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Abstract—We study active sampling algorithms for linear
regression, which aim to query only a small number of entries
of a target vector and output a near minimizer to the objective
function.

For �p norm regression for any 0 < p < ∞, we give an
algorithm based on Lewis weight sampling which outputs a (1+
ε)-approximate solution using just Õ(d/ε2) queries to b for p ∈
(0, 1), Õ(d/ε) queries for p ∈ (1, 2), and Õ(dp/2/εp) queries
for p ∈ (2,∞). For p ∈ (0, 2), our bounds are optimal up to
logarithmic factors, thus settling the query complexity for this
range of p. For p ∈ (2,∞), our dependence on d is optimal,
while our dependence on ε is off by at most a single ε factor, up
to logarithmic factors. Our result resolves an open question of
Chen and Dereziński, who gave near optimal bounds for the �1
norm, but required at least d2/ε2 samples for �p regression with
p ∈ (1, 2), and gave no bounds for p ∈ (2,∞) or p ∈ (0, 1).

We also provide the first total sensitivity upper bound for loss
functions with at most degree p polynomial growth. This improves
a recent result of Tukan, Maalouf, and Feldman. By combining
this with our techniques for �p regression, we obtain the first
active regression algorithms for such loss functions, including
the important cases of the Tukey and Huber losses. This answers
another question of Chen and Dereziński. Our sensitivity bounds
also give improvements to a variety of previous results using
sensitivity sampling, including Orlicz norm subspace embeddings,
robust subspace approximation, and dimension reduction for
smoothed p-norms.

Finally, our active sampling results give the first sublinear
time algorithms for Kronecker product regression under every
�p norm. Previous results required reading the entire b vector
in the kernel feature space.1

Index Terms—active learning, linear regression

I. INTRODUCTION

We consider a classic active learning problem: given a

design matrix A ∈ R
n×d and query access to entries of an

unknown target (measurement) vector b ∈ R
n, how can we

compute an approximate minimizer of the regression problem

minx∈Rd ‖Ax − b‖ while querying as few entries of b as
possible? This problem arises in applications where labeled

data is expensive: viewing a single entry of b might require

running a survey, physical experiment, or time-intensive com-

Cameron Musco’s work on this project was supported in part by NSF Grants
2046235 and 1763618, along with an Adobe Research Grant. Christopher
Musco was supported by NSF Grant 2045590. David P. Woodruff and Taisuke
Yasuda were supported by ONR grant N00014-18-1-2562 and a Simons
Investigator Award.

1Extended abstract; full version available at https://arxiv.org/abs/2111.
04888.

puter simulation [44], [45]. Concretely, we study the following

problem for general vector norms2 ‖ · ‖:

Problem I.1. For A ∈ R
n×d,b ∈ R

n, and accuracy
parameter 0 < ε ≤ 1, find x̃ ∈ R

d satisfying:

‖Ax̃− b‖ ≤ (1 + ε) · min
x∈Rd

‖Ax− b‖,

while reading as few of the entries {b(1), . . . ,b(n)} of the
target vector b as possible.3

Notably, the formulation of Problem I.1 makes no assump-

tions on A and b. For example, we do not assume that

there exists a ground truth x̄ and that Ax̄ − b is bounded

in magnitude, or follows some distribution (e.g., has random

Gaussian entries). Under these stronger assumptions, much is

known about the problem, which has been studied for decades

in the statistics literature on “optimal design of experiments”,

as well as in machine learning [9], [33], [44].

In contrast, progress on the assumption-free version of

the problem has only come in recent years, thanks to ad-

vances in random matrix theory and randomized numerical

linear algebra. This is for good reason: solving Problem I.1

inherently requires choosing which entries of b to query

in a randomized way: an adversary can easily “fool” any

deterministic algorithm by concentrating error in Ax − b on

the indices of b that will be deterministically queried.

A. Prior Work

Euclidean Norm. Problem I.1 is fully understood when the

error is measured in the �2 norm, ‖w‖2 =
(∑n

i=1 |wi|2
)1/2

– i.e., for least squares regression. The typical approach is

to subsample and reweight rows (i.e., constraints) of the

regression problem and to let x̃ be the minimizer of this

sampled problem, which only involves a fraction of the entries

in b. I.e., letting S ∈ R
m×n be a sampling matrix with

m < n rows (S has one non-zero entry per row), set

x̃ = argminx ‖SAx − Sb‖. When constraints are selected

with probability proportional to the statistical leverage scores
of A’s rows, Problem I.1 can be solved with O(d/ε · log d)

2Our work will also extend to other loss functions of the form∑n
i=1 M([Ax− b]i) that are not necessarily norms.
3In principal, entries of b can be read adaptively – i.e., we can select

indices to query based on the results of other queries. However, the benefits
of adaptivity appear limited. Most methods for solving Problem I.1 and those
studied in this paper are non-adaptive.
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samples, and thus O(d/ε · log d) queries to b [21], [46], [53].4

Using tools from spectral graph sparsification [6], [35], Chen

and Price recently improved the leverage score sampling result

to O(d/ε), which is optimal [12].

In practice, methods based on leverage score sampling

(also known as “coherence motivated sampling”) have found

many applications. They are widely used in high-dimensional

function fitting problems arising in the solution of parametric

partial differential equations, where even mild assumptions

on A and b are undesirable [16], [17], [30]. Methods for

solving Problem I.1 in the �2 norm also yield robust methods

for interpolating sparse Fourier functions, bandlimited and

multiband functions, and for data-efficient kernel learning [4],

[11], [23].

Other Norms. Much less was known about Problem I.1

beyond the �2 norm until recent work of Chen and Dereziński

[10], which proves an upper bound of O(d/ε2 · log d) queries

for the �1 norm, ‖w‖1 =
∑n

i=1 |wi|. This result is tight up

to the log d factor. A similar result is obtained in [43]. Chen

and Dereziński also prove a result for �p norms, ‖w‖p =

(
∑n

i=1 |wi|p)1/p, for p ∈ (1, 2), in which they show that

O(d2/ε2 · log d) queries suffice to solve Problem I.1. As

for the �2 norm, the results for �1 and �p are obtained by

subsampling rows of the regression problem independently

at random. However, instead of sampling with probabilities

proportional to the leverage scores, [10], [43] employ a natural

generalization of these scores known as the �p Lewis weights
[18]. They left open the question of whether a linear in d
dependence is possible for 1 < p < 2, and any bounds at all

for p > 2.

Beyond norms, if b is a {−1, 1} label vector, and the error

is measured via the logistic loss, Munteanu et al. [42] show

that poly(d, μ, 1/ε) samples suffice, where μ is a complexity

measure of A. This bound has recently been tightened to

Õ(dμ2/ε2) [40], using Lewis weight sampling.5 For other loss

functions, such as the Tukey loss and Huber’s M -estimators

for robust regression [27], we are not aware of any known

results solving Problem I.1. Chen and Dereziński also pose

the open question of obtaining active regression bounds for

other loss functions, in particular the Tukey and Huber losses,

which are important in practice.

B. Our Contributions

a) �p Active Regression.: Our first main result is a new

algorithm for solving Problem I.1 for the �p norm for any 0 <
p < ∞6. While near-optimal bounds are known for p ∈ {1, 2}
[10], [12], [43], the problem is far from settled for all other

p. Previously, active �p regression for p > 2 and 0 < p < 1
had no known nontrivial algorithms with (1+ε) relative error,

and the only known approach was to read all n entries of b

4All query complexity bounds in this section are stated for solving Problem
I.1 with high constant probability – e.g., probability 99/100. In later sections
we will include an explicit dependence on a failure probability δ.

5Throughout, Õ is used to suppress polylogarithmic factors in the argument.
6Note that for p ∈ (0, 1), ‖·‖p is not a norm, but we refer to it as a norm

by a standard abuse of notation.

and solve the problem using offline results. A natural question

is whether a sublinear query complexity is possible in these

regimes. For p ∈ (1, 2), [10] achieved an algorithm making

O(d2/ε2·log d) queries, thus achieving the first sublinear query

complexity. One of their main open questions is whether the

dependence on d can be improved to linear or not. Our main

result answers all of these questions.

Theorem I.2 (Main Result for Active �p Regression). Given
0 < p < ∞, A ∈ R

n×d, and query access to b ∈ R
n, there

is an algorithm that solves Problem I.1 for the �p-norm with
probability 99/100 which makes m queries in b, where

m =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

O

(
d

ε2
(log d)2(log(d/ε))

)
p ∈ (0, 1)

O

(
d

ε
(log d)2(log(d/ε))

)
p ∈ (1, 2)

O

(
dp/2

εp
(log d)2(log(d/ε))p−1

)
p ∈ (2,∞)

.

We complement our algorithmic result with various new

lower bounds which show the tightness of our algorithm. For

p ∈ (0, 2), our dependence on d and ε in the query complexity

are simultaneously tight up to polylogarithmic factors; we

show an Ω(d/ε2) lower bound for p ∈ (0, 1) and an Ω(d/ε)
lower bound for p ∈ (1, 2). For p > 2, our dependence on

d is tight due to a lower bound of Ω(dp/2) which we show,

while our ε dependence is off by at most factor of ε due to

an Ω(ε1−p) lower bound for the one-dimensional �p power
means problem in Theorem 3 of [19]. Note that our active

regression lower bounds for p ∈ (0, 2) improve this previous

power means lower bound.

Notably, we achieve a linear dependence on ε for p ∈ (1, 2),
which is perhaps surprising given that all previous known

approaches to dimension reduction for �p regression relied on

preserving the �p norm of all vectors in a subspace up to (1±ε)
factors [18], which requires Ω(d/ε2) dimensions [37]. It also

demonstrates a separation in the query complexity for p ≤ 1
and 1 < p < 2, due to a lower bound of Ω(d/ε2) for p = 1
[10], [43] as well as for p ∈ (0, 1) which we show.

Note that Theorem I.2 is stated to solve Problem I.1 with

constant probability, 99/100. In general, we show how to

obtain 1 − δ probability with dependence on δ that is only

polylogarithmic in 1/δ. In fact, we show that any algorithm

that simply samples rows of the regression problem and

solves the sampled problem must suffer a 1/δp−1 dependence.

Indeed, such a loss is seen in the algorithm of [10] for

p ∈ (1, 2). Thus, a success probability boosting routine, as

we give in our work, is required to obtain an O(log(1/δ))
dependence.

b) Sensitivity Bounds and Active Regression for General
Losses.: We show that our approach to solving Problem I.1 for

�p norms generalizes to a broad class of loss functions known

as M -estimators [15], which take the form
∑n

i=1 M([Ax −
b]i). The only properties that we require are that we can (1)

compute a constant factor approximation to Problem I.1 (2)

the loss function obeys approximate variants of the triangle
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TABLE I: Upper and lower bounds for Problem I.1 for various

norms and loss functions. New results are highlighted in blue.

For simplicity, we suppress leading constants depending only

on p, as well as poly log n factors for M -estimator results.

Our results significantly strengthen and generalize prior work,

providing the first query complexity result with a tight d
dependence for �p norms. We also give the first results for

M -estimators as well as �p norms for p > 2 and p ∈ (0, 1),
and matching lower bounds in many cases.

Loss Prior Work Our Work Lower Bound
p = 2 d/ε [12] – d/ε [12]

p = 1 d/ε2 [10] – d/ε2 [10]

p ∈ (1, 2) d2/ε2 [10] d/ε d/ε

p > 2 – d
p
2 /εp d

p
2 + ε1−p

p ∈ (0, 1) – d/ε2 d/ε2

M -est. – d
p
2
+O(1)/εc d

Huber – d4−2
√
2/εc d

Tukey – d
p
2
+O(1)/εc d

inequality and (3) we can bound the so-called sensitivities of

the loss, which bound the fraction of the total loss that can be

concentrated at any coordinate i ∈ [n] (see Equation (1)).

To the best of our knowledge, the only prior result achieving

sensitivity bounds for general loss functions is [52]. However,

this work makes use of Löwner-John ellipsoids, which leads

to practically inefficient algorithms, and loses a factor of
√
d

in the total sensitivity due to the ellipsoidal rounding. As our

second main result, we develop new sensitivity bounds for M -

estimators that significantly simplify and improve this result.

Theorem I.3 (Main Result for Sensitivity Bounds). Let A ∈
R

n×d and let M be an M -estimator loss with at most degree p
growth. There is an algorithm which, with probability at least
99/100, computes M -sensitivity upper bounds which sum to
at most O(d1∨(p/2) log2 n+ τ)7 in time at most Õ(nnz(A) +
ndO(1)/τ).

Our approach to sensitivity bounds only relies on hashing

and the computation of �p Lewis weights [18], [24], and avoids

the computation of Löwner-John ellipsoids. This allows for

input sparsity time algorithms, and answers an open question

of [52] on avoiding Löwner–John ellipsoids in the computation

of sensitivities. Note that our dependence on d matches the

sensitivity bounds for the �p loss and is thus tight. We

also show that the dependence on n is necessary for loss

functions such as the Huber and Tukey losses. Furthermore,

our algorithm can be turned into a non-algorithmic proof that

the sensitivities sum to at most O(d1∨(p/2) log n) for these M -

estimators; this is in fact tight for the Tukey loss by our lower

bound of Ω(d log n). Thus, we obtain the first tight bounds

on the sum of sensitivities, for losses other than �p. Overall,

we make significant progress on generalizing the theory of

matrix approximation beyond �p losses to handle general M -

estimators, which is a direction that has recently received much

7Here, a ∨ b denotes max(a, b), and a ∧ b denotes min(a, b).

attention [13]–[15], [26], [51], [52].

Combined with our active regression techniques, our sen-

sitivity bounds yield active regression algorithms for general

loss functions, including the Huber and Tukey losses, answer-

ing an open question of Chen and Dereziński [10]. Note that

prior to our work, no sublinear query complexity was known

for any M -estimator regression, besides the �2 and �1 losses.

Furthermore, our new sensitivity bounds imply significant

improvements in previous results using sensitivity sampling,

beyond active regression, including Orlicz norm subspace

embeddings [50] and robust subspace approximation [14]. We

believe that our general technique here will find other further

applications, and leave it as an open question to do so.

c) Subspace Embeddings for Orlicz Norms.: Orlicz
norms can be viewed as scale-invariant extensions of M -

estimators, and have recently attracted attention as a general

class of norms that admit efficient dimensionality reduction

results [3], [50]. In particular, [50] apply sensitivity sampling

to obtain subspace embeddings for Orlicz norms, which yields

a small weighted subset Ã of rows of a matrix A ∈ R
n×d

such that ‖Ãx‖ = (1 ± ε)‖Ax‖8 for all x ∈ R
d. However,

the number of rows required by [50] is a large polynomial in

d, and is also restricted to Orlicz norms of at most quadratic

growth. We show that by applying our new sensitivity bounds,

we can obtain subspace embeddings for Orlicz norms with

d2∨(p/2+1) poly(log n, ε−1) rows, for any Orlicz norm with a

polynomial growth bound of degree p.

d) Robust Subspace Approximation.: The robust sub-

space approximation problem generalizes the classical low

rank approximation problem of finding a rank k projection

X minimizing ‖AX−A‖F by replacing the Frobenius norm

with an extension of M -estimators to matrix norms. [14]

showed the first dimensionality reduction results for this

problem for a general class of M -estimators of at most

quadratic growth via a recursive sampling scheme using the

sensitivity sampling framework. However, due to the use of

looser sensitivity bounds, they suffer an undesirable factor of

(log n)O(log k) in their sample complexities. Our new sensitiv-

ity bounds allow us to remove this factor, giving a dimension

reduction result into a poly(k, log n, ε−1)×poly(k, log n, ε−1)
instance. We also extend their method beyond quadratic

growth, to any degree p polynomial growth.

e) Active Regression for the Huber Loss.: Our active

regression result for general M -estimators discussed above is

loose by a factor of d in the sample complexity, compared to

our �p active regression results. This is attributed to the use

of our net argument for general M -estimators, whereas our �p
active regression results can make use of more sophisticated

chaining arguments of [7], [34], [48]. A natural question is if

this gap can be improved.

We consider the important special case of the Huber loss,

which is defined as follows:

8For a, b ≥ 0, a± b denotes a number c such that a− b ≤ c ≤ a+ b.
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Definition I.4 (Huber loss [31]). The Huber loss of width
τ ≥ 0 is defined as

H(x) :=

{
x2/2τ if |x| ≤ τ

|x| − τ/2 otherwise

and the Huber norm9 is defined as ‖y‖H :=
√∑n

i=1 H(y(i)).

The Huber loss is “arguably one of the most widely used

M -estimators” [15], owing its popularity to its convexity and

differentiability properties of �2, which allows for efficient

algorithms (see, e.g., [41] for algorithms), in combination with

its robustness properties of �1 [29]. This makes it widely

applicable in practical big data settings (see, e.g., [5] for a list

of popular software packages implementing Huber regression

as well as references that make use of Huber regression).

Variations on Huber regression have also recently been shown

to hold theoretical guarantees in the robust statistics literature

(see, e.g., [38], [39] and references therein).

For the Huber loss, we show that it is indeed possible to

leverage the chaining techniques in order to obtain improved

sample complexity bounds for active regression. We show that

we can improve beyond the d2 bound obtained by our general

M -estimator algorithm as applied to the Huber loss, and obtain

a sample complexity of O(d4−2
√
2 poly(log n, ε−1)) queries

to b, where 4 − 2
√
2 ≈ 1.17157. For this result, we use the

chaining techniques of [7], which provides a more flexible

alternative to [34], but requires more technical effort to adapt

to the active setting.

Theorem I.5 (Main Result for Huber Active Regression). Let
A ∈ R

n×d, b ∈ R
n. There is an algorithm which, with

probability at least 99/100, returns a x̃ satisfying

‖Ax̃− b‖H ≤ (1 + ε) ·min
x

‖Ax− b‖H
Furthermore, the algorithm reads at most
d4−2

√
2 poly(log n, ε−1) entries of b.

Our techniques also yield a subspace embedding

result, which constructs a weighted subset Ã
of O(d4−2

√
2 poly(log n, ε−1)) rows such that

‖Ãx‖H = (1 ± ε)‖Ãx‖H for all x ∈ R
d. Previously,

the best known dimension reduction bound for Huber

regression, even in the non-active setting, was d4 due to [15].

Furthermore, this is, to the best of our knowledge, the first

example of a loss function other than �p which achieves a

sensitivity sampling bound of better than d2, despite the fact

that such results have been sought in many works [13]–[15],

[28], [50], [52]. The reason for this is that d2 is a natural

bound for sensitivity sampling, attributed to one d factor from

the sum of sensitivities and one d factor from carrying out

a union bound over a net of exp(d) vectors. For �p norms,

the arguments of [7], [48] and their subsequent improvements

avoid this problem by using a more sophisticated chaining

argument. However, these arguments use the structure of �p

9Again, this is a standard abuse of notation, and the Huber norm is not an
actual norm.

spaces in crucial ways, such as isometric changes of density

using Lewis weights [32], and do not generalize easily to other

loss functions.
It is an interesting open question to determine whether our

dimension reduction bound for the Huber loss can be improved

all the way down to d.
f) Dimension Reduction for Gamma Functions for Faster

�p Regression.: One particularly important application of

sampling-based dimension reduction for loss functions beyond

�p losses is, perhaps surprisingly, in the design of algorithms

for �p regression. The work of [8] introduces gamma functions
γp, which are generalizations of the Huber loss which behave

quadratically near the origin and like |x|p away from the

origin, in the context of algorithms for �p regression. Subse-

quently, [2] obtained even faster algorithms by using constant

factor approximations of γp regression as a subroutine, in

which the γp loss is minimized over a subspace. Dimension

reduction for this loss function has been a crucial ingredient

for recent results in fast algorithms for �p regression [1], [28].

In particular, [1] highlighted the open question of designing

sparsification methods for γp functions for p ∈ (1, 2), and

[28] designed a sampling algorithm which samples Õ(d3)
rows. By generalizing our dimension reduction techniques for

the Huber loss, we obtain an algorithm which samples at

most O(d4−2
√
2 poly(log n, ε−1)) rows for any p ∈ [1, 2), and

improves to O(d poly(log n, ε−1)) rows as p → 2 (see Figure

1 for the trade-off curve).
g) Kronecker Product Regression.: Beyond applications

in data-efficient regression, Theorem I.2 implies the first

sublinear time algorithm for Kronecker product regression in

any �p norm, where explicitly constructing the vector b is

a computational bottleneck. In q-th order Kronecker prod-

uct regression, one is given matrices A1,A2, . . . ,Aq , where

Ai ∈ R
ni×di , as well as a vector b ∈ R

n1n2···nq , and the goal

is to solve: minx∈R
d1d2···dq ‖(A1⊗A2 · · ·⊗Aq)x−b‖p, where

⊗ denotes the Kronecker product. Typically
∏q

i=1 di is much

less than
∏q

i=1 ni, and the goal is to obtain algorithms that do

not explicitly form A1 ⊗ A2 ⊗ · · · ⊗ Aq or b, which is too

expensive. Our results yield the first algorithm for Kronecker

product regression, for every p ≥ 1, whose running time does
not depend on nnz(b), whereas previous results had a linear

dependence on nnz(b), which can be as large as
∏q

i=1 ni [22].

Theorem I.6. Let q ≥ 1, p ≥ 1 be constant, and ε > 0.
Kronecker product regression can be solved up to a (1 +
ε)-factor with constant probability in Õ(

∑q
i=1 nnz(Ai) +

poly(
∏q

i=1 di/ε)) time.

C. Technical Approach
1) �p Active Regression: Our algorithm for solving Problem

I.1 uses a novel variation on the “sample-and-solve” approach.

In particular, we randomly select a row sampling matrix S ∈
R

m×n and return x̃ = argminx ‖SAx − Sb‖, which only

requires querying m entries of b (those that appear in Sb). To

get tight bounds for �p regression, we select S using �p Lewis

weight sampling, a generalization of leverage score sampling

for �2.
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It can be shown that the �p Lewis weights upper bound the

�p sensitivities of A, a measure of importance for the rows of

A. The �p sensitivity of the ith row of A is defined as

spi (A) := max
x∈Rd\{0}

|[Ax](i)|p
‖Ax‖pp ,

where [Ax](i) denotes the ith entry of the vector Ax, and

captures how large the ith entry of any Ax ∈ span(A) can

be, relative to the �p norm. A standard scalar Bernstein bound

shows that if S samples rows with probabilities that upper

bound the sensitivities, then ‖SAx‖pp = (1 ± ε)‖Ax‖pp with

high probability, for each x ∈ R
d. An ε-net argument can

extend this to a for all claim.
a) Prior Approaches to �p Active Regression: While the

above ideas give an approach for standard �p regression, this

bound does not suffice for active �p regression. To solve

Problem I.1, we actually want that ‖S(Ax − b)‖pp = (1 ±
ε)‖Ax−b‖pp for any x. Will S provide such a guarantee? The

main problem, as discussed in [10], [43] is that the translation

by b may introduce outliers, i.e., entries with high sensitivity

which are not captured by the sensitivity scores of A. As

shown by [10], [43], in the case of �1, the special structure of

the loss function provides a solution. Indeed, by the triangle

inequality,

|(|[Ax− b](i)| − |[Ax∗ − b](i)|)| ≤ |[A(x− x∗)](i)|
where x∗ is the optimal solution. This fact can be used to

show that sampling by the sensitivities of A preserves the

differences between the cost of any x and the optimal x∗.

However, such a proof cannot work for p �= 1, in which case

we do not have such a nice inequality. For p ∈ (1, 2), [10]

take the approach of bounding the residual error terms from

the above approach by using a Taylor approximation, but this

leads to a sample complexity of at least d2.
b) Our Solution: Partitions by Sensitivity: Instead of

relying on the technique of “cancelling out the outliers”, we

take a conceptually different approach. We proceed in two

stages, where we (1) first find a constant factor solution xc

such that ‖Axc − b‖pp ≤ O(1) · minx‖Ax− b‖pp using an

idea of [20] and replace b by the residual vector b−Axc, and

then (2) conceptually partition the target vector b into two sets

of coordinates, the coordinates i ∈ [n] that are small enough

to be comparable to the sensitivity spi (A) and those that are

much larger. That is, we consider the coordinates i ∈ [n] such

that |b(i)|p/‖b‖pp ≤ C · spi (A) for some C > 0, and all other

coordinates. For the former set of coordinates, one can check

that the Bernstein bound still applies, and S does preserve

the norm of ‖Ax−b‖pp, when restricted to these coordinates.

On the other hand, for the latter set of coordinates, we show

that no vector of the form Ax can both be close to b(i)
in its ith entry, and still close to the remainder of b – the

ith entry is simply too large in magnitude. In particular, to

have [Ax](i) close to b(i), we would require ‖Ax‖pp to be

much larger than ‖b‖pp, which by our preprocessing step, is

on the order of the optimal cost minx ‖Ax − b‖p. Via the

triangle inequality, this implies that Ax must be far from an

optimal solution. Thus, we can argue that any near-optimal

solution to minx ‖Ax − b‖p does not need to fit b(i) with
|b(i)|p/‖b‖pp much larger than spi (A). We can effectively

ignore the contribution of these rows.

Another technical challenge remains: to obtain an optimal

dimension dependence, we need a refined ε-net argument to

make for all statements about x ∈ R
d. To do so, we adapt the

chaining arguments of Bourgain, Lindenstrauss, and Milman

[7] and Ledoux and Talagrand [34] to the active regression

setting, avoiding the standard ε-net and union bound argument

used by, e.g., [47]. Although both [7] and [34] provide such

approaches, we adapt the (slightly) more complex recursive

Lewis weight sampling algorithm of [34] in order to obtain

tighter dependencies on ε. The streamlined proof of [34] also

adapts nicely to the active regression setting with minimal

changes to the original argument. We note here that we will

later also need to adapt the much more involved [7] argument

to handle the Huber loss, in which case the proof of [7] allows

for more fine-grained control over bounding the sensitivity

sampling algorithm, but requires a more complex argument

based on carefully partitioning the coordinates of the target

vector b based on sensitivity weight classes. Aside from our

new application of [7], [34], we hope that by translating

the arguments of [7], [34] to the language of theoretical

computer science and matrix approximation, they will find

further applications to randomized algorithm design.

We note that our algorithm is quite a bit more involved than

a simple scheme of sampling proportionally to Lewis weights

and solving. This is for good reasons. Not only is it not clear

that such an approach works at all, we show that for any p > 1,

any algorithm which simply samples reweighted rows and

solves the system must have a polynomial dependence on 1/δ
in the query complexity, while our algorithm achieves a log 1

δ
dependence, by solving residual problems of a constant factor

solution. Thus, our two-stage approach is necessary to achieve

our δ dependence. Furthermore, the best known analysis of

a simple “one-shot” Lewis weight sampling scheme suffers

in ε dependencies for p > 2, where the one-shot approach

is only known to give a Õ(dp/2/ε5) bound for subspace

embeddings [7], [18], whose losses translate to losses for

our active regression algorithms as well, while the recursive

approach can achieve Õ(dp/2/ε2) [34]. While the [34] result

is an existential result, we provide an analysis of the [34]

proof to turn it into a randomized algorithm with logarithmic

dependencies on the failure rate δ, which achieves the best

known dependence on d, ε, and δ, up to logarithmic factors.

We further modify this subspace embedding result for active

regression, to optimize our ε dependence.

c) Optimized ε Dependence for p ∈ (1, 2): For p ∈
(1, 2), the above argument gives a bound of Õ(d/ε2). While

the linear dependence on d is optimal, confirming the con-

jecture of [10], it has a quadratic dependence on ε, which

is in fact not optimal. We now show how to improve our

bound to Õ(d/ε), which requires additional ideas. We first use

strong convexity to show that a (1 + γ)-approximate solution

x̂ ∈ R
d satisfying ‖Ax̂− b‖pp ≤ (1+ γ)‖Ax∗ − b‖pp, for the
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optimal solution x∗ ∈ R
d, in fact satisfies ‖Ax̂−Ax∗‖p ≤

O(
√
γ)‖Ax∗ − b‖p. Then, by using that x̂ is close to the op-

timal solution, we show an improved bound on the difference

in the objective values of x̂ and x∗, i.e., that x̂ actually has an

approximation ratio better than (1 + γ). We then iterate this

argument until we obtain a (1+ε)-approximation using Õ(d/ε)
queries, at which point we can no longer get improvements.

The chaining argument used in this proof, while similar to the

previous proofs, has a different geometry than the previous

chaining arguments, and requires additional ideas.

Our upper bound is tight up to polylogarithmic factors due

to a lower bound we show. This improves an �p power means

lower bound of [19], who only showed a lower bound of

Ω(ε1−p) queries. Unfortunately, we are unable to port our

algorithmic techniques to the �p power means problem in

high dimensions, due to difficulties in adapting their chaining

argument.

2) Sensitivity Bounds: The notion of �p sensitivities, as dis-

cussed above, naturally generalizes to loss functions that take

the form of coordinate-wise sums. Consider a loss function

M and an n × d matrix A. Then, the sensitivity of the ith
coordinate with respect to the loss function M is defined as

sMi (A) := sup
x∈Rd\{0}

M([Ax](i))∑n
j=1 M([Ax](j))

. (1)

It is well-established that sensitivities provide a general frame-

work for sampling rows of A that approximate A well under

the loss function M [25]. While a rich literature exists for

�p [18], [20], [49], little was known about the approximation

of sensitivities for general loss functions until [52], which

used Löwner-John ellipsoids to obtain sensitivity bounds for

a general family of near-convex losses. However, the com-

putation of Löwner-John ellipsoids has running time that is

a large polynomial in n and d, and is impractical for large

datasets, and [52] raise the open question of obtaining general

sensitivity bounds without this expensive subroutine.

Our approach to new sensitivity bounds significantly gener-

alizes the approach of [13], whose algorithm can be seen as a

way to use hashing and Lewis weights to compute sensitivities

for the Tukey loss, but heavily uses the properties of the Tukey

loss in their analysis.

Suppose that a coordinate i ∈ [n] has M -sensitivity α ∈
(0, 1], that is,

sMi (A) = sup
x∈Rd\{0}

M([Ax](i))∑n
j=1 M([Ax](j))

= α,

and let y = Ax witness this supremum, and assume for

simplicity that
∑n

i=1 M([Ax](j)) = 1. Note then that there

can be at most 1/α entries j ∈ [n] of y that have coordinate

value M(yj) ≥ M(yi) = α. Then, if we randomly hash

the n coordinates into O(1/α) buckets, then with constant

probability, coordinate i will be isolated from any other entry

with M(yj) ≥ M(yi) = α. Now if M is monotonic, then

this means that yi is the largest coordinate in its hash bucket.

Furthermore, the sum of the M -mass of all of the other

coordinates in i’s hash bucket is only an α fraction of the

total M -mass, so entry i carries a constant fraction of the M -

mass in its bucket. In this case, it can be shown that entry i
must in fact carry a constant fraction of the �2 mass inside its

hash bucket, if M is a function of at most quadratic growth.

This is because when we switch the error metric from M to

�2, then the largest entry will have the largest increase in its

normalized contribution. This means that row i must have an

�2 leverage score of Ω(1), in this hash bucket.

This leads to the following algorithm: (1) hash the n
coordinates into O(1/α) buckets (2) compute �2 leverage

scores for each bucket (3) assign an M -sensitivity of α for

any coordinate that has �2 leverage score Ω(1). In each of the

O(1/α) buckets, we will find at most O(d) coordinates with

leverage score at least Ω(1), so we assign an M -sensitivity of

α to at most O(d/α) coordinates, which has a total sensitivity

contribution of O(d). By repeating this for O(log n) guesses

of α in powers of 2, this gives a total sensitivity bound of

O(d log n). The constant probability events in the hashing

process can be boosted to probability 1 − 1/ poly(n) by

repeating the procedure O(log n) times, which increases the

total sensitivity to roughly O(d log2 n).

By sampling according to these sensitivities and applying a

union bound over a net, we obtain the first active regression

algorithms for general loss functions. Note that this result is

made possible by a combination of both our new sensitiv-

ity bounds for M -estimators and our new active regression

techniques as discussed in Section I-C1. Furthermore, we

demonstrate other applications of our sensitivity bound result,

showing how to improve Orlicz norm subspace embeddings

and robust subspace approximation.

3) Subspace Embeddings and Active Regression for the
Huber Loss: As discussed previously, we tackle the question

of leveraging the theory of [7] nets in order to obtain sample

complexities for the Huber loss beyond d2. Our algorithmic

framework for active regression is based on the earlier idea of

partitioning the entries of b by sensitivity and then applying

sensitivity sampling, so we focus on the problem of preserv-

ing the Huber norm using an improved sensitivity sampling

technique. Note that unlike the �p losses, the Huber loss is

not scale-invariant. Furthermore, perhaps the largest obstacle

in designing row sampling algorithms for the Huber loss going

beyond standard ε-net arguments is that there is no analogue

of the chaining constructions of [7], [48] for the Huber loss.

This can also be attributed to the fact that the Huber loss is

not scale-invariant, which precludes an isometric change-of-

density type theorem for the Huber loss as done in [36], [48].

We show how to overcome these obstacles in the following

discussion.

a) A Sharp Huber Inequality.: Our algorithmic frame-

work follows the Huber algorithm of [15], which is a recursive

sampling algorithm which reduces the number of rows from

n to roughly n1/2d2 in each recursive application of the

algorithm. To show this result, [15] first show in their Lemma

2.1 that the Huber norm is within a factor of O(n1/2) of the

smaller of the �1 and �2 norms:
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Lemma I.7 (Huber Inequality version 1 ( [15], Lemma 2.1)).
Let y ∈ R

n. Then,

‖y‖2H =

n∑
i=1

H(yi) ≥ Ω(n−1/2)min{‖y‖1, ‖y‖22}

It can be shown that the above lemma implies that the Huber

sensitivities are within a factor of O(n1/2) of the sum of the

�1 and �2 sensitivities. This motivates the idea of sampling the

rows of A with probability proportional to the sum of the �1
and �2 Lewis weights, oversampled by a factor of O(n1/2).
This is indeed how [15] proceeds.

The recursion n → n1/2d2 solves to a final row count of

around d4, which is quadratically worse than our general loss

function result of d2 using our new sensitivity upper bounds

and our general framework. To improve this further, first note

that two improvements can be made to the above argument.

First, by using the Huber inequality in a different way, we can

use it in conjunction with the [7] net bounds, which reduces

the row count in one recursive application to roughly n1/2d
rather than n1/2d2. This reduces the overall row count to d2

after solving for the recursion, but this still does not beat our

general purpose sensitivity sampling algorithm, despite the use

of the [7] nets. The second improvement is that the Huber

inequality as proved in [15] is in fact loose by a polynomial

factor in n, and can be improved to the following:

Lemma I.8 (Huber Inequality version 2). Let y ∈ R
n. Then,

‖y‖2H =
n∑

i=1

H(yi) ≥ Ω(n−1/3)min{‖y‖1, ‖y‖22}

This lemma is tight up to constant factors10, and gives a

recursion of roughly n → n1/3d, giving

O(d3/2 poly(ε−1, log n))

rows, which shaves a factor of approximately
√
d over the

naı̈ve Bernstein bound over a net.

b) Storing Large Huber Sensitivities.: In order to further

improve upon this bound, we crucially make use of our

improved sensitivity bounds and a generalized version of the

above Huber inequality lemma that is parameterized by an

upper bound on the size of the entries of y.

Lemma I.9 (Huber Inequality version 3). Let y ∈ R
n and let

0 < γ ≤ 1. Let

T ⊇
{
i ∈ [n] : H(yi) ≤ γ‖y‖2H

}
.

Then, for some constant c > 0, at least one of the following
bounds holds:

‖y |T ‖2H =
∑
i∈T

H(yi) ≥ c
1

(γn)1/3
min{‖y |T ‖1, ‖y |T ‖22}

‖y‖2H =
n∑

i=1

H(yi) ≥ cγmin{‖y‖1, ‖y‖22}.

10Consider the vector with one coordinate with n1/3 and (n− 1) coordi-
nates with n−1/3.

By directly including the rows of A with Huber sensitivity

at least γ, we exactly preserve the Huber norm inside T =
[n] \ T for every y. On the remaining coordinates inside T ,

we then have an improved Huber inequality, which implies

an improved sampling bound. By balancing the number of

rows which we directly include, which is roughly d/γ, and the

sampling bound inside T , which is roughly (1/γ+(γn)1/3)d,

we obtain a bound of roughly n1/4d rows by choosing γ =
n−1/4 at each step. By recursively applying this result, we

obtain an improved sampling bound of

O(d4/3 poly(ε−1, log n)).

c) Comparing to Every p ∈ [1, 2].: Finally, to achieve

our final optimization, we further drive down the ratio between

‖y‖2H and ‖y‖pp by choosing the best p ∈ [1, 2] for each y:

Lemma I.10 (Huber Inequality ver. 4). Let y ∈ R
n, α ∈

[0, 1/2], γ = n−α with 2/n ≤ γ ≤ 1. Let

T ⊇
{
i ∈ [n] : H(yi) ≤ γ‖y‖2H

}
.

Then, for some c > 0 and β = 3 − 2
√
2 ≈ 0.17157, at least

one of the following bounds holds:

‖y |T ‖2H ≥ c
1

(γn)β
min

p∈[1,2]
‖y |T ‖pp

‖y‖2H ≥ cγ min
p∈{1,2}

‖y‖pp
In fact, we prove a generalized bound for the �2-�q loss

for any q ∈ (0, 2) in Lemma I.11. The interval p ∈ [1, 2]
can be discretized in increments of 1

logn , so with O(log n)
applications of [7] nets, we can always find a p within an

additive 1
logn of the optimal p for every net vector y, which

only affects Lemma I.10 by constant factors whenever y has

entries bounded by poly(n). By proceeding as previously

discussed, we arrive at our final bound of

O(d4−2
√
2 poly(ε−1, log n)).

d) Extensions to �2-�q Loss.: We generalize our results

to the �2-�q loss for q ∈ (0, 2). As q ranges from 0 to 1 to 2,

the �2-�q interpolates between the Tukey, Huber, and �2 losses

up to constant factors, and provides a natural generalization

of these loss function.

Lemma I.11 (�2-�q Inequality). Let q ∈ (0, 2) and define

M(x) =

{
|x|2 if |x| ≤ 1

|x|q if |x| > 1
.

Let y ∈ R
n and let α ∈ [0, q/2] and γ = n−α with 2/n ≤

γ ≤ 1. Let

T ⊇
{
i ∈ [n] : M(yi) ≤ γ‖y‖2M

}
.

Then, for some constant c > 0, at least one of the following
bounds holds:

‖y‖2M ≥ cγ2/q−1 min
p∈{q,2}

‖y‖pp

‖y |T ‖2M ≥ c
1

(γn)β
min

p∈[q,2]
‖y |T ‖pp

(2)
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where
β =

1

2/q − 1

[
(2/q + 1)− 2

√
2/q

]
.

For q ∈ [1, 2), the 1/γ2/q−1 distortion in Equation (2)

is smaller than the 1/γ factor incurred from keeping M -

sensitivities at least γ, so we can balance the parameters

as 1/γ = (γn)β as before, which leads to a recursion

that gives us a bound of n = d1+β poly((log n)/ε). For

q ∈ (0, 1), the 1/γ2/q−1 distortion in Equation (2) is worse

than 1/γ, which means we must balance 1/γ2/q−1 = (γn)β ,

or γ = n−β/(2/q−1+β), which gives a worse bound of

n = dγ poly((log n)/ε) for

γ =
2/q − 1 + β

2/q − 1 + β(2− 2/q)
.

This is better than a d2 bound as long as q ≥ (
√
5− 1)2/8 ≈

0.19098.

q

dγ

d1+β

d

d2

d4−2
√
2

1 2(
√
5−1)2

8 ≈ 0.191

Fig. 1: Dependence on d for the active regression sample com-

plexity for the �2-�q loss. Similar bounds apply to subspace

embeddings as well.

D. Conclusions and Future Directions

In this work, we study the sample complexity of active

linear regression for both the �p norm as well as general M -

estimator losses.

For the �p norm, we provide optimal algorithms and lower

bounds for p ∈ (0, 2), with Θ̃(d/ε2) samples for p ∈ (0, 1)
and Θ̃(d/ε) samples for p ∈ (1, 2). For p > 2, we provide

an upper bound of Õ(dp/2/εp), which is optimal in the d
dependence and off by a single ε factor in the ε dependence,

up to polylogarithmic factors. Our algorithms provide the first

nontrivial bounds, i.e., sample complexity less than n, for

p ∈ (0, 1) ∪ (2,∞), while for p ∈ (1, 2), we significantly

improve upon the Õ(d2/ε2) upper bound of [10] and answer

their main open question. We obtain these results via a two-

stage algorithm and a novel sensitivity partitioning technique

for every p, as well as an iterative improvement argument via

strong convexity and Lewis bases to improve the ε dependence

for p ∈ (1, 2). Our result is the first to achieve a linear

dependence on ε for dimension reduction for �p regression

for p ∈ (1, 2).

Next, we obtain a new sensitivity bound which achieves

optimal total sensitivity bounds for M -estimators of at most

polynomial growth, which runs in input sparsity time and

avoids the use of Löwner–John ellipsoids. This answers an

open question of [52] and makes significant progress in

the general direction of matrix approximation beyond �p
losses. By combining this with our new active regression

techniques, we obtain active regression algorithms for general

M -estimator losses, including the Tukey and Huber losses,

which answers an open question of [10].

For the important special case of the Huber loss, we intro-

duce new techniques which bound Huber sensitivities by the

sum of �p Lewis weights, which allows us to take advantage of

chaining arguments for �p in order to obtain an active regres-

sion algorithm making at most O(d4−2
√
2 poly(log n, ε−1))

queries. Our techniques also give subspace embeddings with

the same number of rows. This is the first dimension reduction

result for losses other than �p to approximate a d-dimensional

subspace with fewer than d2 dimensions. This improves over

a previous bound of d4 for the Huber loss, which held only

for subspace embeddings, and not active regression, in [15].

Finally, our results and techniques give many applications

in a wide variety of related problems. Our lower bounds

for active regression give improved lower bounds for the

sublinear power means problem [19]; our new sensitivity

bounding techniques sharpen and generalize previous results

on Orlicz norm subspace embeddings [51] and robust subspace

approximation [14]; our techniques for dimension reduction

for the Huber loss gives improved bounds for sparsification

for γp functions for applications in fast algorithms for �p
regression [1], [28]. We believe that our techniques will be

applicable further, and hope to see more uses in future work.

We conclude with questions that are still left open by our

work. Perhaps the most pressing is to resolve the query com-

plexity of active �p regression for p > 2: our upper bound is

Õ(dp/2/εp), while the lower bound is Ω(dp/2+ε1−p). Closing

this gap would be interesting. Our bounds are also loose by a

factor of log 1
δ for all p > 0, while we can get an optimal

dependence on δ if we assume knowledge of the optimal

value and sacrifice a factor of ε. A natural question if one

can achieve a simultaneously optimal dependence on d, ε, and

δ, up to logarithmic factors, and without assumptions. Another

gap to close is the query complexity of Huber regression,

or more generally M -estimator regression, even for just the

d dependence: our upper bound is Õ(d4−2
√
2 poly log n) for

constant ε, while only a trivial lower bound of Ω(d) is known.
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