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Abstract: We consider simultaneous inference of the time-varying correlation as a
function of time between two nonstationary time series when their trend functions
are unknown. Unlike the stationary setting where the effect of precentering using
the sample mean is trivially negligible, in the nonstationary setting it is difficult
to quantify the impact from precentering using nonparametric trend function es-
timators. This is mainly due to the trend estimators being time-varying across
different time points, which makes it difficult to quantify their cumulative inter-
action with the error process in the time series setting. We propose to fix this
unpleasant issue by using a centering scheme that, instead of aligning with the
time point at which the data is observed, aligns with the time point at which
the local correlation estimation is performed. We show that this new center-
ing scheme can lead to simultaneous confidence bands with a solid theoretical

guarantee for the time-varying correlation between two nonstationary time series



when their trend functions are unknown. Numerical examples including a real

data analysis are provided to illustrate the proposed method.
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1. Introduction

The correlation coefficient has been a prominent metric to quantify the
dependence between two variables. In the time series setting, one may be
interested in the correlation between two observed time series to understand
their relationship or co-movement over time, or the correlation between
a time series and its lagged version to study the underlying dependence
structure. The latter is often referred to as the autocorrelation, and a
nice survey can be found in Wu and Xiao (2012). In addition, one can be
interested in the correlation between a time series and the lagged version
of another time series to understand the lagged effect of one on the other,
which is often referred to as the Granger causality in time series analysis.
The problem of estimating the correlation and autocorrelation has been
extensively studied for stationary time series; see for example Anderson
(1971), Hannan (1976), Hall and Heyde (1980), Priestley (1981), Brockwell

and Davis (1991), Phillips and Solo (1992), Hosking (1996), Wu and Min



(2005), Wu (2009), Wu and Xiao (2012), and references therein. In the
aforementioned results, the underlying process is mostly assumed to be
stationary and as a result the correlation coefficient is a constant that does
not change over time, which largely facilitated its estimation and statistical
inference.

In nonstationary time series applications, however, it is generally ex-
pected that certain aspects of the observed data can evolve over time, which
makes it more desirable to consider time-varying correlations as a function
of time. For this, Mallat et al. (1998) considered covariance estimation
through a local cosine basis approximation for locally stationary processes.
Dahlhaus (2012) considered a data tapering method for covariance estima-
tion of locally stationary processes using kernel functions. Fu et al. (2014)
considered estimating the time-varying covariance between two locally sta-
tionary biological processes, and provided an asymptotic analysis on the
resulting estimation bias and variance. Choi and Shin (2021) considered
nonparametric estimation of the time-varying correlation coefficient and
established its asymptotic normality when the joint error process is strong
mixing and stationary except for a scale difference. The aforementioned
results mostly only concern the estimation or pointwise inference of the

time-varying covariance at a given time point, while the difficult task of de-



veloping a simultaneous inference procedure for the time-varying correlation
as a function of time has been much less explored.

In an important work, Zhao (2015) provided a solution to this problem
by constructing simultaneous confidence bands for local autocorrelations of
locally stationary time series. Their theory and methods, however, rely on
the assumption that the mean trend function of the underlying process is
known to be uniformly zero, and it was argued in Zhao (2015) that the
daily or weekly data on financial returns are generally perceived to satisfy
this assumption. For data with potentially nonzero trend functions, Zhao
(2015) proposed to first precenter the data using parametric or nonparamet-
ric trend estimators and then apply their methods to the residual process.
The impact from such a precentering procedure on the subsequent correla-
tion inference procedure, however, is nontrivial to quantify and was left as
an open problem; see the discussion in Section 3.2 of Zhao (2015). In Section
2, we present a detailed investigation about why the effect of precentering
was trivially negligible in the stationary case but suddenly becomes difficult
to understand in the nonstationary case. It is suggested that this is largely
due to the time-varying nature of the trend function that makes it difficult
to quantify its cumulative interaction with the error process. We then in

Section 3 propose a fix, called the locally homogenized centering method,



that is able to alleviate the issue from traditional centering schemes and
lead to simultaneous inference of time-varying correlations with a solid the-
oretical guarantee when the underlying trend functions are unknown. In
addition to the allowance of unknown trend functions, we also consider the
more general setting when one is interested in the time-varying correlation
between two time series that can depend on each other in a nontrivial way.
In particular, when one time series is taken as the lagged version of the
other, then it reduces to the autocorrelation setting as considered in Zhao
(2015). Additionally, Zhao (2015) requires a geometric moment contraction
condition under which the dependence decays geometrically quickly, while
the current results allow processes with an algebraic decay; see the discus-
sion in Section 3.3. Numerical examples including Monte Carlo simulations
and a real data analysis are provided in Section 4 to illustrate the proposed

method.

2. Precentering: A Natural Approach and Its Issue

We shall first review the stationary case for which the effect of precentering
using the sample mean is trivially negligible. To illustrate, suppose we
observe stationary time series X; and Y; for ¢ = 1,...,n, then assuming

that the stationary means p, = F(X;) and p, = E(Y]) are known we can



estimate the covariance by the oracle
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When the true means p, and p, are unknown, we can plug in the sample

means X, =n 1Y " X; and Y,, = n~1 Y | Vi, which then leads to the

covariance estimator

The effect of using the sample mean to replace the true mean can then be

quantified by the difference
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Therefore, if the sample means X,,— 1, = O,(n~?) and Y,,—p, = O,(n~*/?)

have the usual parametric rate (Zhang, 2018), then the difference

Y = Yn = Op(n_l)v

which is typically of a negligible order for covariance inference.
In the nonstationary case, however, parameters such as the mean or
covariance do not necessarily stay as constants and are often treated as

unknown functions of time. For this, a prominent approach is to consider



the scaling device under which
E(Xi) = pa(i/n),  E(Y) = py(i/n), cov(X;,Yi) =7(i/n)

for some functions p,(t), p,(t), and v(t), t € [0,1]. Note that the scaling
device itself does not impose any additional assumption on the underly-
ing dynamics, but it can work well with certain smoothness conditions to
provide asymptotic justification for nonparametric smoothing estimators;
see for example Robinson (1989, 1991), Dahlhaus (1996, 1997), Cai (2007),
Zhou and Wu (2010), Zhang and Wu (2011), and Zhang (2013) for more
discussions. Assuming that the true mean functions p,(-) and p,(-) are
known, then we can follow Zhao (2015) and estimate the covariance as a

function of time by

0lt) = o DX~ /Y = il ()
i n
where K (-) is a kernel function and b,, > 0 is a bandwidth. When the true
mean functions y,(-) and p,(-) are unknown, a natural approach is to plug in
their nonparametric estimators fi,(-) and fi,(+), such as the Nadaraya (1964)
and Watson (1964) estimator, the Priestley and Chao (1972) estimator, or
the local linear estimator of Fan and Gijbels (1996), which then leads to

the nonparametric covariance estimator

0lt) = o 06— /Y = it/ (1) @)



This is the same as using precentered data X; — fi,(i/n) and Y; — f1,(i/n) to
compute the covariance as if the trend function is known to be uniformly
zero; see for example Zhao (2015). In this case, the effect of using non-
parametric estimators to replace the true means is then quantified by the

difference
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(2.2)

which unfortunately cannot be easily bounded by a negligible stochastic
order as in the stationary case. The main reason here is that, due to the
time-varying nature, the random weight /1, (i/n) — u,(i/n) for X; — p,(i/n)
now depends on the index ¢ and thus cannot be taken outside of the summa-
tion as in the stationary case. Since fi,(i/n) — p,(i/n) and X; — pu,(i/n) can
depend on each other in a nontrivial way, it then becomes unclear if the lo-
cal averages (b))~ S0 {X: = 12 (5/m) iy (5/m) =y (i m) (i /=) b}
will continue to obey the square root rate, let along their uniform rate over
different time points which is however essential for simultaneous inference.

This makes it difficult to obtain a sharp probabilistic bound on the two



cross terms in (2.2), and it remains unknown if they can be treated as neg-
ligible in the theoretical analysis. Therefore, although being natural, the
approach of replacing the unknown mean function by its nonparametric es-
timator in covariance inference problems is rather ad hoc whose impact can
be theoretically difficult to understand; see also the discussion in Section 3.2
of Zhao (2015). We shall in the following propose a fix to this unpleasant
issue, which then enables us to construct simultaneous confidence bands for
the time-varying correlation between nonstationary time series with a solid

theoretical guarantee when their underlying trend functions are unknown.

3. Locally Homogenized Centering: A Fix

3.1 Methodology: The Fundamental Idea

Our investigation above indicates that the major issue of the natural cen-
tering scheme as in (2.1) for covariance inference problems is the local in-
homogeneity of fi,(i/n) and fi,(i/n) that are different for different indices
1 =1,...,n. To alleviate the issue, we propose a locally homogenized cen-
tering (LHC) method which, instead of using the inhomogeneous centering
fiz(i/n) and fi,(i/n) that align with the time point at which the data is
observed, uses their locally homogenous counterparts ji,(t) and fi,(t) that

align with the time point at which the local correlation estimation is per-



3.1 Methodology: The Fundamental Idea

formed to achieve the local centering. This leads to the locally homogenized

centered nonparametric covariance estimator

i/n—t
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In this case, the centering scheme will be different for different time points
at which the local covariance is calculated. The effect of this new centering

scheme can now be quantified by the difference
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Compared with the decomposition for the natural centering scheme as in
(2.2), the key difference here is that the random weight fi,(t) — p,(i/n) for
X; — pz(i/n) can now be decomposed into a locally homogeneous random
part fi,(t) — u,(t) that can be taken outside of the summation and a deter-
ministic part fu,(t) —p, (/1) whose cumulative interaction with X; —p,(i/n)

can be handled by a square root stochastic bound.



3.2 Methodology: Derivative Adjustment

3.2 Methodology: Derivative Adjustment

The fundamental idea of using locally homogenized mean functions to per-
form the local centering as proposed in Section 3.1 enables us to quantify
the effect of centering when the underlying trend functions are unknown,
which can then lead to new inference protocols for the time-varying co-
variance or correlation of nonstationary time series. The merit, though
being crucial and necessary for covariance inference with unknown trend

functions, comes at the price of an additional bias

”Lb" ;{MN) — i/} (8) = iy (i/n)} K (i/rlin_ t) :

which is of a comparable order to the bias of the mean-oracle estimator
E{3.(t)} — ~v(t). We shall here further propose a derivative adjustment
method to get rid of this additional bias and make the resulting covariance
estimator asymptotically equivalent to its mean-oracle counterpart so that
the effect of centering becomes theoretically negligible. Let fi;,(t) and /i (t)
be derivative estimators which can be obtained by, for example, the popular
local linear method of Fan and Gijbels (1996), we propose to consider the

covariance estimator with derivative adjustment

n(t) = nibn Z{Xi—ﬂx(t)—ﬂ;(t)(i/n—t)}{ﬁ—ﬂy(t)—/l;(t)(i/n—t)}K (

ifn—t

bn

)



3.2 Methodology: Derivative Adjustment

Compared to how we handle the terms in (3.3), we in this case decompose
the random weight fi,, () + fi;, (t)(i/n —t) — p, (i/n) into three terms: fi, (t) —
py(t), fi, () (0/n =) — o, (£)(i/n — 1), and g, (t) + g, (£)(i/n — 1) — py (i/n).
The first term is random but does not depend on the index i, and thus can
be taken out of the summation for a better bound. The last term depends
on the index 7 but is deterministic, and thus can be handled by a bound on
linear combinations of nonstationary processes. The key difference here is
the second term i (t)(i/n —t) — p, (t)(i/n —t), which is random and at the
same time involves the summation index 7. However, it is still different from
the natural centering scheme in (2.2) in the sense that we can write it as the
product {/i, () — s, (t)} x (i/n —t), where the first part can be taken out of
the summation and the second part can be combined with X; — i, (i/n) into
a linear combination of nonstationary process. This enables us to derive an
explicit bound on the difference 4, (t) — 4, (t), and makes it asymptotically
equivalent to the mean-oracle covariance estimator.

We name it the locally homogenized centering with derivative adjust-

ment (LHC-DA), and we can apply it to the time-varying correlation

(0
e 0®)

ﬁn(t) =



3.3 Asymptotic Theory

where

ifn—t
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Note that a time-varying correlation analysis may be more suitable than
the covariance to understand the time-varying relationship between two
nonstationary time series, as the change in covariance can be simply due to
changes in the variance while the correlation can remain as a constant. We
shall in the following provide an asymptotic theory for the proposed LHC-
DA covariance and correlation estimators, based on which simultaneous
confidence bands can be constructed as a visualization tool to analyze the
time-varying covariance or correlation for a general class of nonstationary

processes.

3.3 Asymptotic Theory

Suppose we observe the time series X; and Y;, i = 1,...,n, according to
Xl:G(Z/n,.'FZ), Y;:H(Z/n,}'z), Fi:(...,ﬁifl,ﬁi), (34)

where (€;) is a sequence of independent and identically distributed innova-

tions, and G and H are measurable functions that can depend on the time



3.3 Asymptotic Theory

points ¢;, = i/n, i = 1,...,n. The framework (3.4) covers a wide range
of nonstationary processes and naturally extends many existing station-
ary time series models to their nonstationary counterparts; see Draghicescu
et al. (2009), Zhou and Wu (2010), Zhang and Wu (2011), Degras et al.
(2012), and Zhang (2015) for additional discussions. Other contributions
on nonstationary time series can be found in Dahlhaus (1997), Cheng and
Tong (1998), Nason et al. (2000), Giurcanu and Spokoiny (2004), Om-
bao et al. (2005), Zhang (2016a), and references therein. Let (€f) be a
sequence of random vectors that share the same distribution as, but inde-
pendent of, the sequence (€;), then we can define the coupled shift pro-
cess Fiqoy = (--.,€_1,€5,€1,...,€). For a random vector Z, we write
1Z|l, = {E(|Z|9)}"9, ¢ > 0, where |Z]| is the Euclidean norm, and denote
|Z|| = || Z||2. For a generic process L(t, F;), t € [0,1], i € Z, assuming that

supepo) | L(t, Fo)ll4 for some g > 0, we define the dependence measure

0iq(L) = sup |[L(t, Fi) = L(t, Figoy)llo;

te(0,1]
which measures the dependence of L(t, F;) on the single innovation €, over

t € [0,1]. Then the quantity

OnalL) =Y bra(L)



3.3 Asymptotic Theory

measures the cumulative influence of €y on future observations with a gap
at least m, and we can interpret O ,(L) < 0o as a short-range dependence
condition (Zhang, 2015). The process L(t,F;), t € [0,1], i € Z, is said to
be stochastic Lipschitz continuous or L € SLC, if there exists a constant

cq < 00 such that
HL(tbFi) - L(t2>fi)”q < Cq’tl - t2‘
holds for all 1,5 € [0,1]. Let

@ (t) =Y cov{L(t, Fo), L(t, Fr)},

keZ

which is a well defined and finite quantity when ©¢,(L) < oo for some
q > 2. Write
pa(t) = E{G(t, Fi)},  py(t) = E{H(t, Fi)},
o:(t) = var{G(t, Fi)},  oy(t) = var{H(t, F)},
Y(t) = cov{G(t, Fi), H(t, Fi)},  p(t) = cor{G(t, Fi), H(t, Fi)},
and we denote

U(t, Fi) =[G, Fi) — E{G(t, F)M)HE, Fi) — E{H(L, Fi)}]

and

Vit Fi) = U, Fi _ (){[G(tﬂ)—E{G(t,ﬂ)}]Q [H(tvfi>_E{H(t7fi)}]2}

7. (D)7, (1) 203(1)0, () 20, (1)3 (1)



3.3 Asymptotic Theory

Throughout this section, we assume that the kernel function K € K, the
collection of symmetric functions in C'[—1,1] with f_ll K(v)dv = 1, where
C* denotes the collection of functions with k continuous derivatives. Let
T = [bn, 1 — by, ko = ffvaK(v)dv and ¢y = fj1 K (v)*dv, the following
theorem provides the central limit theorem for the LHC-DA covariance esti-
mator and the asymptotic distribution of the associated maximal deviation
which can be useful for constructing simultaneous confidence bands for the

underlying covariance function.

Theorem 1. Assume that i, piy,y € C3, Or4(G) + Ora(H) + 0,4(U) =
O(k™?), G, H,U € SLCs, and that wy (t) is Lipschitz continuous and bounded

away from zero on [0,1]. If n=2/5b-(logn)® 4+ nb’ logn — 0, then

(nbp) Y2 {An(t) — v(t) — 27 kb2 (1)} —a N{0, w0 () s},

and
(nby)"/? An(t) = (1) — 27 Rab2y" (1) . Ck
) 2 n — (=2logby) /2 — — K
pr{ ;/2 tSEUTS wU(t>1/2 ( Og ) (_210gbn>1/2
z
< W} — eXp{—2 exp(—z)},

where Cy = 27 log{ (4n2¢y) " [*, |K'(v)|*dv}.

Theorem 1 concerns the covariance case, and we shall in Theorem 2 pro-
vide results on the LHC-DA correlation estimator. Compared with the co-

variance case, the proof in the correlation case is more technically involved.



The major difference stems from the fact that, for correlation estimators,
the asymptotic behavior is affected by not only the covariance part but
also the variance part, and neither is negligible comparing to the other; see
also Zhao (2015) which considers the autocorrelation inference for processes
with a known zero mean and geometrically decaying dependence. We shall
here deal with the more general time-varying correlation for processes with

unknown trend functions and only algebraically decaying dependence.

Theorem 2. Assume that jiz, ji,,7,p € C*, 0ps(G) + Ors(H) = O(k™?),
G, H € SLCy, and that wy (t), 0,(t) and 0,(t) are Lipschitz continuous and

bounded away from zero on [0,1]. If n=2/°b7 (logn)® + nb? logn — 0, then

(nba) 2 [pu(t) — p(t) = 27 Ry {oa(t)o, (1)} 19" ()] —a N{O, v ()2},

and
(nb,)"? pu(t) — p(t) = 27 wob2 {0 (t)oy (1)} 19" (1) 1/2
non) 2 n — (—2log by,)"
pr[ Tz sup R (—2logby)

Ck

z
(—2logb,)1/? — (—210gbn)1/2} — exp{—2exp(—2)}

4. Numerical Experiments

4.1 Implementation: Algorithm and Visualization

We shall here provide a detailed algorithm that implements the developed

results in Section 3 to construct simultaneous confidence bands for the



4.1 TImplementation: Algorithm and Visualization

time-varying correlation between X; and Y;, i = 1,...,n, when their trend
functions are unknown. If one of them is taken as the lagged version of the
other, then the algorithm will provide simultaneous confidence bands for the
corresponding autocorrelation. To alleviate the issue of slow convergence
to the extreme value distribution, we also consider the use of a simulation-
assisted procedure to help improve the finite-sample performance. The

detailed implementation is as follows.

(i) Select the bandwidth b, using the dependence-adjusted generalized
cross-validation method of Zhang and Wu (2012) by viewing (2.1) as

a kernel regression on time.

(ii) Compute the trend estimators fi,(t), fi,(t) and their derivative es-
timators fi.,(t), fi,(t) by using the local linear method of Fan and

Gijbels (1996) with K (-) being the Epanechnikov kernel.

(iii) Use the locally homogenized centering with derivative adjustment
(LHC-DA) method proposed in Section 3 to compute the time-varying
covariance and correlation 4, (t) and p,(t) for each time point, and a
higher-order kernel K*(v) = 232K (2'/2v) — K(v) is used for bias cor-

rection.

(iv) Obtain an estimate wy (t) of the asymptotic variance using the band-



4.1 TImplementation: Algorithm and Visualization

(vii)

ing estimator of Zhang and Wu (2012); see also Zhang (2016b) for a

uniform consistency result on such a variance estimator.

Generate independent standard normal random variables X; and Y;°,
i=1,...,n, and compute the associated p?(t) and @3, (t) to calculate

(nbn)1/2 (_2 log bn>1/2

1/2
2

p(t)
@y (8)1/?

Ao

t€Tn
Repeat (v) for a large number of times to obtain the (1—a«)-th quantile
of T, denoted by ¢5_,,.

Construct the (1 — «)-th simultaneous confidence band of p(t) by

1/2 A
)+ o T
" 1= (b, )1/2(—21og by, )1/2’

which can be visualized by plotting against time while using a solid
curve for p,(t) and dashed curves for the upper and lower simultane-

ous confidence bands.

The above algorithm can be implemented for the LHC-DA covariance

as well if needed, and the resulting tool can be useful for practitioners

to examine the time-varying covariance or correlation when the observed

data contains an unknown trend in the mean. Similar to the bootstrap,

the simulation-assisted procedure aims at approximating the distribution

of the test statistic by that of a generated data. The difference, however, is



4.1 TImplementation: Algorithm and Visualization

that bootstrapped data are often generated by resampling from the original
data, while the simulation-assisted procedure generates data as independent
normal random variables. As a result, the correlation p°(t) between the gen-
erated data (X?) and (Y;°) holds conveniently at zero under this simulation-
assisted mechanism, which is used in step (v) of the above algorithm. By
Theorems 1 and 2, the simulation-assisted procedure may also continue to
work when the simulated data are independently generated using marginal
distributions other than the normal; see also additional simulation results
provided in the supplementary materials, which suggest robustness to the
distributional choice as long as conditions in Theorems 1 and 2 are satis-
fied. The use of the normal distribution to generate the simulated data,
however, is due to the connection with the Gaussian approximation (Wu,
2007; Berkes et al., 2014), which states that the partial sum distribution can
be well approximated by that of normal random variables. Such a Gaussian
approximation can often help lead to improvements in the finite-sample per-
formance; see for example the discussions in Zhang and Wu (2011), Zhang

and Wu (2012) and Zhang (2016b).



4.2 A Monte Carlo Simulation Study

4.2 A Monte Carlo Simulation Study

We shall here conduct a simulation study to examine the finite-sample per-
formance of the proposed simulation-assisted LHC-DA method for simulta-
neous inference of time-varying correlations. For this, let (¢;1) be a sequence
of independent standard normal random variables and (¢;2) be a sequence
of independent Rademacher random variables that is also independent of

(Q‘,l)- Let

X; = pe(i/n) + 3sin(1.57i/n){|e1| — (2/7)?} + 2 cos(1.5mi/n)e; s + Zj—%i_m;

j=1

Yi = py(i/n) + {15 — (i/n)}eun + (i/n)esa + 3 27ei 0,

j=1
where i, (t) = 2t* + 2t and p,(t) = 2{sin(1.57t) + ¢}, and we consider
making simultaneous inference on the time-varying covariance and corre-
lation between the two time series; see the supplementary materials for
expressions of these quantities. Zhao (2015) considered the situation of
autocorrelations when the underlying trend function is known to be zero,
and we shall here also make a comparison by considering inference of the
first-order autocorrelation of (X;). Note that the method of Zhao (2015)
requires the underlying process to be precentered by the true mean func-
tion, and we shall here follow their heuristic suggestion and precenter the

data by using the local linear trend estimate; see the discussion in Section



4.2 A Monte Carlo Simulation Study

3.2 of Zhao (2015) about the theoretical gap of such a heuristic approach.
For the proposed method, precentering is not necessary, as the mean trend
will be automatically nullified by the LHC-DA method with a solid the-
oretic guarantee. Let n € {500,1000} and b, € {0.1,0.15,0.2,0.25,0.3},
the results are summarized in Tables 1 and 2 for the correlation case and
autocorrelation case respectively. Unlike the proposed method that can
be applied to a general covariance or correlation between two time series
including when one is the lagged value of the other, the method of Zhao
(2015), denoted by Z15, was specifically developed for the autocorrelation
and is therefore only reported in the second portion of Table 2 when it is ap-
plicable. We also report results for the LHC method without the derivative
adjustment as a comparison. It can be seen from Tables 1 and 2 that the
proposed LHC-DA method performs reasonably well as the empirical cov-
erage probabilities are mostly close to their nominal levels when a suitable
bandwidth is used. It generally outperforms the LHC method, indicating
that the derivative adjustment scheme as described in Section 3.2 not only
addresses the unpleasant bias issue from a theoretical point of view but
also leads to improvements in the finite-sample performance. As discussed
in Section 3.2, the LHC-DA method makes the procedure asymptotically

equivalent to that using the mean-oracle covariance estimators, while this



4.3 Application to Financial Data

benefit is generally not shared by the LHC method due to the existence of
an additional bias from trend estimation. For the method of Zhao (2015), it
only applies to the autocorrelation part in Table 2, and it does not seem to
be very robust with respect to the bandwidth choice when compared with
the proposed LHC-DA method. Therefore, in addition to being applicable
to a broader setting and successfully addressing the gap about handling
noncentered data that was left as an open problem in Zhao (2015), the pro-
posed LHC-DA method also seems to be able to lead to empirical tools that
have improved or more robust finite-sample performance. Additional sim-
ulation results that supplement the current simulation study can be found
in the supplementary materials; these consider different data generations
(e.g., time-varying autoregressions with potentially heavier tails) and pro-
duce qualitatively similar findings as long as conditions of Theorems 1 and

2 are satisfied.

4.3 Application to Financial Data

Correlation analysis between international stock markets has been an im-
portant topic in economics and finance, which has been studied by Lin
et al. (1994), Longin and Solnik (1995), Karolyi and Stulz (1996), Chesnay

and Jondeau (2001), Engle (2002), Forbes and Rigobon (2002), Evans and



4.3 Application to Financial Data

Table 1: Empirical coverage probabilities of simultaneous confidence bands for
the time-varying covariance and time-varying correlation between (X;) and (Y;)

as functions of time.

715 LHC LHC-DA
n by 90% 95% 99% 90% 95%  99% 90%  95% 99%
covariance

500 0.1 - - - 0.879 0.938 0.979 0.888 0.940 0.978
0.15 - - - 0.879 0.941 0.991 0.899 0.952 0.993

0.2 - - - 0.898 0.952 0.990 0.911 0.957 0.993
0.25 - - - 0.906 0.953 0.990 0.914 0.955 0.992

0.3 - - - 0.909 0.957 0.994 0.916 0.961 0.993
1000 0.1 - - - 0.884 0.946 0.988 0.901 0.945 0.990
0.15 - - - 0.892 0.943 0.988 0.904 0.951 0.990

0.2 - - - 0.899 0.941 0.989 0.905 0.951 0.991
0.25 - - - 0.909 0.953 0.988 0.926 0.962 0.992

0.3 - - - 0.914 0.960 0.992 0.921 0.966 0.993

correlation

500 0.1 - - - 0.874 0.940 0.987 0.875 0.943 0.985
0.15 - - - 0.839 0.917 0.986 0.852 0.918 0.983

0.2 - - - 0.856 0.916 0.982 0.875 0.925 0.986
0.25 - - - 0.866 0.924 0.985 0.887 0.939 0.989

0.3 - - - 0.881 0.934 0.987 0.900 0.937 0.989
1000 0.1 - - - 0.851 0.911 0.982 0.852 0.913 0.984
0.15 - - - 0.866 0.922 0.979 0.871 0.930 0.978

0.2 - - - 0.867 0.923 0.974 0.881 0.933 0.976
0.25 - - - 0.878 0.933 0.979 0.897 0.942 0.980

0.3 - - - 0.883 0.942 0.991 0.895 0.950 0.990
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Table 2: Empirical coverage probabilities of simultaneous confidence bands for

the first-order autocovariance and autocorrelation functions of (X;).

715 LHC LHC-DA
n by 920% 95% 99% 920% 95%  99% 90%  95% 99%
autocovariance

500 0.1 - - - 0.867 0.925 0.960 0.861 0.924 0.957
0.15 - - - 0.868 0.923 0.979 0.876 0.926 0.978

0.2 - - - 0.885 0.933 0.984 0.891 0.937 0.981
0.25 - - - 0.892 0.935 0.991 0.898 0.948 0.991

0.3 - - - 0.897 0.941 0.994 0.903 0.948 0.996
1000 0.1 - - - 0.912 0.959 0.993 0.919 0.964 0.993
0.15 - - - 0.901 0.955 0.992 0.907 0.957 0.993

0.2 - - - 0.903 0.942 0.994 0.904 0.952 0.996
0.25 - - - 0.905 0.953 0.991 0.921 0.957 0.996

0.3 - - - 0.901 0.953 0.988 0.930 0.962 0.994

autocorrelation

500 0.1 0.891 0.937 0.978 0.911 0.965 0.998 0.908 0.965 0.997
0.15 0.971 0.988 0.999 0.878 0.936 0.993 0.881 0.939 0.991

0.2 1.000 1.000 1.000 0.874 0.939 0.985 0.876 0.946 0.987
0.25 1.000 1.000 1.000 0.860 0.922 0.987 0.879 0.936 0.987

0.3 1.000 1.000 1.000 0.839 0.901 0.979 0.872  0.929 0.988
1000 0.1 0.905 0.944 0.983 0.871 0.931 0.991 0.873 0.930 0.989
0.15 0.996 1.000 1.000 0.895 0.938 0.989 0.900 0.948 0.992

0.2 1.000 1.000 1.000 0.878 0.948 0.990 0.889 0.952 0.994
0.25 1.000 1.000 1.000 0.861 0.930 0.981 0.887 0.948 0.985

0.3 1.000 1.000 1.000 0.853 0.922 0.977 0.879 0.941 0.981

McMillan (2009), and Madaleno and Pinho (2012), among many others.
The assumption of a constant correlation has been challenged and proven

to be unsuitable in many studies; see for example Longin and Solnik (1995),
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Chesnay and Jondeau (2001), Engle (2002), Choi and Shin (2021), and ref-
erences therein. Here we focus on the U.S. and Germany stock markets, and
consider the weekly return data of the U.S. S&P 500 index and the Ger-
many DAX index from 01/01/1995 to 12/28/2020, with a total of n = 1357
data points. The data is available from Yahoo! Finance, and a time series
plot is given in Figure 1. We shall here allow the underlying correlation to
change over time and apply the developed results to obtain a nonparametric
estimate and its associated simultaneous confidence band for uncertainty
quantification. Since two time series are involved in this application, the
method of Zhao (2015) is not directly applicable. By the simulation-assisted
algorithm in Section 4.1, the time-varying correlation and its 95% simul-
taneous confidence band are visualized in Figure 2, from which we can see
that the correlation between the U.S. and Germany stock markets is in-
deed changing over time. In particular, a long-term increasing trend can
be observed in the correlation between the two markets indicating that the
economy of the two countries tend to depend more and more on each other
under globalization in general; see also the discussion in Longin and Solnik
(1995). Such an increasing trend peaked around 2008-2009, at which time
both countries start to suffer from the financial crisis and may rely more on

their own monetary policies to recover, which can help explain the decrease


https://finance.yahoo.com/
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Figure 1: Time series plots for weekly returns of the U.S. S&P 500 index and

the Germany DAX index from 01/01/1995 to 12/28/2020.

in correlation during that period. Once recovered, the correlation between
the two markets seems to experience another increasing trend similar to

what happened before the financial crisis.

4.4 Application to COVID Data

The recent pandemic of COVID-19 has become a major concern for policy
makers all over the globe and has been involving researchers from various
disciplines. Cross-country studies have shown that the virus spread rate
and pattern can be affected by local cultures, government responses, and

economic developments, among other factors; see for example Balmford
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Figure 2: The time-varying correlation (solid curve) and its associated 95%
simultaneous confidence band (dashed curve) between weekly returns of the U.S.

S&P 500 index and the Germany DAX index from 01/01/1995 to 12/28/2020.

et al. (2020), Middelburg and Rosendaal (2020), Rypdal and Rypdal (2020),
Zarikas et al. (2020), Vampa (2021), and references therein. Mahmoudi
et al. (2021) and Nobi et al. (2021) examined the correlation between case
numbers from different countries, and it was found by Sulyok et al. (2021)
that the correlation can be different at different times in the pandemic. We
shall here model the underlying correlation as a nonparametric function
of time to be more flexible and less vulnerable to parametric models, and
apply the developed results to obtain a simultaneous confidence band to

help examine the pattern. For this, we consider the log daily new cases per
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million people in Germany and U.K. from 06/01,/2020 to 12/31/2021, with a
total of n = 572 data points. The data is available from Ritchie et al. (2020),
and a time series plot is provided in Figure 3. The time-varying correlation
and its 95% simultaneous confidence band are visualized in Figure 4, from
which we can see that Germany and U.K. began with a relatively stable
correlation, which then decreased to a negative value in Spring 2021. During
this period, the number of daily new COVID-19 cases seems to exhibit an
increase in Germany but continued to decrease in the U.K., which may be
related to the different degrees of vaccine intervention in the two countries
around that time. In particular, during the first few months of 2021, U.K.
experienced a much more rapid increase in its vaccination rates compared to
Germany, which potentially helped U.K. and differentiated it from Germany
when the delta variant hit both countries around that time. On the other
hand, there seems to exist another decrease in correlation around the end of
2021 from Figure 4. This time, however, the number of daily new COVID-
19 cases seems to exhibit a decrease in Germany but continued to rise in
the U.K., which is the opposite of what happened in Spring 2021. This
may be related to the different lockdown policies of the two governments.
In particular, Germany cancelled their Christmas markets and imposed

local lockdowns, while around the same time the highly contagious omicron
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Figure 3: Time series plots of log daily new COVID-19 cases per million people

in Germany and U.K. from 06/01/2020 to 12/31/2021.

variant hit both countries.

5. Conclusion

We consider simultaneous inference of the nonparametric correlation curve
between two nonstationary time series. Compared with the result of Zhao
(2015) which was specifically developed for autocorrelations of a univari-
ate time series, our results can be applied to the broader setting when one
time series is not necessarily the lagged version of the other. In addition,
we address the open problem left in Zhao (2015) about how to handle the

nuisance unknown trend function when making inference about the correla-
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Figure 4: The time-varying correlation (solid curve) and its associated 95%
simultaneous confidence band (dashed curve) between log daily new cases per

million people in Germany and U.K. from 06/01/2020 to 12/31,/2021.

tion curve. It can be seen from the discussion in Section 2 that, unlike the
stationary setting, the straightforward precentering approach in the current
time-varying setting can result in estimators whose theoretical properties
are very difficult to understand. To address this, we propose a locally ho-
mogenized centering scheme which, instead of aligning with the time point
at which the data is observed, aligns with the time point at which the local
correlation estimation is performed. Although this newly proposed center-
ing scheme makes it possible to quantify the effect of trend estimation in

correlation inference, it comes at the cost of an additional bias term mak-



ing the effect of trend estimation not asymptotically negligible. We then
propose a further derivative adjustment scheme, which is able to make the
bias term asymptotically negligible so that the resulting correlation estima-
tors can be asymptotically equivalent to the mean-oracle ones obtained as
if we know the true mean functions. It can be seen from our simulation
results in Section 4.2 that, in addition to being applicable to a broader set-
ting and successfully addressing the gap about handling noncentered data
that was left as an open problem in Zhao (2015), the proposed LHC-DA
method also seems to deliver an improved or more robust finite-sample per-
formance. We expect that it will become a useful tool for practitioners to
examine correlations that are not constant but change over time in their

applications.
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Technical proofs of our main results in Section 3 and additional simulation
results that supplement the simulation study in Section 4.2 are provided in

the supplementary materials.
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