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Evolution has honed predatory skills in the natural world where localizing and

intercepting fast-moving prey is required. The current generation of robotic

systems mimics these biological systems using deep learning. High-speed

processing of the camera frames using convolutional neural networks (CNN)

(frame pipeline) on such constrained aerial edge-robots gets resource-limited.

Adding more compute resources also eventually limits the throughput at

the frame rate of the camera as frame-only traditional systems fail to

capture the detailed temporal dynamics of the environment. Bio-inspired

event cameras and spiking neural networks (SNN) provide an asynchronous

sensor-processor pair (event pipeline) capturing the continuous temporal

details of the scene for high-speed but lag in terms of accuracy. In this work,

we propose a target localization system combining event-camera and SNN-

based high-speed target estimation and frame-based camera and CNN-driven

reliable object detection by fusing complementary spatio-temporal prowess

of event and frame pipelines. One of our main contributions involves the

design of an SNN filter that borrows from the neural mechanism for ego-

motion cancelation in houseflies. It fuses the vestibular sensors with the

vision to cancel the activity corresponding to the predator’s self-motion.

We also integrate the neuro-inspired multi-pipeline processing with task-

optimized multi-neuronal pathway structure in primates and insects. The

system is validated to outperform CNN-only processing using prey-predator

drone simulations in realistic 3D virtual environments. The system is then

demonstrated in a real-world multi-drone set-up with emulated event data.

Subsequently, we use recorded actual sensory data from multi-camera and

inertial measurement unit (IMU) assembly to show desired working while

tolerating the realistic noise in vision and IMU sensors. We analyze the design

space to identify optimal parameters for spiking neurons, CNN models, and

for checking their effect on the performance metrics of the fused system.

Finally, we map the throughput controlling SNN and fusion network on

edge-compatible Zynq-7000 FPGA to show a potential 264 outputs per second

even at constrained resource availability. This work may open new research

directions by coupling multiple sensing and processing modalities inspired by
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discoveries in neuroscience to break fundamental trade-offs in frame-based

computer vision1.

KEYWORDS

high-speed target tracking, accuracy-speed tradeoff, ego-motion cancelation, design

space exploration, retinomorphic systems, hybrid neural network, event camera,

neuromorphic vision

1. Introduction

Predatory animals can quickly detect and chase their prey by

triggering locomotion to intercept it. Such a behavior involves

the visual input for the identification of the prey as well as

distinguishing the predator’s self-motion (ego-motion) from

the relative motion of the steady surroundings (Figure 1A).

Cheetahs have been recorded to run at 25 ms−1 (Wilson

et al., 2013) and their preys also move at comparable speeds

within the Field of View (FoV). Successful hunting relies on

advanced neural circuits that accept the incoming data from the

visual and inertial sensory organs and process it to enable real-

time locomotion actuation (Figure 1A). This closed-loop control

system across different cortices is capable of highly parallel

processing and achieves high power efficiency, speed, and

accuracy simultaneously (Sengupta and Stemmler, 2014). Such a

biological neural system is optimized over generations through

evolution and can be an inspiration to address engineering

applications, for instance, the high-speed target localization for

autonomous drones under constrained computing resources.

The state-of-the-art method for object detection uses

convolutional neural networks (CNN) due to its high accuracy

(Zhao et al., 2019; Jiao et al., 2019). Although CNNs are also

bio-inspired and have emerged from the layered connectivity

observed in primate brain (Cadieu et al., 2014; Khaligh-Razavi

and Kriegeskorte, 2014; Güçlü and van Gerven, 2015), the

computation gets increasingly intense with larger networks.

The models are typically large (Bianco et al., 2018) along with

considerable processing latency that puts a limitation on the

throughput (outputs per second or frames per second—FPS)

of the computation. Light-weight models trade-off the accuracy

for latency (Howard et al., 2017). The latency can be reduced

while preserving the accuracy by equipping more powerful

computing hardware on the drones (Duisterhof et al., 2019;

Wyder et al., 2019; Falanga et al., 2020). But the edge computing

platforms on a drone usually come with limited accessible

power due to the energy density of batteries, which eventually

limits the speed and throughput of the computation. Therefore,

the traditional frame-based pipeline with frame-based camera

1 This work is carried out when all authors were at Georgia Institute of

Technology.

(optical camera) and CNNs suffer from the trade-off between

computational latency and accuracy for multiple real-time visual

tasks including segmentation (Li et al., 2019), object detection

(Huang et al., 2017), and gender detection (Greco et al., 2020).

On the other hand, spiking neural networks (SNNs) that

represent a new paradigm of artificial neural networks attempt

to computationally model biological neural systems. Spiking

neural networks exhibit low power consumption in customized

hardware platforms (Akopyan et al., 2015; Davies et al., 2018)

by the exploitation of asynchronous decentralized tile-based

designs. Spiking neural networks have been demonstrated to

work for object detection of simple shapes (Cannici et al., 2019)

using training methods like approximate backpropagation (Lee

et al., 2019; Zhang and Li, 2019) and spike-time-dependent-

plasticity (STDP) based training (Diehl and Cook, 2015).

Recently proposed bio-mimetic event-based vision cameras

called dynamic vision sensors (DVS) boost the potential of

SNN-based visual processing even further by matching it with

the sensor of a similar modality (Gallego et al., 2019). The

regular optical camera lacks in taking full advantage of SNNs

because of its discrete frame generation structure where the

time-based computation of spikes cannot be fully exploited. The

DVS overcome it by allowing continuous-time input generation

in the form of events. An event gets generated when the

intensity of a pixel in the FoV of the camera changes. Event

generation corresponding to all the pixels takes place in parallel

and asynchronously, thus sensing only the motion of objects

in the FoV saving circuit resources and improving bandwidth.

This event-based data flow can be processed by SNNs with

matching datamodality. Dynamic vision sensor offers low power

consumption suited for edge-applications which coupled with

high-speed is applied in tasks like robotic goalie (Delbruck and

Lang, 2013) and looming object avoidance (Salt et al., 2017). This

makes DVS and SNN-based processing (event pipeline) perfectly

suited for a task like predation where low-power and high-speed

requirements are presented simultaneously.

Spiking neural network frameworks, however, can hardly

achieve the same level of detection accuracy compared to

their CNN counterparts because of the lack of reliable training

methods. Very deep networks cannot be trained easily and

reliably because of the non-differentiability of spikes (Lee et al.,

2020). Although some attempts using conversion of trained
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FIGURE 1

(A) Predation combines vision and vestibular inputs to localize the prey in a closed-loop. This involves canceling the self-motion of the predator

and identification of the prey. (B) Accuracy vs. latency trade-off between SNN and CNN. (C) Conventional optical camera + CNN (frame

pipeline) for reliable object detection and a parallel event-camera + SNN (event pipeline) for high-speed ego-motion cancelation. The

complementary prowess of event and frame processing is fused for target localization. 1. Eagle Eye by TwelveX is licensed under CC BY-NC-SA

2.0. 2. Bald Eagle hunting by vastateparksstaff is licensed under CC BY 2.0. 3. Anatomy of the Human Ear blank.svg by

Anatomy_of_the_Human_Ear.svg: Chittka L, Brockmann derivative work: M·Komorniczak -talk- is licensed under CC BY 2.5.

ANN-to-SNN (Kim et al., 2020) provide decent accuracy, the

complexity of the network negates the speed advantage of the

network. Newer methods with objective functions involving

smoothened spikes (Lee et al., 2020) and target spike trains

(Shrestha and Orchard, 2018) are proposed but are typically

applied to simpler problems (Yin et al., 2021). Spiking neural

networks, therefore, lie in the region of low accuracy and

low latency (Kim et al., 2020; Cannici et al., 2019). The

previous literature shows this clearly as shown in Figure 1B

for different SNNs (Chowdhury et al., 2021; Rathi and Roy,

2021; Wu et al., 2021; Zheng et al., 2021; Meng et al.,

2022). Simultaneously CNN (Bianco et al., 2018) configurations

achieve higher accuracy levels at the cost of slower processing

on NVIDIA Jetson TX1. Figure 1B shows results corresponding

to Imagenet classification dataset. Imagenet is chosen as it is

reasonably complex and is used frequently to benchmark SNN

performance. The SNN latency is calculated by using number

of time steps for inference with each timestep consisting of

1 ms of synchronization (Merolla et al., 2014). Figure 1B

makes it evident that CNNs has a potential to deliver higher

accuracy at a lower speed whereas SNNs are capable of

providing high-speed if the accuracy can be traded off. Thus,

we identify two couples of sensor and processing networks

with complementary prowess. Convolutional neural networks

and optical cameras show high accuracy by capturing detailed

spatial resolution whereas SNN and event-cameras show high-

speed processing by capturing of temporal dynamics of the

scene. Thus, the processing alternatives present an interesting

trade-off between event and frame pipelines (Figure 1B). Our

work proposes to overcome this trade-off by using a high-

speed ego-motion filter using event pipeline for fast target

estimation assisted by the optical camera and CNN based

reliable object detection for corroborating the identified position

(Figure 1C). The continuously operating SNN filter checks

for fast-moving target (prey drone in this case) entering the

FoV at all times while the CNN network gets activated at a

lower frequency confirming or refuting the presence of the

identified prey. The two systems operate in parallel allowing

the predator drone to exploit latency and accuracy advantage

concurrently. Our approach may find some similarity with

the combined event and frame sensing for object detection

(Liu et al., 2016) where the event-stream determines the area

of interest for CNN. Similarly, another fused approach for

optical flow (Lee et al., 2021) combined the sensor outputs in

a single CNN-like pipeline. However, both these approaches

use CNN backbone. Therefore, the throughput limitation put

in by CNN remains and the advantage of event-camera is not

fully utilized. Using our multi-pathway approach, we propose
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to cover a high-resolution spatial domain for prey detection

while quickly transferring to a continuous-time domain for

high-speed target localization using the insights from the visual

systems of predatory animals.

The ego-motion of the moving predator induces events for

stationary objects caused by the DVS. Most animals are known

to filter out activity caused by ego-motion using different kinds

of sensory feedback systems (Kim et al., 2015). It was proposed

that vestibular (inertial) feedback signals through inhibitory

connections compensate for the ego-motion in insects and

primates (Zhang and Bodznick, 2008; Benazet et al., 2016). This

was experimentally demonstrated recently, in Kim et al. (2015),

where the vestibular sensor induced self-motion cancelation was

observed by probing the neurons in houseflies. (1) Our first

contribution lies in the design and implementation of a bio-

inspired SNN-based ego-motion cancelation filter fusing event-

based vision with vestibular and depth information. Our SNN

filter removes the activity generated by the ego-motion leaving

only the events corresponding to the moving prey by mimicking

the neuro-biological counterparts. The loss of accuracy in the

noisy SNN filter is compensated by a highly accurate CNN-

driven object detector which captures and processes the RGB

image periodically to validate the SNN estimate. Therein lies the

second key contribution of this article. (2) We propose a close

interplay between CNNs and SNNs by coupling spatio-temporal

consistency criterion with a neuro-inspired model. This co-

ordination between multiple pipelines in different phases of

chasing is inspired by the use of specialized neuronal clusters

in different phases of hunting in Larvae zebrafish (Förster et al.,

2020). The separation between a locally fast (event pipeline) and

globally slow signal (frame pipeline) is similar to primate vision

(Mazade et al., 2019). Our algorithm relies on a CNN to detect

and identify the prey when it is far and a longer detection latency

is acceptable, and gradually hands over the task to the SNN as

the predator starts to approach the prey and a shorter latency

for fast-tracking is of the essence. Our multi-pipeline processing

with color information (frame pipeline) for accuracy andmotion

information (event pipeline) for speed emerges from the similar

color and motion separation in visual processing of primate and

insect vision (Gegenfurtner and Hawken, 1996; Yamaguchi et al.,

2008).

The algorithm is verified in a three-step process. In the first

step, we implement it on a programmable drone environment—

Programmable Engine for Drone Reinforcement Learning

Applications (PEDRA) (Anwar and Raychowdhury, 2020) with

different environments of varying level of obfuscation and

multiple evasive trajectories for the prey. In the second stage,

the algorithm is implemented on a real drone in both indoor

and outdoor environments. The prey drone is manually flown in

front of the closed-loop autonomous predator drone while the

DVS data is emulated from the frame-based images captured by

the onboard camera of the predator. Finally, we record a prey

flight using a hybrid camera assembly with on-board inertial

measurement unit (IMU) and process it to show accuracy

preserving high-speed computation tolerating real-world sensor

noise. The design space is explored to tune optimal parameters

for the SNN, appropriate model for the CNN and their impact

on the interplay on the fused CNN+SNN system. Finally, we

estimate the circuit level cost of implementing such a system

on a edge-compatible FPGA to show a potential throughput of

> 264 outputs per second. This work shows the conjunction

of SNN with more established CNNs for specialized high-speed

processing. This work may open a new research direction by

coupling parallel sensing and processing modalities to break

fundamental trade-offs in frame-based computer vision.

2. Methodology

2.1. Target estimation - ego-motion
cancelation using SNN

Identification of the prey from the cluttered event stream

requires separation of events corresponding to ego-motion and

their efficient cancelation. Model-based optimization methods

like contrast maximization (Gallego and Scaramuzza, 2017;

Rebecq et al., 2017), feature tracking (Kueng et al., 2016;

Zihao Zhu et al., 2017), or deep learning techniques (Alonso

and Murillo, 2019; Mitrokhin et al., 2019) have been used

for ego-motion cancelation and moving object detection

in event cameras. However, these methods require iterative

optimizations and multiple memory accesses lowering the

speed of computation. Secondly, our method uses CNN for

accuracy compensation. Therefore, high-speed requirement

takes precedence over accuracy for event pipeline and we rely

on bio-inspired faster alternatives while allowing compromise

in accuracy. The performance of a object detection is typically

measured using the overlap between the ground truth and

predicted bounding boxes. The target localization task at hand

requires actuating the predator with appropriate velocity and

rotation depending upon the region in which the target is

present. Therefore, an accurate detection is the one where the

output of SNN and CNN lies within a threshold of pixel distance

from the actual position of the prey drone. This easier definition

of accuracy allows measurement in terms of percentage of

correct localizations as used in the rest of this article.

The events-accumulated frame generated by the event

stream from the event camera in a time window is shown in

Figure 2A. The independent rapid motion of the prey creates

a denser cluster of events around it as seen in the image.

Other events are generated by the stationary objects within

the scene and should be canceled. The higher self-velocity of

the predator generates more events corresponding to stationary

objects. Therefore, activity cancelation needs to be proportional

to the predator’s self-velocity. Secondly, the reliance on the event

pipeline is higher when the prey is close to the predator where
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FIGURE 2

(A) Accumulated events within a time window from the event

camera. (B) High self-velocity and higher depth requires more

activity cancelation to preserve the activity of the moving target

in close vicinity. (C) Number of pixels to be canceled at every

position in the image. (D) Ego-motion cancelation removing the

activity corresponding to the stationary objects with the

surviving activity corresponding to the target (prey drone).

it can quickly evade and escape the FoV. This is because the

time of escaping the FoV is long when the prey is at a longer

distance, and slower detections from frame pipeline are more

reliable. Therefore, the SNN filter needs higher accuracy when

the distance between the prey and predator is small. Therefore,

the events at a higher depth from the predator are canceled out

to boost activity in the close vicinity.

This cancelation strategy is illustrated in Algorithm 1. Every

continuous patch of active pixels requires a fixed number of

events to be canceled from it. This cancel mask is denoted

by “cancel.” The pixel array is denoted by “p” where pixel

values are either 0 or 1. This is proportional to the self-

velocity of the predator and the depth of the pixel undergoing

the cancelation operation (Figure 2B). vH and vV denote the

scalar horizontal and vertical component of the predator motion

including velocity and rotation which is called self-velocity in

the article. This is acquired through the onboard IMU of the

event camera. The depth is acquired from a stereo camera which

provides depth for every pixels in meters. The velocity and depth

are both normalized using empirically found multipliers to

make them dimensionless for addition in Algorithm 1. Figure 2

shows the cancelation strategy with the number of events to be

canceled at every position shown in Figure 2C. With the prey

motion being faster than the steady environment, the activity

corresponding to the prey persists even after the cancelation

while the activity corresponding to the stationary background

gets canceled. Figure 2D shows the image after canceling out

the ego-motion generated events. Horizontal and vertical binned

histogram computation of the number of surviving pixels in this

image gives the approximate position of the prey.

for each incoming event at pixel [x,y] do

if if p[x,y] == 1 and p[x-1,y] == 0 then
cancel[x,y] = vV + depth[x,y]

p[x:x+cancel,y] = 0

end

if if p[x,y] == 1 and p[x,y-1] == 0 then
cancel[x,y] = vH + depth[x,y]

p[x,y:y+cancel] = 0

end

end

Algorithm 1. Frame-based self-motion cancelation.

However, this analysis relies on an event accumulated frame-

based computation which adds an additional overhead of frame

accumulation on the asynchronous event stream from the DVS

camera. Processing of the incoming events in the matched

asynchronous modality offers higher speed and energy efficiency

in the sparse computation effort. This is because accumulating

the frame followed by cancelation (matrix operations on n × n

matrix) adds O(n2 + m) complexity where m is the number of

events. On the other hand, processing the events independently

allows the speed of O(m). Therefore, we propose a four-layered

SNN for processing of Algorithm 1 in real-time. The network

gets its inspiration from recent neuro-biological discoveries

explained in Section 4.

Every incoming event carries its location (x, y), time of

generation (t), and polarity (p) feeding to the input layer of

the network shown in Figure 3A. Each spiking neuron obeys

the integrate and fire (IF) dynamics shown in the following

equations.

V[x, y]t+1 = V[x, y]t +
∑

i

Wi[x, y]Si[x, y]t (1)

if V[x, y]t+1 > Vth then S[x, y]t+1 = 1,V[x, y]t+2 = 0 (2)

The summation term corresponds to the incoming current

from the connected neurons (denoted by i) that spiked the

previous time instance. The synaptic weight from neuron “i” to

the neuron being updated ([x,y]) is denoted by Wi The spiking

of a neuron is denoted by S where S = 1 if the membrane

potential exceeds the spiking threshold (Vth). The input from

the previous synapses drives the output neuron at the immediate

next time step. This avoids the incorporation of the synaptic

delays and computation of time-delayed currents simplifying

the computation.

The first layer takes in the event stream from the event

camera (Figure 3A). This is connected to the next layers for

vertical (Layer 2V) and horizontal (Layer 2H) event cancelation.

Every neuron in the DVS layer drives “span” neurons above it
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FIGURE 3

(A) Four-layer ego-motion filtering SNN. Event-data, self-velocity, and depth information constitute the input and identified position of the prey

is provided at the output. (B) Event-accumulated frame within a time window. (C,D) Membrane potential of the neurons in layers 2H and 2V.

Patches of continuous event activity cause higher membrane potential build-up. This makes patches of high activity likely to spike more. (E,F)

Spikes issued by the 2H and 2V neurons. The prey activity preferentially survives because of the presence of continuous event patches near the

prey. (G) Spiking of Layer 3 neurons with AND operation on layer 2V and 2H for SNN output generation.

in Layer 2V and “span” neurons on the right of it in Layer 2H

with synapses of unit weight. Layer 2 is also driven by velocity

encoding neurons and depth encoding neurons. Both velocity

neurons and depth neurons are connected using inhibitory

synapses. The predator’s self-velocity needs to be calculated

using accelerometer readings from the IMU in the current step

and is converted to multi-neuron spiking activity by discretizing

it given by vH and vV and is connected to layer-2 using

inhibitory synapses. Every velocity neurons is connected to all

neurons in layer 2. Depth neurons are connected to the neurons

in the same position in layer 2.

For every incoming spike at position [x, y], the membrane

potential for the neurons in layer 2 rises by a fixed amount

given by the synaptic weights from the DVS layer while it is

pulled down by velocity neuron and depth neurons. Only when a

continuous spatial region has persistent activity (Figures 3C,D),

the potential rise is enough to cause a spike (Figures 3E,F). This

naturally cancels out the noisy cluttered events. The self-velocity

and depth for every pixel determine a minimum width of the

spatial continuous spiking patch required to trigger spiking in

layer-2. Large self-velocity causes more spikes in a patch that

need to be removed. Therefore, higher self-velocity requires
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wider patches of continuous activity to cause spiking in layer

2 and vice versa. The synaptic weights have a unit value for all

the excitatory synapses. The negative (inhibitory) weights of the

velocity and depth neurons depend critically upon the resolution

of the event camera and FoV. They are empirically calculated to

ensure exact cancelation of ego-motion when there is no prey

drone in the environment. Figure 3 shows the network along

with the activation and spiking in each layer. The membrane

potentials of the neurons are shown in Figure 3B. Stationary

objects have sparser events as shown in Figure 3B causing a

small potential rise in layer 2. This causes spiking to be sparse

in these regions. Thus, a persistent spiking in layer-2 happens

in the region corresponding to the prey drone. Thus, layer-2

carries out the filtering activity as denoted in Algorithm 1 in an

asynchronous spiking manner.

The intersection of surviving activity in both layer 2H and

layer 2V corresponds to the region of the prey. Layer-3 carries

out an AND operation using excitatory connections making

the activity survive only when both the layer have spiked in

that region. This ensures that only the pixels surviving after the

cancelation of both vertical and horizontal motion survive to

contribute to the identification of the prey. This is shown in

Figure 3G. Layer 4 calculates the pixel with the highest spiking

activity by calculating the histograms shown in Figure 2D.

All neurons in a row for layer 3 are connected to vertical

position neurons in layer 4 and similar connections are used

for the horizontal position. High sustained activity within a

column/row drives the horizontal/vertical position neuron to

spike. The intersection of themaximum spiking activity detected

by vertical and horizontal position neurons is declared as the

estimated position of the target (prey drone).

Asynchronous incoming events in layer- 1 requires

continuous operation of layer-1. However, the actual position

of the target need not be updated every microsecond because

of the finite mechanical delay in actuating the predator drone.

Thus, the layer-3 and layer-4 that infer the presence of the target

from the spiking pattern in layer 2 are calculated at a fixed

time interval called an epoch which determines the throughput

(outputs per second) of the system. The throughput is also

called FPS at some points because of its resemblance with

the throughput of frame pipeline. At the end of every epoch,

layers 2 and 3 are reset back to resting potential. This avoids

unnecessary build up of potential from the previous activity

from interfering in the future detection in absence of leakiness.

It also saves the storage and computation of previous spiking

time-stamp for every pixel to calculate the leakage within the

neuron for every incoming event. As there is no restriction on

frame rate for the DVS, the epoch can be made arbitrarily small

increasing the throughput. However, a very small epoch causes

a small number of incoming events to infer from with noise

leakage causing an accuracy drop. However, the epoch duration

is still significantly smaller than the inter-frame time interval

of the optical camera giving higher FPS for the SNN pipeline.

The trade-off is explored in detail in Section 3.3. All neurons are

restored to the reset potential of “0” after an epoch is over. The

SNN proves useful when the prey generates a large number of

events compared to the background. This condition naturally

exists when the prey is close. The accuracy of the SNN degrades

gradually as the prey moves farther. However, for prey at a

distance, CNN works reliably as the prey cannot escape the FoV

quickly and can be tracked.

2.2. Prey detection via CNNs

Convolutional neural networks is required to add fault

tolerance to the reasonably accurate and fast SNN. Drone

detection using CNNs is well-explored (Chen et al., 2017;

Nalamati et al., 2019) with different models and training

methods having different accuracy vs. latency characteristics

(Aker and Kalkan, 2017; Sun et al., 2020; Singha and Aydin,

2021). The CNN provides a bounding box around the drone.

The mid-point of the bounding box is used as the CNN output.

This provides an anchor position for the fusion algorithm

to determine whether the SNN outputs are usable. However,

it is important to note that the final task at hand is target

localization for closed-loop chasing application. Therefore, the

exact dimensions of the bounding box do not have a stringent

restriction as required in the previous works where an accurate

object detection task is intended. Additionally, the CNN output

provides a reasonable estimate of the region of presence of the

target within the FoV for actuating the predator platform. The

Euclidean distance between the SNN and CNN outputs from

the true mid-point of the target’s position is used for calculating

the accuracy. We fuse the output of the neuroscience-inspired

SNN filter with an established electronic CNN pipeline for

boosting the throughput of target localization to track evasive

target prey. The accuracy vs. latency trade-off within the CNN

caused by different models and detection algorithms affects the

final accuracy after fusion. Thus, selection of feature detection

backbone and detection method forms a key decision. These

trade-offs are explored in the section 3.3 and the choice of

network is explained.

Reconstruction of intensity image from the events produced

by the DVS followed by conventional CNN based-object

detection is possible saving additionally required optical camera

in our work (Rebecq et al., 2019). Low-cost reconstruction

approaches have been demonstrated in Liu and Delbruck (2022)

for optical flow calculation where the binary intensity frame is

generated by event accumulation followed by blockmatching for

calculating the local optical flow. Mohan et al. (2022) uses event

accumulated binary frames for traffic monitoring for detecting

moving cars by a stationary event camera. However, our work

requires a frame-based accurate target detection using CNN

for maintaining the overall accuracy of the system. Thus, we

expect that this application will benefit from reliable intensity
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information requiring accurate event-to-frame reconstruction.

These approaches are typically computationally heavy (Wang

et al., 2019), consuming vital circuit resources. We, therefore,

take the approach with separate optical and event-based cameras

in this work.

2.3. Target localization - fusing the SNN
and CNN outputs

The complementary specialization of event and frame

pipelines in capturing the temporal and spatial details make their

expertise in accuracy and latency complement each other. The

fused system uses either the most recent SNN output or CNN

output as the final localized position of the target and uses it to

actuate the predator drone for chasing.

When the target has not been “seen” by the CNN, the

SNN looks for a suspicious activity with its high speed.

The fusion algorithm uses the SNN output as the final

localized position of the target if multiple SNN outputs are

spatio-temporally consistent with each other. This causes the

predator to start chasing the prey drone at the final fused

position even before the CNN checks if it is the required

target. Thus, the fusion algorithm needs to signal the CNN

to confirm whether the activity corresponds to the required

target—adding object selectivity for a target. The chasing with

SNN detected activity makes sure that the prey does not

enter and evade the FoV of the predator before CNN could

process it.

Secondly, when the target is in the close vicinity and

generates significant activity, the SNN needs to utilize the high-

speed output for actuation while the CNN output confirms the

prey position it sporadically. When a CNN output is available,

the SNN outputs after it use it as an anchor to check their spatio-

temporal consistency. Therefore, both SNN and CNN outputs

are required to ensure correct chasing—both before and after the

presence of the target is confirmedwithin the FoV. However, one

of them is better suited depending upon the distance between the

prey and predator as the predator passes through different stages

of capturing the prey. These are listed below.

• Case-1 (Finding the prey): The predator rotates around

itself to find the prey in the environment around it. Any

spurious event activity causes consistent SNN outputs to

build suspicion. The CNN also keeps detecting in parallel.

If multiple SNN outputs infer the same region (spatio-

temporal consistency), then the suspicion level rises beyond

a threshold. This indicates the possibility of the prey being

present and the predator starts approaching while the CNN

is triggered to provide its inference for validation.

• Case-2 (Approaching the prey): A relatively long distance

between the predator and prey causes the prey to generate

a small number of events in the event camera output. Thus,

## initialization ##

t = 0, suspicion = 0

foundCNN = 0, foundSNN = 0, foundfused = 0

positionCNN, positionSNN, positionfused = None

period =
(CNN inference time)

(epoch duration)

for (every SNN epoch in predator flight) do

positionSNN, foundSNN = SNN_pipeline()

## periodic frame pipeline and IMU inputs ##

if t % period == 0 then

frame, depth_map = stereo_camera_read()

self_velocity = IMU_read()

positionCNN, foundCNN = CNN_pipeline(frame)

end

## SNN + CNN fusion - Suspicion score ##

if foundCNN == 0 then

if positionSNN (t) is close to positionSNN (t − 1) then
suspicion = suspicion + 1

if suspicion > suspicionthreshold then

foundfused = 1

positionfused = positionSNN

end

else
suspicion = suspicion − 1

end

else

if positionSNN (t) is close to positionCNN then

foundfused = 1

positionfused = positionCNN

end

end

## Predator Actuation ##

if foundfused == 1 then

Set speeds to approach the prey

else

Revolve to find the prey

end

positionSNN (t − 1) = positionSNN (t)

t = t + 1

end

Algorithm 2. Fusion algorithm.

it is highly likely that this activity gets canceled by the

SNN filter. However, the CNN is reliable in this domain

because the prey stays in the FoV for a longer time and

CNN latency is permissible. This allows the CNN inference

to track accurately with a relaxed constraint on latency.

• Case-3 (In the close vicinity of the prey): As the predator

approaches the prey, the event activity of the prey increases

making the SNNmore reliable. Simultaneously, the latency
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constraint gets stringent as the prey can evade quickly.

Therefore, the fusion mechanism works best in this phase.

The noisy SNN inference is compared with the CNN

inference for spatial continuity and SNN output from

the previous epoch for temporal continuity. A spatio-

temporal consistent SNN output is declared as the position

of the target.

The error compensating fusion scheme is outlined in

Algorithm 2. The predator starts by searching for the prey by

rotating around itself till the prey is found by either SNN or

CNN. At every epoch of processing, the RGB frame and IMU

data is captured while the event stream continuously comes

in. The SNN filter operates continuously to identify if the prey

enters the frame and generated an output after every epoch.

Once the activity is detected, the output has to go through a

spatio-temporal consistency check with the recent SNN and

CNN outputs. This is carried out by defining a suspicion level. If

the position identified by the SNN [positionSNN (t)] at time step

“t” is close to the most recent CNN detection, then this indicates

the spatial continuity with the reliable CNN output and this

SNN output is declared as the final fused position (positionfused).

However, it might be possible that the CNN has not detected

the prey yet (foundCNN = 0). In this case, positionSNN (t) is

also compared with the identification of the SNN at the previous

epoch positionSNN (t − 1) to check temporal continuity. If the

SNN outputs are spatially close within the FoV, the suspicion

level rises. This makes sure that the SNN outputs correspond

to a genuine external motion in the region. For the suspicion

level beyond a threshold, the SNN output is declared as the final

fused output.

If the suspicion score rises above the predefined threshold,

this also triggers the CNN to confirm that the detection

corresponds to the prey. The CNN is also activated after every

fixed period of time. The area of the bounding box detected

by the CNN is used to estimate the distance between the

predator and prey. A larger bounding box corresponds to the

prey being in close vicinity. Depending upon the distance

between the prey and predator, the relative importance of SNN

and CNN are determined. If the prey is close, then most

compute resources can be allocated to SNN with sparser CNN

validations. Whereas if the prey is far, the CNN is made to

operate at maximum throughput by taking compute resources

from SNN as required in case-2. Depending upon the position

of the prey identified in the FoV, the actuation velocities are

selected with the goal of keeping the prey at the center of

the frame.

The allocation of computing resources to SNN and CNN

by tuning the operating frequency of the CNN dynamically

depending upon the distance between the prey and predator

assumes the same computing platform being used for the

implementation of both SNN and CNN. If the same platform

has enough resources to share (e.g., FPGA) for running both

pipelines in parallel, then both SNN and CNN can be operated at

its maximum throughput and multiple epochs of SNN outputs

would be compared with the most recent CNN output for

spatial continuity.

3. Results

3.1. Verification using virtual
environments

The autonomous flights of drones within virtual

environments are enabled by PEDRA (Anwar and

Raychowdhury, 2020). Programmable Engine for Drone

Reinforcement Learning Applications connects virtual

environments created in Unreal Engine to airsim (Shah et al.,

2018) enabled drones through a module-wise programmable

python interface. User-defined environments can be created

within Unreal Engine with varied level of complexities as used

in typical gaming platforms. Multiple drones can be instantiated

with a set of image, depth, and inertial sensors mounted on

them using airsim. The drones can be actuated at specific

velocities and orientations to interact with the environment.

The actuation can be pre-programmed for every time step

or can be determined by the CNN inference on the images

captured by onboard camera. Images can be captured from

the point of view of the drone and processed using Tensorflow

for image processing for actuating the drone for the next

time step. Programmable Engine for Drone Reinforcement

Learning Applications provides a training and evaluation

framework for the tasks that otherwise cannot be directly

tuned on a flying platforms. We instantiate a prey and a

predator drone in multiple virtual environments created for this

study. As PEDRA only provides frame-based image sensing,

we add experimentally calibrated frame to event conversion

using v2e tool (Hu et al., 2021). This provides a time-stamp

encoded event stream by fine-grained interpolation images and

calculation of intensity differences calibrated with real DVS

cameras. Thus, both event-based and frame-based visual data

is added to existing PEDRA infrastructure. The images and

event-stream captured by the predator drone are handed over

to the Python backend implementing both SNN and CNN. We

program the trajectory of the prey drone while the predator

is controlled using the output of the vision backend. We use

Intel i9 Processor and NVIDIA Quadro RTX 4000 GPU for the

simulation experiments. Both networks provide their outputs as

the center point of the detected target that are used in the fusion

algorithm to determine the final fused target position.

3.1.1. Operation of fusion algorithm

Figure 4 shows the evolution of the algorithm through

the cases outlined in the previous section. The inferences
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FIGURE 4

Phases of chasing the prey drone as the predator passes through cases 1–3. A time step corresponds to one output of SNN and is denoted by

“time” in figure. (A) Top view of the prey and predator drone positions. The prey becomes visible and is approached from case 1 to case 3. (B)

Predator drone’s point of view. (C) Correctness of output of SNN and CNN. SNN is more reliable for case-3 whereas CNN is needed in case-2.

(D) Suspicion level caused by spatio-temporal continuity of SNN output. Suspicion level is used in determining the final fused position of prey.

from both pipelines along with the final fused output can be

seen in fusion demo-proof of concept2. The prey and predator

start at a distance with the prey drone being out of the

FoV of the predator (Figures 4A,B). This corresponds to the

case-1. The SNN outputs in phase catch only the noise

and stationary background and do not have spatio-temporal

consistency. Therefore, the SNN outputs are incorrect in

this part (Figure 4C). Convolutional neural network operates

sparsely and CNN detections also verify that the prey is not

present in the FoV. This causes the suspicion score to stay at

zero (Figure 4D).

As the predator rotates, the prey appears within the Fov

causing SNN to provide outputs that lie in the same region as

the previous SNN outputs (case-2). This builds up the suspicion

2 https://youtu.be/wO86TO5PL6U

level for the SNN (Figure 4D–case 2). When the suspicion level

exceeds the threshold, CNN is activated validating that the prey

is present in the FoV. The suspicion level can be seen to go down

quickly in this region for case-2. This is because the distance

between the prey and predator is still high the SNN outputs are

not very reliable.

As the distance between the predator and prey reduces,

the system enters case-3 where rapid accurate outputs are

required from the SNN with sparser CNN verification.

This is reflected in the high suspicion level in this phase

where spatio-temporally consistent outputs from the SNN

cause the suspicion level to rise and stay high. Figure 3C

also has correct SNN outputs in the region corresponding

to case-3.

Figure 5 illustrates an intermediate time step in case 2.

The SNN detects inaccurate background objects (Figure 5A)

Frontiers inNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2022.1010302
https://youtu.be/wO86TO5PL6U
https://youtu.be/wO86TO5PL6U
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Lele et al. 10.3389/fnins.2022.1010302

FIGURE 5

Illustration from an intermediate step in case 2 where an

incorrect SNN output is ignored by the fusion algorithm to use

the CNN output as the fused output. (A) SNN Output. (B) CNN

output. (C) Target position after fusion using CNN output instead

of noisy SNN output. (D) Top view of trajectory as predator goes

through cases outlined in Section 2.3. The intensity of the colors

corresponds to the time-step for both prey and predator.

while CNN has reliable detection (Figure 5B). The fusion

algorithm corrects this as the final fused output uses CNN

output (Figure 5C). Figure 5D shows the top view of the

trajectories of prey and predator from the demo video

denoting the regions of case 1–3 as the predator passes

through them.

3.1.2. Study in multiple environments and
trajectories

The previous proof of concept is extended to two forest

environments with sparse and dense backgrounds. The denser

background is expected to create more self-motion caused

events which in turn makes the SNN output noisier. The prey

drone is programmed to fly with different evasive trajectories

that make the prey enter the FoV for a brief period and

escape. The high-speed fused (SNN+CNN) vision system is

expected to be able to track these evasive trajectories. Both fused

and CNN-only (frame pipeline only) systems are compared to

establish the superiority of the fused system caused by the higher

throughput provided by the SNN. The video demonstration

for comparison is available at Multi-environment validation3.

Interested readers are strongly encouraged to watch the video to

understand the interplay between the frame and event pipelines.

The representative final trajectories taken by the prey and

predator in two of the trajectories in both environments are

3 https://youtu.be/cQ9OGRgmv3w

plotted in Figure 6. The prey can be seen to have a curvy

trajectory as it tries to move out of the predator’s view. The

distance between the prey and predator as the algorithm

progresses is plotted in the bottom sub-plots (Figures 6I–L).

The CNN-only system is unable to keep up with these quick

evasions and the prey moves out of the FoV for both sparse

and dense environments (Figures 6A–D). This can be seen as

the distance between the prey and predator rises for the CNN-

only system at least once in the chase. The fused (SNN +

CNN) system tracks the prey for a longer duration by keeping

it within the FoV (Figures 6E–H). This maintains a small

distance between the prey and predator as the predator chases

the prey. We also notice a few runs of the fused system not

being able to keep up and the prey escapes even with the

higher frame rate. These experiments validate the potential of

a fused system in having high-speed tracking while maintaining

high accuracy.

We observe that the algorithm critically depends on the

CNN detection for validating the SNN outputs. The failure

cases typically correspond to the runs where the CNN does a

mis-detection and they prey escapes. Thus, a reliable CNN is

highly desirable. Secondly, the accuracy of SNN is low in the

denser environment and causes the suspicion level to rise slower

because of the mis-identifications. This sometimes causes the

prey to escape. Incorrect CNN detection occurs more frequently

in the cluttered denser environment. Therefore, the system is

better suited for scenarios with smaller background clutter like

outdoor high-altitude applications.

3.1.3. Mitigating the accuracy vs. latency
trade-off

We now assess the accuracy vs. latency trade-off in

all 3 categories namely—SNN-only, CNN-only, and fused

SNN+CNN. The SNN and fused detection provide a single point

as output whereas the CNN provides a bounding box. The

mid-point of the bounding box is taken as the CNN output.

The accuracy for the SNN/CNN/fused results is calculated

by checking if the predicted position is within a 50-pixel

distance of the manually annotated position. Our accuracy

metric checks if the predicted and actual position are within

a similar region for actuating the predator drone to keep

the prey within the FoV. Our closed-loop chasing uses the

visual output at every time step to calculate the actuation

velocities such that the prey gets centered within the FoV as

the chasing progresses. This does not require exact bounding

boxes and coarse localization (Lee et al., 2018; Zhang and Ma,

2021) provided by the single-point outputs is adequate. Other

high-precision object detection approaches typically calculate

the exact overlap between predicted and manually annotated

bounding boxes in the image frame followed by evaluating

mean average precision (mAP). However, we use center location

error thresholding (50-pixels) instead of mAP as the comparison
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FIGURE 6

Performance improvement of the fused (SNN+CNN) system over CNN-only prey chasing for both sparse and dense environments. (A–D) Prey

escapes the FoV as CNN throughput cannot keep up with the curvy prey trajectory. (E–H) Fused SNN+CNN tracks the prey using its higher

speed while maintaining accuracy. (I–L) Distance between prey and predator diverges for CNN-only chasing while remaining low for the

SNN+CNN system.

metric for the coarse single object localization task at hand. This

center location error thresholding metric has also been used

previously to calculate the accuracy of single object tracking

(Wu et al., 2013) and chasing (Liu et al., 2016). We confirm

the working of the system with such coarse detection system

in the multi-environment demonstration video provided in the

previous subsection. Figure 7 shows the accuracy and latencies

obtained for four different trajectories shown in the video and

three runs per trajectory for both virtual environments. Each

point corresponds to the average accuracy for a trajectory.

The latencies of SNN and CNN pipelines are extracted from

hardware estimation described in Section 3.4.

Convolutional neural networks shows near-perfect accuracy

with a longer latency (from section 3.3.2) as shown in Figure 7.

Noisy outputs of the SNN-only system causes the prey to

evade the predator in the initial time steps and it detects false

positives once the prey exits the FoV. This causes SNN to have

a very low accuracy. This causes the CNN and SNN pipelines

occupy the positions of trade-off as shown in Figure 7 for both

environments. The fused system compromises the accuracy

slightly while maintaining small latency allowing efficient

tracking even for quick evasive trajectories. The fusion algorithm

reduces false alarms caused by noisy SNN while preserving the

true positive outputs. The fused latency is calculated by dividing

the total latency by the number of outputs from both SNN

and CNN during entire execution of the operation. Thus, the

accuracy vs. latency trade-off can be seen to be mitigated with a

fused system with event + frame hybrid processing.

3.2. Real-world demonstrations

3.2.1. Real-drones with emulated event data

The system was verified in both indoor and outdoor real-

world settings as the next step. The DJI Tello Edu is used as a

predator drone. This drone has a frame-based camera streaming

the data to a local computer. The computer actuates the drone by

processing the data through a wireless link. As the IMU readings

are unavailable for these small drone, the actuation velocity of

the previous step is used as the self-velocity in the current step

for SNNs. Holystone 190S drone is used for prey which is flown

manually. Conversion of frames to events takes a long time with
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FIGURE 7

Mitigation of accuracy vs. latency trade-off in both (A) sparse

and (B) dense environments. The dense environment provides

lower relative fused accuracy compared to the sparse

environment because of higher noise in SNN outputs.

FIGURE 8

Screenshots from real-world experiments in (A,B) outdoor and

(C,D) indoor scenario. The trajectories of the prey and predator

are shown by the arrows with final positions in step-2.

the video interpolation strategy used in v2e. This makes the

drones drift in the air with the wind and the inference takes a

long time. To avoid this issue, we use the difference between

the consecutive frames and threshold it to emulate the event

accumulated frame. The communication of image and actuation

velocities for the predator drone consumes 30 ms.

Figure 8 shows the screenshots of the experiments recorded

in videos— video-14. The captured frames and detected drone

positions can be seen in the video. Figures 8A,B shows the two

steps in following the prey drone flying away while the predator

drone autonomously follows it. Figures 8C,D shows the prey

drone making a turn to evade the predator which eventually

tracks it. This demonstrates the feasibility of the implementation

of a closed-loop target tracking system. Although the realistic

noise in DVS and IMU is not incorporated in these experiments,

the multi-pipeline outputs are fused to generate an accurate

inference. Desired chasing action from the predator drone

demonstrates the potential of the system in a closed-loop setup.

4 https://youtu.be/IJgoaO6n-NY

3.2.2. Hand-held DVS data

The experiments so far emulate the output of the DVS on

a frame-like. However, real DVS data with real IMU provides

significant noise that the system needs to tolerate. The depth

and event camera do not align exactly and the robustness of

the system needs to be tested for all these inherent inaccuracy

of the real hardware. Therefore, we test the system on a real-

data recorded on a hand-held DVS, depth camera, and the

corresponding IMU readings. We use DVXplorer and Realsense

d435i bound together as the camera assembly and the prey drone

is flownmanually in front of it in an indoor lab setting. Realsense

camera provides IMU reading (62.5 Hz for accelerometer and

200 Hz for gyro-sensor). The self-velocities are calculated for

rate-limiting 62.5 Hz and are used for SNN outputs until a new

IMU reading is acquired The depth information is acquired

at 90 FPS. Spiking neural network uses the previous depth

information until a new depth frame is captured by the camera.

This results in a slight lag between event and depth information

if the operating throughput of SNN is higher than 90 FPS (264

FPS in this case). However, the SNN estimated position can be

observed to be reliable with this lag as shown in video-2 The

camera assembly is handheld and always points toward the prey

drone. The drone escapes the FoV and re-enters. The captured

data from DVS and the optical camera is aligned manually with

simple linear translation and scaling of the image. The data is

processed using the algorithm providing the outputs of CNN,

SNN, and fused system. The details are available in this video—

video-25. A screenshot from the video is shown in Figure 9. The

spiking activity of the layers of SNN shows how ego-motion

cancelation results in the activity corresponding to the prey to

survive. The algorithm can be seen to work even in the highly

cluttered indoor setting with reasonable accuracy. The system

uses the faster SNN outputs along with the CNN outputs to

boost the throughput of the overall system. Even though this

system does not close the loop with autonomous actuation, the

working of the system with real data predicts that it is capable

of running on an aerial platform. The accuracy can be improved

further by building event + frame datasets for object tracking

using mobile platforms. Training SNN using such datasets may

improve the overall accuracy of the system. A future step would

involve mounting the assembly on a drone to close the loop from

sensing to actuation.

3.3. Design space exploration

The design parameters like “span,” noise in self-velocity

affect the SNN output. In addition to this, the selection of

epoch duration determines the SNN latency and throughput and

presents an internal accuracy vs. latency trade-off for the SNNs.

For very short epoch intervals (for high throughput), inadequate

5 https://youtu.be/aZsX4heR2gw
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FIGURE 9

Screenshots from the processing of the data recorded using the

multi-camera assembly. The spiking activity of the intermediate

layers of the SNN can be seen to cause self-motion cancelation.

number of events are processed injecting noise. This causes

lower accuracy. For lower throughput for SNN, higher accuracy

is achievable. On the other hand, the feature detectionmodel and

object detection method in the CNN pipeline presents another

accuracy vs. latency trade-off within the CNN pipeline. Large

CNN models typically have larger accuracy at the cost of slower

execution. All these parameters and design variables offer a

wide range of parameters to choose from. We explore these

design choices in this section. The optimal parameters observed

in this section are used in the experiments presented in the

previous discussion.

3.3.1. Parameter tuning for event pipeline

“Span” and the noise in self-velocity directly affect the

spiking pattern in the SNN. The exact self-velocity of the

predator is available in the simulation environment whereas it is

noisy when acquired as the accumulated accelerometer sensors

output in the real IMU data. Therefore, we use simulations in

the virtual environment for finding the optimal values for these

parameters and their effect on the accuracy of SNN output.

We also investigate if the fused SNN + CNN system is capable

of improving the accuracy for these empirical parameters.

The experiments are carried out for the trajectory shown in

Figure 4D.

• Span: In the first experiment, the span of connectivity

between layer 1 and layer 2 is swept from 6 to 12 in

the steps of 2. A higher span indicates higher injected

activation in layer 2 for every incoming event from the

DVS. This results in a high chance of spiking in layer 2

and thus a higher probability of finding persistent activity.

However, the chance of mistaking a steady object for the

target also increases with higher activity injection. Thus,

both false positive and true positive outputs rise as the

FIGURE 10

Tuning the empirical parameters for SNN filter and fusion

algorithm. (A,B) Target localization accuracy with a varying span

of connectivity for both sparse and dense environments. The

span of 10 is used for higher accuracy. (C,D) Target localization

accuracy while varying the induced noise in the predator’s

velocity for both sparse and dense environments. The final fused

accuracy is robust to noise in self-velocity.

span is increased. Three experiments are carried out for

each combination and both sparse and dense trajectories.

The results are plotted in Figures 10A,B. The accuracy

can be seen to improve from SNN-only identifications to

SNN+CNN fusion for most of the data points. We use the

span of 10 as it provides higher relative accuracy in both

sparse and dense environments.

• Noise in Self-velocity: Accurate reading of self-velocity

plays a key role in the self-motion cancelation network.

This bio-inspired approach relies on the assumption that

the IMU sensors can provide an accurate estimate of the

pose and speed. However, the sensors are often noisy in a

real-world scenario and it is necessary to test the limits on

error tolerance. We add noise in the velocity

Vnoisy = Vactual(1± noise/100) (3)

The noisy simulations affect the accuracy of SNN.

Figures 10C,D shows that a high percentage of velocity

noise can be tolerated by the algorithm highlighting its

robustness. The SNN-only accuracy is lower compared

to fused accuracy with CNN validations boosting the

accuracy. The degradation in accuracy for SNNs is more for

the dense cluttered environment as expected.

The simulations show that both span and the noise in self-

velocity have a weak correlation with the accuracy of the event

pipeline. However, the accuracy improves significantly after
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fusion with CNN output as noisy SNN estimates are eliminated.

Additional exploration using real DVS data with accurate pose

estimation in different environments can be carried out in

the future.

• Epoch Duration (SNN Latency): The epoch duration in

SNN controls the accuracy and latency of the event

pipeline. The events generated within an epoch duration

are used to generate an SNN inference. Therefore, the

epoch duration controls the SNN throughput and latency.

This experiment cannot be reliably carried out in the

virtual environment, because v2e (Hu et al., 2021) reports a

simulated time stamps. Therefore, the experiment is carried

out using the real DVS data from Section 3.2.2. The data is

manually labeled for the position of the prey. The latency

of an epoch is varied in Figure 11A to find the accuracy of

SNN (event pipeline). A smaller duration of epoch results

in a higher throughput for SNN. The plot shows that

the accuracy monotonically increases for a larger epoch

duration. This indicates that smaller epoch duration causes

a small number of events to generate an inference from.

This results in more noise injection and a reduction in

the accuracy. A longer epoch produces large number of

events required for a reliable output. High SNN throughput

results in more SNN outputs between every consecutive

CNN detection. An effect of this on the final fused accuracy

is explored next.

The virtual environments used in this case alter the

amount of background clutter and show similar trends in the

hyperparameters. Therefore, we expect the trends to hold for

other scenarios with similar testing setups. However, if the

setup changes drastically, e.g., very high-speed chasing in a

high-altitude environment the tuning may need to be carried

out again.

3.3.2. Model selection for frame pipeline

The CNN needs to detect the prey drone accurately and

quickly for accurate fusion. In case of an incorrect detection, the

SNN identifications after it rely on it for updating the suspicion

level and the subsequent outputs result in accuracy degradation.

Therefore, a high accuracy is desirable. Simultaneously, if the

CNN is too slow, then multiple SNN outputs get processed

within two consecutive CNN outputs inducing inaccuracy in

the final fused output. The key requirement for CNN here is

the ability to track small drones. This is because the setup is

completely dependent upon the CNN when the prey is far away

corresponding to case-2. Thus, a reliable, fast, and small object

detection capable CNN is required. A previous survey on small

object detection dataset (Chen et al., 2016; Pham et al., 2017;

Nguyen et al., 2020) shows YOLO and Faster-RCNN have higher

accuracy compared to single-shot detectors. The size of the

feature detection backbone also plays a key role in the accuracy

and latency of CNN. Thus, the design space consists of multiple

object detection methods and feature extraction networks to

choose from.

First, we train multiple models and find their respective

accuracy. We use the data recorded from the hand-held camera

assembly that records both event-stream and frames for the

flying prey drone simultaneously. The image frames from this

dataset are manually labeled. The data consists of 1,200 training

images and is validated on a video consisting of 400 frames.

Additionally, images from Lin (2020) and Gupta (2020) are

added for a diverse training. The pre-trained feature extraction

networks trained on the Imagenet dataset are used fromMatlab.

The networks are trained and tested to find the accuracy shown

in Figure 11B. The accuracy for large feature extraction networks

like ResNet50 is higher than the smaller networks as expected.

Faster-RCNN detectors have higher accuracy as observed in

previous literature (Nguyen et al., 2020; Pham et al., 2017).

This is because of the small size of the target prey drone and

faster-RCNNs are better suited for small object detection.

In the second step, we calculate the latency of each of

the networks on an edge-FPGA of Zync-7000 (explained in

Section 3.4). We use ScaleSim (Samajdar et al., 2018) as the

architectural simulator for latency characterization. ScaleSim

has a systolic CNN array architecture. We characterize it as

per Zynq-7000 SoC’s resource availability. ScaleSim supports

resources as powers of two seamlessly. Therefore, 400 DSPs are

planned to be used in 16 × 16 systolic configuration. Similarly,

265 kB BRAM (local memory) is mapped onto 256 kB SRAM

cache. The input size and layer sizes for the network are provided

as input and the execution latency for a single image is extracted

as the output of the network. The latency is plotted across the

accuracy values as shown in Figure 11B. Squeezenet for YOLOv3

being small networks have a low inference latency whereas the

ResNet50 on Faster-RCNN takes a longer time to infer. This plot

also reveals the accuracy vs. latency trade-off within CNNs that

motivates this work. It can be seen that even the fastest CNN is

unable to provide very high throughput (> 100 FPS) showing

the need for the event pipeline.

3.3.3. Parameter selection for fusion algorithm

The accuracy vs. latency trade-off within both SNN

and CNN pipelines affects the performance at the fused

outputs (Figure 11C). We run the fusion algorithm on

the camera assembly data from Section 3.2.2. The overall

accuracy of the fused system is plotted across individual

SNN and CNN latencies. The final accuracy after fusion can

be seen to be critically dependent upon the CNN model.

GoogleNet+FasterRCNN provides the highest final accuracy.

This is because this configuration achieves the optimal balance

between accuracy and latency. ResNet50+FasterRCNN has very

high accuracy but longer latency causes incorrect SNN outputs
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FIGURE 11

Both event and frame pipelines have internal accuracy vs. latency trade-offs. (A) Accuracy of the event pipeline increases when the epoch

duration is large (lower throughput) with more events to infer from. (B) Different feature extractors and object detectors cause performance

trade-offs for CNN. The color coding shows the detector while the feature extractor is denoted in the figure. Resnet50+FasterRCNN is the most

accurate while Squeezenet+YOLO is the fastest. (C) Fused accuracy requires an accurate CNN with reasonably high speed for high accuracy. The

latency of SNN has a relatively low impact on fused accuracy while it determines the throughput. GoogleNet+FasterRCNN is the most suitable.

FIGURE 12

FPGA micro-architecture for throughput controlling event pipeline and fusion algorithm. The execution of layers 2, 3 and the fusion algorithm

determines the maximum potential throughput of 264 outputs per second. The asynchronous layer-1 has the capacity of handling 1.28 × 106

events per second.

to leak in between consecutive CNN inferences. This degrades

the overall fused latency for the ResNet50+FasterRCNN setup.

ResNet50+YOLO has worse fused accuracy compared to

squeezenet because of its longer inference latency in spite

of being slightly more accurate. This study shows that both

accuracy and latency on the CNN model are of key importance

in the final fused accuracy.

Spiking neural network latency determines the overall

throughput of the network and also controls the accuracy of

the SNN pipeline as seen in Figure 11A. However, it does not

have a critical impact on the overall fused accuracy of the

system. This shows that CNN model selection is imperative

in determining the fused accuracy of the system whereas

SNN latency is important in the final throughput of the

system. The previous results use the parameters tuned in this

section. This study provides a methodology to evaluate the

choice of the best model and SNN parameters corresponding

to a processing platform. Our Zynq-7000 FPGA analysis

focuses on edge-compute. A larger FPGA can reduce the

inference latencies for all CNN architectures and therefore

the choice of the best network may differ. An exhaustive

analysis of multiple compute platforms, object detection

architectures, and backbone networks may be taken up in

the future.

3.4. Throughput estimation

The system requires a low-power (<10 W) edge application

at a high speed. It requires support for a highly compute-

intensive CNN with multi-channel convolution, as well as

memory-intensive SNN requiring membrane potential storage

and update for a large number of neurons. Thus, the hardware

requires parallelization for faster CNN and block-wise memory
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availability for SNN. The edge-TPU suits well for CNN but does

not support the high-speed requirement of the SNN. Similarly, a

dedicated SNN accelerator like Loihi (Davies et al., 2018) cannot

map the CNN effectively. Using individual optimized boards

requires additional effort in synchronization of the data and

adds latency of communication between the boards. Thus, a

programmable FPGA offers the optimal trade-off point in the

hardware space with decent support to both pipelines as well

as low-power edge applications. Spartan FPGA family lies in

the required low power range but has very limited resources.

Thus, we use Zynq 7000 FPGA for hardwaremapping (BERTEN,

2016).

The SNN and fusion pipeline controls the maximum

throughput of the network. The micro-architecture of the SNN

and fusion system is shown in Figure 12. The input from

the event camera, IMU, and depth camera is acquired at the

input layer from the IO. The output of the CNN pipeline is

assume to be acquired from an internal CNN block running the

CNN. Layer 1 requires asynchronous operation as outlined in

Section 2.1 while the next layers along with the fusion algorithm

operate after every time epoch. Both layer 1H and 1V are to

be implemented in a block RAM for quick access to incoming

event packets. This makes the SNN design memory intensive

for storing 480 × 640 (frame size) activations. The IF neurons

add up the event activity and store the spiking information for

the next layers to process it. A counter triggers layers 2 and 3

after the duration of an epoch to identify the position. Thus,

the minimum epoch duration (maximum SNN throughput)

depends upon the latency of execution of layers 2, 3, and fusion

algorithm together.

We implement the above architecture using Vitis High-

level Synthesis on Zynq 7000 SoC (xc7z035-fbg767-1). All

SNN layers along with the fusion algorithm are mapped onto

the FPGA. The FPGA is operated at a clock period of 12

ns which is the maximum allowed clock frequency provided

by the synthesis. Layer-1 takes 65 clock cycles per incoming

event including the spike generation. Thus, 780 ns are taken

for every incoming event allowing the processing of 1.28 M

event/s. Execution of layers 2, 3, and fusion algorithm takes

3.78 ms. Therefore, the minimum epoch duration is 3.78 ms

with a maximum throughput of 264 FPS. This confirms that

a straightforward implementation on an edge-FPGA is able to

provide humongous throughput for the SNN. The resources

consumed by the implementation above are 375 BRAM (75%),

1 digital signal processor (DSP) (0.1%), 1,073 flip flops (FF)

(0.3%), 1,782 Look-up Tables (LUT) (1%) showing low resource

consumption on board. The SNN implementation is memory

intensive whereas the CNN implementation is generally DSP

intensive with multiple parallel operations. Thus, we expect

complementary resource consumption by the event and frame

pipelines directly suitable for FPGAs. An end-to-end bandwidth

optimized implementation of both pipelines can be taken up in

near future.

Drone navigation typically uses companion computers

for vision processing that communicate the commands for

actuation to the flight controller that in turn drives the

motors. Autopilot software-hardware stacks like PX4 use UART

communication for receiving the actuation commands. The

maximum rate of communication lies in the kHz range.

Therefore, our throughput of 264 outputs per second is

not redundant from the electronics perspective and further

improvement is also desirable. From themechanical perspective,

customized mid-sized drones capable of carrying the weight

of the DVS, frame camera, and compute platform are shown

in Zhu et al. (2018) and Falanga et al. (2020). These drones

are demonstrated to move at ∼ 2 m/s. This corresponds to

an SNN output for every sub-centimeter displacement which

would be sufficient for tracking problems. High-speed drones

are typically lightweight and are unable to support large weights

of the cameras and compute assembly. A closed-loop study of

altering the sensor and compute weight on customized drones

could enable the search for the optimal point for the maximum

speed of the drone vs. sensor and compute weight. This can be

taken up in the future.

3.5. Comparison with prior work

We compare our method with previous demonstrations of

high-speed target localization (Table 1). YOLOv3 works with

a frame camera and performs reasonably fast (Redmon and

Farhadi, 2018) but works on a power-intensive GPU. Vibe

(Van Droogenbroeck and Barnich, 2014) works with the frame

difference between consecutive frames to identify the motion

but is eventually limited by the frame rate of the camera. The

approaches using event cameras typically show non-selective

identifications and tracking. This means that all moving objects

are identified without being selective. Falanga et al. (2020) uses

optical flow and event time stamp information to segregate

the moving object. Other non-selective tracking approaches

(Mitrokhin et al., 2018; Zhou et al., 2021; Vasco et al., 2017) use

TABLE 1 Previous work on high-speed target localization.

Reference Camera Platform Time Target

ms Selective

YOLOv3, Redmon and

Farhadi (2018)

Optical Titan X GPU 45 Yes

Vibe,

Van Droogenbroeck and

Barnich (2014)

Optical CPU T7300 599 No

Falanga et al. (2020) DVS Jetson TX2 3.5 No

Mitrokhin et al. (2018) DVS Intel i7 CPU 10 No

This work Both Zynq FPGA 3.78 Yes
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an energy minimizing optimization to find the 3D movement of

event clusters and find outliers in them to be classified as moving

objects. These non-selective methods are incomplete without an

added object distinguishing network. Additionally, the latency

of these optimizations is speculated to be typically higher

(Mitrokhin et al., 2018) compared to our SNN because of more

complex iterations. Convolutional neural networks have also

been used with modified objective functions for segmentation of

the scene into multiple objects (Stoffregen et al., 2019; Alonso

and Murillo, 2019). But the setup becomes computationally

expensive because of the convolutional backbone and the speed

may be compromised on an edge platform. A fused optical

and event-based localization capability is used in Yang (2019)

but requires a Tianjic neuromorphic ASIC. Our method shows

a high throughput using SNNs and accurate and selective

detection of prey drones using CNN. Thus, our method can

provide a high-speed implementation on an edge-platform

suited for UAV applications.

4. Discussion

4.1. Bio-inspired ego-motion cancelation

A key contribution of this work lies in the design of

the ego-motion filter using SNN inspired by neuro-biological

advances in recent years. The nullification of self-generated

action (reafference) finds ample examples in biology. Male

crickets cancel their chirp preventing them to respond to it

(Kim et al., 2015). Electric fish cancel the electric field generated

by their own actions (Kim et al., 2015). In primates, inputs

from the vestibular system are processed in the cerebellum

to keep track of the motion (Cullen et al., 2011). Recent

progress in neuroscience postulated the presence of differentially

weighed neural connections behind this phenomenon (Zhang

and Bodznick, 2008). The first neurophysiological evidence for

this is found as a distinct class of neurons in the vestibular

nucleus of the primate brainstem (Oman and Cullen, 2014).

Another model argued that when the estimated response of

an ego-action is close to the perceived action, the cancelation

happens through adaptive inhibitory circuitry (Benazet et al.,

2016). A similar observation was made earlier for humans

where “smooth pursuit eye movement” for a target moving in

a direction decreases the sensitivity of the vision for the opposite

direction (Lindner et al., 2001). The behavioral experiments

argue that locomotive insects send a copy of their reafference

perceived by the sense to an internal neuron circuitry for

cancelation. The key experimental study in the ego-motion

cancelation in the vision on drosophila (housefly) is recently

published where the neurons corresponding to optical flow

around yaw and pitch axis are probed (Kim et al., 2015).

This shows that the visual neurons received the motor-related

inputs in-flight turns causing the visual inputs to be strongly

suppressed. This is very similar to the method we propose where

we have the visual response cancelation using the vestibular ego-

motion using inhibitory synapses (differential cancelation). We

showed this neuro-inspired network is capable of detecting the

prey with high confidence when it is close to the predator for

high-speed response.

4.2. Neuro-mimetic multi-pathway
processing

Our system is inspired by the multi-pathway model of the

visual processing proposed and found inmany animals. Multiple

neural paths specialize in specific tasks and combine their

inferences. The wavelength insensitive neurons are observed to

work for regular vision but UV sensitive neurons work for prey

tracking and foreground cancelation for larvae zebrafish (Zhou

et al., 2020). It has been stated that the color-intensive pathway

in the brain is slower compared to grayscale but richer in spatial

details of the information (Gegenfurtner and Hawken, 1996).

Monkeys have visual pathways optimized for global slow and

locally fast signals for high-speed tracking (Mazade et al., 2019)

(similar to our work). Houseflies also process local and global

motion data separately (Gollisch and Meister, 2010). Humans

have rods and cones in the retina separating color vision from

grayscale activity at the beginning of the processing pipeline.

The motion and color-sensitive pathways were suggested to be

different in housefly (Yamaguchi et al., 2008). This matches with

our design where spatially detailed color information (frame

pipeline) and temporally fine event information (event pipeline)

are gathered separately and processed in separate pathways

before merging into the fusion algorithm. Another feature of our

work is that SNN and CNN are suited for different phases of

chasing (cases 1–3). This has a parallel where different neuronal

clusters are observed to be active in different stages of hunting

for zebrafish (Förster et al., 2020). When the predator is at a

distance and following the prey, a set of neurons suited for

small object detection and tracking are active. However, as the

prey is approached and becomes bigger in size different sets

of neurons take over the detection task. Therefore, merging

and cooperation between the neural paths may have even more

interesting insights and applications in the future.

4.3. Usage of hard-coded networks

Our SNN takes a rigid synaptic weight structure processing

the asynchronous incoming event stream for canceling the ego-

motion. A natural criticism about it can be a lack of training

methodology to allow learning. However, many instinctive

tasks have been observed in insects which are postulated to
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be shaped by evolution without a learning response (Kanzaki,

1996). Furthermore, the plasticity is high in the initial phase

of life and then converges to learnt behaviors after the neural

development is near completion (Arcos-Burgos et al., 2019).

The argument that most of the animal behavior is encoded

in the genome instead of being learned (Zador, 2019) also

supports this approach. Hard-coded SNNs have been used

with with event-cameras for numerous tasks like stereo depth

estimation (Osswald et al., 2017), optical flow computation

(Orchard et al., 2013), lane-keeping (Bing et al., 2018), and

looming object avoidance (Salt et al., 2017). We believe that the

accuracy of our network can be improved with SNNs trained

for drone detection. This provides the first-order demonstration

of shallow and fast computation of ego-motion cancelation

as a step in building bio-inspired SNN robots for high-

speed applications.

4.4. Other related works

Simultaneous use of event and optical camera has been

approached in Liu et al. (2016) for predation task in wheeled

robots as well. This simultaneous event and frame-based

approach uses an event camera to identify the region of

interest while CNN does the object recognition on the identified

region saving energy consumption and boosting the processing

speed. However, the CNN latency for a single frame processing

persists. The region of interest identification task becomes

challenging with the cluttered background that we utilize in

our work, limiting the performance of this system. Another

hybrid approach has been used in a fused SNN + CNN

approach for optical flow calculation (Lee et al., 2021). The

events are accumulated using SNN and are merged into a

CNN for more accurate optical flow calculation. However,

the CNN backbone remains critical for every inference and

the throughput gets eventually limited by the compute. Our

approach has the independent frame and event-based pipelines

similar to Lele and Raychowdhury (2022) that only provide

their respective outputs for the fusion algorithm which works

in linear time.

Event camera-based moving object tracking problem

has also been addressed using model-based approaches like

cluster detection (Delbruck and Lang, 2013), corner detection

(Vasco et al., 2016), ICP (Ni et al., 2012), region of

interest tracking (Mohan et al., 2022), etc. However, these

works operate with either a stationary camera or stationary

environment as opposed to independently moving prey

and predator in this case. A modification to the region

proposal algorithm to identify the independently moving

object from velocity estimation can be incorporated to allow

tracking using a moving predator platform. Combining these

approaches with hybrid processing may open up interesting

future directions.

4.5. Potential limitations

It is worthwhile to speculate on the limitations of the

proposed system. The performance assumes both pipelines to

be working reliably for interdependent cooperation. Therefore,

reasonable lighting conditions would be required for the CNN

pipeline although event cameras are known to work in low-light

environments. The stability of the drone under windy conditions

where the drone drifts creating spurious activity will require

accurate IMU sensors for ego-motion cancelation. Vibrations of

drone frames can also corrupt the event stream and IMU data.

Therefore, a stable flight is desirable for the accurate functioning

of the SNN filter. High altitude flight is expected to be easier with

sparser occlusions. We observe that the rapid motion of prey

drones causes image blur in the frame-based camera corrupting

the CNN output. Therefore, a high-quality image acquisition

or image stabilization mechanism may be needed in ultra-rapid

response implementations. Histogram-based method utilized in

SNN filter may get limited if directly applied to simultaneous

tracking of multiple objects. Recent works have demonstrated

region proposal on low-cost event-accumulated binary images

followed by multi-object tracking even in presence of occlusion

showing low computation and memory costs (Acharya et al.,

2019; Mohan et al., 2022). Customized circuits for this

application (Bose and Basu, 2022) demonstrate high throughput

and energy efficiency. Such methods can be applied for multi-

object tracking in place of layer-4 after canceling the activity

caused by the self-motion. Finally, selective tracking of an object

from multiple moving targets can be addressed in the future

by altering the spatio-temporal filtering algorithm to handle the

position from multiple SNN and CNN outputs.

4.6. Hardware implementation

Numerous interesting possibilities for circuit

implementation for such hybrid systems are also possible.

We evaluated a hybrid processing method with FPGA.

However, the latency of memory access and clocked sequential

nature of FPGA limits the performance of SNN. Dedicated

asynchronous SNN hardware like Loihi, truenorth (Akopyan

et al., 2015; Davies et al., 2018) would overcome the bottleneck

allowing massive parallelism with very low power. However,

these general-purpose SNN ASICs have a large hardware

overhead for the relatively simple network that we propose.

Processing the entire flow of the algorithm on a single die with

optimized circuits will allow the exploitation of a truly hybrid

framework from sensing to implementation at the constrained

power budget. Non-volatile crossbar arrays like resistive RAM

also show high throughput and low-power CNN processing

capability (Chang et al., 2022) that can be augmented with

on-chip SNNs. Additional exploration in this direction needs to

be taken up in the future.
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5. Conclusion

We proposed a visual target localization system that

leverages the fusion of frame and event-based cameras

with corresponding processing neural networks to attain

the accuracy and latency advantages simultaneously. The

ego-motion canceling SNN and object detecting CNN exploit

the temporal and spatial resolution of the respective sensors

in two independent pipelines. The SNN filter incorporates

the connectivity from the insect brains and multi-pipeline

processing and interplay between SNN and CNN has a neuro-

biological basis in primate and insect brains. The system is

shown to work using a virtual environment and real-world

demonstrations. The feasibility of implementation on a low-

resource FPGA shows a potential throughput of 264 FPS.

This work may open exciting possibilities in building hybrid

SNN systems to mitigate the fundamental issues in frame-

based processing.

Data availability statement

The raw data supporting the conclusions of this article will

be made available by the authors, without undue reservation.

Author contributions

AL wrote the manuscript and performed the simulations

and experiments. YF helped with the experiments and concept

development. AA designed the simulation environments and

assisted in simulations. AR helped with developing the

concept, refining the experiments, and writing the manuscript.

All authors contributed to the article and approved the

submitted version.

Funding

This work was supported by CBRIC, one of six centers in

JUMP, a Semiconductor Research Corporation (SRC) program

sponsored by DARPA, and NSF grant CCF-2153440.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those

of their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

References

Acharya, J., Caycedo, A. U., Padala, V. R., Sidhu, R. R. S., Orchard, G.,
Ramesh, B., et al. (2019). “Ebbiot: a low-complexity tracking algorithm for
surveillance in IOVT using stationary neuromorphic vision sensors,” in 2019
32nd IEEE International System-on-Chip Conference (SOCC) (Singapore), 318–323.
doi: 10.1109/SOCC46988.2019.1570553690

Aker, C., and Kalkan, S. (2017). “Using deep networks for drone
detection,” in 2017 14th IEEE International Conference on Advanced Video and
Signal Based Surveillance (AVSS) (Lecce: IEEE), 1–6. doi: 10.1109/AVSS.2017.
8078539

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P.,
et al. (2015). TrueNorth: Design and tool flow of a 65 MW 1 million neuron
programmable neurosynaptic chip. IEEE Trans. Comput. Aid. Des. Integr. Circ.
Syst. 34, 1537–1557. doi: 10.1109/TCAD.2015.2474396

Alonso, I., and Murillo, A. C. (2019). “EV-SegNet: semantic segmentation
for event-based cameras,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (Long Beach, CA).
doi: 10.1109/CVPRW.2019.00205

Anwar, A., and Raychowdhury, A. (2020). Autonomous navigation via deep
reinforcement learning for resource constraint edge nodes using transfer learning.
IEEE Access. 8, 26549–26560. doi: 10.1109/ACCESS.2020.2971172

Arcos-Burgos, M., Lopera, F., Sepulveda-Falla, D., and Mastronardi,
C. (2019). Neural plasticity during aging. Neural Plast. 2019:6042132.
doi: 10.1155/2019/6042132

Benazet, M., Thénault, F., Whittingstall, K., and Bernier, P.-M. (2016).
Attenuation of visual reafferent signals in the parietal cortex during

voluntary movement. J. Neurophysiol. 116, 1831–1839. doi: 10.1152/jn.00231.
2016

BERTEN (2016). GPU vs FPGA Performance Comparison. Available online
at: https://www.bertendsp.com/pdf/whitepaper/BWP001_GPU_vs_FPGA_
Performance_Comparison_v1.0.pdf (accessed March, 2022).

Bianco, S., Cadene, R., Celona, L., and Napoletano, P. (2018). Benchmark
analysis of representative deep neural network architectures. IEEE Access. 6,
64270–64277. doi: 10.1109/ACCESS.2018.2877890

Bing, Z., Meschede, C., Huang, K., Chen, G., Rohrbein, F., Akl, M., et al. (2018).
“End to end learning of spiking neural network based on R-STDP for a lane keeping
vehicle,” in 2018 IEEE International Conference on Robotics and Automation
(ICRA) (Brisbane, QLD), 4725–4732. IEEE. doi: 10.1109/ICRA.2018.8460482

Bose, S. K., and Basu, A. (2022). A 389 TOPS/W, always on region
proposal integrated circuit using in-memory computing in 65 nm
CMOS. IEEE J. Solid State Circ. 2022, 1–15. doi: 10.1109/JSSC.2022.31
94098

Cadieu, C. F., Hong, H., Yamins, D. L., Pinto, N., Ardila, D., Solomon,
E. A., et al. (2014). Deep neural networks rival the representation of primate
it cortex for core visual object recognition. PLoS Comput. Biol. 10:e1003963.
doi: 10.1371/journal.pcbi.1003963

Cannici, M., Ciccone, M., Romanoni, A., and Matteucci, M.
(2019). “Asynchronous convolutional networks for object detection in
neuromorphic cameras,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (Long Beach, CA).
doi: 10.1109/CVPRW.2019.00209

Frontiers inNeuroscience 20 frontiersin.org

https://doi.org/10.3389/fnins.2022.1010302
https://doi.org/10.1109/SOCC46988.2019.1570553690
https://doi.org/10.1109/AVSS.2017.8078539
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1109/CVPRW.2019.00205
https://doi.org/10.1109/ACCESS.2020.2971172
https://doi.org/10.1155/2019/6042132
https://doi.org/10.1152/jn.00231.2016
https://www.bertendsp.com/pdf/whitepaper/BWP001_GPU_vs_FPGA_Performance_Comparison_v1.0.pdf
https://www.bertendsp.com/pdf/whitepaper/BWP001_GPU_vs_FPGA_Performance_Comparison_v1.0.pdf
https://doi.org/10.1109/ACCESS.2018.2877890
https://doi.org/10.1109/ICRA.2018.8460482
https://doi.org/10.1109/JSSC.2022.3194098
https://doi.org/10.1371/journal.pcbi.1003963
https://doi.org/10.1109/CVPRW.2019.00209
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Lele et al. 10.3389/fnins.2022.1010302

Chang, M., Spetalnick, S. D., Crafton, B., Khwa, W.-S., Chih, Y.-D.,
Chang, M.-F., et al. (2022). “A 40nm 60.64 TOPS/W ECC-capable compute-
in-memory/digital 2.25 MB/768 KB RRAM/SRAM system with embedded
cortex M3 microprocessor for edge recommendation systems,” in 2022 IEEE
International Solid-State Circuits Conference (ISSCC), Vol. 65 (San Francisco), 1–3.
doi: 10.1109/ISSCC42614.2022.9731679

Chen, C., Liu, M.-Y., Tuzel, O., and Xiao, J. (2016). “R-CNN for small
object detection,” in Asian Conference on Computer Vision (Taipei), 214–230.
doi: 10.1007/978-3-319-54193-8_14

Chen, Y., Aggarwal, P., Choi, J., and Kuo, C.-C. J. (2017). “A deep
learning approach to drone monitoring,” in 2017 Asia-Pacific Signal
and Information Processing Association Annual Summit and Conference
(APSIPA ASC) (Piscataway, NJ), 686–691. doi: 10.1109/APSIPA.2017.82
82120

Chowdhury, S. S., Rathi, N., and Roy, K. (2021). One timestep is all you
need: training spiking neural networks with ultra low latency. arXiv Preprint.
arXiv:2110.05929.

Cullen, K. E., Brooks, J. X., Jamali, M., Carriot, J., and Massot, C.
(2011). Internal models of self-motion: computations that suppress vestibular
reafference in early vestibular processing. Exp. Brain Res. 210, 377–388.
doi: 10.1007/s00221-011-2555-9

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.
(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE
Micro. 38, 82–99. doi: 10.1109/MM.2018.112130359

Delbruck, T., and Lang, M. (2013). Robotic goalie with 3 ms reaction time at
4% CPU load using event-based dynamic vision sensor. Front. Neurosci. 7:223.
doi: 10.3389/fnins.2013.00223

Diehl, P. U., and Cook, M. (2015). Unsupervised learning of digit
recognition using spike-timing-dependent plasticity. Front. Comput. Neurosci.
9:99. doi: 10.3389/fncom.2015.00099

Duisterhof, B. P., Krishnan, S., Cruz, J. J., Banbury, C. R., Fu, W., Faust,
A., et al. (2019). Learning to seek: deep reinforcement learning for phototaxis
of a nano drone in an obstacle field. arXiv Preprints. arXiv: 1909.11236.
doi: 10.48550/arXiv.1909.11236

Falanga, D., Kleber, K., and Scaramuzza, D. (2020). Dynamic obstacle
avoidance for quadrotors with event cameras. Sci. Robot. 5:eaaz9712.
doi: 10.1126/scirobotics.aaz9712

Förster, D., Helmbrecht, T. O., Mearns, D. S., Jordan, L., Mokayes, N., and
Baier, H. (2020). Retinotectal circuitry of larval zebrafish is adapted to detection
and pursuit of prey. Elife 9:e58596. doi: 10.7554/eLife.58596

Gallego, G., Delbruck, T., Orchard, G., Bartolozzi, C., Taba, B., Censi, A.,
et al. (2019). Event-based vision: a survey. arXiv preprint. arXiv:1904.08405.
doi: 10.48550/arXiv.1904.08405

Gallego, G., and Scaramuzza, D. (2017). Accurate angular velocity
estimation with an event camera. IEEE Robot. Automat. Lett. 2, 632–639.
doi: 10.1109/LRA.2016.2647639

Gegenfurtner, K. R., and Hawken, M. J. (1996). Interaction of
motion and color in the visual pathways. Trends Neurosci. 19, 394–401.
doi: 10.1016/S0166-2236(96)10036-9

Gollisch, T., and Meister, M. (2010). Eye smarter than scientists
believed: neural computations in circuits of the retina. Neuron 65, 150–164.
doi: 10.1016/j.neuron.2009.12.009

Greco, A., Saggese, A., Vento, M., and Vigilante, V. (2020). A convolutional
neural network for gender recognition optimizing the accuracy/speed tradeoff.
IEEE Access. 8, 130771–130781. doi: 10.1109/ACCESS.2020.3008793

Güçlü, U., and van Gerven,M. A. (2015). Deep neural networks reveal a gradient
in the complexity of neural representations across the ventral stream. J. Neurosci.
35, 10005–10014. doi: 10.1523/JNEUROSCI.5023-14.2015

Gupta, U. (2020). Available online at: https://github.com/slapbot/drone-
detection (accessed March, 2022).

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T.,
et al. (2017). MobileNets: efficient convolutional neural networks for mobile vision
applications. arXiv Preprint. arXiv:1704.04861. doi: 10.48550/arXiv.1704.04861

Hu, Y., Liu, S.-C., and Delbruck, T. (2021). “v2e: From video frames
to realistic DVS events,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (Nashville, TN), 1312–1321.
doi: 10.1109/CVPRW53098.2021.00144

Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., et al.
(2017). “Speed/accuracy trade-offs for modern convolutional object detectors,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(Honolulu, HI), 7310–7311. doi: 10.1109/CVPR.2017.351

Jiao, L., Zhang, F., Liu, F., Yang, S., Li, L., Feng, Z., et al. (2019). A
survey of deep learning-based object detection. IEEE Access. 7, 128837–128868.
doi: 10.1109/ACCESS.2019.2939201

Kanzaki, R. (1996). Behavioral and neural basis of instinctive behavior in insects:
odor-source searching strategies without memory and learning. Robot. Auton. Syst.
18, 33–43. doi: 10.1016/0921-8890(95)00081-X

Khaligh-Razavi, S.-M., and Kriegeskorte, N. (2014). Deep supervised, but not
unsupervised, models may explain it cortical representation. PLoS Comput. Biol.
10:e1003915. doi: 10.1371/journal.pcbi.1003915

Kim, A. J., Fitzgerald, J. K., and Maimon, G. (2015). Cellular evidence for
efference copy in drosophila visuomotor processing. Nat. Neurosci. 18, 1247–1255.
doi: 10.1038/nn.4083

Kim, S., Park, S., Na, B., and Yoon, S. (2020). “Spiking-yolo: spiking
neural network for energy-efficient object detection,” in The Thirty-Fourth
AAAI Conference on Artificial Intelligence (AAAI-20) (Beijing), 11270–11277.
doi: 10.1609/aaai.v34i07.6787

Kueng, B., Mueggler, E., Gallego, G., and Scaramuzza, D. (2016). “Low-
latency visual odometry using event-based feature tracks,” in 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (Daejeon),
16–23. doi: 10.1109/IROS.2016.7758089

Lee, C., Kosta, A. K., and Roy, K. (2021). Fusion-flownet: energy-efficient
optical flow estimation using sensor fusion and deep fused spiking-analog network
architectures. arXiv Preprint. arXiv:2103.10592. doi: 10.48550/arXiv.2103.10592

Lee, C., Sarwar, S. S., Panda, P., Srinivasan, G., and Roy, K. (2019). Enabling
spike-based backpropagation in state-of-the-art deep neural network architectures.
arXiv Preprint. arXiv:1903.06379. doi: 10.48550/arXiv.1903.06379

Lee, C., Sarwar, S. S., Panda, P., Srinivasan, G., and Roy, K. (2020). Enabling
spike-based backpropagation for training deep neural network architectures. Front.
Neurosci. 14:119. doi: 10.3389/fnins.2020.00119

Lee, S., Lee, J., Lee, J., Park, C.-K., and Yoon, S. (2018). Robust tumor localization
with pyramid GRAD-CAM. arXiv Preprint. arXiv:1805.11393.

Lele, A. S., and Raychowdhury, A. (2022). Fusing frame and event vision for
high-speed optical flow for edge application. arXiv e-prints. arXiv:2207.10720.
doi: 10.48550/arXiv.2207.10720

Li, X., Zhou, Y., Pan, Z., and Feng, J. (2019). “Partial order pruning: for
best speed/accuracy trade-off in neural architecture search,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (Long Beach,
CA), 9145–9153. doi: 10.1109/CVPR.2019.00936

Lin, D. C.-E. (2020). Available online at: https://github.com/chuanenlin/drone-
net (accessed March, 2022).

Lindner, A., Schwarz, U., and Ilg, U. J. (2001). Cancellation of self-induced
retinal image motion during smooth pursuit eye movements. Vis. Res. 41, 1685–
1694. doi: 10.1016/S0042-6989(01)00050-5

Liu, H., Moeys, D. P., Das, G., Neil, D., Liu, S.-C., and Delbrück, T.
(2016). “Combined frame-and event-based detection and tracking,” in 2016 IEEE
International Symposium on Circuits and systems (ISCAS) (Montreal, QC), 2511–
2514. doi: 10.1109/ISCAS.2016.7539103

Liu, M., and Delbruck, T. (2022). EDFLOW: Event driven optical flow camera
with keypoint detection and adaptive block matching. IEEE Trans. Circ. Syst. Video
Technol.. 32, 5776–5789. doi: 10.1109/TCSVT.2022.3156653

Mazade, R., Jin, J., Pons, C., and Alonso, J.-M. (2019). Functional specialization
of on and off cortical pathways for global-slow and local-fast vision. Cell Rep. 27,
2881–2894. doi: 10.1016/j.celrep.2019.05.007

Meng, Q., Xiao, M., Yan, S., Wang, Y., Lin, Z., and Luo, Z.-Q.
(2022). “Training high-performance low-latency spiking neural networks by
differentiation on spike representation,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (New Orleans, LA), 12444–12453.
doi: 10.1109/CVPR52688.2022.01212

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada,
J., Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit
with a scalable communication network and interface. Science 345, 668–673.
doi: 10.1126/science.1254642

Mitrokhin, A., Fermüller, C., Parameshwara, C., and Aloimonos, Y.
(2018). “Event-based moving object detection and tracking,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (Madrid), 1–9.
doi: 10.1109/IROS.2018.8593805

Mitrokhin, A., Ye, C., Fermuller, C., Aloimonos, Y., and Delbruck, T. (2019).
EV-IMO: Motion segmentation dataset and learning pipeline for event cameras.
arXiv preprint. arXiv:1903.07520. doi: 10.48550/arXiv.1903.07520

Mohan, V., Singla, D., Pulluri, T., Ussa, A., Gopalakrishnan, P. K., Sun,
P.-S., et al. (2022). Ebbinnot: a hardware-efficient hybrid event-frame tracker

Frontiers inNeuroscience 21 frontiersin.org

https://doi.org/10.3389/fnins.2022.1010302
https://doi.org/10.1109/ISSCC42614.2022.9731679
https://doi.org/10.1007/978-3-319-54193-8_14
https://doi.org/10.1109/APSIPA.2017.8282120
https://doi.org/10.1007/s00221-011-2555-9
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.3389/fnins.2013.00223
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.48550/arXiv.1909.11236
https://doi.org/10.1126/scirobotics.aaz9712
https://doi.org/10.7554/eLife.58596
https://doi.org/10.48550/arXiv.1904.08405
https://doi.org/10.1109/LRA.2016.2647639
https://doi.org/10.1016/S0166-2236(96)10036-9
https://doi.org/10.1016/j.neuron.2009.12.009
https://doi.org/10.1109/ACCESS.2020.3008793
https://doi.org/10.1523/JNEUROSCI.5023-14.2015
https://github.com/slapbot/drone-detection
https://github.com/slapbot/drone-detection
https://doi.org/10.48550/arXiv.1704.04861
https://doi.org/10.1109/CVPRW53098.2021.00144
https://doi.org/10.1109/CVPR.2017.351
https://doi.org/10.1109/ACCESS.2019.2939201
https://doi.org/10.1016/0921-8890(95)00081-X
https://doi.org/10.1371/journal.pcbi.1003915
https://doi.org/10.1038/nn.4083
https://doi.org/10.1609/aaai.v34i07.6787
https://doi.org/10.1109/IROS.2016.7758089
https://doi.org/10.48550/arXiv.2103.10592
https://doi.org/10.48550/arXiv.1903.06379
https://doi.org/10.3389/fnins.2020.00119
https://doi.org/10.48550/arXiv.2207.10720
https://doi.org/10.1109/CVPR.2019.00936
https://github.com/chuanenlin/drone-net
https://github.com/chuanenlin/drone-net
https://doi.org/10.1016/S0042-6989(01)00050-5
https://doi.org/10.1109/ISCAS.2016.7539103
https://doi.org/10.1109/TCSVT.2022.3156653
https://doi.org/10.1016/j.celrep.2019.05.007
https://doi.org/10.1109/CVPR52688.2022.01212
https://doi.org/10.1126/science.1254642
https://doi.org/10.1109/IROS.2018.8593805
https://doi.org/10.48550/arXiv.1903.07520
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Lele et al. 10.3389/fnins.2022.1010302

for stationary dynamic vision sensors. IEEE Inter. Things J. 9, 20902–20917.
doi: 10.1109/JIOT.2022.3178120

Nalamati, M., Kapoor, A., Saqib, M., Sharma, N., and Blumenstein, M.
(2019). “Drone detection in long-range surveillance videos,” in 2019 16th IEEE
International Conference on Advanced Video and Signal Based Surveillance (AVSS),
1–6. doi: 10.1109/AVSS.2019.8909830

Nguyen, N.-D., Do, T., Ngo, T. D., and Le, D.-D. (2020). An evaluation of deep
learning methods for small object detection. J. Elect. Comput. Eng. 2020:3189691.
doi: 10.1155/2020/3189691

Ni, Z., Bolopion, A., Agnus, J., Benosman, R., and Régnier, S. (2012).
Asynchronous event-based visual shape tracking for stable haptic feedback in
microrobotics. IEEE Trans. Robot. 28, 1081–1089. doi: 10.1109/TRO.2012.2198930

Oman, C. M., and Cullen, K. E. (2014). Brainstem processing of vestibular
sensory exafference: implications for motion sickness etiology. Exp. Brain Res. 232,
2483–2492. doi: 10.1007/s00221-014-3973-2

Orchard, G., Benosman, R., Etienne-Cummings, R., and Thakor, N. V.
(2013). A spiking neural network architecture for visual motion estimation.
2013 IEEE Biomed. Circ. Syst. Confer., 2013, 298–301. doi: 10.1109/BioCAS.2013.
6679698

Osswald, M., Ieng, S.-H., Benosman, R., and Indiveri, G. (2017). A spiking
neural network model of 3D perception for event-based neuromorphic stereo
vision systems. Sci. Rep. 7:40703. doi: 10.1038/srep40703

Pham, P., Nguyen, D., Do, T., Ngo, T. D., and Le, D.-D. (2017). “Evaluation of
deep models for real-time small object detection,” in International Conference on
Neural Information Processing, eds D. Liu, S. Xie, Y. Li, D. Zhao, and E. S. El-Alfy
(Cham: Springer), 516–526. doi: 10.1007/978-3-319-70090-8_53

Rathi, N., and Roy, K. (2021). Diet-SNN: a low-latency spiking neural
network with direct input encoding and leakage and threshold optimization.
IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–9. doi: 10.1109/TNNLS.2021.311
1897

Rebecq, H., Horstschaefer, T., and Scaramuzza, D. (2017). “Real-time
visual-inertial odometry for event cameras using keyframe-based nonlinear
optimization,” British Machine Vision Conference (London). doi: 10.5244/C.
31.16

Rebecq, H., Ranftl, R., Koltun, V., and Scaramuzza, D. (2019). “Events-to-
video: Bringing modern computer vision to event cameras,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (Long Beach,
CA), 3857–3866. doi: 10.1109/CVPR.2019.00398

Redmon, J., and Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv
Preprint. arXiv:1804.02767. doi: 10.48550/arXiv.1804.02767

Salt, L., Indiveri, G., and Sandamirskaya, Y. (2017). “Obstacle avoidance with
LGMD neuron: towards a neuromorphic uav implementation,” in 2017 IEEE
International Symposium on Circuits and Systems (ISCAS) (Baltimore, MD), 1–4.
doi: 10.1109/ISCAS.2017.8050976

Samajdar, A., Zhu, Y., Whatmough, P., Mattina, M., and Krishna, T. (2018).
Scale-sim: Systolic CNN accelerator simulator. arXiv Preprint arXiv:1811.02883.
doi: 10.48550/arXiv.1811.02883

Sengupta, B., and Stemmler, M. B. (2014). Power consumption during
neuronal computation. Proc. IEEE 102, 738–750. doi: 10.1109/JPROC.2014.
2307755

Shah, S., Dey, D., Lovett, C., and Kapoor, A. (2018). “AirSim: High-
fidelity visual and physical simulation for autonomous vehicles,” in Field and
Service Robotics, eds M. Hutter and R. Siegwart (Cham: Springer), 621–635.
doi: 10.1007/978-3-319-67361-5_40

Shrestha, S. B., and Orchard, G. (2018). SLAYER: Spike layer error reassignment
in time. Advances in Neural Information Processing Systems, 31 (NeurIPS 2018)
(Montreal, QC).

Singha, S., and Aydin, B. (2021). Automated drone detection using YOLOv4.
Drones 5:95. doi: 10.3390/drones5030095

Stoffregen, T., Gallego, G., Drummond, T., Kleeman, L., and Scaramuzza, D.
(2019). “Event-based motion segmentation by motion compensation,” in 2019
Proceedings of the IEEE/CVF International Conference on Computer Vision ( Seoul),
7244–7253. doi: 10.1109/ICCV.2019.00734

Sun, H., Yang, J., Shen, J., Liang, D., Ning-Zhong, L., and Zhou, H. (2020).
TIB-Net: Drone detection network with tiny iterative backbone. IEEE Access. 8,
130697–130707. doi: 10.1109/ACCESS.2020.3009518

Van Droogenbroeck, M., and Barnich, O. (2014). “ Vibe: A disruptive method
for background subtraction,” in Background Modeling and Foreground Detection
for Video Surveillance. eds T. Bouwmans, F. Porikli, B. Hoferlin, and A. Vacavant
(London: Chapman and Hall/CRC), 7.1–7.23.

Vasco, V., Glover, A., and Bartolozzi, C. (2016). “Fast event-based Harris corner
detection exploiting the advantages of event-driven cameras,” in 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (Daejeon),
4144–4149. doi: 10.1109/IROS.2016.7759610

Vasco, V., Glover, A., Mueggler, E., Scaramuzza, D., Natale, L., and Bartolozzi, C.
(2017). “Independent motion detection with event-driven cameras,” in 2017 18th
International Conference on Advanced Robotics (ICAR) (Hong Kong), 530–536.
doi: 10.1109/ICAR.2017.8023661

Wang, L., Mohammad Mostafavi i, S., Ho, Y.-S., and Yoon, K.-J.. (2019).
“Event-based high dynamic range image and very high frame rate video generation
using conditional generative adversarial networks,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (Long Beach, CA), 10081–
10090. doi: 10.1109/CVPR.2019.01032

Wilson, A. M., Lowe, J., Roskilly, K., Hudson, P. E., Golabek, K., and McNutt,
J. (2013). Locomotion dynamics of hunting in wild cheetahs. Nature 498, 185–189.
doi: 10.1038/nature12295

Wu, J., Chua, Y., Zhang, M., Li, G., Li, H., and Tan, K. C. (2021).
A tandem learning rule for effective training and rapid inference of deep
spiking neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–15.
doi: 10.1109/TNNLS.2021.3095724

Wu, Y., Lim, J., and Yang, M.-H. (2013). “Online object tracking: a benchmark,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(Portland, OR), 2411–2418. doi: 10.1109/CVPR.2013.312

Wyder, P. M., Chen, Y.-S., Lasrado, A. J., Pelles, R. J., Kwiatkowski, R., Comas,
E. O., et al. (2019). Autonomous drone hunter operating by deep learning and
all-onboard computations in GPS-denied environments. PLoS ONE 14:e0225092.
doi: 10.1371/journal.pone.0225092

Yamaguchi, S., Wolf, R., Desplan, C., and Heisenberg, M. (2008). Motion vision
is independent of color in drosophila. Proc. Natl. Acad. Sci. U.S.A. 105, 4910–4915.
doi: 10.1073/pnas.0711484105

Yang, Z. A. (2019). DashNet: A hybrid artificial and spiking neural
network for high-speed object tracking. arXiv Preprint. arXiv:1909.12942.
doi: 10.48550/arXiv.1909.12942

Yin, B., Corradi, F., and Bohte, S. M. (2021). Accurate online training
of dynamical spiking neural networks through forward propagation
through time. arXiv Preprint. arXiv:2112.11231. doi: 10.48550/arXiv.2112.
11231

Zador, A. M. (2019). A critique of pure learning and what artificial
neural networks can learn from animal brains. Nat. Commun. 10:3770.
doi: 10.1038/s41467-019-11786-6

Zhang, L., and Ma, J. (2021). Salient object detection based on progressively
supervised learning for remote sensing images. IEEE Trans. Geosci. Remote Sens.
59, 9682–9696. doi: 10.1109/TGRS.2020.3045708

Zhang, W., and Li, P. (2019). “Spike-train level backpropagation for training
deep recurrent spiking neural networks,” in 33rd Conference on Neural Information
Processing Systems (NeurIPS 2019) (Vancouver, BC), 7802–7813.

Zhang, Z., and Bodznick, D. (2008). Plasticity in a cerebellar-like structure:
suppressing reafference during episodic behaviors. J. Exp. Biol. 211, 3720–3728.
doi: 10.1242/jeb.020099

Zhao, Z.-Q., Zheng, P., Xu, S.-T., and Wu, X. (2019). Object detection with
deep learning: a review. IEEE Trans. Neural Netw. Learn. Syst. 30, 3212–3232.
doi: 10.1109/TNNLS.2018.2876865

Zheng, H., Wu, Y., Deng, L., Hu, Y., and Li, G. (2021). “Going deeper
with directly-trained larger spiking neural networks,” in Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 35 (Online), 11062–11070.

Zhou, M., Bear, J., Roberts, P. A., Janiak, F. K., Semmelhack, J., Yoshimatu,
T., et al. (2020). Zebrafish retinal ganglion cells asymmetrically encode
spectral and temporal information across visual space. Curr Biol. 15:2927–42.
doi: 10.1016/j.cub.2020.05.055

Zhou, Y., Gallego, G., Lu, X., Liu, S., and Shen, S. (2021).
Event-based motion segmentation with spatio-temporal graph cuts.
IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2021.312
4580

Zhu, A. Z., Thakur, D., Özaslan, T., Pfrommer, B., Kumar, V., and
Daniilidis, K. (2018). The multivehicle stereo event camera dataset: an event
camera dataset for 3D perception. IEEE Robot. Automat. Lett. 3, 2032–2039.
doi: 10.1109/LRA.2018.2800793

Zihao Zhu, A., Atanasov, N., and Daniilidis, K. (2017). “Event-based visual
inertial odometry,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (Honolulu, HI), 5391–5399. doi: 10.1109/CVPR.20
17.616

Frontiers inNeuroscience 22 frontiersin.org

https://doi.org/10.3389/fnins.2022.1010302
https://doi.org/10.1109/JIOT.2022.3178120
https://doi.org/10.1109/AVSS.2019.8909830
https://doi.org/10.1155/2020/3189691
https://doi.org/10.1109/TRO.2012.2198930
https://doi.org/10.1007/s00221-014-3973-2
https://doi.org/10.1109/BioCAS.2013.6679698
https://doi.org/10.1038/srep40703
https://doi.org/10.1007/978-3-319-70090-8_53
https://doi.org/10.1109/TNNLS.2021.3111897
https://doi.org/10.5244/C.31.16
https://doi.org/10.1109/CVPR.2019.00398
https://doi.org/10.48550/arXiv.1804.02767
https://doi.org/10.1109/ISCAS.2017.8050976
https://doi.org/10.48550/arXiv.1811.02883
https://doi.org/10.1109/JPROC.2014.2307755
https://doi.org/10.1007/978-3-319-67361-5_40
https://doi.org/10.3390/drones5030095
https://doi.org/10.1109/ICCV.2019.00734
https://doi.org/10.1109/ACCESS.2020.3009518
https://doi.org/10.1109/IROS.2016.7759610
https://doi.org/10.1109/ICAR.2017.8023661
https://doi.org/10.1109/CVPR.2019.01032
https://doi.org/10.1038/nature12295
https://doi.org/10.1109/TNNLS.2021.3095724
https://doi.org/10.1109/CVPR.2013.312
https://doi.org/10.1371/journal.pone.0225092
https://doi.org/10.1073/pnas.0711484105
https://doi.org/10.48550/arXiv.1909.12942
https://doi.org/10.48550/arXiv.2112.11231
https://doi.org/10.1038/s41467-019-11786-6
https://doi.org/10.1109/TGRS.2020.3045708
https://doi.org/10.1242/jeb.020099
https://doi.org/10.1109/TNNLS.2018.2876865
https://doi.org/10.1016/j.cub.2020.05.055
https://doi.org/10.1109/TNNLS.2021.3124580
https://doi.org/10.1109/LRA.2018.2800793
https://doi.org/10.1109/CVPR.2017.616
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	Bio-mimetic high-speed target localization with fused frame and event vision for edge application
	1. Introduction
	2. Methodology
	2.1. Target estimation - ego-motion cancelation using SNN
	2.2. Prey detection via CNNs
	2.3. Target localization - fusing the SNN and CNN outputs

	3. Results
	3.1. Verification using virtual environments
	3.1.1. Operation of fusion algorithm
	3.1.2. Study in multiple environments and trajectories
	3.1.3. Mitigating the accuracy vs. latency trade-off

	3.2. Real-world demonstrations
	3.2.1. Real-drones with emulated event data
	3.2.2. Hand-held DVS data

	3.3. Design space exploration
	3.3.1. Parameter tuning for event pipeline
	3.3.2. Model selection for frame pipeline
	3.3.3. Parameter selection for fusion algorithm

	3.4. Throughput estimation
	3.5. Comparison with prior work

	4. Discussion
	4.1. Bio-inspired ego-motion cancelation
	4.2. Neuro-mimetic multi-pathway processing
	4.3. Usage of hard-coded networks
	4.4. Other related works
	4.5. Potential limitations
	4.6. Hardware implementation

	5. Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


