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Abstract—We study active sampling algorithms for linear
regression, which aim to query only a small number of entries
of a target vector and output a near minimizer to the objective
function.

For /, norm regression for any 0 < p < oo, we give an
algorithm based on Lewis weight sampling which outputs a (14
€)-approximate solution using just O(d/ ) queries to b for p €
(0,1), O(d/e) queries for p € (1,2), and O(dP/?/e") queries
for p € (2,00). For p € (0,2), our bounds are optimal up to
logarithmic factors, thus settling the query complexity for this
range of p. For p € (2,00), our dependence on d is optimal,
while our dependence on ¢ is off by at most a single ¢ factor, up
to logarithmic factors. Our result resolves an open question of
Chen and Derezinski, who gave near optimal bounds for the /;
norm, but required at least d>/c> samples for ¢, regression with
p € (1,2), and gave no bounds for p € (2,00) or p € (0,1).

We also provide the first total sensitivity upper bound for loss
functions with at most degree p polynomial growth. This improves
a recent result of Tukan, Maalouf, and Feldman. By combining
this with our techniques for /, regression, we obtain the first
active regression algorithms for such loss functions, including
the important cases of the Tukey and Huber losses. This answers
another question of Chen and Dereziniski. Our sensitivity bounds
also give improvements to a variety of previous results using
sensitivity sampling, including Orlicz norm subspace embeddings,
robust subspace approximation, and dimension reduction for
smoothed p-norms.

Finally, our active sampling results give the first sublinear
time algorithms for Kronecker product regression under every
¢, norm. Previous results required reading the entire b vector
in the kernel feature space.’

Index Terms—active learning, linear regression

I. INTRODUCTION

We consider a classic active learning problem: given a
design matrix A € R™"*¢ and query access to entries of an
unknown target (measurement) vector b € R™, how can we
compute an approximate minimizer of the regression problem
minycpra ||[Ax — b|| while querying as few entries of b as
possible? This problem arises in applications where labeled
data is expensive: viewing a single entry of b might require
running a survey, physical experiment, or time-intensive com-
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puter simulation [44], [45]. Concretely, we study the following
problem for general vector norms? || - [|:

Problem L1. For A € R"™¥ b € R", and accuracy
parameter 0 < € < 1, find X € R? satisfying:

|[A%X —b| < (1+¢)- min [|[Ax — b,
x€R?

while reading as few of the entries {b(1),...,b(n)} of the

target vector b as possible.?

Notably, the formulation of Problem I.1 makes no assump-
tions on A and b. For example, we do not assume that
there exists a ground truth X and that Ax — b is bounded
in magnitude, or follows some distribution (e.g., has random
Gaussian entries). Under these stronger assumptions, much is
known about the problem, which has been studied for decades
in the statistics literature on “optimal design of experiments”,
as well as in machine learning [9], [33], [44].

In contrast, progress on the assumption-free version of
the problem has only come in recent years, thanks to ad-
vances in random matrix theory and randomized numerical
linear algebra. This is for good reason: solving Problem I.1
inherently requires choosing which entries of b to query
in a randomized way: an adversary can easily “fool” any
deterministic algorithm by concentrating error in Ax — b on
the indices of b that will be deterministically queried.

A. Prior Work

Euclidean Norm. Problem I.1 is fully understood when the
. . n 1/2
error is measured in the f> norm, [|wl> = (37, |wy|?)
— le., for least squares regression. The typical approach is
to subsample and reweight rows (i.e., constraints) of the
regression problem and to let X be the minimizer of this
sampled problem, which only involves a fraction of the entries
in b. Le., letting S € R™*™ be a sampling matrix with
m < n rows (S has one non-zero entry per row), set
% = argmin, ||SAx — Sb||. When constraints are selected
with probability proportional to the statistical leverage scores
of A’s rows, Problem I.1 can be solved with O(d/e - logd)

20ur work will also extend to other loss functions of the form

1 M([Ax — b];) that are not necessarily norms.

3In principal, entries of b can be read adaptively — i.e., we can select
indices to query based on the results of other queries. However, the benefits
of adaptivity appear limited. Most methods for solving Problem I.1 and those
studied in this paper are non-adaptive.
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samples, and thus O(d/e-logd) queries to b [21], [46], [53].*
Using tools from spectral graph sparsification [6], [35], Chen
and Price recently improved the leverage score sampling result
to O(d/e), which is optimal [12].

In practice, methods based on leverage score sampling
(also known as “coherence motivated sampling”) have found
many applications. They are widely used in high-dimensional
function fitting problems arising in the solution of parametric
partial differential equations, where even mild assumptions
on A and b are undesirable [16], [17], [30]. Methods for
solving Problem I.1 in the /5 norm also yield robust methods
for interpolating sparse Fourier functions, bandlimited and
multiband functions, and for data-efficient kernel learning [4],

[11], [23].

Other Norms. Much less was known about Problem I.1
beyond the /5 norm until recent work of Chen and Derezinski
[10], which proves an upper bound of O(d/e? -logd) queries
for the ¢ norm, ||w|l; = >, |w;|. This result is tight up
to the log d factor. A similar result is obtained in [43]. Chen
and Derezinski also prove a result for £, norms, ||wl||,
>y |wi|p)1/p, for p € (1,2), in which they show that
O(d?/e? - logd) queries suffice to solve Problem I.1. As
for the {5 norm, the results for /; and /, are obtained by
subsampling rows of the regression problem independently
at random. However, instead of sampling with probabilities
proportional to the leverage scores, [10], [43] employ a natural
generalization of these scores known as the ¢, Lewis weights
[18]. They left open the question of whether a linear in d
dependence is possible for 1 < p < 2, and any bounds at all
for p > 2.

Beyond norms, if b is a {—1, 1} label vector, and the error
is measured via the logistic loss, Munteanu et al. [42] show
that poly(d, p, 1/€) samples suffice, where p is a complexity
measure of A. This bound has recently been tightened to
O(dpi? /€%) [40], using Lewis weight sampling.® For other loss
functions, such as the Tukey loss and Huber’s M -estimators
for robust regression [27], we are not aware of any known
results solving Problem I.1. Chen and Dereziiski also pose
the open question of obtaining active regression bounds for
other loss functions, in particular the Tukey and Huber losses,
which are important in practice.

B. Our Contributions

a) €, Active Regression.: Our first main result is a new
algorithm for solving Problem 1.1 for the ¢, norm for any 0 <
p < oo®. While near-optimal bounds are known for p € {1,2}
[10], [12], [43], the problem is far from settled for all other
p. Previously, active £, regression for p > 2 and 0 < p < 1
had no known nontrivial algorithms with (1+ €) relative error,
and the only known approach was to read all n entries of b

4All query complexity bounds in this section are stated for solving Problem
I.1 with high constant probability — e.g., probability 99/100. In later sections
we will include an explicit dependence on a failure probability d.

5Throughout, O is used to suppress polylogarithmic factors in the argument.

Note that for p € (0, 1), [I-]l, is not a norm, but we refer to it as a norm
by a standard abuse of notation.
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and solve the problem using offline results. A natural question
is whether a sublinear query complexity is possible in these
regimes. For p € (1,2), [10] achieved an algorithm making
O(d?/e2-log d) queries, thus achieving the first sublinear query
complexity. One of their main open questions is whether the
dependence on d can be improved to linear or not. Our main
result answers all of these questions.

Theorem I.2 (Main Result for Active ¢, Regression). Given
0<p<oo AR and query access to b € R™, there
is an algorithm that solves Problem 1.1 for the {,-norm with
probability 99/100 which makes m queries in b, where

0(§<1og d>2<1og<d/e)>>
m=10(Logdp(ostae))

p€(0,1)
pe (1’2)

p/2
0 g dPog(a/ar ) e (2.0)

We complement our algorithmic result with various new
lower bounds which show the tightness of our algorithm. For
p € (0,2), our dependence on d and € in the query complexity
are simultaneously tight up to polylogarithmic factors; we
show an Q(d/€?) lower bound for p € (0,1) and an Q(d/e)
lower bound for p € (1,2). For p > 2, our dependence on
d is tight due to a lower bound of Q(d?/?) which we show,
while our € dependence is off by at most factor of e¢ due to
an Q(e!7P) lower bound for the one-dimensional ¢, power
means problem in Theorem 3 of [19]. Note that our active
regression lower bounds for p € (0,2) improve this previous
power means lower bound.

Notably, we achieve a linear dependence on € for p € (1,2),
which is perhaps surprising given that all previous known
approaches to dimension reduction for ¢, regression relied on
preserving the ¢, norm of all vectors in a subspace up to (1=+e)
factors [18], which requires §2(d/€?) dimensions [37]. It also
demonstrates a separation in the query complexity for p < 1
and 1 < p < 2, due to a lower bound of Q(d/e?) for p = 1
[10], [43] as well as for p € (0,1) which we show.

Note that Theorem 1.2 is stated to solve Problem I.1 with
constant probability, 99/100. In general, we show how to
obtain 1 — § probability with dependence on § that is only
polylogarithmic in 1/4. In fact, we show that any algorithm
that simply samples rows of the regression problem and
solves the sampled problem must suffer a 1/6P~! dependence.
Indeed, such a loss is seen in the algorithm of [10] for
p € (1,2). Thus, a success probability boosting routine, as
we give in our work, is required to obtain an O(log(1/4))
dependence.

b) Sensitivity Bounds and Active Regression for General
Losses.: We show that our approach to solving Problem I.1 for
£, norms generalizes to a broad class of loss functions known
as M-estimators [15], which take the form > !, M([Ax —
bl;). The only properties that we require are that we can (1)
compute a constant factor approximation to Problem 1.1 (2)
the loss function obeys approximate variants of the triangle
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TABLE I: Upper and lower bounds for Problem I.1 for various
norms and loss functions. New results are highlighted in blue.
For simplicity, we suppress leading constants depending only
on p, as well as polylogn factors for M-estimator results.
Our results significantly strengthen and generalize prior work,
providing the first query complexity result with a tight d
dependence for £, norms. We also give the first results for
M -estimators as well as ¢, norms for p > 2 and p € (0,1),
and matching lower bounds in many cases.

Loss Prior Work Our Work Lower Bound
p=2 d/e [12] - d/e [12]
p=1 d/e? [10] - d/€? [10]
p€(1,2) | d?/€%[10] dfe d/e
p>2 - d%/ep df +el-p
p € (0,1) - d/e? d/e?
M-est. - dztoM) jec d
Huber - cl‘l_z\@/ec d
Tukey - d%J“O(l)/ec d

inequality and (3) we can bound the so-called sensitivities of
the loss, which bound the fraction of the total loss that can be
concentrated at any coordinate i € [n] (see Equation (1)).

To the best of our knowledge, the only prior result achieving
sensitivity bounds for general loss functions is [52]. However,
this work makes use of Léwner-John ellipsoids, which leads
to practically inefficient algorithms, and loses a factor of v/d
in the total sensitivity due to the ellipsoidal rounding. As our
second main result, we develop new sensitivity bounds for M-
estimators that significantly simplify and improve this result.

Theorem 1.3 (Main Result for Sensitivity Bounds). Let A €
R™*? and let M be an M -estimator loss with at most degree p
growth. There is an algorithm which, with probability at least
99/100, computes M -sensitivity upper bounds which sum to
at most O(d™®/2) log® n.+7)7 in time at most O(nnz(A) +
nd®W /7).

Our approach to sensitivity bounds only relies on hashing
and the computation of ¢, Lewis weights [18], [24], and avoids
the computation of Lowner-John ellipsoids. This allows for
input sparsity time algorithms, and answers an open question
of [52] on avoiding Lowner—John ellipsoids in the computation
of sensitivities. Note that our dependence on d matches the
sensitivity bounds for the ¢, loss and is thus tight. We
also show that the dependence on n is necessary for loss
functions such as the Huber and Tukey losses. Furthermore,
our algorithm can be turned into a non-algorithmic proof that
the sensitivities sum to at most O(d'V(?/2) log n) for these M-
estimators; this is in fact tight for the Tukey loss by our lower
bound of (dlogn). Thus, we obtain the first tight bounds
on the sum of sensitivities, for losses other than ¢,. Overall,
we make significant progress on generalizing the theory of
matrix approximation beyond ¢, losses to handle general M-
estimators, which is a direction that has recently received much

"Here, a VV b denotes max(a, b), and a A b denotes min(a, b).
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attention [13]-[15], [26], [51], [52].

Combined with our active regression techniques, our sen-
sitivity bounds yield active regression algorithms for general
loss functions, including the Huber and Tukey losses, answer-
ing an open question of Chen and Derezifiski [10]. Note that
prior to our work, no sublinear query complexity was known
for any M -estimator regression, besides the ¢ and ¢; losses.

Furthermore, our new sensitivity bounds imply significant
improvements in previous results using sensitivity sampling,
beyond active regression, including Orlicz norm subspace
embeddings [50] and robust subspace approximation [14]. We
believe that our general technique here will find other further
applications, and leave it as an open question to do so.

c) Subspace Embeddings for Orlicz Norms.: Orlicz
norms can be viewed as scale-invariant extensions of M-
estimators, and have recently attracted attention as a general
class of norms that admit efficient dimensionality reduction
results [3], [50]. In particular, [50] apply sensitivity sampling
to obtain subspace embeddings for Orlicz norms, which yields
a small weighted subset A of rows of a matrix A € R™*¢
such that [|[Ax|| = (1 + €)||Ax|® for all x € R?. However,
the number of rows required by [50] is a large polynomial in
d, and is also restricted to Orlicz norms of at most quadratic
growth. We show that by applying our new sensitivity bounds,
we can obtain subspace embeddings for Orlicz norms with
d?V(®/2+1) poly(logn, e 1) rows, for any Orlicz norm with a
polynomial growth bound of degree p.

d) Robust Subspace Approximation.: The robust sub-
space approximation problem generalizes the classical low
rank approximation problem of finding a rank k projection
X minimizing ||[AX — A|| by replacing the Frobenius norm
with an extension of M -estimators to matrix norms. [14]
showed the first dimensionality reduction results for this
problem for a general class of M-estimators of at most
quadratic growth via a recursive sampling scheme using the
sensitivity sampling framework. However, due to the use of
looser sensitivity bounds, they suffer an undesirable factor of
(logn)©U°8 k) in their sample complexities. Our new sensitiv-
ity bounds allow us to remove this factor, giving a dimension
reduction result into a poly(k, logn, e 1) x poly(k, logn, e~1)
instance. We also extend their method beyond quadratic
growth, to any degree p polynomial growth.

e) Active Regression for the Huber Loss.: Our active
regression result for general M -estimators discussed above is
loose by a factor of d in the sample complexity, compared to
our £, active regression results. This is attributed to the use
of our net argument for general M -estimators, whereas our £,
active regression results can make use of more sophisticated
chaining arguments of [7], [34], [48]. A natural question is if
this gap can be improved.

We consider the important special case of the Huber loss,
which is defined as follows:

8For a,b > 0, a + b denotes a number ¢ such that a — b < ¢ < a + b.
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Definition 1.4 (Huber loss [31]). The Huber loss of width
7 > 0 is defined as

x?/2r ifle| <7
|x| —7/2 otherwise

and the Huber norm’® is defined as ||y |z == /> 1, H(y(i)).

The Huber loss is “arguably one of the most widely used
M -estimators” [15], owing its popularity to its convexity and
differentiability properties of /5, which allows for efficient
algorithms (see, e.g., [41] for algorithms), in combination with
its robustness properties of ¢y [29]. This makes it widely
applicable in practical big data settings (see, e.g., [5] for a list
of popular software packages implementing Huber regression
as well as references that make use of Huber regression).
Variations on Huber regression have also recently been shown
to hold theoretical guarantees in the robust statistics literature
(see, e.g., [38], [39] and references therein).

For the Huber loss, we show that it is indeed possible to
leverage the chaining techniques in order to obtain improved
sample complexity bounds for active regression. We show that
we can improve beyond the d? bound obtained by our general
M -estimator algorithm as applied to the Huber loss, and obtain
a sample complexity of O(d*~2V2poly(logn,e 1)) queries
to b, where 4 — 24/2 & 1.17157. For this result, we use the
chaining techniques of [7], which provides a more flexible
alternative to [34], but requires more technical effort to adapt
to the active setting.

H(z):

Theorem 1.5 (Main Result for Huber Active Regression). Let
A € R™4 b € R There is an algorithm which, with
probability at least 99/100, returns a X satisfying

|AX —bllg < (1+¢€) -m’ZnHAx —b|ly

Furthermore, the algorithm reads at most
d4_2\/§poly(log n, e~ 1) entries of b.

Our techniques also yield a subspace embedding
result, which constructs a  weighted subset A
of  O(d*2V2poly(logn,e!))  rows such  that
|Ax||z = (1 £ ¢)||Ax||g for all x € R? Previously,

the best known dimension reduction bound for Huber
regression, even in the non-active setting, was d* due to [15].

Furthermore, this is, to the best of our knowledge, the first
example of a loss function other than ¢, which achieves a
sensitivity sampling bound of better than d?, despite the fact
that such results have been sought in many works [13]-[15],
[28], [50], [52]. The reason for this is that d? is a natural
bound for sensitivity sampling, attributed to one d factor from
the sum of sensitivities and one d factor from carrying out
a union bound over a net of exp(d) vectors. For ¢, norms,
the arguments of [7], [48] and their subsequent improvements
avoid this problem by using a more sophisticated chaining
argument. However, these arguments use the structure of /,,

9Again, this is a standard abuse of notation, and the Huber norm is not an
actual norm.
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spaces in crucial ways, such as isometric changes of density
using Lewis weights [32], and do not generalize easily to other
loss functions.

It is an interesting open question to determine whether our
dimension reduction bound for the Huber loss can be improved
all the way down to d.

f) Dimension Reduction for Gamma Functions for Faster
£, Regression.: One particularly important application of
sampling-based dimension reduction for loss functions beyond
£, losses is, perhaps surprisingly, in the design of algorithms
for £, regression. The work of [8] introduces gamma functions
vp, Which are generalizations of the Huber loss which behave
quadratically near the origin and like |z|P away from the
origin, in the context of algorithms for ¢, regression. Subse-
quently, [2] obtained even faster algorithms by using constant
factor approximations of -, regression as a subroutine, in
which the «, loss is minimized over a subspace. Dimension
reduction for this loss function has been a crucial ingredient
for recent results in fast algorithms for ¢, regression [1], [28].
In particular, [1] highlighted the open question of designing
sparsification methods for +, functions for p € (1,2), and
[28] designed a sampling algorithm which samples O(d?)
rows. By generalizing our dimension reduction techniques for
the Huber loss, we obtain an algorithm which samples at
most O(d*~2V2 poly(log n, e~1)) rows for any p € [1,2), and
improves to O(d poly(logn, e~1)) rows as p — 2 (see Figure
1 for the trade-off curve).

8) Kronecker Product Regression.: Beyond applications
in data-efficient regression, Theorem 1.2 implies the first
sublinear time algorithm for Kronecker product regression in
any ¢, norm, where explicitly constructing the vector b is
a computational bottleneck. In g-th order Kronecker prod-
uct regression, one is given matrices Ay, Ag, ..., A, where
A, € Rmi*di a5 well as a vector b € R™1"2""a_and the goal
is to solve: min cpa,dy--aq ||(A1®As - -®A4)x—bl|,, where
® denotes the Kronecker product. Typically H‘f:l d; is much
less than []7_, n;, and the goal is to obtain algorithms that do
not explicitly form A; ® Ay ® --- ® A, or b, which is too
expensive. Our results yield the first algorithm for Kronecker
product regression, for every p > 1, whose running time does
not depend on nnz(b), whereas previous results had a linear
dependence on nnz(b), which can be as large as [[{_; n; [22].

Theorem 1.6. Let ¢ > 1, p > 1 be constant, and ¢ > 0.
Kronecker product regression can be solved up 1o a (1+
€)-factor with constant probability in O(Y !_ nnz(A;) +
poly([Ti_, d;/e)) time.
C. Technical Approach

1) £, Active Regression: Our algorithm for solving Problem
I.1 uses a novel variation on the “sample-and-solve” approach.
In particular, we randomly select a row sampling matrix S €
R™*" and return X = argmin, ||[SAx — Sb||, which only
requires querying m entries of b (those that appear in Sb). To
get tight bounds for £, regression, we select S using £, Lewis
weight sampling, a generalization of leverage score sampling
for 62.
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It can be shown that the ¢, Lewis weights upper bound the
£, sensitivities of A, a measure of importance for the rows of
A. The /,, sensitivity of the i™ row of A is defined as

|[Ax]()[”

(A= [Ax

xR\ {0}
where [Ax](i) denotes the i entry of the vector Ax, and
captures how large the i entry of any Ax € span(A) can
be, relative to the £, norm. A standard scalar Bernstein bound
shows that if S samples rows with probabilities that upper
bound the sensitivities, then [|[SAx[|) = (1 + €)[|Ax||? with
high probability, for each x € R An e-net argument can
extend this to a for all claim.

a) Prior Approaches to {,, Active Regression: While the
above ideas give an approach for standard ¢, regression, this
bound does not suffice for active ¢, regression. To solve
Problem L1, we actually want that [[S(Ax — b)||P = (1 £
€)[|Ax—b|| for any x. Will S provide such a guarantee? The
main problem, as discussed in [10], [43] is that the translation
by b may introduce outliers, i.e., entries with high sensitivity
which are not captured by the sensitivity scores of A. As
shown by [10], [43], in the case of ¢;, the special structure of
the loss function provides a solution. Indeed, by the triangle
inequality,

|(I[Ax = b](i)] — [[Ax* = b](I))] < [[A(x —x)] ()]

where x* is the optimal solution. This fact can be used to
show that sampling by the sensitivities of A preserves the
differences between the cost of any x and the optimal x*.
However, such a proof cannot work for p # 1, in which case
we do not have such a nice inequality. For p € (1,2), [10]
take the approach of bounding the residual error terms from
the above approach by using a Taylor approximation, but this
leads to a sample complexity of at least d>.

b) Our Solution: Partitions by Sensitivity: Instead of
relying on the technique of “cancelling out the outliers”, we
take a conceptually different approach. We proceed in two
stages, where we (1) first find a constant factor solution x.
such that [[Ax, —b||? < O(1) - miny||Ax — b||? using an
idea of [20] and replace b by the residual vector b— Ax,, and
then (2) conceptually partition the target vector b into two sets
of coordinates, the coordinates ¢ € [n] that are small enough
to be comparable to the sensitivity s”(A) and those that are
much larger. That is, we consider the coordinates 7 € [n] such
that [b(7)|?/|[b][} < C'-s}(A) for some C' > 0, and all other
coordinates. For the former set of coordinates, one can check
that the Bernstein bound still applies, and S does preserve
the norm of [[Ax — b||}, when restricted to these coordinates.
On the other hand, for the latter set of coordinates, we show
that no vector of the form Ax can both be close to b(%)
in its 4™ entry, and still close to the remainder of b — the
i™ entry is simply too large in magnitude. In particular, to
have [Ax](i) close to b(i), we would require [|Ax||} to be
much larger than ||b||P, which by our preprocessing step, is
on the order of the optimal cost miny ||[Ax — b||,. Via the
triangle inequality, this implies that Ax must be far from an
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optimal solution. Thus, we can argue that any near-optimal
solution to miny ||Ax — b||, does not need to fit b(i) with
[b(i)[P/[bl|5 much larger than s}(A). We can effectively
ignore the contribution of these rows.

Another technical challenge remains: to obtain an optimal
dimension dependence, we need a refined e-net argument to
make for all statements about x € R?. To do so, we adapt the
chaining arguments of Bourgain, Lindenstrauss, and Milman
[7] and Ledoux and Talagrand [34] to the active regression
setting, avoiding the standard e-net and union bound argument
used by, e.g., [47]. Although both [7] and [34] provide such
approaches, we adapt the (slightly) more complex recursive
Lewis weight sampling algorithm of [34] in order to obtain
tighter dependencies on e. The streamlined proof of [34] also
adapts nicely to the active regression setting with minimal
changes to the original argument. We note here that we will
later also need to adapt the much more involved [7] argument
to handle the Huber loss, in which case the proof of [7] allows
for more fine-grained control over bounding the sensitivity
sampling algorithm, but requires a more complex argument
based on carefully partitioning the coordinates of the target
vector b based on sensitivity weight classes. Aside from our
new application of [7], [34], we hope that by translating
the arguments of [7], [34] to the language of theoretical
computer science and matrix approximation, they will find
further applications to randomized algorithm design.

We note that our algorithm is quite a bit more involved than
a simple scheme of sampling proportionally to Lewis weights
and solving. This is for good reasons. Not only is it not clear
that such an approach works at all, we show that for any p > 1,
any algorithm which simply samples reweighted rows and
solves the system must have a polynomial dependence on 1/
in the query complexity, while our algorithm achieves a log %
dependence, by solving residual problems of a constant factor
solution. Thus, our two-stage approach is necessary to achieve
our § dependence. Furthermore, the best known analysis of
a simple “one-shot” Lewis weight sampling scheme suffers
in € dependencies for p > 2, where the one-shot approach
is only known to give a O(d”/2/e®) bound for subspace
embeddings [7], [18], whose losses translate to losses for
our active regression algorithms as well, while the recursive
approach can achieve O(dp/ 2/€2) [34]. While the [34] result
is an existential result, we provide an analysis of the [34]
proof to turn it into a randomized algorithm with logarithmic
dependencies on the failure rate §, which achieves the best
known dependence on d, €, and ¢, up to logarithmic factors.
We further modify this subspace embedding result for active
regression, to optimize our € dependence.

¢) Optimized € Dependence for p € (1,2): For p €
(1,2), the above argument gives a bound of O(d/€®). While
the linear dependence on d is optimal, confirming the con-
jecture of [10], it has a quadratic dependence on ¢, which
is in fact not optimal. We now show how to improve our
bound to O(d/¢), which requires additional ideas. We first use
strong convexity to show that a (1 + -)-approximate solution
% € R? satisfying |Ax — b|[? < (1+7)[|Ax* — bl|7, for the
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optimal solution x* € R%, in fact satisfies ||Ax — Ax*|, <
O(y/7)||Ax* — b],,. Then, by using that X is close to the op-
timal solution, we show an improved bound on the difference
in the objective values of X and x*, i.e., that X actually has an
approximation ratio better than (1 + -y). We then iterate this
argument until we obtain a (1-+¢)-approximation using O(d/¢)
queries, at which point we can no longer get improvements.
The chaining argument used in this proof, while similar to the
previous proofs, has a different geometry than the previous
chaining arguments, and requires additional ideas.

Our upper bound is tight up to polylogarithmic factors due
to a lower bound we show. This improves an ¢, power means
lower bound of [19], who only showed a lower bound of
Q(e'~P) queries. Unfortunately, we are unable to port our
algorithmic techniques to the ¢, power means problem in
high dimensions, due to difficulties in adapting their chaining
argument.

2) Sensitivity Bounds: The notion of ¢, sensitivities, as dis-
cussed above, naturally generalizes to loss functions that take
the form of coordinate-wise sums. Consider a loss function
M and an n x d matrix A. Then, the sensitivity of the ith
coordinate with respect to the loss function M is defined as

M([Ax]())
> M([AX](7))

It is well-established that sensitivities provide a general frame-
work for sampling rows of A that approximate A well under
the loss function M [25]. While a rich literature exists for
£, [18], [20], [49], little was known about the approximation
of sensitivities for general loss functions until [52], which
used Lowner-John ellipsoids to obtain sensitivity bounds for
a general family of near-convex losses. However, the com-
putation of Lowner-John ellipsoids has running time that is
a large polynomial in n and d, and is impractical for large
datasets, and [52] raise the open question of obtaining general
sensitivity bounds without this expensive subroutine.

Our approach to new sensitivity bounds significantly gener-
alizes the approach of [13], whose algorithm can be seen as a
way to use hashing and Lewis weights to compute sensitivities
for the Tukey loss, but heavily uses the properties of the Tukey
loss in their analysis.

Suppose that a coordinate 7 € [n] has M-sensitivity o €
(0, 1], that is,

()

sup
x€RN {0}

, M ([Ax](7))

M

Si (A) = sup n . =qQ,
x€R4\{0} Zj:l M([Ax](7))

and let y = Ax witness this supremum, and assume for

simplicity that Y. ; M([Ax](j)) = 1. Note then that there
can be at most 1/« entries j € [n] of y that have coordinate
value M(y;) > M(y;) a. Then, if we randomly hash
the n coordinates into O(1/«) buckets, then with constant
probability, coordinate ¢ will be isolated from any other entry
with M(y;) > M(y;) = a. Now if M is monotonic, then
this means that y; is the largest coordinate in its hash bucket.
Furthermore, the sum of the M -mass of all of the other
coordinates in ’s hash bucket is only an « fraction of the
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total M -mass, so entry ¢ carries a constant fraction of the M-
mass in its bucket. In this case, it can be shown that entry %
must in fact carry a constant fraction of the ¢ mass inside its
hash bucket, if M is a function of at most quadratic growth.
This is because when we switch the error metric from M to
{5, then the largest entry will have the largest increase in its
normalized contribution. This means that row ¢ must have an
4y leverage score of (1), in this hash bucket.

This leads to the following algorithm: (1) hash the n
coordinates into O(1/«) buckets (2) compute ¢ leverage
scores for each bucket (3) assign an M-sensitivity of « for
any coordinate that has ¢, leverage score 2(1). In each of the
O(1/a) buckets, we will find at most O(d) coordinates with
leverage score at least (1), so we assign an M -sensitivity of
a to at most O(d/a) coordinates, which has a total sensitivity
contribution of O(d). By repeating this for O(logn) guesses
of « in powers of 2, this gives a total sensitivity bound of
O(dlogn). The constant probability events in the hashing
process can be boosted to probability 1 — 1/poly(n) by
repeating the procedure O(logn) times, which increases the
total sensitivity to roughly O(dlog®n).

By sampling according to these sensitivities and applying a
union bound over a net, we obtain the first active regression
algorithms for general loss functions. Note that this result is
made possible by a combination of both our new sensitiv-
ity bounds for M -estimators and our new active regression
techniques as discussed in Section I-C1. Furthermore, we
demonstrate other applications of our sensitivity bound result,
showing how to improve Orlicz norm subspace embeddings
and robust subspace approximation.

3) Subspace Embeddings and Active Regression for the
Huber Loss: As discussed previously, we tackle the question
of leveraging the theory of [7] nets in order to obtain sample
complexities for the Huber loss beyond d2. Our algorithmic
framework for active regression is based on the earlier idea of
partitioning the entries of b by sensitivity and then applying
sensitivity sampling, so we focus on the problem of preserv-
ing the Huber norm using an improved sensitivity sampling
technique. Note that unlike the ¢, losses, the Huber loss is
not scale-invariant. Furthermore, perhaps the largest obstacle
in designing row sampling algorithms for the Huber loss going
beyond standard e-net arguments is that there is no analogue
of the chaining constructions of [7], [48] for the Huber loss.
This can also be attributed to the fact that the Huber loss is
not scale-invariant, which precludes an isometric change-of-
density type theorem for the Huber loss as done in [36], [48].
We show how to overcome these obstacles in the following
discussion.

a) A Sharp Huber Inequality.: Our algorithmic frame-
work follows the Huber algorithm of [15], which is a recursive
sampling algorithm which reduces the number of rows from
n to roughly n'/2d? in each recursive application of the
algorithm. To show this result, [15] first show in their Lemma
2.1 that the Huber norm is within a factor of O(n'/?) of the
smaller of the ¢; and /5 norms:
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Lemma 1.7 (Huber Inequality version 1 ( [15], Lemma 2.1)).
Let y € R"™. Then,

2 — . 2
Iyl =D H(ys) = Qn~ V) min{|lyl, llylls}
=1

It can be shown that the above lemma implies that the Huber
sensitivities are within a factor of O(n'/?) of the sum of the
{1 and /5 sensitivities. This motivates the idea of sampling the
rows of A with probability proportional to the sum of the ¢
and /5 Lewis weights, oversampled by a factor of O(n'/?).
This is indeed how [15] proceeds.

The recursion n — n'/2d? solves to a final row count of
around d*, which is quadratically worse than our general loss
function result of d? using our new sensitivity upper bounds
and our general framework. To improve this further, first note
that two improvements can be made to the above argument.
First, by using the Huber inequality in a different way, we can
use it in conjunction with the [7] net bounds, which reduces
the row count in one recursive application to roughly n'/2d
rather than n'/2d2. This reduces the overall row count to d2
after solving for the recursion, but this still does not beat our
general purpose sensitivity sampling algorithm, despite the use
of the [7] nets. The second improvement is that the Huber
inequality as proved in [15] is in fact loose by a polynomial
factor in n, and can be improved to the following:

Lemma L.8 (Huber Inequality version 2). Let y € R™. Then,

2 - . 2
Iyl =Y H(y:) = Qn~ ) min{||yll,. [lyll}
i=1
This lemma is tight up to constant factors'®, and gives a
recursion of roughly n — n'/3d, giving

O((13/2 poly(e~*,logn))

rows, which shaves a factor of approximately \/d over the
naive Bernstein bound over a net.

b) Storing Large Huber Sensitivities.: In order to further
improve upon this bound, we crucially make use of our
improved sensitivity bounds and a generalized version of the
above Huber inequality lemma that is parameterized by an
upper bound on the size of the entries of y.

Lemma L9 (Huber Inequality version 3). Let y € R™ and let
0<vy< 1 Let

T2 {ienl: Hy) <yl }-

Then, for some constant ¢ > 0, at least one of the following
bounds holds:

2 1 . 2
Iy [l = ZH(.W) > i min{|ly 7, ly |ll2}
€T
n
2 . 2
Iyl7 =Y H(yi) > cymin{|ly|, [yl3}-
=1

10Consider the vector with one coordinate with n1/3 and (n — 1) coordi-
nates with n—1/3
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By directly including the rows of A with Huber sensitivity
at least y, we exactly preserve the Huber norm inside T =
[n] \ T for every y. On the remaining coordinates inside 7',
we then have an improved Huber inequality, which implies
an improved sampling bound. By balancing the number of
rows which we directly include, which is roughly d/~, and the
sampling bound inside 7', which is roughly (1/v+ (yn)/3)d,
we obtain a bound of roughly n'/%d rows by choosing v =
n~1/4 at each step. By recursively applying this result, we
obtain an improved sampling bound of

O(d*® poly(e*,logn)).

¢) Comparing to Every p € [1,2].: Finally, to achieve
our final optimization, we further drive down the ratio between
Hy||i, and HYH£ by choosing the best p € [1,2] for each y:

Lemma I.10 (Huber Inequality ver. 4). Let y € R", a €
[0,1/2], vy =n~% with 2/n <~y < 1. Let

72 {ieln]: Hy) <yl )

Then, for some ¢ > 0 and = 3 — 2v/2 =~ 0.17157, at least
one of the following bounds holds:

in fly [zl

Iy Il > e mi
(yn)?# pe(1.2]

2 . P
> ¢y min
¥l = Wpe{l’z}llyllp

In fact, we prove a generalized bound for the {5-¢, loss
for any ¢ € (0,2) in Lemma L.11. The interval p € [1,2]
can be discretized in increments of ., so with O(logn)
applications of [7] nets, we can always find a p within an
additive ﬁ of the optimal p for every net vector y, which

gn
only affects Lemma I.10 by constant factors whenever y has
entries bounded by poly(n). By proceeding as previously

discussed, we arrive at our final bound of

O(d472‘/§ poly(e~*,logn)).

d) Extensions to {y-{, Loss.: We generalize our results
to the ¢5-£, loss for g € (0,2). As ¢ ranges from 0 to 1 to 2,
the {2-£, interpolates between the Tukey, Huber, and /5 losses
up to constant factors, and provides a natural generalization
of these loss function.

Lemma L.11 ({-£, Inequality). Let q € (0,2) and define
2|* il <1

Mm‘{mqvﬂ>1

Lety € R" and let o € [0,q/2] and v = n=% with 2/n <
v < 1. Let

T2 {ien: Miy:) <yl )

Then, for some constant ¢ > 0, at least one of the following
bounds holds:

2 2/q—1 : P

e min :

I¥llar = ex pg{q,Z}Ily\lp
_ )
min

p
i Iy [l

1
Iy |zl3 > ¢35
(yn)
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where
1

5:2/q7_1[(2/q4'1)—2\/%}

For ¢ € [1,2), the 1/4?/97! distortion in Equation (2)
is smaller than the 1/~ factor incurred from keeping M-
sensitivities at least v, so we can balance the parameters
as 1/y = (yn)? as before, which leads to a recursion
that gives us a bound of n = d'*Ppoly((logn)/e). For
q € (0,1), the 1/4%/9=1 distortion in Equation (2) is worse
than 1/+, which means we must balance 1/7%/9~1 = (yn)?,
or v = n=B/(2/a=1+8)  which gives a worse bound of
n = d” poly((logn)/e) for

B 2/q—1+p
T/ —1+ B2 —2/q)

This is better than a d bound as long as ¢ > (v/5 —1)?/8 =
0.19098.

Fig. 1: Dependence on d for the active regression sample com-
plexity for the £5-¢, loss. Similar bounds apply to subspace
embeddings as well.

D. Conclusions and Future Directions

In this work, we study the sample complexity of active
linear regression for both the £, norm as well as general M-
estimator losses.

For the ¢, norm, we provide optimal algorithms and lower
bounds for p € (0,2), with ©(d/e?) samples for p € (0,1)
and O(d/e) samples for p € (1,2). For p > 2, we provide
an upper bound of O(d?/?/e?), which is optimal in the d
dependence and off by a single ¢ factor in the ¢ dependence,
up to polylogarithmic factors. Our algorithms provide the first
nontrivial bounds, i.e., sample complexity less than n, for
p € (0,1) U (2,00), while for p € (1,2), we significantly
improve upon the O(d2/e2?) upper bound of [10] and answer
their main open question. We obtain these results via a two-
stage algorithm and a novel sensitivity partitioning technique
for every p, as well as an iterative improvement argument via
strong convexity and Lewis bases to improve the € dependence
for p € (1,2). Our result is the first to achieve a linear
dependence on € for dimension reduction for ¢, regression
for p € (1,2).

Next, we obtain a new sensitivity bound which achieves
optimal total sensitivity bounds for M-estimators of at most
polynomial growth, which runs in input sparsity time and
avoids the use of Lowner—John ellipsoids. This answers an
open question of [52] and makes significant progress in
the general direction of matrix approximation beyond ¢,
losses. By combining this with our new active regression
techniques, we obtain active regression algorithms for general
M-estimator losses, including the Tukey and Huber losses,
which answers an open question of [10].

For the important special case of the Huber loss, we intro-
duce new techniques which bound Huber sensitivities by the
sum of ¢, Lewis weights, which allows us to take advantage of
chaining arguments for £, in order to obtain an active regres-
sion algorithm making at most O(d*~2V2 poly(logn,e 1))
queries. Our techniques also give subspace embeddings with
the same number of rows. This is the first dimension reduction
result for losses other than ¢, to approximate a d-dimensional
subspace with fewer than d? dimensions. This improves over
a previous bound of d* for the Huber loss, which held only
for subspace embeddings, and not active regression, in [15].

Finally, our results and techniques give many applications
in a wide variety of related problems. Our lower bounds
for active regression give improved lower bounds for the
sublinear power means problem [19]; our new sensitivity
bounding techniques sharpen and generalize previous results
on Orlicz norm subspace embeddings [51] and robust subspace
approximation [14]; our techniques for dimension reduction
for the Huber loss gives improved bounds for sparsification
for ~y, functions for applications in fast algorithms for £,
regression [1], [28]. We believe that our techniques will be
applicable further, and hope to see more uses in future work.

We conclude with questions that are still left open by our
work. Perhaps the most pressing is to resolve the query com-
plexity of active ¢, regression for p > 2: our upper bound is
O(dP/? /€P), while the lower bound is Q(d?/2+¢'~P). Closing
this gap would be interesting. Our bounds are also loose by a
factor of log% for all p > 0, while we can get an optimal
dependence on ¢ if we assume knowledge of the optimal
value and sacrifice a factor of e. A natural question if one
can achieve a simultaneously optimal dependence on d, €, and
d, up to logarithmic factors, and without assumptions. Another
gap to close is the query complexity of Huber regression,
or more generally M-estimator regression, even for just the
d dependence: our upper bound is O(d*~2V2 polylogn) for
constant €, while only a trivial lower bound of €2(d) is known.
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