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Does This Count as Work?
Nurturing computational thinking in the science classroom
NANETTE MARCUM-DIETRICH, MERIDITH BRUOZAS, AND JOHN DOMYANCICH

he Next Generation Science Stan-
Tdurds (NGSS) challenge teachers
to incorporate authentic investiga-

tion into the classroom, including eight
distinct scientific practices (NGSS Lead
States 2013). Some of the more com-
monly integrated practices, such as Ask-
ing Questions and Defining Problems,
Analyzing and Interpreting Data, and
Engaging in Arguments from Evidence,
are essential features of scientific inquiry.
Other scientific practices, however,
are not fully integrated into science
classrooms. For example, Using Math-
ematics and Computational Thinking
is a practice that is too often marginal-
ized. We may think that the act of stu-
dents collecting numerical data and
constructing graphs and tables demon-
strates Mathematics and Computational
Thinking (CT) in science, but we would
be wrong. Computational thinking is a
cognitive process that allows us to take
a complex problem; understand what
the problem is; break the problem down
into manageable steps; and develop pos-
sible solutions in a form that a computer,
a human, or both can understand and
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COMPUTATIONAL
THINKING IS...

a cognitive process that allows us to
take a complex problem, understand
what the problem ks, break the problem
dawn inte manageable steps and
develop possible solutions in a form
that a computer, a human, or both,

can understand and process.
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process (Cuny, Snyder, and Wing 2010;
Aho 2011; Lee 2016).

As teachers, can we identify problems
where CT skills should be used? In ad-
dition, do we encourage students to le-
verage CT practices to solve problems?
Let me give you an example; recently,
my 15-year-old son was working on
his science homework. The assignment
required him to create a scale model of
geologic time and locate several signifi-
cant events. He was instructed to use the
length of a football field (100 yards) as
the scale, and to convert the dates of each
significant event to yard lines. The direc-
tions explicitly told him to SHOW HIS
WORK! The list was long; he needed
to convert 25 significant geologic events
to yard lines. The task quickly became
tedious. Annoyed, my son blurted out,
“This is taking too long! I’'m just going
to program my calculator to do this for
me.” He grabbed his TI-84 calculator
and wrote the following program:

00 { 20-Byte Prgm }
01 LBL “EARTH”

02 4.54
03 =+

04 100
05 x

06 .END.

I was amazed and filled with more
than a little motherly pride! Without
prompting, he had identified a task
where scientific practices, namely, com-
putational thinking skills, are useful.
For this task, he prepared the problem
for CT by identifying the relevant al-
gorithm, and he wrote a program that
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a computer, a TI-84 calculator, could
run. His homework was completed in
a fraction of the time, but I worried. I
asked him, “Will the teacher give you
credit for the assignment if you don’t
do the calculations by hand?” In other
words, would his CT skills be valued by
his teacher? Would the use of CT skills
count as valuable scientific work?

CT has its roots in computer sci-
ence, and much of the current discus-
sion on what computational thinking is
and how it should be implemented in
the science classroom is influenced by
the computer science education com-
munity. Still, CT is not simply computer
programming; instead, it is a thought
process that includes a collection of dis-
tinct skills we can use to tackle data-rich
problems. As science teachers, we want
our students to be problem solvers. We
want our students to use the scientific
practices authentically, but are we, as
teachers, able to recognize, nurture, and
value students’ CT skills?

NGSS provides us with some initial
guidance: “Students are also expected
to engage in computational thinking,
which involves strategies for organizing
and searching data, creating sequences
of steps called algorithms, and using and
developing new simulations of natural
and designed systems” (NGSS Lead
States 2013, Appendix F, p. 10). As you
can see, CT is more than coding; it is
computational problem solving that uses
algorithmic thinking and coding (An-
geli and Giannakos 2020), all essential
tools for today’s scientific community.
Therefore, it is useful to see how scien-
tists, whose approaches form the foun-
dation of the Science and Engineering
Practices, apply CT in their work.



We live in a data-rich world. As a result,
science today is fundamentally differ-
ent, thanks in no small part to advances
in computing. The ability to collect and
analyze vast amounts of data has gotten
easier. CT practices provide the cogni-
tive tools and skills necessary to use large
data sets to investigate and solve com-
plex scientific problems. In this big data
world, virtually every scientific field is
inextricably linked to computational
thinking, and doing science requires
scientists to merge their domain knowl-
edge with a CT mindset.

COVID-19

During the COVID-19 global pandemic,
the race to develop vaccines is a prime
example of a CT-rich problem. Data and
computational problem-solving allowed
scientists to move much more efficiently
to develop treatments. Researchers at Ar-
gonne National Laboratory and partner
institutions analyzed protein crystals de-

rived from the SARS-CoV-2 genome at
Argonne’s Advanced Photon Source. By
shining intense x-rays on these crystals,
diffraction patterns are created that are
stored as massive amounts of data. In the
past, these data sets would take years to
analyze and translate into useful infor-
mation. Fortunately, scientists leveraged
high-speed computers and algorithms to
crunch this data and determine the pre-
cise arrangement of atoms within the vi-
rus’s protein structures within weeks, not
years. This knowledge allowed scientists
to quickly identify and develop drugs and
antibodies that “throw a wrench” in the
virus’s machinery.

Climate Change

Climate change represents perhaps the
most significant challenge that human-
ity has ever faced. Fortunately, CT helps
scientists understand it better and pro-
pose solutions. Researchers at Argonne’s
Atmospheric Radiation Measurement
(ARM) User Facility study the complex
dynamics of energy movement within

our atmosphere. For these scientists, cli-
mate change isa CT problem. By consid-
ering the role that the sun, clouds, pre-
cipitation, atmospheric gases, and many
other factors play in the movement of
energy throughout the atmosphere and
its effect on global temperatures and cli-
mate, these scientists must use systems
thinking. From this, they leverage the
modeling and simulation practices to de-
sign complex computer models that can
predict how the climate will change in
response to our efforts, or lack thereof,
to reduce carbon emissions.

Environmental Stewardship

Advances in personal computing and web-
based servers make scientific-grade CT
tools accessible to students. Model My Wa-
tershed® (MMW) is a powerful free online
modeling tool for citizens, conservation
practitioners, municipal decision-makers,
educators, and students developed by the
Stroud™ Water Research Center. Its in-
terface is easy to use, but behind the wel-
coming interface is a computationally rich,
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professional-grade scientific application
that incorporates immense national data
sets from the United States Department of
Agriculture (USDA), Natural Resources
Conservation Service (NRCS), United
States Environmental Protection Agency
(USEPA) and others.

MMW provides an intuitive, data-
rich, web-based environment for study-
ing and predicting the impacts of dif-
ferent land-use practices on runoff and
water quality. Teachers and students use
this professional scientific-grade online
software to access environmental data
sets, select and analyze data for their
schoolyard, and create and model sce-
narios in which they try to increase the
amount of infiltration and improve the
water quality at their school study site.
MMW'’s outputs can inform stewardship
projects and motivate students to en-
gage in environmental action. In short,
MMW gives students access to real data,
real scientific models for real places, and
allows them to make real decisions about
their environment.

Reflecting on the example of my son’s geo-
logical time scale homework, he used CT
skills that were honed not in school but
at summer coding camp. With this basic
knowledge, he refined his coding skills
by developing online games at home.
In game design, he faced computational

problems and found solutions via an on-

Scienceleacher |

line community and by watching many
instructional YouTube videos—he used
scientific practices that were acquired in
informal learning environments to tackle
problems he found interesting. As teach-
ers, we can take inspiration from these
informal collaborative environments to
enhance school instruction.

As is common at many research labo-
ratories across the country, Argonne Ed-
ucation connects the authentic science
research that their scientists conduct
with students by creating learning envi-
ronments that put students in decision-
makers’ roles. Each summer, Argonne
Education offers a Big Data Camp
where scientific and societal problems
are presented in a CT and data-driven
context. For example, last summer, stu-
dents at Big Data Camp used public
health and demographic data to uncover
the driving factors of COVID-19’s dis-
parate impacts on communities within
Chicago. To do this, we took inspiration
from an actual research study by Univer-
sity of Chicago researcher Kevin Credit
and adapted it for students. By consider-
ing the approach used by the profession-
al, such as the questioning process and
data analysis, we created an authentic
investigation that gave students owner-
ship of the problem. Using professional
tools such as Jupyter notebooks, Python,
and the geospatial platform Kepler, stu-
dents learned skills that will drive future
investigations beyond this camp.
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The same skills we hope to instill in our
secondary science students (problem-
solving, creativity, and risk-taking) are
endemic to informal learning spaces, but
the traditional classroom often empha-
sizes structure and defined paths to suc-
cess. As classroom teachers, we have a
curriculum to cover, and, sadly, the most
efficient route to meeting these curricular
demands is linear, with defined content
and prescribed solutions. This divide be-
tween informal and formal learning sug-
gests that learning in one domain is not
easily transferred to the other. Classroom
experiences can be designed to teach de-
fined learning goals while nurturing the
collaborative and creative culture of in-
formal CT learning environments.

CT is a complement to existing sci-
ence content learning. While today’s
scientists rely on CT tools and practices,
it is essential to remember that solu-
tions to these complex problems are still
rooted in fundamental science concepts
(structure of mRNA, gas laws, content
in context). Therefore, science instruc-
tion must still address traditional sci-
ence content while adapting to provide
students with an environment that gives
them more ownership of the learning
experience and honors the skills and
knowledge they have developed through
informal experiences.

Not all scientific problems are best
investigated with CT. The first step is
choosing a scientific topic and problem
where CT practices are essential for in-
vestigating and/or proposing a solution.
Scientific problems that are data-rich
tend to benefit the most from the use
of CT practices because these problems
are complex and require students to de-
termine the appropriate data to collect
(data aggregation), break the problem
down into more manageable steps (de-
composition), identify patterns in exist-
ing data (pattern recognition), reduce
the complexity of the data (abstraction),
account for missing or incomplete data



(interpolation, extrapolation), and test
rules or algorithms (rule refinement,
rule testing)—helping students to de-
scribe the problem and make predic-
tions. Emerging fields are looking for
STEM problem solvers: individuals
who have a solid knowledge base of sci-
ence, technology, engineering, and math
(STEM), along with the ability to use
computational thinking skills.
Remembering that the eight scientific
practices, CT included, are intended to
equip students with the cognitive tools
needed to use their “science content un-
derstanding to investigate the natural
world through the practices of science
inquiry or solve meaningful problems
through the practices of engineering
design” (NGSS Lead States 2013, Ap-
pendix F, p. 1) it is the teacher’s job is to
provide students with opportunities to
develop and use CT skills in the science

classroom. In this big data world, CT
is indeed an essential scientific practice
for the next generation and a skill that
deserves attention in today’s secondary
science classroom.
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