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Evolution has honed predatory skills in the natural world where localizing and
intercepting fast-moving prey is required. The current generation of robotic
systems mimics these biological systems using deep learning. High-speed
processing of the camera frames using convolutional neural networks (CNN)
(frame pipeline) on such constrained aerial edge-robots gets resource-limited.
Adding more compute resources also eventually limits the throughput at
the frame rate of the camera as frame-only traditional systems fail to
capture the detailed temporal dynamics of the environment. Bio-inspired
event cameras and spiking neural networks (SNN) provide an asynchronous
sensor-processor pair (event pipeline) capturing the continuous temporal
details of the scene for high-speed but lag in terms of accuracy. In this work,
we propose a target localization system combining event-camera and SNN-
based high-speed target estimation and frame-based camera and CNN-driven
reliable object detection by fusing complementary spatio-temporal prowess
of event and frame pipelines. One of our main contributions involves the
design of an SNN filter that borrows from the neural mechanism for ego-
motion cancelation in houseflies. It fuses the vestibular sensors with the
vision to cancel the activity corresponding to the predator’'s self-motion.
We also integrate the neuro-inspired multi-pipeline processing with task-
optimized multi-neuronal pathway structure in primates and insects. The
system is validated to outperform CNN-only processing using prey-predator
drone simulations in realistic 3D virtual environments. The system is then
demonstrated in a real-world multi-drone set-up with emulated event data.
Subsequently, we use recorded actual sensory data from multi-camera and
inertial measurement unit (IMU) assembly to show desired working while
tolerating the realistic noise in vision and IMU sensors. We analyze the design
space to identify optimal parameters for spiking neurons, CNN models, and
for checking their effect on the performance metrics of the fused system.
Finally, we map the throughput controlling SNN and fusion network on
edge-compatible Zyng-7000 FPGA to show a potential 264 outputs per second
even at constrained resource availability. This work may open new research
directions by coupling multiple sensing and processing modalities inspired by
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discoveries in neuroscience to break fundamental trade-offs in frame-based

computer vision?.
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1. Introduction

Predatory animals can quickly detect and chase their prey by
triggering locomotion to intercept it. Such a behavior involves
the visual input for the identification of the prey as well as
distinguishing the predator’s self-motion (ego-motion) from
the relative motion of the steady surroundings (Figure 1A).
Cheetahs have been recorded to run at 25 ms~! (Wilson
et al.,, 2013) and their preys also move at comparable speeds
within the Field of View (FoV). Successful hunting relies on
advanced neural circuits that accept the incoming data from the
visual and inertial sensory organs and process it to enable real-
time locomotion actuation (Figure 1A). This closed-loop control
system across different cortices is capable of highly parallel
processing and achieves high power efficiency, speed, and
accuracy simultaneously (Sengupta and Stemmler, 2014). Such a
biological neural system is optimized over generations through
evolution and can be an inspiration to address engineering
applications, for instance, the high-speed target localization for
autonomous drones under constrained computing resources.

The state-of-the-art method for object detection uses
convolutional neural networks (CNN) due to its high accuracy
(Zhao et al., 2019; Jiao et al, 2019). Although CNNs are also
bio-inspired and have emerged from the layered connectivity
observed in primate brain (Cadieu et al., 2014; Khaligh-Razavi
and Kriegeskorte, 2014; Gii¢li and van Gerven, 2015), the
computation gets increasingly intense with larger networks.
The models are typically large (Bianco et al., 2018) along with
considerable processing latency that puts a limitation on the
throughput (outputs per second or frames per second—FPS)
of the computation. Light-weight models trade-off the accuracy
for latency (Howard et al.,, 2017). The latency can be reduced
while preserving the accuracy by equipping more powerful
computing hardware on the drones (Duisterhof et al., 2019;
Wryder et al., 2019; Falanga et al., 2020). But the edge computing
platforms on a drone usually come with limited accessible
power due to the energy density of batteries, which eventually
limits the speed and throughput of the computation. Therefore,
the traditional frame-based pipeline with frame-based camera

1 This work is carried out when all authors were at Georgia Institute of
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(optical camera) and CNNs suffer from the trade-off between
computational latency and accuracy for multiple real-time visual
tasks including segmentation (Li et al., 2019), object detection
(Huang et al., 2017), and gender detection (Greco et al., 2020).

On the other hand, spiking neural networks (SNNs) that
represent a new paradigm of artificial neural networks attempt
to computationally model biological neural systems. Spiking
neural networks exhibit low power consumption in customized
hardware platforms (Akopyan et al., 2015; Davies et al., 2018)
by the exploitation of asynchronous decentralized tile-based
designs. Spiking neural networks have been demonstrated to
work for object detection of simple shapes (Cannici et al., 2019)
using training methods like approximate backpropagation (Lee
et al,, 2019; Zhang and Li, 2019) and spike-time-dependent-
plasticity (STDP) based training (Diehl and Cook, 2015).
Recently proposed bio-mimetic event-based vision cameras
called dynamic vision sensors (DVS) boost the potential of
SNN-based visual processing even further by matching it with
the sensor of a similar modality (Gallego et al., 2019). The
regular optical camera lacks in taking full advantage of SNNs
because of its discrete frame generation structure where the
time-based computation of spikes cannot be fully exploited. The
DVS overcome it by allowing continuous-time input generation
in the form of events. An event gets generated when the
intensity of a pixel in the FoV of the camera changes. Event
generation corresponding to all the pixels takes place in parallel
and asynchronously, thus sensing only the motion of objects
in the FoV saving circuit resources and improving bandwidth.
This event-based data flow can be processed by SNNs with
matching data modality. Dynamic vision sensor offers low power
consumption suited for edge-applications which coupled with
high-speed is applied in tasks like robotic goalie (Delbruck and
Lang, 2013) and looming object avoidance (Salt et al., 2017). This
makes DVS and SNN-based processing (event pipeline) perfectly
suited for a task like predation where low-power and high-speed
requirements are presented simultaneously.

Spiking neural network frameworks, however, can hardly
achieve the same level of detection accuracy compared to
their CNN counterparts because of the lack of reliable training
methods. Very deep networks cannot be trained easily and
reliably because of the non-differentiability of spikes (Lee et al.,
2020). Although some attempts using conversion of trained
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FIGURE 1

(A) Predation combines vision and vestibular inputs to localize the prey in a closed-loop. This involves canceling the self-motion of the predator
and identification of the prey. (B) Accuracy vs. latency trade-off between SNN and CNN. (C) Conventional optical camera + CNN (frame
pipeline) for reliable object detection and a parallel event-camera + SNN (event pipeline) for high-speed ego-motion cancelation. The
complementary prowess of event and frame processing is fused for target localization. 1. Eagle Eye by TwelveX is licensed under CC BY-NC-SA
2.0. 2. Bald Eagle hunting by vastateparksstaff is licensed under CC BY 2.0. 3. Anatomy of the Human Ear blank.svg by
Anatomy_of_the_Human_Ear.svg: Chittka L, Brockmann derivative work: M-Komorniczak -talk- is licensed under CC BY 2.5.

ANN-to-SNN (Kim et al., 2020) provide decent accuracy, the
complexity of the network negates the speed advantage of the
network. Newer methods with objective functions involving
smoothened spikes (Lee et al.,, 2020) and target spike trains
(Shrestha and Orchard, 2018) are proposed but are typically
applied to simpler problems (Yin et al., 2021). Spiking neural
networks, therefore, lie in the region of low accuracy and
low latency (Kim et al., 2020; Cannici et al., 2019). The
previous literature shows this clearly as shown in Figure 1B
for different SNNs (Chowdhury et al., 2021; Rathi and Roy,
2021; Wu et al, 2021; Zheng et al, 2021; Meng et al,
2022). Simultaneously CNN (Bianco et al., 2018) configurations
achieve higher accuracy levels at the cost of slower processing
on NVIDIA Jetson TX1. Figure 1B shows results corresponding
to Imagenet classification dataset. Imagenet is chosen as it is
reasonably complex and is used frequently to benchmark SNN
performance. The SNN latency is calculated by using number
of time steps for inference with each timestep consisting of
(Merolla et al., 2014). Figure 1B
makes it evident that CNNs has a potential to deliver higher

1 ms of synchronization

accuracy at a lower speed whereas SNNs are capable of
providing high-speed if the accuracy can be traded off. Thus,
we identify two couples of sensor and processing networks
with complementary prowess. Convolutional neural networks
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and optical cameras show high accuracy by capturing detailed
spatial resolution whereas SNN and event-cameras show high-
speed processing by capturing of temporal dynamics of the
scene. Thus, the processing alternatives present an interesting
trade-oft between event and frame pipelines (Figure 1B). Our
work proposes to overcome this trade-off by using a high-
speed ego-motion filter using event pipeline for fast target
estimation assisted by the optical camera and CNN based
reliable object detection for corroborating the identified position
(Figure 1C). The continuously operating SNN filter checks
for fast-moving target (prey drone in this case) entering the
FoV at all times while the CNN network gets activated at a
lower frequency confirming or refuting the presence of the
identified prey. The two systems operate in parallel allowing
the predator drone to exploit latency and accuracy advantage
concurrently. Our approach may find some similarity with
the combined event and frame sensing for object detection
(Liu et al., 2016) where the event-stream determines the area
of interest for CNN. Similarly, another fused approach for
optical flow (Lee et al., 2021) combined the sensor outputs in
a single CNN-like pipeline. However, both these approaches
use CNN backbone. Therefore, the throughput limitation put
in by CNN remains and the advantage of event-camera is not
fully utilized. Using our multi-pathway approach, we propose
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to cover a high-resolution spatial domain for prey detection
while quickly transferring to a continuous-time domain for
high-speed target localization using the insights from the visual
systems of predatory animals.

The ego-motion of the moving predator induces events for
stationary objects caused by the DVS. Most animals are known
to filter out activity caused by ego-motion using different kinds
of sensory feedback systems (Kim et al., 2015). It was proposed
that vestibular (inertial) feedback signals through inhibitory
connections compensate for the ego-motion in insects and
primates (Zhang and Bodznick, 2008; Benazet et al., 2016). This
was experimentally demonstrated recently, in Kim et al. (2015),
where the vestibular sensor induced self-motion cancelation was
observed by probing the neurons in houseflies. (1) Our first
contribution lies in the design and implementation of a bio-
inspired SNN-based ego-motion cancelation filter fusing event-
based vision with vestibular and depth information. Our SNN
filter removes the activity generated by the ego-motion leaving
only the events corresponding to the moving prey by mimicking
the neuro-biological counterparts. The loss of accuracy in the
noisy SNN filter is compensated by a highly accurate CNN-
driven object detector which captures and processes the RGB
image periodically to validate the SNN estimate. Therein lies the
second key contribution of this article. (2) We propose a close
interplay between CNNs and SNNs by coupling spatio-temporal
consistency criterion with a neuro-inspired model. This co-
ordination between multiple pipelines in different phases of
chasing is inspired by the use of specialized neuronal clusters
in different phases of hunting in Larvae zebrafish (Forster et al.,
2020). The separation between a locally fast (event pipeline) and
globally slow signal (frame pipeline) is similar to primate vision
(Mazade et al., 2019). Our algorithm relies on a CNN to detect
and identify the prey when it is far and a longer detection latency
is acceptable, and gradually hands over the task to the SNN as
the predator starts to approach the prey and a shorter latency
for fast-tracking is of the essence. Our multi-pipeline processing
with color information (frame pipeline) for accuracy and motion
information (event pipeline) for speed emerges from the similar
color and motion separation in visual processing of primate and
insect vision (Gegenfurtner and Hawken, 1996; Yamaguchi et al.,
2008).

The algorithm is verified in a three-step process. In the first
step, we implement it on a programmable drone environment—
Programmable Engine for Drone Reinforcement Learning
Applications (PEDRA) (Anwar and Raychowdhury, 2020) with
different environments of varying level of obfuscation and
multiple evasive trajectories for the prey. In the second stage,
the algorithm is implemented on a real drone in both indoor
and outdoor environments. The prey drone is manually flown in
front of the closed-loop autonomous predator drone while the
DVS data is emulated from the frame-based images captured by
the onboard camera of the predator. Finally, we record a prey
flight using a hybrid camera assembly with on-board inertial
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measurement unit (IMU) and process it to show accuracy
preserving high-speed computation tolerating real-world sensor
noise. The design space is explored to tune optimal parameters
for the SNN, appropriate model for the CNN and their impact
on the interplay on the fused CNN+SNN system. Finally, we
estimate the circuit level cost of implementing such a system
on a edge-compatible FPGA to show a potential throughput of
> 264 outputs per second. This work shows the conjunction
of SNN with more established CNNs for specialized high-speed
processing. This work may open a new research direction by
coupling parallel sensing and processing modalities to break
fundamental trade-offs in frame-based computer vision.

2. Methodology

2.1. Target estimation - ego-motion
cancelation using SNN

Identification of the prey from the cluttered event stream
requires separation of events corresponding to ego-motion and
their efficient cancelation. Model-based optimization methods
like contrast maximization (Gallego and Scaramuzza, 2017;
Rebecq et al., 2017), feature tracking (Kueng et al, 2016;
Zihao Zhu et al., 2017), or deep learning techniques (Alonso
and Murillo, 2019; Mitrokhin et al., 2019) have been used
for ego-motion cancelation and moving object detection
in event cameras. However, these methods require iterative
optimizations and multiple memory accesses lowering the
speed of computation. Secondly, our method uses CNN for
accuracy compensation. Therefore, high-speed requirement
takes precedence over accuracy for event pipeline and we rely
on bio-inspired faster alternatives while allowing compromise
in accuracy. The performance of a object detection is typically
measured using the overlap between the ground truth and
predicted bounding boxes. The target localization task at hand
requires actuating the predator with appropriate velocity and
rotation depending upon the region in which the target is
present. Therefore, an accurate detection is the one where the
output of SNN and CNN lies within a threshold of pixel distance
from the actual position of the prey drone. This easier definition
of accuracy allows measurement in terms of percentage of
correct localizations as used in the rest of this article.

The events-accumulated frame generated by the event
stream from the event camera in a time window is shown in
Figure 2A. The independent rapid motion of the prey creates
a denser cluster of events around it as seen in the image.
Other events are generated by the stationary objects within
the scene and should be canceled. The higher self-velocity of
the predator generates more events corresponding to stationary
objects. Therefore, activity cancelation needs to be proportional
to the predator’s self-velocity. Secondly, the reliance on the event
pipeline is higher when the prey is close to the predator where
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FIGURE 2

(A) Accumulated events within a time window from the event
camera. (B) High self-velocity and higher depth requires more
activity cancelation to preserve the activity of the moving target
in close vicinity. (C) Number of pixels to be canceled at every
position in the image. (D) Ego-motion cancelation removing the
activity corresponding to the stationary objects with the
surviving activity corresponding to the target (prey drone).

it can quickly evade and escape the FoV. This is because the
time of escaping the FoV is long when the prey is at a longer
distance, and slower detections from frame pipeline are more
reliable. Therefore, the SNN filter needs higher accuracy when
the distance between the prey and predator is small. Therefore,
the events at a higher depth from the predator are canceled out
to boost activity in the close vicinity.

This cancelation strategy is illustrated in Algorithm 1. Every
continuous patch of active pixels requires a fixed number of
events to be canceled from it. This cancel mask is denoted

< »

by “cancel.” The pixel array is denoted by “p” where pixel
values are either 0 or 1. This is proportional to the self-
velocity of the predator and the depth of the pixel undergoing
the cancelation operation (Figure 2B). viy and vy denote the
scalar horizontal and vertical component of the predator motion
including velocity and rotation which is called self-velocity in
the article. This is acquired through the onboard IMU of the
event camera. The depth is acquired from a stereo camera which
provides depth for every pixels in meters. The velocity and depth
are both normalized using empirically found multipliers to
make them dimensionless for addition in Algorithm 1. Figure 2
shows the cancelation strategy with the number of events to be
canceled at every position shown in Figure 2C. With the prey
motion being faster than the steady environment, the activity
corresponding to the prey persists even after the cancelation
while the activity corresponding to the stationary background
gets canceled. Figure 2D shows the image after canceling out
the ego-motion generated events. Horizontal and vertical binned
histogram computation of the number of surviving pixels in this
image gives the approximate position of the prey.
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for each incoming event at pixel [x,y] do

if if plx,y] ==1and p[x-1,y] == 0 then
cancel [x,y] = vy + depth[x,y]

plx:x+cancel,y] = 0

end

if if plx,y] ==1and p[x,y-1] == 0 then
cancel [x,y] = vy + depthl[x,y]

plx,y:y+cancel] = 0
end

end

Algorithm 1. Frame-based self-motion cancelation.

However, this analysis relies on an event accumulated frame-
based computation which adds an additional overhead of frame
accumulation on the asynchronous event stream from the DVS
camera. Processing of the incoming events in the matched
asynchronous modality offers higher speed and energy efficiency
in the sparse computation effort. This is because accumulating
the frame followed by cancelation (matrix operations on n x n
matrix) adds O(n? + m) complexity where m is the number of
events. On the other hand, processing the events independently
allows the speed of O(m). Therefore, we propose a four-layered
SNN for processing of Algorithm 1 in real-time. The network
gets its inspiration from recent neuro-biological discoveries
explained in Section 4.

Every incoming event carries its location (x, y), time of
generation (), and polarity (p) feeding to the input layer of
the network shown in Figure 3A. Each spiking neuron obeys
the integrate and fire (IF) dynamics shown in the following
equations.

V%, yler1 = Vi yle + Z Wilx, y1Silx, yle (1)

1

if Vx,ylit1 > Vg then Slx, ylip1 = LV[xyle2 =0 (2)

The summation term corresponds to the incoming current
from the connected neurons (denoted by i) that spiked the

@

previous time instance. The synaptic weight from neuron “/” to
the neuron being updated ([x,y]) is denoted by W; The spiking
of a neuron is denoted by S where S = 1 if the membrane
potential exceeds the spiking threshold (V). The input from
the previous synapses drives the output neuron at the immediate
next time step. This avoids the incorporation of the synaptic
delays and computation of time-delayed currents simplifying
the computation.

The first layer takes in the event stream from the event
camera (Figure 3A). This is connected to the next layers for
vertical (Layer 2V) and horizontal (Layer 2H) event cancelation.
Every neuron in the DVS layer drives “span” neurons above it
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FIGURE 3
(A) Four-layer ego-motion filtering SNN. Event-data, self-velocity, and depth information constitute the input and identified position of the prey
is provided at the output. (B) Event-accumulated frame within a time window. (C,D) Membrane potential of the neurons in layers 2H and 2V.
Patches of continuous event activity cause higher membrane potential build-up. This makes patches of high activity likely to spike more. (E,F)
Spikes issued by the 2H and 2V neurons. The prey activity preferentially survives because of the presence of continuous event patches near the
prey. (G) Spiking of Layer 3 neurons with AND operation on layer 2V and 2H for SNN output generation.

in Layer 2V and “span” neurons on the right of it in Layer 2H
with synapses of unit weight. Layer 2 is also driven by velocity
encoding neurons and depth encoding neurons. Both velocity
neurons and depth neurons are connected using inhibitory
synapses. The predator’s self-velocity needs to be calculated
using accelerometer readings from the IMU in the current step
and is converted to multi-neuron spiking activity by discretizing
it given by vy and vy and is connected to layer-2 using
inhibitory synapses. Every velocity neurons is connected to all
neurons in layer 2. Depth neurons are connected to the neurons
in the same position in layer 2.
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For every incoming spike at position [x, y], the membrane
potential for the neurons in layer 2 rises by a fixed amount
given by the synaptic weights from the DVS layer while it is
pulled down by velocity neuron and depth neurons. Only when a
continuous spatial region has persistent activity (Figures 3C,D),
the potential rise is enough to cause a spike (Figures 3E,F). This
naturally cancels out the noisy cluttered events. The self-velocity
and depth for every pixel determine a minimum width of the
spatial continuous spiking patch required to trigger spiking in
layer-2. Large self-velocity causes more spikes in a patch that
need to be removed. Therefore, higher self-velocity requires
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wider patches of continuous activity to cause spiking in layer
2 and vice versa. The synaptic weights have a unit value for all
the excitatory synapses. The negative (inhibitory) weights of the
velocity and depth neurons depend critically upon the resolution
of the event camera and FoV. They are empirically calculated to
ensure exact cancelation of ego-motion when there is no prey
drone in the environment. Figure 3 shows the network along
with the activation and spiking in each layer. The membrane
potentials of the neurons are shown in Figure 3B. Stationary
objects have sparser events as shown in Figure 3B causing a
small potential rise in layer 2. This causes spiking to be sparse
in these regions. Thus, a persistent spiking in layer-2 happens
in the region corresponding to the prey drone. Thus, layer-2
carries out the filtering activity as denoted in Algorithm 1 in an
asynchronous spiking manner.

The intersection of surviving activity in both layer 2H and
layer 2V corresponds to the region of the prey. Layer-3 carries
out an AND operation using excitatory connections making
the activity survive only when both the layer have spiked in
that region. This ensures that only the pixels surviving after the
cancelation of both vertical and horizontal motion survive to
contribute to the identification of the prey. This is shown in
Figure 3G. Layer 4 calculates the pixel with the highest spiking
activity by calculating the histograms shown in Figure 2D.
All neurons in a row for layer 3 are connected to vertical
position neurons in layer 4 and similar connections are used
for the horizontal position. High sustained activity within a
column/row drives the horizontal/vertical position neuron to
spike. The intersection of the maximum spiking activity detected
by vertical and horizontal position neurons is declared as the
estimated position of the target (prey drone).

Asynchronous incoming events in layer- 1 requires
continuous operation of layer-1. However, the actual position
of the target need not be updated every microsecond because
of the finite mechanical delay in actuating the predator drone.
Thus, the layer-3 and layer-4 that infer the presence of the target
from the spiking pattern in layer 2 are calculated at a fixed
time interval called an epoch which determines the throughput
(outputs per second) of the system. The throughput is also
called FPS at some points because of its resemblance with
the throughput of frame pipeline. At the end of every epoch,
layers 2 and 3 are reset back to resting potential. This avoids
unnecessary build up of potential from the previous activity
from interfering in the future detection in absence of leakiness.
It also saves the storage and computation of previous spiking
time-stamp for every pixel to calculate the leakage within the
neuron for every incoming event. As there is no restriction on
frame rate for the DVS, the epoch can be made arbitrarily small
increasing the throughput. However, a very small epoch causes
a small number of incoming events to infer from with noise
leakage causing an accuracy drop. However, the epoch duration
is still significantly smaller than the inter-frame time interval
of the optical camera giving higher FPS for the SNN pipeline.
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The trade-off is explored in detail in Section 3.3. All neurons are
restored to the reset potential of “0” after an epoch is over. The
SNN proves useful when the prey generates a large number of
events compared to the background. This condition naturally
exists when the prey is close. The accuracy of the SNN degrades
gradually as the prey moves farther. However, for prey at a
distance, CNN works reliably as the prey cannot escape the FoV
quickly and can be tracked.

2.2. Prey detection via CNNs

Convolutional neural networks is required to add fault
tolerance to the reasonably accurate and fast SNN. Drone
detection using CNNs is well-explored (Chen et al., 2017;
Nalamati et al., 2019) with different models and training
methods having different accuracy vs. latency characteristics
(Aker and Kalkan, 2017; Sun et al., 2020; Singha and Aydin,
2021). The CNN provides a bounding box around the drone.
The mid-point of the bounding box is used as the CNN output.
This provides an anchor position for the fusion algorithm
to determine whether the SNN outputs are usable. However,
it is important to note that the final task at hand is target
localization for closed-loop chasing application. Therefore, the
exact dimensions of the bounding box do not have a stringent
restriction as required in the previous works where an accurate
object detection task is intended. Additionally, the CNN output
provides a reasonable estimate of the region of presence of the
target within the FoV for actuating the predator platform. The
Euclidean distance between the SNN and CNN outputs from
the true mid-point of the target’s position is used for calculating
the accuracy. We fuse the output of the neuroscience-inspired
SNN filter with an established electronic CNN pipeline for
boosting the throughput of target localization to track evasive
target prey. The accuracy vs. latency trade-off within the CNN
caused by different models and detection algorithms affects the
final accuracy after fusion. Thus, selection of feature detection
backbone and detection method forms a key decision. These
trade-offs are explored in the section 3.3 and the choice of
network is explained.

Reconstruction of intensity image from the events produced
by the DVS followed by conventional CNN based-object
detection is possible saving additionally required optical camera
in our work (Rebecq et al, 2019). Low-cost reconstruction
approaches have been demonstrated in Liu and Delbruck (2022)
for optical flow calculation where the binary intensity frame is
generated by event accumulation followed by block matching for
calculating the local optical flow. Mohan et al. (2022) uses event
accumulated binary frames for traffic monitoring for detecting
moving cars by a stationary event camera. However, our work
requires a frame-based accurate target detection using CNN
for maintaining the overall accuracy of the system. Thus, we
expect that this application will benefit from reliable intensity
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information requiring accurate event-to-frame reconstruction.
These approaches are typically computationally heavy (Wang
et al,, 2019), consuming vital circuit resources. We, therefore,
take the approach with separate optical and event-based cameras
in this work.

2.3. Target localization - fusing the SNN
and CNN outputs

The complementary specialization of event and frame
pipelines in capturing the temporal and spatial details make their
expertise in accuracy and latency complement each other. The
fused system uses either the most recent SNN output or CNN
output as the final localized position of the target and uses it to
actuate the predator drone for chasing.

When the target has not been “seen” by the CNN, the
SNN looks for a suspicious activity with its high speed.
The fusion algorithm uses the SNN output as the final
localized position of the target if multiple SNN outputs are
spatio-temporally consistent with each other. This causes the
predator to start chasing the prey drone at the final fused
position even before the CNN checks if it is the required
target. Thus, the fusion algorithm needs to signal the CNN
to confirm whether the activity corresponds to the required
target—adding object selectivity for a target. The chasing with
SNN detected activity makes sure that the prey does not
enter and evade the FoV of the predator before CNN could
process it.

Secondly, when the target is in the close vicinity and
generates significant activity, the SNN needs to utilize the high-
speed output for actuation while the CNN output confirms the
prey position it sporadically. When a CNN output is available,
the SNN outputs after it use it as an anchor to check their spatio-
temporal consistency. Therefore, both SNN and CNN outputs
are required to ensure correct chasing—both before and after the
presence of the target is confirmed within the FoV. However, one
of them is better suited depending upon the distance between the
prey and predator as the predator passes through different stages
of capturing the prey. These are listed below.

e Case-1 (Finding the prey): The predator rotates around
itself to find the prey in the environment around it. Any
spurious event activity causes consistent SNN outputs to
build suspicion. The CNN also keeps detecting in parallel.
If multiple SNN outputs infer the same region (spatio-
temporal consistency), then the suspicion level rises beyond
a threshold. This indicates the possibility of the prey being
present and the predator starts approaching while the CNN
is triggered to provide its inference for validation.

e Case-2 (Approaching the prey): A relatively long distance
between the predator and prey causes the prey to generate
a small number of events in the event camera output. Thus,
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##

t =0, suspicion=0

initialization ##

foundcnny =0, foundsyny =0, foundfused =0

positioncNn ,  positionsnn , positionfmd = None

. 5 _ (CNN inference time)
permd - (epoch  duration)

for (every SNN epoch in predator flight) do
positionsnn ,  foundsyn = SNN_pipeline()

##  periodic frame pipeline and IMU inputs ##

if t % period ==0 then
frame, depth_map = stereo_camera_read()
self _velocity = IMU _read()
positioncnn ., foundcnyy = CNN_pipeline(frame)
end

# SNN + CNN fusion - Suspicion score ##
if foundcyny ==0 then

if positionsnn (t) is close to positionsyy(t — 1) then
suspicion = suspicion + 1

if suspicion > suspicionyeshold then
foundfused =1
positiongeq = positionsnn

end

else

| suspicion = suspicion — 1
end

else

if positionsnn (1) is close to positioncyny  then
foundfused =1

positionfysq = positioncnn

end

end

##  Predator Actuation ##

if foundpeq==1 then
| Set speeds to approach the prey

else
| Revolve to find the prey

end

positionsyn(t — 1) = positiongyn (t)
t=t+1
end

Algorithm 2. Fusion algorithm.

it is highly likely that this activity gets canceled by the
SNN filter. However, the CNN is reliable in this domain
because the prey stays in the FoV for a longer time and
CNN latency is permissible. This allows the CNN inference
to track accurately with a relaxed constraint on latency.

e Case-3 (In the close vicinity of the prey): As the predator
approaches the prey, the event activity of the prey increases
making the SNN more reliable. Simultaneously, the latency
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constraint gets stringent as the prey can evade quickly.
Therefore, the fusion mechanism works best in this phase.
The noisy SNN inference is compared with the CNN
inference for spatial continuity and SNN output from
the previous epoch for temporal continuity. A spatio-
temporal consistent SNN output is declared as the position
of the target.

The error compensating fusion scheme is outlined in
Algorithm 2. The predator starts by searching for the prey by
rotating around itself till the prey is found by either SNN or
CNN. At every epoch of processing, the RGB frame and IMU
data is captured while the event stream continuously comes
in. The SNN filter operates continuously to identify if the prey
enters the frame and generated an output after every epoch.
Once the activity is detected, the output has to go through a
spatio-temporal consistency check with the recent SNN and
CNN outputs. This is carried out by defining a suspicion level. If
the position identified by the SNN [positiongnn ()] at time step
“¢” is close to the most recent CNN detection, then this indicates
the spatial continuity with the reliable CNN output and this
SNN output is declared as the final fused position (positiony,s)-
However, it might be possible that the CNN has not detected
the prey yet (foundcnny =
also compared with the identification of the SNN at the previous

0). In this case, positiongyn(t) is

epoch positiongyn(t — 1) to check temporal continuity. If the
SNN outputs are spatially close within the FoV, the suspicion
level rises. This makes sure that the SNN outputs correspond
to a genuine external motion in the region. For the suspicion
level beyond a threshold, the SNN output is declared as the final
fused output.

If the suspicion score rises above the predefined threshold,
this also triggers the CNN to confirm that the detection
corresponds to the prey. The CNN is also activated after every
fixed period of time. The area of the bounding box detected
by the CNN is used to estimate the distance between the
predator and prey. A larger bounding box corresponds to the
prey being in close vicinity. Depending upon the distance
between the prey and predator, the relative importance of SNN
and CNN are determined. If the prey is close, then most
compute resources can be allocated to SNN with sparser CNN
validations. Whereas if the prey is far, the CNN is made to
operate at maximum throughput by taking compute resources
from SNN as required in case-2. Depending upon the position
of the prey identified in the FoV, the actuation velocities are
selected with the goal of keeping the prey at the center of
the frame.

The allocation of computing resources to SNN and CNN
by tuning the operating frequency of the CNN dynamically
depending upon the distance between the prey and predator
assumes the same computing platform being used for the
implementation of both SNN and CNN. If the same platform
has enough resources to share (e.g., FPGA) for running both

Frontiersin Neuroscience

09

10.3389/fnins.2022.1010302

pipelines in parallel, then both SNN and CNN can be operated at
its maximum throughput and multiple epochs of SNN outputs
would be compared with the most recent CNN output for
spatial continuity.

3. Results

3.1. Verification using virtual
environments

The
environments

autonomous flights of drones within virtual
enabled by PEDRA

Raychowdhury, 2020). Programmable Engine for Drone

are (Anwar and

Reinforcement Learning Applications connects virtual
environments created in Unreal Engine to airsim (Shah et al,,
2018) enabled drones through a module-wise programmable
python interface. User-defined environments can be created
within Unreal Engine with varied level of complexities as used
in typical gaming platforms. Multiple drones can be instantiated
with a set of image, depth, and inertial sensors mounted on
them using airsim. The drones can be actuated at specific
velocities and orientations to interact with the environment.
The actuation can be pre-programmed for every time step
or can be determined by the CNN inference on the images
captured by onboard camera. Images can be captured from
the point of view of the drone and processed using Tensorflow
for image processing for actuating the drone for the next
time step. Programmable Engine for Drone Reinforcement
Learning Applications provides a training and evaluation
framework for the tasks that otherwise cannot be directly
tuned on a flying platforms. We instantiate a prey and a
predator drone in multiple virtual environments created for this
study. As PEDRA only provides frame-based image sensing,
we add experimentally calibrated frame to event conversion
using v2e tool (Hu et al., 2021). This provides a time-stamp
encoded event stream by fine-grained interpolation images and
calculation of intensity differences calibrated with real DVS
cameras. Thus, both event-based and frame-based visual data
is added to existing PEDRA infrastructure. The images and
event-stream captured by the predator drone are handed over
to the Python backend implementing both SNN and CNN. We
program the trajectory of the prey drone while the predator
is controlled using the output of the vision backend. We use
Intel i9 Processor and NVIDIA Quadro RTX 4000 GPU for the
simulation experiments. Both networks provide their outputs as
the center point of the detected target that are used in the fusion
algorithm to determine the final fused target position.

3.1.1. Operation of fusion algorithm
Figure 4 shows the evolution of the algorithm through
the cases outlined in the previous section. The inferences
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FIGURE 4

Predator drone’s point of view. (C) Correctness of output of SNN and CNN.
(D) Suspicion level caused by spatio-temporal continuity of SNN output. Su

Time

Phases of chasing the prey drone as the predator passes through cases 1-3. A time step corresponds to one output of SNN and is denoted by
“time" in figure. (A) Top view of the prey and predator drone positions. The prey becomes visible and is approached from case 1 to case 3. (B)

60 80 100

SNN is more reliable for case-3 whereas CNN is needed in case-2.
spicion level is used in determining the final fused position of prey.

from both pipelines along with the final fused output can be
seen in fusion demo-proof of concept®. The prey and predator

start at a distance with the prey drone being out of the
FoV of the predator (Figures4A,B). This corresponds to the
case-1. The SNN outputs in phase catch only the noise
and stationary background and do not have spatio-temporal
consistency. Therefore, the SNN outputs are incorrect in
this part (Figure 4C). Convolutional neural network operates
sparsely and CNN detections also verify that the prey is not
present in the FoV. This causes the suspicion score to stay at
zero (Figure 4D).

As the predator rotates, the prey appears within the Fov
causing SNN to provide outputs that lie in the same region as
the previous SNN outputs (case-2). This builds up the suspicion

2 https://youtu.be/wO86TO5PLEU
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level for the SNN (Figure 4D-case 2). When the suspicion level
exceeds the threshold, CNN is activated validating that the prey
is present in the FoV. The suspicion level can be seen to go down
quickly in this region for case-2. This is because the distance
between the prey and predator is still high the SNN outputs are
not very reliable.

As the distance between the predator and prey reduces,
the system enters case-3 where rapid accurate outputs are
required from the SNN with sparser CNN verification.
This is reflected in the high suspicion level in this phase
where spatio-temporally consistent outputs from the SNN
cause the suspicion level to rise and stay high. Figure 3C
also has correct SNN outputs in the region corresponding
to case-3.

Figure 5 illustrates an intermediate time step in case 2.
The SNN detects inaccurate background objects (Figure 5A)
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FIGURE 5

[llustration from an intermediate step in case 2 where an
incorrect SNN output is ignored by the fusion algorithm to use
the CNN output as the fused output. (A) SNN Output. (B) CNN
output. (C) Target position after fusion using CNN output instead
of noisy SNN output. (D) Top view of trajectory as predator goes
through cases outlined in Section 2.3. The intensity of the colors
corresponds to the time-step for both prey and predator.

while CNN has reliable detection (Figure 5B). The fusion
algorithm corrects this as the final fused output uses CNN
output (Figure 5C). Figure 5D shows the top view of the
trajectories of prey and predator from the demo video
denoting the regions of case 1-3 as the predator passes
through them.

3.1.2. Study in multiple environments and
trajectories

The previous proof of concept is extended to two forest
environments with sparse and dense backgrounds. The denser
background is expected to create more self-motion caused
events which in turn makes the SNN output noisier. The prey
drone is programmed to fly with different evasive trajectories
that make the prey enter the FoV for a brief period and
escape. The high-speed fused (SNN+CNN) vision system is
expected to be able to track these evasive trajectories. Both fused
and CNN-only (frame pipeline only) systems are compared to
establish the superiority of the fused system caused by the higher
throughput provided by the SNN. The video demonstration
for comparison is available at Multi-environment validation®.

Interested readers are strongly encouraged to watch the video to
understand the interplay between the frame and event pipelines.

The representative final trajectories taken by the prey and
predator in two of the trajectories in both environments are

3 https://youtu.be/cQIOGRgmMv3w
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plotted in Figure 6. The prey can be seen to have a curvy
trajectory as it tries to move out of the predator’s view. The
distance between the prey and predator as the algorithm
progresses is plotted in the bottom sub-plots (Figures 61-L).
The CNN-only system is unable to keep up with these quick
evasions and the prey moves out of the FoV for both sparse
and dense environments (Figures 6A-D). This can be seen as
the distance between the prey and predator rises for the CNN-
only system at least once in the chase. The fused (SNN +
CNN) system tracks the prey for a longer duration by keeping
it within the FoV (Figures 6E-H). This maintains a small
distance between the prey and predator as the predator chases
the prey. We also notice a few runs of the fused system not
being able to keep up and the prey escapes even with the
higher frame rate. These experiments validate the potential of
a fused system in having high-speed tracking while maintaining
high accuracy.

We observe that the algorithm critically depends on the
CNN detection for validating the SNN outputs. The failure
cases typically correspond to the runs where the CNN does a
mis-detection and they prey escapes. Thus, a reliable CNN is
highly desirable. Secondly, the accuracy of SNN is low in the
denser environment and causes the suspicion level to rise slower
because of the mis-identifications. This sometimes causes the
prey to escape. Incorrect CNN detection occurs more frequently
in the cluttered denser environment. Therefore, the system is
better suited for scenarios with smaller background clutter like
outdoor high-altitude applications.

3.1.3. Mitigating the accuracy vs. latency
trade-off

We now assess the accuracy vs. latency trade-off in
all 3 categories namely—SNN-only, CNN-only, and fused
SNN+CNN. The SNN and fused detection provide a single point
as output whereas the CNN provides a bounding box. The
mid-point of the bounding box is taken as the CNN output.
The accuracy for the SNN/CNN/fused results is calculated
by checking if the predicted position is within a 50-pixel
distance of the manually annotated position. Our accuracy
metric checks if the predicted and actual position are within
a similar region for actuating the predator drone to keep
the prey within the FoV. Our closed-loop chasing uses the
visual output at every time step to calculate the actuation
velocities such that the prey gets centered within the FoV as
the chasing progresses. This does not require exact bounding
boxes and coarse localization (Lee et al., 2018; Zhang and Ma,
2021) provided by the single-point outputs is adequate. Other
high-precision object detection approaches typically calculate
the exact overlap between predicted and manually annotated
bounding boxes in the image frame followed by evaluating
mean average precision (mAP). However, we use center location
error thresholding (50-pixels) instead of mAP as the comparison
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Performance improvement of the fused (SNN+CNN) system over CNN-only prey chasing for both sparse and dense environments. (A—D) Prey
escapes the FoV as CNN throughput cannot keep up with the curvy prey trajectory. (E—=H) Fused SNN+CNN tracks the prey using its higher
speed while maintaining accuracy. (I-L) Distance between prey and predator diverges for CNN-only chasing while remaining low for the
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metric for the coarse single object localization task at hand. This
center location error thresholding metric has also been used
previously to calculate the accuracy of single object tracking
(Wu et al,, 2013) and chasing (Liu et al., 2016). We confirm
the working of the system with such coarse detection system
in the multi-environment demonstration video provided in the
previous subsection. Figure 7 shows the accuracy and latencies
obtained for four different trajectories shown in the video and
three runs per trajectory for both virtual environments. Each
point corresponds to the average accuracy for a trajectory.
The latencies of SNN and CNN pipelines are extracted from
hardware estimation described in Section 3.4.

Convolutional neural networks shows near-perfect accuracy
with a longer latency (from section 3.3.2) as shown in Figure 7.
Noisy outputs of the SNN-only system causes the prey to
evade the predator in the initial time steps and it detects false
positives once the prey exits the FoV. This causes SNN to have
a very low accuracy. This causes the CNN and SNN pipelines
occupy the positions of trade-off as shown in Figure 7 for both
environments. The fused system compromises the accuracy
slightly while maintaining small latency allowing efficient
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tracking even for quick evasive trajectories. The fusion algorithm
reduces false alarms caused by noisy SNN while preserving the
true positive outputs. The fused latency is calculated by dividing
the total latency by the number of outputs from both SNN
and CNN during entire execution of the operation. Thus, the
accuracy vs. latency trade-off can be seen to be mitigated with a
fused system with event + frame hybrid processing.

3.2. Real-world demonstrations

3.2.1. Real-drones with emulated event data
The system was verified in both indoor and outdoor real-
world settings as the next step. The DJI Tello Edu is used as a
predator drone. This drone has a frame-based camera streaming
the data to alocal computer. The computer actuates the drone by
processing the data through a wireless link. As the IMU readings
are unavailable for these small drone, the actuation velocity of
the previous step is used as the self-velocity in the current step
for SNNs. Holystone 190S drone is used for prey which is flown
manually. Conversion of frames to events takes a long time with
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FIGURE 7
Mitigation of accuracy vs. latency trade-off in both (A) sparse
and (B) dense environments. The dense environment provides
lower relative fused accuracy compared to the sparse
environment because of higher noise in SNN outputs.
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FIGURE 8

Screenshots from real-world experiments in (A,B) outdoor and
(C,D) indoor scenario. The trajectories of the prey and predator
are shown by the arrows with final positions in step-2.

the video interpolation strategy used in v2e. This makes the
drones drift in the air with the wind and the inference takes a
long time. To avoid this issue, we use the difference between
the consecutive frames and threshold it to emulate the event
accumulated frame. The communication of image and actuation
velocities for the predator drone consumes 30 ms.

Figure 8 shows the screenshots of the experiments recorded
in videos— video-1*. The captured frames and detected drone
positions can be seen in the video. Figures 8A,B shows the two
steps in following the prey drone flying away while the predator
drone autonomously follows it. Figures 8C,D shows the prey
drone making a turn to evade the predator which eventually
tracks it. This demonstrates the feasibility of the implementation
of a closed-loop target tracking system. Although the realistic
noise in DVS and IMU is not incorporated in these experiments,
the multi-pipeline outputs are fused to generate an accurate
inference. Desired chasing action from the predator drone
demonstrates the potential of the system in a closed-loop setup.

4 https://youtu.be/lJgoaO6n-NY
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3.2.2. Hand-held DVS data

The experiments so far emulate the output of the DVS on
a frame-like. However, real DVS data with real IMU provides
significant noise that the system needs to tolerate. The depth
and event camera do not align exactly and the robustness of
the system needs to be tested for all these inherent inaccuracy
of the real hardware. Therefore, we test the system on a real-
data recorded on a hand-held DVS, depth camera, and the
corresponding IMU readings. We use DVXplorer and Realsense
d435i bound together as the camera assembly and the prey drone
is flown manually in front of it in an indoor lab setting. Realsense
camera provides IMU reading (62.5 Hz for accelerometer and
200 Hz for gyro-sensor). The self-velocities are calculated for
rate-limiting 62.5 Hz and are used for SNN outputs until a new
IMU reading is acquired The depth information is acquired
at 90 FPS. Spiking neural network uses the previous depth
information until a new depth frame is captured by the camera.
This results in a slight lag between event and depth information
if the operating throughput of SNN is higher than 90 FPS (264
FPS in this case). However, the SNN estimated position can be
observed to be reliable with this lag as shown in video-2 The
camera assembly is handheld and always points toward the prey
drone. The drone escapes the FoV and re-enters. The captured
data from DVS and the optical camera is aligned manually with
simple linear translation and scaling of the image. The data is
processed using the algorithm providing the outputs of CNN,
SNN, and fused system. The details are available in this video—
video-2°. A screenshot from the video is shown in Figure 9. The
spiking activity of the layers of SNN shows how ego-motion
cancelation results in the activity corresponding to the prey to
survive. The algorithm can be seen to work even in the highly
cluttered indoor setting with reasonable accuracy. The system
uses the faster SNN outputs along with the CNN outputs to
boost the throughput of the overall system. Even though this
system does not close the loop with autonomous actuation, the
working of the system with real data predicts that it is capable
of running on an aerial platform. The accuracy can be improved
further by building event + frame datasets for object tracking
using mobile platforms. Training SNN using such datasets may
improve the overall accuracy of the system. A future step would
involve mounting the assembly on a drone to close the loop from
sensing to actuation.

3.3. Design space exploration

The design parameters like “span,” noise in self-velocity
affect the SNN output. In addition to this, the selection of
epoch duration determines the SNN latency and throughput and
presents an internal accuracy vs. latency trade-off for the SNNG.
For very short epoch intervals (for high throughput), inadequate

5 https://youtu.be/aZsX4heR2gw
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FIGURE 9

Screenshots from the processing of the data recorded using the
multi-camera assembly. The spiking activity of the intermediate
layers of the SNN can be seen to cause self-motion cancelation.

number of events are processed injecting noise. This causes
lower accuracy. For lower throughput for SNN, higher accuracy
is achievable. On the other hand, the feature detection model and
object detection method in the CNN pipeline presents another
accuracy vs. latency trade-off within the CNN pipeline. Large
CNN models typically have larger accuracy at the cost of slower
execution. All these parameters and design variables offer a
wide range of parameters to choose from. We explore these
design choices in this section. The optimal parameters observed
in this section are used in the experiments presented in the
previous discussion.

3.3.1. Parameter tuning for event pipeline

“Span” and the noise in self-velocity directly affect the
spiking pattern in the SNN. The exact self-velocity of the
predator is available in the simulation environment whereas it is
noisy when acquired as the accumulated accelerometer sensors
output in the real IMU data. Therefore, we use simulations in
the virtual environment for finding the optimal values for these
parameters and their effect on the accuracy of SNN output.
We also investigate if the fused SNN + CNN system is capable
of improving the accuracy for these empirical parameters.
The experiments are carried out for the trajectory shown in
Figure 4D.

e Span: In the first experiment, the span of connectivity
between layer 1 and layer 2 is swept from 6 to 12 in
the steps of 2. A higher span indicates higher injected
activation in layer 2 for every incoming event from the
DVS. This results in a high chance of spiking in layer 2
and thus a higher probability of finding persistent activity.
However, the chance of mistaking a steady object for the
target also increases with higher activity injection. Thus,
both false positive and true positive outputs rise as the
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FIGURE 10
Tuning the empirical parameters for SNN filter and fusion
algorithm. (A,B) Target localization accuracy with a varying span
of connectivity for both sparse and dense environments. The
span of 10 is used for higher accuracy. (C,D) Target localization
accuracy while varying the induced noise in the predator’s
velocity for both sparse and dense environments. The final fused
accuracy is robust to noise in self-velocity.

span is increased. Three experiments are carried out for
each combination and both sparse and dense trajectories.
The results are plotted in Figures 10A,B. The accuracy
can be seen to improve from SNN-only identifications to
SNN+CNN fusion for most of the data points. We use the
span of 10 as it provides higher relative accuracy in both
sparse and dense environments.

e Noise in Self-velocity: Accurate reading of self-velocity
plays a key role in the self-motion cancelation network.
This bio-inspired approach relies on the assumption that
the IMU sensors can provide an accurate estimate of the
pose and speed. However, the sensors are often noisy in a
real-world scenario and it is necessary to test the limits on
error tolerance. We add noise in the velocity

Vinoisy = Vactual(1 & noise/100) (3)

The noisy simulations affect the accuracy of SNN.
Figures 10C,D shows that a high percentage of velocity
noise can be tolerated by the algorithm highlighting its
robustness. The SNN-only accuracy is lower compared
to fused accuracy with CNN validations boosting the
accuracy. The degradation in accuracy for SNNs is more for
the dense cluttered environment as expected.

The simulations show that both span and the noise in self-

velocity have a weak correlation with the accuracy of the event
pipeline. However, the accuracy improves significantly after
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fusion with CNN output as noisy SNN estimates are eliminated.
Additional exploration using real DVS data with accurate pose
estimation in different environments can be carried out in
the future.

e Epoch Duration (SNN Latency): The epoch duration in
SNN controls the accuracy and latency of the event
pipeline. The events generated within an epoch duration
are used to generate an SNN inference. Therefore, the
epoch duration controls the SNN throughput and latency.
This experiment cannot be reliably carried out in the
virtual environment, because v2e (Hu et al., 2021) reports a
simulated time stamps. Therefore, the experiment is carried
out using the real DVS data from Section 3.2.2. The data is
manually labeled for the position of the prey. The latency
of an epoch is varied in Figure 11A to find the accuracy of
SNN (event pipeline). A smaller duration of epoch results
in a higher throughput for SNN. The plot shows that
the accuracy monotonically increases for a larger epoch
duration. This indicates that smaller epoch duration causes
a small number of events to generate an inference from.
This results in more noise injection and a reduction in
the accuracy. A longer epoch produces large number of
events required for a reliable output. High SNN throughput
results in more SNN outputs between every consecutive
CNN detection. An effect of this on the final fused accuracy
is explored next.

The virtual environments used in this case alter the
amount of background clutter and show similar trends in the
hyperparameters. Therefore, we expect the trends to hold for
other scenarios with similar testing setups. However, if the
setup changes drastically, e.g., very high-speed chasing in a
high-altitude environment the tuning may need to be carried
out again.

3.3.2. Model selection for frame pipeline

The CNN needs to detect the prey drone accurately and
quickly for accurate fusion. In case of an incorrect detection, the
SNN identifications after it rely on it for updating the suspicion
level and the subsequent outputs result in accuracy degradation.
Therefore, a high accuracy is desirable. Simultaneously, if the
CNN is too slow, then multiple SNN outputs get processed
within two consecutive CNN outputs inducing inaccuracy in
the final fused output. The key requirement for CNN here is
the ability to track small drones. This is because the setup is
completely dependent upon the CNN when the prey is far away
corresponding to case-2. Thus, a reliable, fast, and small object
detection capable CNN is required. A previous survey on small
object detection dataset (Chen et al.,, 2016; Pham et al., 2017;
Nguyen et al., 2020) shows YOLO and Faster-RCNN have higher
accuracy compared to single-shot detectors. The size of the
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feature detection backbone also plays a key role in the accuracy
and latency of CNN. Thus, the design space consists of multiple
object detection methods and feature extraction networks to
choose from.

First, we train multiple models and find their respective
accuracy. We use the data recorded from the hand-held camera
assembly that records both event-stream and frames for the
flying prey drone simultaneously. The image frames from this
dataset are manually labeled. The data consists of 1,200 training
images and is validated on a video consisting of 400 frames.
Additionally, images from Lin (2020) and Gupta (2020) are
added for a diverse training. The pre-trained feature extraction
networks trained on the Imagenet dataset are used from Matlab.
The networks are trained and tested to find the accuracy shown
in Figure 11B. The accuracy for large feature extraction networks
like ResNet50 is higher than the smaller networks as expected.
Faster-RCNN detectors have higher accuracy as observed in
previous literature (Nguyen et al,, 2020; Pham et al, 2017).
This is because of the small size of the target prey drone and
faster-RCNNGs are better suited for small object detection.

In the second step, we calculate the latency of each of
the networks on an edge-FPGA of Zync-7000 (explained in
Section 3.4). We use ScaleSim (Samajdar et al., 2018) as the
architectural simulator for latency characterization. ScaleSim
has a systolic CNN array architecture. We characterize it as
per Zyng-7000 SoC’s resource availability. ScaleSim supports
resources as powers of two seamlessly. Therefore, 400 DSPs are
planned to be used in 16 x 16 systolic configuration. Similarly,
265 kB BRAM (local memory) is mapped onto 256 kB SRAM
cache. The input size and layer sizes for the network are provided
as input and the execution latency for a single image is extracted
as the output of the network. The latency is plotted across the
accuracy values as shown in Figure 11B. Squeezenet for YOLOV3
being small networks have a low inference latency whereas the
ResNet50 on Faster-RCNN takes a longer time to infer. This plot
also reveals the accuracy vs. latency trade-off within CNNs that
motivates this work. It can be seen that even the fastest CNN is
unable to provide very high throughput (> 100 FPS) showing
the need for the event pipeline.

3.3.3. Parameter selection for fusion algorithm
The accuracy vs. latency trade-off within both SNN
and CNN pipelines affects the performance at the fused
outputs (Figure 11C). We run the fusion algorithm on
the camera assembly data from Section 3.2.2. The overall
accuracy of the fused system is plotted across individual
SNN and CNN latencies. The final accuracy after fusion can
be seen to be critically dependent upon the CNN model.
GoogleNet+FasterRCNN provides the highest final accuracy.
This is because this configuration achieves the optimal balance
between accuracy and latency. ResNet50+FasterRCNN has very
high accuracy but longer latency causes incorrect SNN outputs
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Both event and frame pipelines have internal accuracy vs. latency trade-offs. (A) Accuracy of the event pipeline increases when the epoch
duration is large (lower throughput) with more events to infer from. (B) Different feature extractors and object detectors cause performance
trade-offs for CNN. The color coding shows the detector while the feature extractor is denoted in the figure. Resnet50+FasterRCNN is the most
accurate while Squeezenet+YOLO is the fastest. (C) Fused accuracy requires an accurate CNN with reasonably high speed for high accuracy. The
latency of SNN has a relatively low impact on fused accuracy while it determines the throughput. GoogleNet+FasterRCNN is the most suitable.
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to leak in between consecutive CNN inferences. This degrades
the overall fused latency for the ResNet50+FasterRCNN setup.
ResNet50+YOLO has worse fused accuracy compared to
squeezenet because of its longer inference latency in spite
of being slightly more accurate. This study shows that both
accuracy and latency on the CNN model are of key importance
in the final fused accuracy.

Spiking neural network latency determines the overall
throughput of the network and also controls the accuracy of
the SNN pipeline as seen in Figure 11A. However, it does not
have a critical impact on the overall fused accuracy of the
system. This shows that CNN model selection is imperative
in determining the fused accuracy of the system whereas
SNN latency is important in the final throughput of the
system. The previous results use the parameters tuned in this
section. This study provides a methodology to evaluate the
choice of the best model and SNN parameters corresponding
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to a processing platform. Our Zynq-7000 FPGA analysis
focuses on edge-compute. A larger FPGA can reduce the
inference latencies for all CNN architectures and therefore
the choice of the best network may differ. An exhaustive
analysis of multiple compute platforms, object detection
architectures, and backbone networks may be taken up in
the future.

3.4. Throughput estimation

The system requires a low-power (<10 W) edge application
at a high speed. It requires support for a highly compute-
intensive CNN with multi-channel convolution, as well as
memory-intensive SNN requiring membrane potential storage
and update for a large number of neurons. Thus, the hardware
requires parallelization for faster CNN and block-wise memory
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availability for SNN. The edge-TPU suits well for CNN but does
not support the high-speed requirement of the SNN. Similarly, a
dedicated SNN accelerator like Loihi (Davies et al., 2018) cannot
map the CNN effectively. Using individual optimized boards
requires additional effort in synchronization of the data and
adds latency of communication between the boards. Thus, a
programmable FPGA offers the optimal trade-off point in the
hardware space with decent support to both pipelines as well
as low-power edge applications. Spartan FPGA family lies in
the required low power range but has very limited resources.
Thus, we use Zynq 7000 FPGA for hardware mapping (BERTEN,
2016).

The SNN and fusion pipeline controls the maximum
throughput of the network. The micro-architecture of the SNN
and fusion system is shown in Figure 12. The input from
the event camera, IMU, and depth camera is acquired at the
input layer from the IO. The output of the CNN pipeline is
assume to be acquired from an internal CNN block running the
CNN. Layer 1 requires asynchronous operation as outlined in
Section 2.1 while the next layers along with the fusion algorithm
operate after every time epoch. Both layer 1H and 1V are to
be implemented in a block RAM for quick access to incoming
event packets. This makes the SNN design memory intensive
for storing 480 x 640 (frame size) activations. The IF neurons
add up the event activity and store the spiking information for
the next layers to process it. A counter triggers layers 2 and 3
after the duration of an epoch to identify the position. Thus,
the minimum epoch duration (maximum SNN throughput)
depends upon the latency of execution of layers 2, 3, and fusion
algorithm together.

We implement the above architecture using Vitis High-
level Synthesis on Zynq 7000 SoC (xc7z035-fbg767-1). All
SNN layers along with the fusion algorithm are mapped onto
the FPGA. The FPGA is operated at a clock period of 12
ns which is the maximum allowed clock frequency provided
by the synthesis. Layer-1 takes 65 clock cycles per incoming
event including the spike generation. Thus, 780 ns are taken
for every incoming event allowing the processing of 1.28 M
event/s. Execution of layers 2, 3, and fusion algorithm takes
3.78 ms. Therefore, the minimum epoch duration is 3.78 ms
with a maximum throughput of 264 FPS. This confirms that
a straightforward implementation on an edge-FPGA is able to
provide humongous throughput for the SNN. The resources
consumed by the implementation above are 375 BRAM (75%),
1 digital signal processor (DSP) (0.1%), 1,073 flip flops (FF)
(0.3%), 1,782 Look-up Tables (LUT) (1%) showing low resource
consumption on board. The SNN implementation is memory
intensive whereas the CNN implementation is generally DSP
intensive with multiple parallel operations. Thus, we expect
complementary resource consumption by the event and frame
pipelines directly suitable for FPGAs. An end-to-end bandwidth
optimized implementation of both pipelines can be taken up in
near future.
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Drone navigation typically uses companion computers
for vision processing that communicate the commands for
actuation to the flight controller that in turn drives the
motors. Autopilot software-hardware stacks like PX4 use UART
communication for receiving the actuation commands. The
maximum rate of communication lies in the kHz range.
Therefore, our throughput of 264 outputs per second is
not redundant from the electronics perspective and further
improvement is also desirable. From the mechanical perspective,
customized mid-sized drones capable of carrying the weight
of the DVS, frame camera, and compute platform are shown
in Zhu et al. (2018) and Falanga et al. (2020). These drones
are demonstrated to move at ~ 2 m/s. This corresponds to
an SNN output for every sub-centimeter displacement which
would be sufficient for tracking problems. High-speed drones
are typically lightweight and are unable to support large weights
of the cameras and compute assembly. A closed-loop study of
altering the sensor and compute weight on customized drones
could enable the search for the optimal point for the maximum
speed of the drone vs. sensor and compute weight. This can be
taken up in the future.

3.5. Comparison with prior work

We compare our method with previous demonstrations of
high-speed target localization (Table 1). YOLOv3 works with
a frame camera and performs reasonably fast (Redmon and
Farhadi, 2018) but works on a power-intensive GPU. Vibe
(Van Droogenbroeck and Barnich, 2014) works with the frame
difference between consecutive frames to identify the motion
but is eventually limited by the frame rate of the camera. The
approaches using event cameras typically show non-selective
identifications and tracking. This means that all moving objects
are identified without being selective. Falanga et al. (2020) uses
optical flow and event time stamp information to segregate
the moving object. Other non-selective tracking approaches
(Mitrokhin et al., 2018; Zhou et al., 2021; Vasco et al., 2017) use

TABLE 1 Previous work on high-speed target localization.

Reference Camera Platform Time  Target
ms  Selective

YOLOvV3, Redmon and Optical Titan X GPU 45 Yes

Farhadi (2018)

Vibe, Optical CPU T7300 599 No

Van Droogenbroeck and

Barnich (2014)

Falanga et al. (2020) DVS Jetson TX2 3.5 No

Mitrokhin et al. (2018) DVS Intel i7 CPU 10 No

This work Both Zynq FPGA 3.78 Yes
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an energy minimizing optimization to find the 3D movement of
event clusters and find outliers in them to be classified as moving
objects. These non-selective methods are incomplete without an
added object distinguishing network. Additionally, the latency
of these optimizations is speculated to be typically higher
(Mitrokhin et al., 2018) compared to our SNN because of more
complex iterations. Convolutional neural networks have also
been used with modified objective functions for segmentation of
the scene into multiple objects (Stoffregen et al., 2019; Alonso
and Murillo, 2019). But the setup becomes computationally
expensive because of the convolutional backbone and the speed
may be compromised on an edge platform. A fused optical
and event-based localization capability is used in Yang (2019)
but requires a Tianjic neuromorphic ASIC. Our method shows
a high throughput using SNNs and accurate and selective
detection of prey drones using CNN. Thus, our method can
provide a high-speed implementation on an edge-platform
suited for UAV applications.

4. Discussion

4.1. Bio-inspired ego-motion cancelation

A key contribution of this work lies in the design of
the ego-motion filter using SNN inspired by neuro-biological
advances in recent years. The nullification of self-generated
action (reafference) finds ample examples in biology. Male
crickets cancel their chirp preventing them to respond to it
(Kim et al., 2015). Electric fish cancel the electric field generated
by their own actions (Kim et al., 2015). In primates, inputs
from the vestibular system are processed in the cerebellum
to keep track of the motion (Cullen et al., 2011). Recent
progress in neuroscience postulated the presence of differentially
weighed neural connections behind this phenomenon (Zhang
and Bodznick, 2008). The first neurophysiological evidence for
this is found as a distinct class of neurons in the vestibular
nucleus of the primate brainstem (Oman and Cullen, 2014).
Another model argued that when the estimated response of
an ego-action is close to the perceived action, the cancelation
happens through adaptive inhibitory circuitry (Benazet et al.,
2016). A similar observation was made earlier for humans
where “smooth pursuit eye movement” for a target moving in
a direction decreases the sensitivity of the vision for the opposite
direction (Lindner et al, 2001). The behavioral experiments
argue that locomotive insects send a copy of their reafference
perceived by the sense to an internal neuron circuitry for
cancelation. The key experimental study in the ego-motion
cancelation in the vision on drosophila (housefly) is recently
published where the neurons corresponding to optical flow
around yaw and pitch axis are probed (Kim et al, 2015).
This shows that the visual neurons received the motor-related
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inputs in-flight turns causing the visual inputs to be strongly
suppressed. This is very similar to the method we propose where
we have the visual response cancelation using the vestibular ego-
motion using inhibitory synapses (differential cancelation). We
showed this neuro-inspired network is capable of detecting the
prey with high confidence when it is close to the predator for
high-speed response.

4.2. Neuro-mimetic multi-pathway
processing

Our system is inspired by the multi-pathway model of the
visual processing proposed and found in many animals. Multiple
neural paths specialize in specific tasks and combine their
inferences. The wavelength insensitive neurons are observed to
work for regular vision but UV sensitive neurons work for prey
tracking and foreground cancelation for larvae zebrafish (Zhou
et al., 2020). It has been stated that the color-intensive pathway
in the brain is slower compared to grayscale but richer in spatial
details of the information (Gegenfurtner and Hawken, 1996).
Monkeys have visual pathways optimized for global slow and
locally fast signals for high-speed tracking (Mazade et al., 2019)
(similar to our work). Houseflies also process local and global
motion data separately (Gollisch and Meister, 2010). Humans
have rods and cones in the retina separating color vision from
grayscale activity at the beginning of the processing pipeline.
The motion and color-sensitive pathways were suggested to be
different in housefly (Yamaguchi et al., 2008). This matches with
our design where spatially detailed color information (frame
pipeline) and temporally fine event information (event pipeline)
are gathered separately and processed in separate pathways
before merging into the fusion algorithm. Another feature of our
work is that SNN and CNN are suited for different phases of
chasing (cases 1-3). This has a parallel where different neuronal
clusters are observed to be active in different stages of hunting
for zebrafish (Forster et al.,, 2020). When the predator is at a
distance and following the prey, a set of neurons suited for
small object detection and tracking are active. However, as the
prey is approached and becomes bigger in size different sets
of neurons take over the detection task. Therefore, merging
and cooperation between the neural paths may have even more
interesting insights and applications in the future.

4.3. Usage of hard-coded networks

Our SNN takes a rigid synaptic weight structure processing
the asynchronous incoming event stream for canceling the ego-
motion. A natural criticism about it can be a lack of training
methodology to allow learning. However, many instinctive
tasks have been observed in insects which are postulated to
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be shaped by evolution without a learning response (Kanzaki,
1996). Furthermore, the plasticity is high in the initial phase
of life and then converges to learnt behaviors after the neural
development is near completion (Arcos-Burgos et al., 2019).
The argument that most of the animal behavior is encoded
in the genome instead of being learned (Zador, 2019) also
supports this approach. Hard-coded SNNs have been used
with with event-cameras for numerous tasks like stereo depth
estimation (Osswald et al.,, 2017), optical flow computation
(Orchard et al., 2013), lane-keeping (Bing et al., 2018), and
looming object avoidance (Salt et al., 2017). We believe that the
accuracy of our network can be improved with SNNs trained
for drone detection. This provides the first-order demonstration
of shallow and fast computation of ego-motion cancelation
as a step in building bio-inspired SNN robots for high-
speed applications.

4.4. Other related works

Simultaneous use of event and optical camera has been
approached in Liu et al. (2016) for predation task in wheeled
robots as well. This simultaneous event and frame-based
approach uses an event camera to identify the region of
interest while CNN does the object recognition on the identified
region saving energy consumption and boosting the processing
speed. However, the CNN latency for a single frame processing
persists. The region of interest identification task becomes
challenging with the cluttered background that we utilize in
our work, limiting the performance of this system. Another
hybrid approach has been used in a fused SNN + CNN
approach for optical flow calculation (Lee et al., 2021). The
events are accumulated using SNN and are merged into a
CNN for more accurate optical flow calculation. However,
the CNN backbone remains critical for every inference and
the throughput gets eventually limited by the compute. Our
approach has the independent frame and event-based pipelines
similar to Lele and Raychowdhury (2022) that only provide
their respective outputs for the fusion algorithm which works
in linear time.

Event camera-based moving object tracking problem
has also been addressed using model-based approaches like
cluster detection (Delbruck and Lang, 2013), corner detection
(Vasco et al, 2016), ICP (Ni et al, 2012), region of
interest tracking (Mohan et al, 2022), etc. However, these
works operate with either a stationary camera or stationary
environment as opposed to independently moving prey
and predator in this case. A modification to the region
proposal algorithm to identify the independently moving
object from velocity estimation can be incorporated to allow
tracking using a moving predator platform. Combining these
approaches with hybrid processing may open up interesting
future directions.
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4.5. Potential limitations

It is worthwhile to speculate on the limitations of the
proposed system. The performance assumes both pipelines to
be working reliably for interdependent cooperation. Therefore,
reasonable lighting conditions would be required for the CNN
pipeline although event cameras are known to work in low-light
environments. The stability of the drone under windy conditions
where the drone drifts creating spurious activity will require
accurate IMU sensors for ego-motion cancelation. Vibrations of
drone frames can also corrupt the event stream and IMU data.
Therefore, a stable flight is desirable for the accurate functioning
of the SNN filter. High altitude flight is expected to be easier with
sparser occlusions. We observe that the rapid motion of prey
drones causes image blur in the frame-based camera corrupting
the CNN output. Therefore, a high-quality image acquisition
or image stabilization mechanism may be needed in ultra-rapid
response implementations. Histogram-based method utilized in
SNN filter may get limited if directly applied to simultaneous
tracking of multiple objects. Recent works have demonstrated
region proposal on low-cost event-accumulated binary images
followed by multi-object tracking even in presence of occlusion
showing low computation and memory costs (Acharya et al.,
2019; Mohan et al, 2022). Customized circuits for this
application (Bose and Basu, 2022) demonstrate high throughput
and energy efficiency. Such methods can be applied for multi-
object tracking in place of layer-4 after canceling the activity
caused by the self-motion. Finally, selective tracking of an object
from multiple moving targets can be addressed in the future
by altering the spatio-temporal filtering algorithm to handle the
position from multiple SNN and CNN outputs.

4.6. Hardware implementation

Numerous  interesting  possibilities ~ for  circuit
implementation for such hybrid systems are also possible.
We evaluated a hybrid processing method with FPGA.
However, the latency of memory access and clocked sequential
nature of FPGA limits the performance of SNN. Dedicated
asynchronous SNN hardware like Loihi, truenorth (Akopyan
et al., 2015; Davies et al., 2018) would overcome the bottleneck
allowing massive parallelism with very low power. However,
these general-purpose SNN ASICs have a large hardware
overhead for the relatively simple network that we propose.
Processing the entire flow of the algorithm on a single die with
optimized circuits will allow the exploitation of a truly hybrid
framework from sensing to implementation at the constrained
power budget. Non-volatile crossbar arrays like resistive RAM
also show high throughput and low-power CNN processing
capability (Chang et al,, 2022) that can be augmented with
on-chip SNNs. Additional exploration in this direction needs to

be taken up in the future.
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5. Conclusion

We proposed a visual target localization system that
leverages the fusion of frame and event-based cameras
with corresponding processing neural networks to attain
the accuracy and latency advantages simultaneously. The
ego-motion canceling SNN and object detecting CNN exploit
the temporal and spatial resolution of the respective sensors
in two independent pipelines. The SNN filter incorporates
the connectivity from the insect brains and multi-pipeline
processing and interplay between SNN and CNN has a neuro-
biological basis in primate and insect brains. The system is
shown to work using a virtual environment and real-world
demonstrations. The feasibility of implementation on a low-
resource FPGA shows a potential throughput of 264 FPS.
This work may open exciting possibilities in building hybrid
SNN systems to mitigate the fundamental issues in frame-
based processing.
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