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Abstract—Quadratic Unconstrained Binary Optimization
(QUBO) problem becomes an attractive and valuable optimiza-
tion problem formulation in that it can easily transform into
a variety of other combinatorial optimization problems such as
Graph/number Partition, Max-Cut, SAT, Vertex Coloring, TSP,
etc. Some of these problems are NP-hard and widely applied in
industry and scientific research. Meanwhile, QUBO has been
discovered to be compatible with two emerging computing
paradigms, neuromorphic computing, and quantum computing,
with tremendous potential to speed up future optimization
solvers. In this paper, we propose a novel neuromorphic comput-
ing paradigm that employs multiple collaborative spiking neural
networks to solve QUBO problems. Each SNN conducts a local
stochastic gradient descent search and shares the global best solu-
tions periodically to perform a meta-heuristic search for optima.
We simulate our model and compare it to a single SNN solver
and a mult-SNN solver without collaboration. Through tests on
benchmark problems, the proposed method is demonstrated to
be more efficient and effective in searching for QUBO optima.
Specifically, it exhibits x10 and x15-20 speedup respectively on
the multi-SNN solver without collaboration and the single-SNN
solver.

Index Terms—neuromorphic computing, spiking neural net-
works, combinatorial optimization, QUBO

I. INTRODUCTION AND BACKGROUND

A. Spiking Neural Network

Along with the renaissance of neural networks in recent
decades, deep learning models and algorithms have success-
fully dominated most fields of AI research and still keep
improving state-of-the-art performance on various benchmarks
[1]. However, the success of training deep neural networks
relies on tremendous data and powerful computing resources,
which commonly lead to substantial consumption of energy.
On the other hand, the human brain exhibits superior energy
efficiency over artificial neural networks on digital computers.
Spiking Neural Network (SNN) is the third generation of
neural networks that are developed by computational neurosci-
entists to model the dynamics of the biological neural system
[2]. The “spiking” comes from the action potential generated
by the membrane of biological neurons. The value of SNN
in AI computing was discovered and explored recently. SNN
encodes information with the timing or rate of spikes and
can process highly parallel spatial-temporal information with

a small number of neurons and spikes [3], [4]. SNN computes
in the timing of binary spikes, instead of large matrices of
weights. Also, it is a naturally sparse model that brings less
computing intensity. Another advantage of SNN comes from
the recent progress of neuromorphic computing hardware [5],
[6]. Novel nanotechnologies in semiconductor devices and
materials like resistive RAMs (RRAM) [7], spintronic devices
[8], and Ferroelectric devices [9], are thrusting the design
of mixed-signal neuromorphic computing systems, showing
promising future of energy-efficient computing. SNNs have
been successfully applied to various AI tasks demanding
energy efficiency, such as visual recognition [10], natural
language processing [11], brain-computer interface [12], and
robot control [13].

B. Neural Networks for Optimization

The idea of using neural networks to solve optimization
is not new. Using traditional neural networks to solve com-
binatorial optimization problems was explored as early as
1986 by Hopfield and Tank [14]. Aarts and Korst (1989)
proposed to use Boltzmann machines to solve constraint
satisfaction problems [15]. Recently there are a few related
works that employ SNNs to solve optimization problems.
Jonke et al present a method for designing stochastic SNN
based on energy functions [16]. These SNNs operate like
Boltzmann machines and perform stochastic searches for lower
energy status, which represents possible solutions to NP-
hard optimization problems such as 3-SAT and the traveling
salesman problem (TSP). A similar idea that using SNN to
solve constraint satisfaction problem has been explored by
Guerra and Furber [17].Coder et al demonstrate an Ising
model based on SNN and implement it on IBM’s Truenorth
neuromorphic processor to solve vertex cover problems, which
aim at finding a minimum vertex cover of a graph [18]. Most of
these works design neural networks with similar dynamics as
simulated annealing, which evolve towards energy minimum
for optimization.

C. Quadratic Unconstrained Binary Optimization

In this work, we focus on Quadratic Unconstrained Binary
Optimization (QUBO) problem because it can be formulated
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into numerous combinatorial problems with concise math-
ematic transformations. These problems including but not
limited to Graph/number Partition, Max-Cut, SAT, Graph
Coloring, TSP, etc [19], [20]. Some of these problems are NP
hard and widely exists in engineering and scientific research.
QUBO is also the fundamental algorithm carried out by the
quantum computer developed by D-wave [21], due to its
equivalent form as Ising model [22]. Similar to Ising model,
QUBO can also be implemented on neuromorphic systems
such as IBM Truenorth [23] and Intel Loihi [24]. Comparing
to the {+1,-1} variables in the Ising model, the binary variables
{0,1} in the QUBO model are more compatible with the output
of SNN. Differ from the previous works, we explore a set of
collaborative SNNs to solve QUBO problem.

A QUBO problem can be defined as:

min/max y = xtQx (1)

where x is a binary vector and Q is a square matrix of con-
stants. Q matrix is usually symmetric or upper-triangular form.
Under different circumstances, the object can be minimization
or maximization, depending on the recreation of application
problems. For instance, a number partition problem demands
the minimization of QUBO term (1) while the MAX-CUT
problem equals to the maximization of (1) [20].

II. METHODS

A. QUBO on SNN

The QUBO problem can be visualized as a graph partition
problem. One example of such a problem is shown in Fig.1(a).
A graph contain four vertices that are connected by four
weighted edges. The QUBO problem in this case can be
formatted as labeling vertices with binary variables 1 or 0
so that we can maximize the sum of edge weights in the
graph of vertices label as 1. The Q in Equ.(1) would be the
symmetric weight matrix of all the edges, given in Fig1(a). For
this specific problem, the solution is {1,1,0,1}, which selected
node 1,2 and 4 and achieved the optimum 9, or 18 in terms
of Equ.(1).

The graph problem in Fig.1(a) can be solved by an SNN
with the same topology and weight connection. Such tech-
niques have been demonstrated previously in [23]. The SNN
behaves like a recurrent network that repetitively generates
solutions and results in a reduction of the system energy
related the objective function. To avoid local minimum, certain
stochastic perturbation is introduced into the network to en-
hance the ability of ”exploration”. Although the theoretical
proof has not been provided due to the difficulty of NP-
hard combinatorial problems. The explanation of the neural
dynamics can be refer to Ising model based methods, which
use the same gradient descent techniques [22].

Fig.1(b) depicts a fully-connected SNN that is used to solve
the graph problem in Fig.1(a). We use a discretized digital
Leaky Integrate-and-Fire (LIF) neuron model, modified based

Fig. 1. (a) Example of QUBO graph problem and the edge weight matrix;(b)
Corresponding SNN structure of (a) and discretized spiking neuron

on [25], [26]. Assume the SNN has N neurons, the membrane
voltage of ith neuron at each time step t can be calculated as:

Vi(t) = αVi(t− 1) +

N∑
j=1

qij(xj(t− 1)|rj(t− 1))

xi(t) = 1 on Vi(t) > Vth

(2)

Where the α is the leaky term and qji is the element in the
synaptic weight matrix. r is the stochastic noise added to the
presynaptic input via an OR operation with other neurons’
spiking output xj . The presynaptic inputs are weighted and
added upon the membrane voltage Vi. The spike status xi of
a neuron is a binary variable determined by the membrane
voltage and threshold voltage. If the membrane voltage is
higher or equal to the threshold voltage, the neuron will fire a
spike and set x = 1. In addition, Vi(t+ 1) = 0 as a result of
the neuron falling into a refractory period. Otherwise, there is
no spike fired, and x = 0. As we mentioned, the firing status
of neurons is the binary vector that represents a candidate
solution at the current time step. In the next step, the fired
spikes are broadcast to all the other neurons for updating of
membrane voltage. For this optimization problem, the fully-
connected SNN uses the edge weight matrix Q as the synaptic
weight matrix. Therefore, the spikes are not sent between the
neurons with a synaptic weight equal to zero, representing a
missing edge in the graph.

B. Collaborative SNNs

Creating multiple threads or agents to perform a meta-
heuristic search is a commonly used technique in evolutionary
and population-based (swarm intelligence) optimization algo-
rithms [27], [28]. [29] proposed a computing paradigm that
implements the swarm intelligence (SI) on multiple coupled
SNNs with LIF spiking neuron model. Such an SI-SNN
fused model is designed to solve parameter optimization on
continuous objective functions. This model is extended in
[30] and [31] and is utilized to solve NP-hard combinatorial
problems, such as TSP. In this work, we design a similar
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Fig. 2. Architecture of Collaborative SNNs to solve QUBO problem

architecture of multiple homogeneous SNNs that conduct a
collaborative search to expedite the process of solving QUBO
problems.

Fig.2 illustrates the architecture of our proposed model. The
entire QUBO solver is composed of m SNNs, shown as rows
of pink blocks in Fig.2. Note that the full synaptic connections
in these SNNs are not shown here (refer to Fig.1(b)). Each
SNN has the same structure, including the same number (n)
of neurons (green) and the same weight matrix Q (determined
by the QUBO problem), as we described in the previous
section. Each SNN runs in parallel with the same dynamics but
different initial status, determined by the stochastic noise term
r(t) at the first step t = 1. For the collaborative SNN model,
SNNs run within an initial period from step 0 to step Tini
without noise, so that each SNN can reach the local optima and
stabilize the output there. After Tini, the interaction between
SNNs is activated. Normally, every SNN still maintains its
own dynamics (Equ.(2)) with a decayed noise term on each
neuron:

r(t) = ηβγ(t) (3)

whereηis a normal distributed random variable range from 0
to 1, β is the constant decay factor and γ(t) is a function that
increments by 1 at each time step (γ(t) = γ(t− 1) + 1). The
binary vectors of solutions, x(t), generated by SNNs at each
time step, are evaluated with Equ.(1). A current global best
solution gb(t) is kept in memory and compared to every batch
of solutions at each step. The SNN interaction happened when
a new best solution in history is found. All the presynaptic
inputs of SNNs in the next time step are overwritten by this
new best solution and the decay of noise term will be reset
with γ(t) = 0. Namely, the membrane voltage at time step
t+ 1 would be:

Vi(t+ 1) = αVi(t) +
N∑
j=1

qijgbj(t)) (4)

The motivation of such a design is to speed up the convergence
among solutions of SNN and simultaneously maintain the

Fig. 3. Diagrams of the solution evolution by time step. x-axis is the time
steps of simulation, and y-axis is the evaluation of solutions by object function
Equ.(1). The wide red line represents the evaluation history of global best
solution. Other lines plot the evaluation of candidate solutions from each SNN.
The data label in each plot indicate the best performance in this simulation
and when it was achieved (convergence time) (a) A single SNN. (b) 10 SNNs
run in parallel, without any collaboration. (c) 10 collaborative SNNs.
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exploration capability of the entire system.

III. RESULTS

We simulate the proposed model in Matlab. We primarily
use two metrics to evaluate the performance of solving QUBO
problems. One is the quality of the solution the solver can find,
evaluated via the QUBO object function Equ.(1).

Another is the time steps that cost the solver to reach
the optimum. No real-time unit is adopted for evaluation
because the proposed model could be implemented on various
computing platforms such as GPU, neuromorphic chips, or
systems built on emerging nanodevices, which may scale the
frequency and time and lead to divergence of computing speed.
Thus, the basic time unit here is time steps in simulation,
similar to the ”ticks” in [23]. The benchmark used in our
simulation is a QUBO dataset ”Glover, Kochenberger and
Alidaee instances”, which is available in [32], [33]. We picked
two subsets of the maximum QUBO problem: 1). gkaid, 10
instances with dimension 100, 10 edge densities from 0.1 to 1.
Diagonal coefficients from [-75,75], off-diagonal coefficients
from [-50,50]; 2). gkaie, Five instances with dimension 200,
five densities from 0.1 to 0.5. Diagonal coefficients from [-
100,100], off-diagonal coefficients from [-50,50].

For comparison, we also test another two solvers, a single
SNN QUBO solver (section II.A) and Multiple SNNs with no
collaboration. Because these two solvers do not reset noise
term, the exponential decay of noise term results in early
convergence into local optima in most simulations. We replace
the exponential decay with a linear reduction in these two
solver. We keep the exponential decay with β = 0.99 for
the proposed model. To improve the search speed, we use
α = 1, Vth = 1. Combining with the refractory mechanism
of spiking neuron, the SNN’s dynamics becomes close to a
recurrent network with spiking activation function. It generates
different solution at every time step.

Fig.3 gives an example and plots the diagram of evaluating
solutions over time for three solvers. In this case, the problem
is a QUBO with 100-dimension and 0.5 edge density. We
use ten SNNs in our proposed model run the simulation for
10k steps. The maximum value obtained from best solution
is 12535. The proposed model find this optimum at t = 918,
while the SNNs without collaboration reach it at t = 8330.
The single SNN solver could not find the optimum in this
test. Instead, it provided a near-optimum with 12475. We run
multiple simulations with these three solvers on the 15 QUBO
problems in the datasets mentioned above. We calculate the
average times steps of the simulations that solvers successfully
find the global optima. Fig.4 provides these data in two chart
on two QUBO problem sets respectively. We notice that the
other two solvers are respectively 15-20 and 10 times slower
than the collaborative SNNs.

The simulation results above demonstrate that Multiple
SNNs are more effective and efficient than a single SNN solver
in searching for optima of QUBO problems. Within limited
time steps, a QUBO solver with multiple SNNs can find better
solutions than a single-SNN solver. On the other hand, it takes

Fig. 4. Time spent by three QUBO solvers to find optima. (a) gkaid dataset
(n=100); (b) gkaie dataset(n=200)

a single SNN solver more time to find the global optimum.
Further, the collaborative SNN improves the efficiency of
convergence compared to SNNs without collaboration. This
is attributed to the periodic synchronization on the global
best solution. After the synchronization, the reset of noise
perturbation help maintain the exploration in the solution space
and reduce the chances of being trapped by local optima.
Obviously, the methods of coupling multiple SNNs are not
limited to the proposed algorithm in this paper. Meanwhile,
there is a vast design space remaining for the proposed model.
For example, the trade-offs between the hardware cost and
number of SNNs, search speed and performance, etc.

Table 1 shows the average performance of global best
solutions founded on gkaid(n=100) when we use different
numbers of SNNs (swarm size m). The result indicates more
SNNs can improve the quality of solutions slightly. However, it
is difficult to evaluate such an improvement due to the diversity
of problems. Improving the value of the objective function by
1 may be easy for one problem but hard for the other.
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TABLE I
AVERAGE PERFORMANCE OF GLOBAL BEST SOLUTION ON GKAID

Edge Density m=5 m=10 m=20 m=40
0.1 4620.5 4672.1 4679.2 4728.3
0.2 7817.6 7847 7848.8 7872.1
0.3 10087 10087.6 10103.1 10134.5
0.4 12164.5 12162.8 12192.3 12194
0.5 12476.5 12523.8 12514.1 12528.2
0.6 12482 12503.1 12517.9 12522.4
0.7 11973.4 12143.4 12216.4 12272.9
0.8 16421 16421 16421 16421
0.9 17576 17583.2 17587 17587.2

IV. CONCLUSION

In summary, we propose a new neuromorphic computing
paradigm that employs multiple collaborative spiking neural
networks to solve QUBO problems. Each SNN conducts a
local stochastic gradient descent search and shares the global
best solutions periodically to perform a meta-heuristic search
for optima. We simulate our model and compare it to the
single-SNN QUBO solver and multiple SNN QUBO solvers
without collaboration. We test three solvers on a few bench-
mark QUBO problems. The proposed method is demonstrated
to be more efficient and effective in searching for QUBO
optima. Specifically, it exhibits x10 and x15-20 speedup re-
spectively on the multi-SNN solver without collaboration and
the single-SNN QUBO solver.
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