-varying correlation between two nonstationary time series



when their trend functions are unknown. Numerical examples including a real

data analysis are provided to illustrate the proposed method.
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1. Introduction

The correlation coefficient has been a prominent metric to quantify the

dependence between two variables. In the time series setting, one may be

interested in the correlation between two observed time series to understand

their relationship or co-movement over time, or the correlation between

a time series and its lagged version to study the underlying dependence

structure. The latter is often referred to as the autocorrelation, and a

nice survey can be found in Wu and Xiao (2012). In addition, one can be

interested in the correlation between a time series and the lagged version

of another time series to understand the lagged effect of one on the other,

which is often referred to as the Granger causality in time series analysis.

The problem of estimating the correlation and autocorrelation has been

extensively studied for stationary time series; see for example Anderson

(1971), Hannan (1976), Hall and Heyde (1980), Priestley (1981), Brockwell

and Davis (1991), Phillips and Solo (1992), Hosking (1996), Wu and Min



(2005), Wu (2009), Wu and Xiao (2012), and references therein. In the

aforementioned results, the underlying process is mostly assumed to be

stationary and as a result the correlation coefficient is a constant that does

not change over time, which largely facilitated its estimation and statistical

inference.

In nonstationary time series applications, however, it is generally ex-

pected that certain aspects of the observed data can evolve over time, which

makes it more desirable to consider time-varying correlations as a function

of time. For this, Mallat et al. (1998) considered covariance estimation

through a local cosine basis approximation for locally stationary processes.

Dahlhaus (2012) considered a data tapering method for covariance estima-

tion of locally stationary processes using kernel functions. Fu et al. (2014)

considered estimating the time-varying covariance between two locally sta-

tionary biological processes, and provided an asymptotic analysis on the

resulting estimation bias and variance. Choi and Shin (2021) considered

nonparametric estimation of the time-varying correlation coefficient and

established its asymptotic normality when the joint error process is strong

mixing and stationary except for a scale difference. The aforementioned

results mostly only concern the estimation or pointwise inference of the

time-varying covariance at a given time point, while the difficult task of de-



veloping a simultaneous inference procedure for the time-varying correlation

as a function of time has been much less explored.

In an important work, Zhao (2015) provided a solution to this problem

by constructing simultaneous confidence bands for local autocorrelations of

locally stationary time series. Their theory and methods, however, rely on

the assumption that the mean trend function of the underlying process is

known to be uniformly zero, and it was argued in Zhao (2015) that the

daily or weekly data on financial returns are generally perceived to satisfy

this assumption. For data with potentially nonzero trend functions, Zhao

(2015) proposed to first precenter the data using parametric or nonparamet-

ric trend estimators and then apply their methods to the residual process.

The impact from such a precentering procedure on the subsequent correla-

tion inference procedure, however, is nontrivial to quantify and was left as

an open problem; see the discussion in Section 3.2 of Zhao (2015). In Section

2, we present a detailed investigation about why the effect of precentering

was trivially negligible in the stationary case but suddenly becomes difficult

to understand in the nonstationary case. It is suggested that this is largely

due to the time-varying nature of the trend function that makes it difficult

to quantify its cumulative interaction with the error process. We then in

Section 3 propose a fix, called the locally homogenized centering method,



that is able to alleviate the issue from traditional centering schemes and

lead to simultaneous inference of time-varying correlations with a solid the-

oretical guarantee when the underlying trend functions are unknown. In

addition to the allowance of unknown trend functions, we also consider the

more general setting when one is interested in the time-varying correlation

between two time series that can depend on each other in a nontrivial way.

In particular, when one time series is taken as the lagged version of the

other, then it reduces to the autocorrelation setting as considered in Zhao

(2015). Additionally, Zhao (2015) requires a geometric moment contraction

condition under which the dependence decays geometrically quickly, while

the current results allow processes with an algebraic decay; see the discus-

sion in Section 3.3. Numerical examples including Monte Carlo simulations

and a real data analysis are provided in Section 4 to illustrate the proposed

method.

2. Precentering: A Natural Approach and Its Issue

We shall first review the stationary case for which the effect of precentering

using the sample mean is trivially negligible. To illustrate, suppose we

observe stationary time series Xi and Yi for i = 1, . . . , n, then assuming

that the stationary means µx = E(X1) and µy = E(Y1) are known we can



estimate the covariance by the oracle

γ̃n =
1

n

n∑
i=1

(Xi − µx)(Yi − µy).

When the true means µx and µy are unknown, we can plug in the sample

means X̄n = n−1
∑n

i=1 Xi and Ȳn = n−1
∑n

i=1 Yi, which then leads to the

covariance estimator

γ̂n =
1

n

n∑
i=1

(Xi − X̄n)(Yi − Ȳn).

The effect of using the sample mean to replace the true mean can then be

quantified by the difference

γ̂n − γ̃n = (X̄n − µx)(Ȳn − µy)−
1

n

n∑
i=1

(Xi − µx)(Ȳn − µy)−
1

n

n∑
i=1

(X̄n − µx)(Yi − µy)

= −(X̄n − µx)(Ȳn − µy),

Therefore, if the sample means X̄n−µx = Op(n
−1/2) and Ȳn−µy = Op(n

−1/2)

have the usual parametric rate (Zhang, 2018), then the difference

γ̂n − γ̃n = Op(n
−1),

which is typically of a negligible order for covariance inference.

In the nonstationary case, however, parameters such as the mean or

covariance do not necessarily stay as constants and are often treated as

unknown functions of time. For this, a prominent approach is to consider



the scaling device under which

E(Xi) = µx(i/n), E(Yi) = µy(i/n), cov(Xi, Yi) = γ(i/n)

for some functions µx(t), µy(t), and γ(t), t ∈ [0, 1]. Note that the scaling

device itself does not impose any additional assumption on the underly-

ing dynamics, but it can work well with certain smoothness conditions to

provide asymptotic justification for nonparametric smoothing estimators;

see for example Robinson (1989, 1991), Dahlhaus (1996, 1997), Cai (2007),

Zhou and Wu (2010), Zhang and Wu (2011), and Zhang (2013) for more

discussions. Assuming that the true mean functions µx(·) and µy(·) are

known, then we can follow Zhao (2015) and estimate the covariance as a

function of time by

γ̃n(t) =
1

nbn

n∑
i=1

{Xi − µx(i/n)}{Yi − µy(i/n)}K
(
i/n− t

bn

)
,

where K(·) is a kernel function and bn > 0 is a bandwidth. When the true

mean functions µx(·) and µy(·) are unknown, a natural approach is to plug in

their nonparametric estimators µ̂x(·) and µ̂y(·), such as the Nadaraya (1964)

and Watson (1964) estimator, the Priestley and Chao (1972) estimator, or

the local linear estimator of Fan and Gijbels (1996), which then leads to

the nonparametric covariance estimator

γ̆n(t) =
1

nbn

n∑
i=1

{Xi − µ̂x(i/n)}{Yi − µ̂y(i/n)}K
(
i/n− t

bn

)
. (2.1)



This is the same as using precentered data Xi− µ̂x(i/n) and Yi− µ̂y(i/n) to

compute the covariance as if the trend function is known to be uniformly

zero; see for example Zhao (2015). In this case, the effect of using non-

parametric estimators to replace the true means is then quantified by the

difference

γ̆n(t)− γ̃n(t) =
1

nbn

n∑
i=1

{µ̂x(i/n)− µx(i/n)}{µ̂y(i/n)− µy(i/n)}K
(
i/n− t

bn

)
− 1

nbn

n∑
i=1

{Xi − µx(i/n)}{µ̂y(i/n)− µy(i/n)}K
(
i/n− t

bn

)
− 1

nbn

n∑
i=1

{µ̂x(i/n)− µx(i/n)}{Yi − µy(i/n)}K
(
i/n− t

bn

)
,

(2.2)

which unfortunately cannot be easily bounded by a negligible stochastic

order as in the stationary case. The main reason here is that, due to the

time-varying nature, the random weight µ̂y(i/n)−µy(i/n) for Xi−µx(i/n)

now depends on the index i and thus cannot be taken outside of the summa-

tion as in the stationary case. Since µ̂y(i/n)−µy(i/n) and Xi−µx(i/n) can

depend on each other in a nontrivial way, it then becomes unclear if the lo-

cal averages (nbn)
−1

∑n
i=1{Xi−µx(i/n)}{µ̂y(i/n)−µy(i/n)}K{(i/n−t)/bn}

will continue to obey the square root rate, let along their uniform rate over

different time points which is however essential for simultaneous inference.

This makes it difficult to obtain a sharp probabilistic bound on the two



cross terms in (2.2), and it remains unknown if they can be treated as neg-

ligible in the theoretical analysis. Therefore, although being natural, the

approach of replacing the unknown mean function by its nonparametric es-

timator in covariance inference problems is rather ad hoc whose impact can

be theoretically difficult to understand; see also the discussion in Section 3.2

of Zhao (2015). We shall in the following propose a fix to this unpleasant

issue, which then enables us to construct simultaneous confidence bands for

the time-varying correlation between nonstationary time series with a solid

theoretical guarantee when their underlying trend functions are unknown.

3. Locally Homogenized Centering: A Fix

3.1 Methodology: The Fundamental Idea

Our investigation above indicates that the major issue of the natural cen-

tering scheme as in (2.1) for covariance inference problems is the local in-

homogeneity of µ̂x(i/n) and µ̂y(i/n) that are different for different indices

i = 1, . . . , n. To alleviate the issue, we propose a locally homogenized cen-

tering (LHC) method which, instead of using the inhomogeneous centering

µ̂x(i/n) and µ̂y(i/n) that align with the time point at which the data is

observed, uses their locally homogenous counterparts µ̂x(t) and µ̂y(t) that

align with the time point at which the local correlation estimation is per-



3.1 Methodology: The Fundamental Idea

formed to achieve the local centering. This leads to the locally homogenized

centered nonparametric covariance estimator

γ̌n(t) =
1

nbn

n∑
i=1

{Xi − µ̂x(t)}{Yi − µ̂y(t)}K
(
i/n− t

bn

)
.

In this case, the centering scheme will be different for different time points

at which the local covariance is calculated. The effect of this new centering

scheme can now be quantified by the difference

γ̌n(t)− γ̃n(t) =
1

nbn

n∑
i=1

{µ̂x(t)− µx(i/n)}{µ̂y(t)− µy(i/n)}K
(
i/n− t

bn

)
− 1

nbn

n∑
i=1

{Xi − µx(i/n)}{µ̂y(t)− µy(i/n)}K
(
i/n− t

bn

)
− 1

nbn

n∑
i=1

{µ̂x(t)− µx(i/n)}{Yi − µy(i/n)}K
(
i/n− t

bn

)
.

(3.3)

Compared with the decomposition for the natural centering scheme as in

(2.2), the key difference here is that the random weight µ̂y(t)− µy(i/n) for

Xi − µx(i/n) can now be decomposed into a locally homogeneous random

part µ̂y(t)−µy(t) that can be taken outside of the summation and a deter-

ministic part µy(t)−µy(i/n) whose cumulative interaction with Xi−µx(i/n)

can be handled by a square root stochastic bound.



3.2 Methodology: Derivative Adjustment

3.2 Methodology: Derivative Adjustment

The fundamental idea of using locally homogenized mean functions to per-

form the local centering as proposed in Section 3.1 enables us to quantify

the effect of centering when the underlying trend functions are unknown,

which can then lead to new inference protocols for the time-varying co-

variance or correlation of nonstationary time series. The merit, though

being crucial and necessary for covariance inference with unknown trend

functions, comes at the price of an additional bias

1

nbn

n∑
i=1

{µx(t)− µx(i/n)}{µy(t)− µy(i/n)}K
(
i/n− t

bn

)
,

which is of a comparable order to the bias of the mean-oracle estimator

E{γ̃n(t)} − γ(t). We shall here further propose a derivative adjustment

method to get rid of this additional bias and make the resulting covariance

estimator asymptotically equivalent to its mean-oracle counterpart so that

the effect of centering becomes theoretically negligible. Let µ̂′
x(t) and µ̂′

y(t)

be derivative estimators which can be obtained by, for example, the popular

local linear method of Fan and Gijbels (1996), we propose to consider the

covariance estimator with derivative adjustment

γ̂n(t) =
1

nbn

n∑
i=1

{Xi−µ̂x(t)−µ̂′
x(t)(i/n−t)}{Yi−µ̂y(t)−µ̂′

y(t)(i/n−t)}K
(
i/n− t

bn

)
.



3.2 Methodology: Derivative Adjustment

Compared to how we handle the terms in (3.3), we in this case decompose

the random weight µ̂y(t)+ µ̂′
y(t)(i/n− t)−µy(i/n) into three terms: µ̂y(t)−

µy(t), µ̂
′
y(t)(i/n− t)− µ′

y(t)(i/n− t), and µy(t) + µ′
y(t)(i/n− t)− µy(i/n).

The first term is random but does not depend on the index i, and thus can

be taken out of the summation for a better bound. The last term depends

on the index i but is deterministic, and thus can be handled by a bound on

linear combinations of nonstationary processes. The key difference here is

the second term µ̂′
y(t)(i/n− t)−µ′

y(t)(i/n− t), which is random and at the

same time involves the summation index i. However, it is still different from

the natural centering scheme in (2.2) in the sense that we can write it as the

product {µ̂′
y(t)−µ′

y(t)}× (i/n− t), where the first part can be taken out of

the summation and the second part can be combined with Xi−µx(i/n) into

a linear combination of nonstationary process. This enables us to derive an

explicit bound on the difference γ̂n(t)− γ̃n(t), and makes it asymptotically

equivalent to the mean-oracle covariance estimator.

We name it the locally homogenized centering with derivative adjust-

ment (LHC-DA), and we can apply it to the time-varying correlation

ρ̂n(t) =
γ̂n(t)

σ̂x,n(t)σ̂y,n(t)
,



3.3 Asymptotic Theory

where

σ̂2
x,n(t) =

1

nbn

n∑
i=1

{Xi − µ̂x(t)− µ̂′
x(t)(i/n− t)}2K

(
i/n− t

bn

)
,

σ̂2
y,n(t) =

1

nbn

n∑
i=1

{Yi − µ̂y(t)− µ̂′
y(t)(i/n− t)}2K

(
i/n− t

bn

)
.

Note that a time-varying correlation analysis may be more suitable than

the covariance to understand the time-varying relationship between two

nonstationary time series, as the change in covariance can be simply due to

changes in the variance while the correlation can remain as a constant. We

shall in the following provide an asymptotic theory for the proposed LHC-

DA covariance and correlation estimators, based on which simultaneous

confidence bands can be constructed as a visualization tool to analyze the

time-varying covariance or correlation for a general class of nonstationary

processes.

3.3 Asymptotic Theory

Suppose we observe the time series Xi and Yi, i = 1, . . . , n, according to

Xi = G(i/n,F i), Yi = H(i/n,F i), F i = (. . . , ϵi−1, ϵi), (3.4)

where (ϵi) is a sequence of independent and identically distributed innova-

tions, and G and H are measurable functions that can depend on the time



3.3 Asymptotic Theory

points ti,n = i/n, i = 1, . . . , n. The framework (3.4) covers a wide range

of nonstationary processes and naturally extends many existing station-

ary time series models to their nonstationary counterparts; see Draghicescu

et al. (2009), Zhou and Wu (2010), Zhang and Wu (2011), Degras et al.

(2012), and Zhang (2015) for additional discussions. Other contributions

on nonstationary time series can be found in Dahlhaus (1997), Cheng and

Tong (1998), Nason et al. (2000), Giurcanu and Spokoiny (2004), Om-

bao et al. (2005), Zhang (2016a), and references therein. Let (ϵ⋆i ) be a

sequence of random vectors that share the same distribution as, but inde-

pendent of, the sequence (ϵi), then we can define the coupled shift pro-

cess F i,{0} = (. . . , ϵ−1, ϵ
⋆
0, ϵ1, . . . , ϵi). For a random vector Z, we write

∥Z∥q = {E(|Z|q)}1/q, q > 0, where |Z| is the Euclidean norm, and denote

∥Z∥ = ∥Z∥2. For a generic process L(t,F i), t ∈ [0, 1], i ∈ Z, assuming that

supt∈[0,1] ∥L(t,F0)∥q for some q > 0, we define the dependence measure

θi,q(L) = sup
t∈[0,1]

∥L(t,F i)− L(t,F i,{0})∥q,

which measures the dependence of L(t,F i) on the single innovation ϵ0 over

t ∈ [0, 1]. Then the quantity

Θm,q(L) =
∞∑

i=m

θi,q(L)



3.3 Asymptotic Theory

measures the cumulative influence of ϵ0 on future observations with a gap

at least m, and we can interpret Θ0,q(L) < ∞ as a short-range dependence

condition (Zhang, 2015). The process L(t,F i), t ∈ [0, 1], i ∈ Z, is said to

be stochastic Lipschitz continuous or L ∈ SLCq if there exists a constant

cq < ∞ such that

∥L(t1,F i)− L(t2,F i)∥q ≤ cq|t1 − t2|

holds for all t1, t2 ∈ [0, 1]. Let

ϖL(t) =
∑
k∈Z

cov{L(t,F0), L(t,Fk)},

which is a well defined and finite quantity when Θ0,q(L) < ∞ for some

q ≥ 2. Write

µx(t) = E{G(t,F i)}, µy(t) = E{H(t,F i)},

σ2
x(t) = var{G(t,F i)}, σ2

y(t) = var{H(t,F i)},

γ(t) = cov{G(t,F i), H(t,F i)}, ρ(t) = cor{G(t,F i), H(t,F i)},

and we denote

U(t,F i) = [G(t,F i)− E{G(t,F i)}][H(t,F i)− E{H(t,F i)}]

and

V (t,F i) =
U(t,F i)

σx(t)σy(t)
−γ(t)

{
[G(t,F i)− E{G(t,F i)}]2

2σ3
x(t)σy(t)

+
[H(t,F i)− E{H(t,F i)}]2

2σx(t)σ3
y(t)

}
.



3.3 Asymptotic Theory

Throughout this section, we assume that the kernel function K ∈ K, the

collection of symmetric functions in C1[−1, 1] with
∫ 1

−1
K(v)dv = 1, where

Ck denotes the collection of functions with k continuous derivatives. Let

Tn = [bn, 1 − bn], κ2 =
∫ 1

−1
v2K(v)dv and ϕ2 =

∫ 1

−1
K(v)2dv, the following

theorem provides the central limit theorem for the LHC-DA covariance esti-

mator and the asymptotic distribution of the associated maximal deviation

which can be useful for constructing simultaneous confidence bands for the

underlying covariance function.

Theorem 1. Assume that µx, µy, γ ∈ C3, θk,4(G) + θk,4(H) + θk,4(U) =

O(k−2), G,H,U ∈ SLC2, and that ϖU(t) is Lipschitz continuous and bounded

away from zero on [0, 1]. If n−2/5b−1
n (log n)3 + nb7n log n → 0, then

(nbn)
1/2{γ̂n(t)− γ(t)− 2−1κ2b

2
nγ

′′(t)} →d N{0, ϖU(t)ϕ2},

and

pr

{
(nbn)

1/2

ϕ
1/2
2

sup
t∈Tn

∣∣∣∣ γ̂n(t)− γ(t)− 2−1κ2b
2
nγ

′′(t)

ϖU(t)1/2

∣∣∣∣− (−2 log bn)
1/2 − CK

(−2 log bn)1/2

≤ z

(−2 log bn)1/2

}
→ exp{−2 exp(−z)},

where CK = 2−1 log{(4π2ϕ2)
−1

∫ 1

−1
|K ′(v)|2dv}.

Theorem 1 concerns the covariance case, and we shall in Theorem 2 pro-

vide results on the LHC-DA correlation estimator. Compared with the co-

variance case, the proof in the correlation case is more technically involved.



The major difference stems from the fact that, for correlation estimators,

the asymptotic behavior is affected by not only the covariance part but

also the variance part, and neither is negligible comparing to the other; see

also Zhao (2015) which considers the autocorrelation inference for processes

with a known zero mean and geometrically decaying dependence. We shall

here deal with the more general time-varying correlation for processes with

unknown trend functions and only algebraically decaying dependence.

Theorem 2. Assume that µx, µy, γ, ρ ∈ C3, θk,8(G) + θk,8(H) = O(k−2),

G,H ∈ SLC4, and that ϖV (t), σx(t) and σy(t) are Lipschitz continuous and

bounded away from zero on [0, 1]. If n−2/5b−1
n (log n)3 + nb7n log n → 0, then

(nbn)
1/2[ρ̂n(t)− ρ(t)− 2−1κ2b

2
n{σx(t)σy(t)}−1γ′′(t)] →d N{0, ϖV (t)ϕ2},

and

pr

[
(nbn)

1/2

ϕ
1/2
2

sup
t∈Tn

∣∣∣∣ ρ̂n(t)− ρ(t)− 2−1κ2b
2
n{σx(t)σy(t)}−1γ′′(t)

ϖV (t)1/2

∣∣∣∣− (−2 log bn)
1/2

− CK

(−2 log bn)1/2
≤ z

(−2 log bn)1/2

]
→ exp{−2 exp(−z)}.

4. Numerical Experiments

4.1 Implementation: Algorithm and Visualization

We shall here provide a detailed algorithm that implements the developed

results in Section 3 to construct simultaneous confidence bands for the



4.1 Implementation: Algorithm and Visualization

time-varying correlation between Xi and Yi, i = 1, . . . , n, when their trend

functions are unknown. If one of them is taken as the lagged version of the

other, then the algorithm will provide simultaneous confidence bands for the

corresponding autocorrelation. To alleviate the issue of slow convergence

to the extreme value distribution, we also consider the use of a simulation-

assisted procedure to help improve the finite-sample performance. The

detailed implementation is as follows.

(i) Select the bandwidth bn using the dependence-adjusted generalized

cross-validation method of Zhang and Wu (2012) by viewing (2.1) as

a kernel regression on time.

(ii) Compute the trend estimators µ̂x(t), µ̂y(t) and their derivative es-

timators µ̂′
x(t), µ̂′

y(t) by using the local linear method of Fan and

Gijbels (1996) with K(·) being the Epanechnikov kernel.

(iii) Use the locally homogenized centering with derivative adjustment

(LHC-DA) method proposed in Section 3 to compute the time-varying

covariance and correlation γ̂n(t) and ρ̂n(t) for each time point, and a

higher-order kernel K⋆(v) = 23/2K(21/2v)−K(v) is used for bias cor-

rection.

(iv) Obtain an estimate ϖ̂V (t) of the asymptotic variance using the band-
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ing estimator of Zhang and Wu (2012); see also Zhang (2016b) for a

uniform consistency result on such a variance estimator.

(v) Generate independent standard normal random variables X⋄
i and Y ⋄

i ,

i = 1, . . . , n, and compute the associated ρ̂⋄n(t) and ϖ̂⋄
V (t) to calculate

T ⋄
n =

(nbn)
1/2(−2 log bn)

1/2

ϕ
1/2
2

sup
t∈Tn

∣∣∣∣ ρ̂⋄n(t)

ϖ⋄
V (t)

1/2

∣∣∣∣ .
(vi) Repeat (v) for a large number of times to obtain the (1−α)-th quantile

of T ⋄
n , denoted by q̂⋄1−α.

(vii) Construct the (1− α)-th simultaneous confidence band of ρ(t) by

ρ̂n(t)± q̂⋄1−α

ϕ
1/2
2 ϖ̂V (t)

1/2

(nbn)1/2(−2 log bn)1/2
,

which can be visualized by plotting against time while using a solid

curve for ρ̂n(t) and dashed curves for the upper and lower simultane-

ous confidence bands.

The above algorithm can be implemented for the LHC-DA covariance

as well if needed, and the resulting tool can be useful for practitioners

to examine the time-varying covariance or correlation when the observed

data contains an unknown trend in the mean. Similar to the bootstrap,

the simulation-assisted procedure aims at approximating the distribution

of the test statistic by that of a generated data. The difference, however, is
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that bootstrapped data are often generated by resampling from the original

data, while the simulation-assisted procedure generates data as independent

normal random variables. As a result, the correlation ρ⋄(t) between the gen-

erated data (X⋄
i ) and (Y ⋄

i ) holds conveniently at zero under this simulation-

assisted mechanism, which is used in step (v) of the above algorithm. By

Theorems 1 and 2, the simulation-assisted procedure may also continue to

work when the simulated data are independently generated using marginal

distributions other than the normal; see also additional simulation results

provided in the supplementary materials, which suggest robustness to the

distributional choice as long as conditions in Theorems 1 and 2 are satis-

fied. The use of the normal distribution to generate the simulated data,

however, is due to the connection with the Gaussian approximation (Wu,

2007; Berkes et al., 2014), which states that the partial sum distribution can

be well approximated by that of normal random variables. Such a Gaussian

approximation can often help lead to improvements in the finite-sample per-

formance; see for example the discussions in Zhang and Wu (2011), Zhang

and Wu (2012) and Zhang (2016b).



4.2 A Monte Carlo Simulation Study

4.2 A Monte Carlo Simulation Study

We shall here conduct a simulation study to examine the finite-sample per-

formance of the proposed simulation-assisted LHC-DA method for simulta-

neous inference of time-varying correlations. For this, let (ϵi,1) be a sequence

of independent standard normal random variables and (ϵi,2) be a sequence

of independent Rademacher random variables that is also independent of

(ϵi,1). Let

Xi = µx(i/n) + 3 sin(1.5πi/n){|ϵi,1| − (2/π)1/2}+ 2 cos(1.5πi/n)ϵi,2 +
∞∑
j=1

j−2ϵi−j,2;

Yi = µy(i/n) + {1.5− (i/n)2}ϵi,1 + (i/n)ϵi,2 +
∞∑
j=1

2−jϵi−j,1,

where µx(t) = 2t2 + 2t and µy(t) = 2{sin(1.5πt) + t}, and we consider

making simultaneous inference on the time-varying covariance and corre-

lation between the two time series; see the supplementary materials for

expressions of these quantities. Zhao (2015) considered the situation of

autocorrelations when the underlying trend function is known to be zero,

and we shall here also make a comparison by considering inference of the

first-order autocorrelation of (Xi). Note that the method of Zhao (2015)

requires the underlying process to be precentered by the true mean func-

tion, and we shall here follow their heuristic suggestion and precenter the

data by using the local linear trend estimate; see the discussion in Section
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3.2 of Zhao (2015) about the theoretical gap of such a heuristic approach.

For the proposed method, precentering is not necessary, as the mean trend

will be automatically nullified by the LHC-DA method with a solid the-

oretic guarantee. Let n ∈ {500, 1000} and bn ∈ {0.1, 0.15, 0.2, 0.25, 0.3},

the results are summarized in Tables 1 and 2 for the correlation case and

autocorrelation case respectively. Unlike the proposed method that can

be applied to a general covariance or correlation between two time series

including when one is the lagged value of the other, the method of Zhao

(2015), denoted by Z15, was specifically developed for the autocorrelation

and is therefore only reported in the second portion of Table 2 when it is ap-

plicable. We also report results for the LHC method without the derivative

adjustment as a comparison. It can be seen from Tables 1 and 2 that the

proposed LHC-DA method performs reasonably well as the empirical cov-

erage probabilities are mostly close to their nominal levels when a suitable

bandwidth is used. It generally outperforms the LHC method, indicating

that the derivative adjustment scheme as described in Section 3.2 not only

addresses the unpleasant bias issue from a theoretical point of view but

also leads to improvements in the finite-sample performance. As discussed

in Section 3.2, the LHC-DA method makes the procedure asymptotically

equivalent to that using the mean-oracle covariance estimators, while this
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benefit is generally not shared by the LHC method due to the existence of

an additional bias from trend estimation. For the method of Zhao (2015), it

only applies to the autocorrelation part in Table 2, and it does not seem to

be very robust with respect to the bandwidth choice when compared with

the proposed LHC-DA method. Therefore, in addition to being applicable

to a broader setting and successfully addressing the gap about handling

noncentered data that was left as an open problem in Zhao (2015), the pro-

posed LHC-DA method also seems to be able to lead to empirical tools that

have improved or more robust finite-sample performance. Additional sim-

ulation results that supplement the current simulation study can be found

in the supplementary materials; these consider different data generations

(e.g., time-varying autoregressions with potentially heavier tails) and pro-

duce qualitatively similar findings as long as conditions of Theorems 1 and

2 are satisfied.

4.3 Application to Financial Data

Correlation analysis between international stock markets has been an im-

portant topic in economics and finance, which has been studied by Lin

et al. (1994), Longin and Solnik (1995), Karolyi and Stulz (1996), Chesnay

and Jondeau (2001), Engle (2002), Forbes and Rigobon (2002), Evans and
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Table 1: Empirical coverage probabilities of simultaneous confidence bands for

the time-varying covariance and time-varying correlation between (Xi) and (Yi)

as functions of time.

Z15 LHC LHC-DA

n bn 90% 95% 99% 90% 95% 99% 90% 95% 99%

covariance

500 0.1 - - - 0.879 0.938 0.979 0.888 0.940 0.978

0.15 - - - 0.879 0.941 0.991 0.899 0.952 0.993

0.2 - - - 0.898 0.952 0.990 0.911 0.957 0.993

0.25 - - - 0.906 0.953 0.990 0.914 0.955 0.992

0.3 - - - 0.909 0.957 0.994 0.916 0.961 0.993

1000 0.1 - - - 0.884 0.946 0.988 0.901 0.945 0.990

0.15 - - - 0.892 0.943 0.988 0.904 0.951 0.990

0.2 - - - 0.899 0.941 0.989 0.905 0.951 0.991

0.25 - - - 0.909 0.953 0.988 0.926 0.962 0.992

0.3 - - - 0.914 0.960 0.992 0.921 0.966 0.993

correlation

500 0.1 - - - 0.874 0.940 0.987 0.875 0.943 0.985

0.15 - - - 0.839 0.917 0.986 0.852 0.918 0.983

0.2 - - - 0.856 0.916 0.982 0.875 0.925 0.986

0.25 - - - 0.866 0.924 0.985 0.887 0.939 0.989

0.3 - - - 0.881 0.934 0.987 0.900 0.937 0.989

1000 0.1 - - - 0.851 0.911 0.982 0.852 0.913 0.984

0.15 - - - 0.866 0.922 0.979 0.871 0.930 0.978

0.2 - - - 0.867 0.923 0.974 0.881 0.933 0.976

0.25 - - - 0.878 0.933 0.979 0.897 0.942 0.980

0.3 - - - 0.883 0.942 0.991 0.895 0.950 0.990
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Table 2: Empirical coverage probabilities of simultaneous confidence bands for

the first-order autocovariance and autocorrelation functions of (Xi).

Z15 LHC LHC-DA

n bn 90% 95% 99% 90% 95% 99% 90% 95% 99%

autocovariance

500 0.1 - - - 0.867 0.925 0.960 0.861 0.924 0.957

0.15 - - - 0.868 0.923 0.979 0.876 0.926 0.978

0.2 - - - 0.885 0.933 0.984 0.891 0.937 0.981

0.25 - - - 0.892 0.935 0.991 0.898 0.948 0.991

0.3 - - - 0.897 0.941 0.994 0.903 0.948 0.996

1000 0.1 - - - 0.912 0.959 0.993 0.919 0.964 0.993

0.15 - - - 0.901 0.955 0.992 0.907 0.957 0.993

0.2 - - - 0.903 0.942 0.994 0.904 0.952 0.996

0.25 - - - 0.905 0.953 0.991 0.921 0.957 0.996

0.3 - - - 0.901 0.953 0.988 0.930 0.962 0.994

autocorrelation

500 0.1 0.891 0.937 0.978 0.911 0.965 0.998 0.908 0.965 0.997

0.15 0.971 0.988 0.999 0.878 0.936 0.993 0.881 0.939 0.991

0.2 1.000 1.000 1.000 0.874 0.939 0.985 0.876 0.946 0.987

0.25 1.000 1.000 1.000 0.860 0.922 0.987 0.879 0.936 0.987

0.3 1.000 1.000 1.000 0.839 0.901 0.979 0.872 0.929 0.988

1000 0.1 0.905 0.944 0.983 0.871 0.931 0.991 0.873 0.930 0.989

0.15 0.996 1.000 1.000 0.895 0.938 0.989 0.900 0.948 0.992

0.2 1.000 1.000 1.000 0.878 0.948 0.990 0.889 0.952 0.994

0.25 1.000 1.000 1.000 0.861 0.930 0.981 0.887 0.948 0.985

0.3 1.000 1.000 1.000 0.853 0.922 0.977 0.879 0.941 0.981

McMillan (2009), and Madaleno and Pinho (2012), among many others.

The assumption of a constant correlation has been challenged and proven

to be unsuitable in many studies; see for example Longin and Solnik (1995),
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Chesnay and Jondeau (2001), Engle (2002), Choi and Shin (2021), and ref-

erences therein. Here we focus on the U.S. and Germany stock markets, and

consider the weekly return data of the U.S. S&P 500 index and the Ger-

many DAX index from 01/01/1995 to 12/28/2020, with a total of n = 1357

data points. The data is available from Yahoo! Finance, and a time series

plot is given in Figure 1. We shall here allow the underlying correlation to

change over time and apply the developed results to obtain a nonparametric

estimate and its associated simultaneous confidence band for uncertainty

quantification. Since two time series are involved in this application, the

method of Zhao (2015) is not directly applicable. By the simulation-assisted

algorithm in Section 4.1, the time-varying correlation and its 95% simul-

taneous confidence band are visualized in Figure 2, from which we can see

that the correlation between the U.S. and Germany stock markets is in-

deed changing over time. In particular, a long-term increasing trend can

be observed in the correlation between the two markets indicating that the

economy of the two countries tend to depend more and more on each other

under globalization in general; see also the discussion in Longin and Solnik

(1995). Such an increasing trend peaked around 2008–2009, at which time

both countries start to suffer from the financial crisis and may rely more on

their own monetary policies to recover, which can help explain the decrease

https://finance.yahoo.com/
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Figure 1: Time series plots for weekly returns of the U.S. S&P 500 index and

the Germany DAX index from 01/01/1995 to 12/28/2020.

in correlation during that period. Once recovered, the correlation between

the two markets seems to experience another increasing trend similar to

what happened before the financial crisis.

4.4 Application to COVID Data

The recent pandemic of COVID-19 has become a major concern for policy

makers all over the globe and has been involving researchers from various

disciplines. Cross-country studies have shown that the virus spread rate

and pattern can be affected by local cultures, government responses, and

economic developments, among other factors; see for example Balmford
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Figure 2: The time-varying correlation (solid curve) and its associated 95%

simultaneous confidence band (dashed curve) between weekly returns of the U.S.

S&P 500 index and the Germany DAX index from 01/01/1995 to 12/28/2020.

et al. (2020), Middelburg and Rosendaal (2020), Rypdal and Rypdal (2020),

Zarikas et al. (2020), Vampa (2021), and references therein. Mahmoudi

et al. (2021) and Nobi et al. (2021) examined the correlation between case

numbers from different countries, and it was found by Sulyok et al. (2021)

that the correlation can be different at different times in the pandemic. We

shall here model the underlying correlation as a nonparametric function

of time to be more flexible and less vulnerable to parametric models, and

apply the developed results to obtain a simultaneous confidence band to

help examine the pattern. For this, we consider the log daily new cases per
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million people in Germany and U.K. from 06/01/2020 to 12/31/2021, with a

total of n = 572 data points. The data is available from Ritchie et al. (2020),

and a time series plot is provided in Figure 3. The time-varying correlation

and its 95% simultaneous confidence band are visualized in Figure 4, from

which we can see that Germany and U.K. began with a relatively stable

correlation, which then decreased to a negative value in Spring 2021. During

this period, the number of daily new COVID-19 cases seems to exhibit an

increase in Germany but continued to decrease in the U.K., which may be

related to the different degrees of vaccine intervention in the two countries

around that time. In particular, during the first few months of 2021, U.K.

experienced a much more rapid increase in its vaccination rates compared to

Germany, which potentially helped U.K. and differentiated it from Germany

when the delta variant hit both countries around that time. On the other

hand, there seems to exist another decrease in correlation around the end of

2021 from Figure 4. This time, however, the number of daily new COVID-

19 cases seems to exhibit a decrease in Germany but continued to rise in

the U.K., which is the opposite of what happened in Spring 2021. This

may be related to the different lockdown policies of the two governments.

In particular, Germany cancelled their Christmas markets and imposed

local lockdowns, while around the same time the highly contagious omicron
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Figure 3: Time series plots of log daily new COVID-19 cases per million people

in Germany and U.K. from 06/01/2020 to 12/31/2021.

variant hit both countries.

5. Conclusion

We consider simultaneous inference of the nonparametric correlation curve

between two nonstationary time series. Compared with the result of Zhao

(2015) which was specifically developed for autocorrelations of a univari-

ate time series, our results can be applied to the broader setting when one

time series is not necessarily the lagged version of the other. In addition,

we address the open problem left in Zhao (2015) about how to handle the

nuisance unknown trend function when making inference about the correla-
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Figure 4: The time-varying correlation (solid curve) and its associated 95%

simultaneous confidence band (dashed curve) between log daily new cases per

million people in Germany and U.K. from 06/01/2020 to 12/31/2021.

tion curve. It can be seen from the discussion in Section 2 that, unlike the

stationary setting, the straightforward precentering approach in the current

time-varying setting can result in estimators whose theoretical properties

are very difficult to understand. To address this, we propose a locally ho-

mogenized centering scheme which, instead of aligning with the time point

at which the data is observed, aligns with the time point at which the local

correlation estimation is performed. Although this newly proposed center-

ing scheme makes it possible to quantify the effect of trend estimation in

correlation inference, it comes at the cost of an additional bias term mak-



ing the effect of trend estimation not asymptotically negligible. We then

propose a further derivative adjustment scheme, which is able to make the

bias term asymptotically negligible so that the resulting correlation estima-

tors can be asymptotically equivalent to the mean-oracle ones obtained as

if we know the true mean functions. It can be seen from our simulation

results in Section 4.2 that, in addition to being applicable to a broader set-

ting and successfully addressing the gap about handling noncentered data

that was left as an open problem in Zhao (2015), the proposed LHC-DA

method also seems to deliver an improved or more robust finite-sample per-

formance. We expect that it will become a useful tool for practitioners to

examine correlations that are not constant but change over time in their

applications.
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Technical proofs of our main results in Section 3 and additional simulation
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