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Hybrid Eye-in-Hand/Eye-to-Hand Image Based

Visual Servoing for Soft Continuum Arms
Ali AlBeladi , Evan Ripperger, Seth Hutchinson , Fellow, IEEE, and Girish Krishnan

Abstract—Soft continuum arms (SCAs) that are controlled by
visual servoing (VS) present trade-offs between the camera range
and tracking accuracy. Cameras placed at a distance (eye-to-hand)
can observe a larger workspace area and the SCA tip, while a
camera at the end effector (eye-in-hand) can more accurately
survey the target. In this letter, we present a hybrid eye-to-hand
and eye-in-hand VS scheme to track a desired object in the SCA’s
worksapce. When the target is not in the field-of-view of the tip
camera, hand-to-eye VS is implemented using a wide field-of-view
camera on the soft robot’s base, to servo the soft robot’s tip to
a feasible region where the target is expected to be seen by the
tip camera. This region is estimated by solving an optimization
problem that finds the best region to place the SCA assuming a
constant curvature model for the SCA. When the target is seen by
the tip camera, the system switches to a hand-in-eye controller that
keeps the target in the desired image position of the tip camera.
Experimental results on the popular BR

2 SCA demonstrates the
effectiveness of the hybrid VS scheme under practical settings that
include external disturbances.

Index Terms—Soft robotics, visual servoing.

I. INTRODUCTION

S
OFT continuum arms (SCAs) are hard to accurately control
due to their inherent nonlinearity, hysterisis and deformable

structure that can be affected by the environment. The use of
vision systems in controlling soft robotic motion, i.e. visual
servoing (VS), has been shown to be a viable choice due to
their compactness and ease of implementation [1]–[17]. Typical
visual servo systems are composed of a camera that matches
features extracted from the current image with that of a desired
image, and a control system that moves the robot such that the

Manuscript received 24 February 2022; accepted 6 July 2022. Date of pub-
lication 28 July 2022; date of current version 29 August 2022. This letter was
recommended for publication by Associate Editor C. Duriez and Editor C. Laschi
upon evaluation of the reviewers’ comments. This work was supported in part
by NSF-USDA COALESCE under Grant USDA 2021-67021-34418, and in
part by the Jump Applied Research for Community Health through Engineering
and Simulation (ARCHES) program, an endowment partnership between OSF
HealthCare and the University of Illinois Urbana-Champaign. (Corresponding

author: Ali AlBeladi.)

Ali AlBeladi is with the Electrical Engineering, King Fahd University of
Petroleum & Minerals, Dhahran 61822, Saudi Arabia (e-mail: albelad2@
illinois.edu).

Evan Ripperger is with the Mechanical Science and Engineering,
University of Illinois Urbana-Champaign, Champaign, IL USA (e-mail:
evanjr2@illinois.edu).

Seth Hutchinson is with the School of Interactive Computing, Georgia Insti-
tute of Technology, Atlanta, GA 30332 USA (e-mail: seth@gatech.edu).

Girish Krishnan is with the Industrial and Enterprise Systems Engineer-
ing, University of Illinois Urbana-Champaign, Champaign, IL USA (e-mail:
gkrishna@illinois.edu).

Digital Object Identifier 10.1109/LRA.2022.3194690

feature positions move closer to their desired positions in the
image [18]. Most of the work in visual servoing for soft robots is
concentrated on one of two setups. The first, traditionally called
eye-in-hand VS, has the camera fixed on the tip of the soft robot
and VS is used to control the soft robot to achieve the desired
feature positions in the image. This camera can move close to the
desired scene and capture local details. However, it has limited
sight and cannot interact with the entire workspace of the robot.
Eye-in-hand VS has been successfully applied to cable-driven
soft robots [4], [19], concentric tube robot (CTR) [5], [8],
catheters [13], series pneumatic artificial muscle (sPAM) [6],
[11] and parallel pneumatic actuators [12], [15], [17].

The second setup, called eye-to-hand VS, has the camera
fixed in the workspace with the soft robot in its field of view
and VS is used to control the robot’s tip to a desired position
in the image. While the camera can capture a global view of
the workspace it cannot be used to explore more details in the
soft robot’s environment. Eye-to-hand VS has been applied to
tendon-driven SCAs [1], [3], [10], [14], [16], CTRs [2], [20],
bending pneumatic actuators [9], and elephant trunk robots [21].

In this letter, a hybrid eye-in-hand and eye-to-hand VS scheme
that controls an SCA to track a target in its workspace is
proposed. A camera that is fixed to the SCA’s base is used for
eye-to-hand VS, which moves the tip of the soft robot closer
to a region where the target can be seen by a camera that is
attached to the SCA’s tip. This region is obtained by solving
an optimization problem that finds where the tip of a constant
curvature SCA needs to be (in the base image) to see the target in
the center of the tip camera. We emphasize here that the constant
curvature assumption is not used to control the SCA, but rather
to obtain a fast approximation of the region where the target
could be seen by the tip camera. This will only ensure that
the tip is close to the region. Whenever the target is observed
in the tip camera’s field-of-view, the system switches to the
eye-in-hand VS controller which keeps the target in the desired
image position. For brevity, these two systems will be called the
global visual servoing (GVS) and the local visual servoing (LVS)
systems, respectively. An illustration of this setup is shown in
Fig. 1.

Various approaches for hybrid eye-in-hand/eye-to-hand VS
have been investigated for rigid robots. In [22], cooperation
between eye-to-hand and eye-in-hand has been proposed where
the former controls the position of the end effector and the
latter controls the orientation of the end effector. A similar setup
was proposed in [23], however the fixed camera was only used
to estimate the robot’s end-effector position. In [24], multiple
eye-to-hand cameras and eye-in-hand cameras (on different
robotic arms) were used to estimate the pose of the desired
object using an extended Kalman filter for sensor fusion. This
pose estimate was used for position based VS. Sensor fusion
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Fig. 1. An example of the Global and Local Visual Servoing Systems.
The goal is to observe the target (spherical ball in this illustration) and keep
it at the center of the tip camera’s view (green circle in frame B). The SCA
starts at the straight configuration (A). If the desired target is not seen in the tip
camera, the system estimates where the SCA’s tip should move to have the target
in its field of view (green rectangle at frame A). The GVS controls the SCA to
achieve the desired end tip position in the image and the SCA reaches (B). The
view of the tip camera at (B) is slightly off target; the LVS servos the SCA to
achieve the desired view and it reaches (C).

for image based VS using both schemes has also been proposed
in [25]. Most of these methods require the object to be viewed in
the eye-in-hand camera, therefore [26] proposed an initialization
step for these methods using an epiplolar geometry based VS
scheme that centers the epipolar line in the image and searches
for the target along the line. In [27], multiple RGBD eye-to-hand
cameras and a stereo eye-in-hand camera are used for hybrid
position-based VS control of a robotic arm. The system initially
is in eye-to-hand control and switches to eye-in-hand control
when the distance between the robot and target is less than some
threshold.

Although hybrid VS has been developed for rigid robots, the
methods in [22–27] cannot be applied directly to SCAs. These
methods utilize forward kinematics to get an accurate estimate
of the end-effector pose, which is not possible with SCA due to
the lack of accurate sensors and the fact that SCA’s deformation
behaviour is dependent on external forces and disturbances. In
the context of SCA’s, utilizing both eye-in-hand and eye-to-hand
sensors has been achieved in [28] to guide an OCT probe along a
desired path in the eye-to-hand camera, while keeping the probe
in tangential contact with a target surface.

In this letter, we propose a hybrid VS scheme where image
projections of the target and the SCA tip alone are used to
formulate control laws. Unlike the work in [28], the main goal
of this letter is to track a target and keep it in the center of
the tip (eye-in-hand) camera, even if initially it is only in the
field-of-view of the base (eye-to-hand) camera.

The main contributions of this work are:
1) developing a novel method to get a fast approximation of

where the SCA’s tip should be in the base camera in order
to see the target in the tip camera.

2) developing a coarse to fine switch control system with the
goal of tracking a target with the tip camera even if the
target is not in its field of view. The system starts with an
eye-to-hand VS controller that moves the SCA’s tip to the
approximated region (mentioned in the first contribution).
When the target is seen in the local camera, the system
switches to an eye-in-hand controller that keeps the target
in the center of the image.

In the next sections, background information is presented. In
Section III, the proposed hybrid visual servoing system for soft
robots is introduced. Experimental evaluation of this method is
then presented in Section IV. and and further work to be done.

II. BACKGROUND

A. Soft Robot Model

The shape of the SCA can be described by a position vec-
tor x(s) ∈ R

3 and a rotation frame R(s) ∈ SO(3) at each
cross-section s ∈ [0, L] along its length L. For convenience,
the position and orientation are expressed in a compact way
by joining them into a single matrix in the special Euclidean
group SE(3) [29]

X(s) =

[

R(s) x(s)

0 1

]

∈ SE(3).

The position and orientation of the center-points on the SCA’s
cross-sections evolve, with respect to its length parameter s,
according to

X′(s) = X(s)
[

K(s)
]

×
, (1)

K =

[

κ

q

]

∈ R
6,

[

K
]

×
=

[

κ̂ q

0 0

]

∈ se(3),

where q ∈ R
3 is a vector that contains the stretching/shearing

strains, κ ∈ R
3 contains the bending/twisting strains, and ˆ( · ) is

the usual mapping of a vector in R
3 to a skew-symmetric matrix

in so(3), and
[

·
]

×
is the map from R

6 to the lie algebra se(3).

For the SCA used in this research, it is safe to assume that there
is no stretching nor shearing and only bending and twisting is

happening. In this case, we have q =
[

1 0 0
]T

.

B. Traditional Visual Servoing

The goal of an image-based visual servoing (IBVS) system
is to decrease the norm of the error, e(t), between the current,
p(t), and desired, ∗p, positions of the observed visual features
in the image,

e(t) = p(t)− ∗p. (2)

Traditionally, p is the coordinates of a set of feature points (they
can also be other features like lines, segments, etc.) in the image,

p =
[

pT
1 pT

2 . . .pT
N

]T
where pn =

[

xn yn zn
]T

is the

image sphere coordinates of the nth point, and N is the number
of image feature points. Note that we use an omnidirectional
camera on the base of the robot and thus, as in [30], [31], we are
considering the spherical projection model for the camera. More
specifically, the point features are projections of 3-D points of

interest, with coordinatesxn =
[

Xn Yn Zn

]T
in the camera

frame, onto the unit image sphere,

pn = P (xn) =
1

rn
xn

where rn = ‖xn‖. (3)

The image sphere velocities of the features are related to the

angular and linear velocities of the camera, Ω =
[

ω
T vT

]T
,
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through the relationship

ṗn(t) = LnΩ(t), (4)

where Ln ∈ R
3×6 is the interaction matrix for pn. The interac-

tion matrix depends on the setup used for visual servoing. In an
eye-to-hand VS setting, the camera is observing the robotic arm
and the arm moves to achieve a desired image position for its
end-effector. In eye-in-hand VS, the camera is on the tip of the
robot’s arm and the arm moves to achieve a desired view of an
object in the image. Equations for the interaction matrices of the
proposed setup will be presented in the next section.

To achieve a decrease in the feature position error, the most
common approach is to apply the following control law

Ω(t) = −λL+e(t), (5)

where λ is a positive constant and L+ is the pseudoinverse of
the stacked interaction matrices

L =

⎡

⎢

⎣

L1

...

LN

⎤

⎥

⎦
∈ R

3N×6. (6)

For underactuated systems, it is not possible to control all 6
degrees-of-freedom and therefore applying equation (5) would
not be possible. Hence, the following relationship is used

Ω(t) = J(u)u̇(t), (7)

where u ∈ R
M is the actuation control inputs and J ∈ R

6×M

is the Jacobian matrix that maps actuation-space velocities to
task-space velocities. From equations (4) and (7) we obtain
the relationship between actuation velocities and image space
velocities

ṗ = LJu̇. (8)

The following control law can be applied to servo the soft robot

u̇(t) = −λ (LJ)+ e(t). (9)

Since the interaction matrix of a single feature is of rank two,
the number of visual features required to obtain a velocity input
are given by N ≥ M

2 In the next section, the proposed hybrid
VS system is introduced.

III. METHODOLOGY

In the proposed hybrid system, both eye-to-hand and eye-in-
hand VS work together to track a target. Eye-to-hand VS utilizes
a camera near the base of the SCA (base camera) to control its tip
position, while eye-in-hand VS utilizes a camera on the SCA’s
tip (tip camera). The main goal is to move the SCA’s tip in a
position where the tip camera can keep a specific target in the
center of the image (or another desired position in the image).
Since eye-to-hand VS enables us to set a global position for
the SCA’s tip, we call it global VS (GVS). On the other hand,
eye-in-hand VS enables more accurate positioning within a local
region of the workspace, thus we call it local VS (LVS). Fig. 2
shows the reference frames for this setup and Fig. 3 shows a flow
diagram of the developed system.

More specifically, the user sees the images from both cameras
and can click on any target he/she wants the SCA to track. If the
chosen target is in the tip camera’s field of view, the LVS system
will control the SCA to keep the target in the desired image
position. If the target is only detected in the base camera, the

Fig. 2. An illustration of the coordinate frames for the hybrid visual servoing
setup. These frames are for the SCA’s base {O}, SCA’s tip {T }, base camera
{G}, tip camera {L} tip marker {F1}, and target {F2}.

Fig. 3. Flow diagram of the Hybrid Visual Servoing scheme.

GVS system moves the tip to an estimated image position that
ensures the target will be in the tip camera’s field of view. This
desired tip position is obtained through solving an optimization
problem and will be presented in Section III-C. If the target is
detected in the tip camera, the controller will directly switch to
the LVS system.

A. Hybrid Visual Servoing

Note that the GVS system tracks features on the tip of the
SCA, frame F1, while the LVS system tracks features on the
target, frame F2. The image sphere velocities of the features in
both cameras are related to the SCA’s control inputs, u, through
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the relationship

ṗL
F2

= LLAdXL
T
Ju̇, (10)

ṗG
F1

= LGAdXG
T
Ju̇, (11)

wherepL
F2

andpG
F1

are the target and tip feature point projections
on the image sphere of the tip and base cameras, respectively.
The interaction matrices, LL and LG ∈ R

3×6, map the camera
velocities to feature velocities in the spherical image space and
are given by [30], [31]

LL =
[

p̂L
F2

− 1
rLF2

(

I− pL
F2
pL
F2

T
)
]

(12)

LG =
[

−p̂G
F1

1
rGF1

(

I− pG
F1
pG
F1

T
)
]

. (13)

where rAB = ‖xA
B ‖, and the Jacobian,J, maps between the actua-

tion space of the soft robot to velocities in the SCA’s tip position
and orientation. The matricesAdXL

T
andAd

X
G
T

are Adjoint maps

in SE(3), defined by

AdX =

[

R 0

x̂R R

]

∈ R
6×6,

which map velocities from the tip frame {T } to the camera
frames {L} and {G}, respectively.

For notation simplicity, and without loss of generality, we
take the case where the SCA has two degrees-of-freedom (i.e.
M = 2). Since N ≥ M

2 , we see that one image feature (N = 1)
is enough to obtain a velocity input. This can be easily general-
ized for higher degrees-of-freedom by stacking multiple feature
points as done in (6). The LVS and GVS control inputs are,
respectively, given by

u̇L(t) = − λL

(

LLAdXL
T
J
)+

(

pL
F2

− ∗pL
F2

)

(14)

u̇G(t) = − λG

(

LGAdXG
T
J
)+

(

pG
F1

− ∗pG
F1

)

. (15)

where λL and λG are positive gain constants, ∗pL
F2

is the desired

target position in the tip camera, and ∗pG
F1

is the desired tip
position in the base camera. The hybrid control law is given by

u̇(t) =

{

u̇L(t) if target in f.o.v. of tip camera

u̇G(t) otherwise
(16)

B. Offline Jacobian Learning

To implement the individual VS control laws in (14) and
(15), an estimate of the Jacobian is needed. In this letter, the
Jacobians were estimated through a simple offline model-free
approach that builds on the work of [3]. The actuation space
of the SCA is divided into segments that form a grid. At each
node in this grid, the actuation inputs are slightly perturbed and
the resulting changes in image feature positions are measured
(for both the base camera and the tip camera). Several of these
measurements are obtained and the Jacobians map to the camera
frames (i.e. JL := AdXL

T
J and JG := Ad

X
G
T
J) are estimated

using least squares, with the assumption that the Jacobians are
relatively equivalent for subsequent time-steps. All the Jacobians
are stored in memory with their corresponding actuation space
grid points. In the servoing process, the Jacobians of the nearest

Algorithm 1: Estimate Desired Tip Position.

Inputs:

pG
F2

(Image position of the target in the base camera)

A, ic (Set ofα’s, and current index ofα)

Output:

∗pG
F1

(Desired image position of tip in base camera)

in (next index ofα)

1: Obtain a constant curvature vector κ̂(αic) from (23)
2: Integrate curvatures to obtain the tip pose XO

T from (20)
3: Find the estimated tip position with respect to the base

camera’s frame ∗xG
F1

from (24)

4: Find the desired image projection ∗pG
F1

from (25)
5: in ← ic + 1

grid point to the current actuation input are used in equations
(14) and (15).

C. Estimating Desired Tip Position

In this section, the method used to estimate the desired tip

position in the base camera, ∗pG
F1

, is detailed. Algorithm 1
summarizes this method. When the target is not in the field view
of the tip camera, the GVS system moves the tip of the SCA to a
position where the target is expected to be in the tip camera’s field
of view. This is achieved with only the image space projections

of the target, pG
F2

, and the SCA’s tip feature, pG
F1

, on the base
camera (no 3D information is required). The main observation
that is utilized is that when a feature is in the center of the tip
camera’s image, its position with respect to the camera’s frame

should be along the z-axis (i.e. xL
F2

=
[

0 0 β
]T

for some

β > 0). In other words, the following is true for a feature in the
center of the tip camera’s image

[

ex ey
]T

xL
F2

= 0

eTz x
L
F2

> 0, (17)

where
[

ex ey ez
]

= I3, and the inequality constraint en-
sures that the target is in-front of the tip camera. The feature’s
position in the tip camera’s frame,xL

F2
, is related to its position in

the base camera’s frame,xG
F2

, through the following relationship

x̄L
F2

= XL
T X

O
T
−1
XO

G x̄
G
F2
, (18)

where x̄ =
[

xT 1
]T

; the relative pose between the tip camera

and the SCA’s tip, XL
T , and between the SCA’s base and the base

camera, XO
G , are known; the relative pose between the SCA’s

base and its tip, XO
T , is unknown; and xG

F2
is known up to a scale

factor α = ‖xG
F2
‖,

xG
F2

= αpG
F2
. (19)

Since α is unknown (i.e. we do not have information about
the distance of the target’s feature from the base frame), we
consider a set of possibleα’s,A := {αi|αi ∈ [αmin αmax], i =
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1, . . . ,K}, where αmin and αmax are the minimum and maxi-
mum expected distances for the target and K is the number of
samples. For eachα ∈ A, we would like to findXO

T that satisfies
(17). However, since we do not have a model for the actual SCA,
we consider a virtual SCA that has a constant curvature vector,
κ, throughout its length. By integrating (1) along its length, the
virtual SCA’s tip pose is given by

X̃O
T (κ) = eL[K]× , (20)

where [K]× is defined in (1), L is the length of the soft robot,

eL[K]× is the exponential map in SE(3) defined by

eL[K]× := I4 + L[K]× +
1

θ2
(1− sin(Lθ)) [K]2×

+
1

θ3
(Lθ − sin(Lθ)) [K]3×, (21)

and θ = ||κ||.
The feature’s position with respect to the tip of this virtual

SCA is obtained by substituting (19) and (20) into (18)

¯̃xL
F2
(κ;α) = XL

T X̃
T
O(κ)X

O
G αp

G
F2
(α). (22)

To find the curvature of the virtual SCA that satisfies (17) for a
given α, the following optimization routine is applied

κ̃(α) = argmin
κ

∥

∥

∥

[

ex ey
]T

x̃L
F2
(κ;α)

∥

∥

∥

2

subject to eTz x̃
L
F2
(κ;α) > 0, (23)

where (20)–(22) are used to calculate x̃L
F2
(κ;α).

Once the curvature of the virtual SCA is estimated for a
specific α, the desired tip position in the base camera image
is obtained by first finding the position of the virtual SCA’s tip
with respect to the base camera,

¯̃xG
F1
(α) = XO

G
−1
X̃O

T (κ̃(α))x̄
T
F1
, (24)

where xT
F1

is the position of the tip marker with respect to the
SCA’s tip, and then projecting it onto the base camera,

∗pG
F1
(α) = P

(

¯̃xG
F1
(α)

)

. (25)

This is repeated for all α ∈ A and a corresponding set of image
projections is obtained,

P :=
{

∗pG
F1
(α)|α ∈ A

}

. (26)

The goal of the GVS system is to move the tip of the SCA along
this set to scan for the target in the tip camera. This is achieved
by iterating between the points in P and choosing a single point
as the desired tip position for the controller. To insure the SCA
has minimum vibrations, a low value is chosen for the period to
go from the first point to the last point in P .

Although the actual SCA will not have a constant curvature,
the proposed approach still works since the goal is to get the
target somewhere within the tip camera’s field view. Our exper-
iments, as detailed in the next section, show that this model is
sufficient even with the affect of external forces such as gravity
and tip loads.

Fig. 4. Experimental setup used to validate the proposed method. The (a) main
components of the system, the shape of the SCA when (b) load is applied to its
tip, and (c) when it is constrained from its center, under the same pressure input.

IV. RESULTS

A. Experimental Setup

To test the proposed method, an experimental rig shown in
Fig. 4 is used. The SCA used is a BR2 [32] that weighs 35
grams and is 30 cm long. This soft arm is composed of a parallel
combination of three pneumatically actuated fiber reinforced
actuators, where one is responsible for bending the SCA (B) and
two for rotating (R2) it about its length (only one is actuated at a
given time to rotate it either clockwise or counterclockwise).
Note that since this SCA has bending in only one direction
and twisting along its length, the second component of the
constant curvature κ is constrained to zero when solving (23)
(i.e. κy = 0). The Jacobians where obtained by dividing the
actuation space into a 4× 5 grid with a step size of 8 psi (i.e.
maximum values are 24 and 32 psi for the bending and rotating
actuators, respectively). Since only one rotating actuator is active
at a single time, two of these grids were obtained for each rotating
actuator independently with the bending actuator.

This SCA is chosen because of its high dexterity and
workspace (ability to spirally deform) despite having a compact
parallel architecture. To actuate each section we have created a
control board that drives three digital pressure regulators which
correspond to the segments of our SCA. With this setup we are
able to access a workspace suitable for conducting experiments
between the LVS and GVS regimes. The SCA is suspended
upside down with its base attached to a fixed structure. For
our base camera, we mounted an Intel RealSense Tracking
Camera T265 with the primary wide angle lens aligned with
the base of the SCA. The tip camera consists of a USB Mini
Camera Module, with a 1280× 720 resolution, chosen for it’s
compactness and light weight. To obtain the spherical image
projections, both cameras where calibrated using the method
in [33]. On the tip of the soft robot, a marker composed of several
AprilTags [34] was fixed to simplify the process of detecting the
SCA’s tip in the base camera. To accurately evaluate the proposed
method throughout the soft robot’s workspace, a 55 cm× 55 cm
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Fig. 5. Demonstration of the hybrid Visual servoing method for three distinct targets. The chosen target is highlighted with a green circle in the global images
and a green square in the local images, and the blue curve represents the set of desired image projections in Equation (26). The plots on the right represent the norm
pixel errors between the position of the target in the tip camera’s frame and the center of the frame. The 25 pixel error tolerance is plotted in dotted red.

box with markers in its inside (that are considered targets)
was placed around the SCA. Note that the proposed method
does not require markers on the SCA’s tip or on the targets,
however the markers are used here to allow for a consistent
evaluation across the SCA’s workspace without requiring object
detection and tracking. Equation (23) was solved using the se-
quential least square quadratic programming (SLSQP) optimizer
in [35]. The detection frequency of the imaging system was 30
hz and the control frequency of the proposed controller was
10 hz.

B. Results1

1) Hybrid vs Without Disturbances: The first set of experi-
ments, shown in Fig. 5, demonstrates the ability for the proposed
scheme to utilize both the GVS and LVS control regimes to
track a desired target without any disturbances. The target is
selected in the global frame and tracked with GVS. Once it is
viewed in the local frame, the target is tracked using LVS. At
the beginning of the experiment a target marker, identified with

1A video presenting some of the results: https://youtu.be/a10x9BHHKxE.

a green circle in the global image of Fig. 5, is chosen in the view
of the global camera. The blue curve in the image shows the
expected position of the SCA tip so that the selected target is
visible in the local camera’s frame. The GVS control then sends
the tip to the positions on the blue curve until the target is located.
Once the tip camera has identified the target (fourth column in
Fig. 5), the control scheme is switched to LVS which centers
the target in the tip camera frame (as shown in the column 5 of
Fig. 5 and the corresponding error plots). We set a 25 pixel error
tolerance for the target to reach the center of the image. From the
error plots, we observe that the second target has more vibrations
than the other two case. This is due to the close proximity of the
target to the camera compared to the other two targets (as seen
in the size of the target in the last frame of the local camera).
This experiment was repeated for a total of 30 targets throughout
the workspace to evaluate the effectiveness of the estimated tip
positions in getting the local camera to see the target. A success
rate of 100% was achieved towards this goal. Fig. 7(a) shows
the positions of these targets in the base camera.

2) Hybrid vs With Disturbances: In these set of experiments,
we evaluate the robustness of the proposed hybrid VS method
towards disturbances. Two types of disturbances are considered:
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Fig. 6. Demonstration of the hybrid VS method when (a) a load of 35 grams
is on the tip, and (b) the center of the SCA is constrained. The plots on the
right represent the norm pixel errors between the position of the target in the
tip camera’s frame and the center of the frame. The 25 pixel error tolerance is
plotted in dotted red.

a load of 35 grams (approximately equal to the SCA’s weight)
on the SCA’s tip, as shown in Fig. 4(b), and a string that is
tied to the center of the SCA that constrains the movement of
its upper half, as shown in Fig. 4(c). Such disturbances might
be encountered in applications that require manipulation or
maneuvering in complex environments ridden with obstacles.
Fig. 6 shows two successful scenarios for the hybrid system
under these disturbances. For further evaluation, a set of 30
experiments were conducted for targets distributed throughout
the SCA’s workspace. The number of successful experiments
were 25 and 24 for tip load and constrained cases, respectively.
Fig. 7(b) and (c) show the positions of the targets in all the
trials. The parts of the workspace that performed poorly were
the regions that required extreme bending and twisting. In
these cases, a relatively large load acting on the SCA’s tip will
cause significant changes in the SCA’s deformations. Therefore,
the offline Jacobians that are used in the control law become
inaccurate, thus making it difficult for the controller to take the
SCA’s tip to the desired region. This was the case for the 5
unsuccessful cases in Fig. 7(b). When the center of the SCA
is constrained with a string, the SCA workspace reduces and
it cannot reach the part of the workspace where it can see the
targets behind it. Therefore, the failure is due to the SCA’s limited
workspace. In the contrary, it was surprising that the method
works in most cases even with the first half of the SCA not
moving. The parts of the workspace that performed poorly were
the regions behind the SCA for both cases. For the tip camera to
see these regions, the SCA has to undergo a significant amount
of twisting. When under tip load, significant deformation of the
SCA’s shape is observed. Thus when the tip reaches the desired
image position, the target is not observed in the tip camera’s
view. On the other hand, when the upper half of the SCA is
constrained, not enough twisting can be achieved to observe the
regions it. In general, when major deformations in the SCA’s
shape are caused by the disturbances, the desired tip positions
that are based on the virtual constant curvature SCA do not lead
to desirable results.

Fig. 7. The targets that correspond to the successful (green circle) and unsuc-
cessful (red circle) cases for (a) the disturbance free case, (b) tip load disturbance
case, and (c) constrained movement disturbance case.

V. CONCLUSION

Although accurate control for soft continuum arms (SCAs)
can be achieved with eye-to-hand or eye-in-hand visual servoing,
each has its own limitations. The former has a global view
and can place the SCA’s tip anywhere within its workspace,
while the latter can achieve better positioning for exploration
and manipulation tasks. In this letter, a method for controlling
SCAs through a hybrid eye-to-hand/eye-in-hand visual servoing
scheme is presented. The advantage of this hybrid system is the
ability to track a target with the soft robot’s tip camera even if
the target is not in the camera’s field-of-view. The crux of the
method involves an optimization-based estimation of feasible
positions for the SCA tip that has maximum probability of
observing the target from the eye-in-hand camera. Results show
the effectiveness of the proposed method, which was able to
track targets throughout the soft robot’s workspace even with the
presence of disturbances. In cases where the SCA is under major
disturbances, the target might not be seen by the tip camera. This
could be resolved by investigating other models for the virtual
SCA used to estimate the best tip positions in the image.

The SCA used in this work has only two degrees-of-freedom,
however it can be easily extended for applications which require
soft robot’s with more degrees-of-freedom. This work can also
be extended to robotic arms that have both rigid and soft links,
such as the arm presented in [36]. Furthermore, a single camera
on the soft robot’s base may not be sufficient to observe the en-
tire workspace for some applications. Therefore, extending this
work to account for multiple global cameras would be desirable.
Since it is possible to structure the soft robot as needed, having
a marker on its tip should be practical for most applications.
However, for applications where this is not possible, the pose of
the tip camera with respect to the base camera can be obtained
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by finding corresponding image features in both cameras and
solving a bundle adjustment problem.

The work presented in this letter will be used to build au-
tonomous capabilities for robotic systems with SCA’s that could
be applied to agriculture [36] and health applications. Therefore,
we will investigate the performance of the hybrid visual servoing
system under unstructured environments that require the flexib-
lity of SCAs.
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