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Abstract

We study the long time behavior of an advection-diffusion equation with a random shear
flow which depends on a stationary Ornstein-Uhlenbeck (OU) process in parallel-plate chan-
nels enforcing the no-flux boundary conditions. We derive a closed form formula for the
long time asymptotics of the arbitrary N -point correlator using the ground state eigen-
value perturbation approach proposed in [10]. In turn, appealing to the conclusion of the
Hausdorff moment problem [39], we discover a diffusion equation with a random drift and
deterministic enhanced diffusion possessing the exact same probability density function at
long times. The strategy we presented isn’t only restricted to the parallel-plate channel do-
main. The same methods can derive effective equations for a straight channel with uniform
arbitrary cross-section. Such equations enjoy many ergodic properties which immediately
translate to ergodicity results for the original problem. In particular, we establish that the
first two Aris moments using a single realization of the random field can be used to explicitly
construct all ensemble averaged moments. Also, the first two ensemble averaged moments
explicitly predict any long time centered Aris moment. Our formulae quantitatively depict
the dependence of the deterministic effective diffusion on the interaction between spatial
structure of flow and random temporal fluctuation. Further, this approximation provides
many identities regarding the stationary OU process dependent time integral. We derive
explicit formulae for the decaying passive scalar’s long time limiting probability density
function (PDF) for different types of initial conditions (e.g. deterministic and random).
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1. Introduction

Passive scalars are extremely important quantities in many physical and biological ap-
plications including contamination in groundwater, solute transport in micro-fluidics, and
even in the analysis of functional MRI brain scans. Additionally, they help to provide a
basis for understanding problems in fluid turbulence. For example, the k−1 small scale
power spectrum a scalar field inherits from a turbulent flow, as predicted by Batchelor [10],
has recently been studied in a passive scalar model with velocities taken from randomly
driven Navier-Stokes equations [4]. Moreover, they provide insight into intermittency in
fluid turbulence whereby higher statistical moments deviate strongly from Gaussianity.

An important class of problems concerns how a shear flow in a bounded (or partially
bounded) cross-sectional domain can increase solute mixing. G. I. Taylor [40] first showed
that a steady pressure-driven flow in a pipe leads to a greatly enhanced effective diffusivity
for large Péclet numbers. The analysis was later generalized by R. Aris for arbitrary spa-
tial moments [1]. The dispersion process is sometimes also referred to as the Taylor-Aris
dispersion. The studies [44, 45, 21, 34] explored the case of a periodic time-varying shear
flow and developed formulas of effective diffusivity. These studies are focused upon deter-
ministic flows. The case involving random flows has additionally received great attention,
particularly in understanding scalar intermittency.

In a turbulent flow, the distributions of most passive scalars such as pressure, tempera-
ture, concentration are generally far from Gaussian [31, 17, 5]. Even for roughly Gaussian
velocity fields as observed in turbulent flows, rare fluctuations in amplitude have a sig-
nificant contribution to non-Gaussianity in a scalar’s distribution [36]. Since the detailed
structure of turbulence is still poorly understood, attempts to understand the intermittency
phenomenon has been explored in passive scalar models. The most popular model used for
this purpose is Kraichnan model [28] and the Majda model [30, 33, 31] of passive scalar
advection, where the random velocity field is assumed to be shortly correlated in time with
a coherent (linear) structure in space. The decorrelation in time, particularly for multi-
plicative noise, allows for explicit ensemble moment closure through which explicit closed
partial differential equations govern the generic N point correlator (generally in 3N spatial
dimensions). Interestingly, Majda demonstrated for the case of a linear shear multiplied
by a white in time Gaussian process in free space that these closed PDEs can be explicitly
solved, and all moments explicitly computed showing how a heavy-tailed scalar PDF is
inherited from a Gaussian random field [29, 33, 12, 11, 8, 7, 43].

Most prior studies of those models have focussed on the free space domain, fewer studies
have addressed the effect of the physical boundary. One such study contrasted the scalar
PDF inherited by an unbounded linear shear with that of a bounded, periodic shear flow
[10]. This established that for integrable random initial data the PDF would ‘Gaussianize’
at long times, whereas random wave initial data whose Fourier transform is non-zero in a
neighborhood of the origin would produce divergent flatness factors in the same limit at
large but finite times. Recently, the role of impermeable boundaries in the Majda model
has been explored in a parallel-plate channel with deterministic initial conditions [14, 13].
Those works demonstrate that the sign of long time PDF skewness could be controlled by
Péclet numbers and the correlation time of the velocity field, in strong contrast with the
free space result, where the long time PDF skewness is strictly positive [33].
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Figure 1: Main results and the structure of their derivation.

In this paper, we study a novel connection between ensemble (scalar intermittency)
and spatial averaging (shear dispersion), arriving at a link between the Kraichnan-Majda
model and Taylor-Aris Dispersion. This link will yield a complete theory for the long-time
invariant measure of a diffusing passive scalar advected by an OU process dependent random
shear flow. Further, we will establish for the first time ergodicity results connecting certain
spatial averages of the random passive scalar to the ensemble averages of the random passive
scalar. These ergodicity results are possible through an approximating effective advection-
diffusion equation with a random drift we identified which possesses the exact same long
time moments as the full problem. Such random advection-diffusion equations were studied
in full detail for the case of Gaussian white noise [9]. In that work, the complete probability
measure was explicitly calculated for all time for a class of deterministic initial data. More
recently, we have extended this calculation to any Gaussian process [13]. Strong ergodicity
in which time averages of fields depending upon a single realization of the random process
converge to the ensemble average is highly desirable and provides a connection between
real experiments and theories developed using ensemble averaging. Our results here will
establish how the commonly measured effective diffusivity in mixing experiments is in fact
ergodic in this model, converging at long times to a deterministic value related to certain
ensemble averages of the full problem. Such results are important in justifying the utility
of studying the ensemble: an experimentalist only needs to perform an experiment with
one single realization of the random flow for the ensemble averages to make physically
relevant predictions. The tools for these results are based on the conclusion of the Hausdorff
moment problem [39], the ground state eigenvalue perturbation approach proposed in [10],
the availability of closed moment equations for flows involving OU processes [37], and the
available exact PDF for white wind models [9], here extended to OU wind models. Figure 1
gives a schematic diagramming of the theoretical approach we take connecting the effective
equations to the original equation through the Hausdorff moment problem, and the results
which ultimately follow from this connection.
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The paper is organized as follows: In section 2, we formulate the evolution of the passive
scalar field advected by a random shear flow which depends on a stationary OU process in a
parallel-plate channel, which is a generalization of the Majda model. Then we review some
important conclusions regarding the associated N -point correlation function. In section
3, we derive the effective advection-diffusion equation involving a deterministic enhanced
diffusivity and a spatially uniform random flow, which is the key result of this paper. In
section 4, we elaborate on the application of the effective equation. The effective equation
shows the link between the Kraichnan-Majda model and Taylor-Aris Dispersion. Since
the formula for the effective diffusivity is obtained through two different methods (through
the N -point correlation function and through the Aris moment calculation), we establish a
branch of identities regarding the functional of a stationary OU process. These identities
could be used for building an estimator of the OU parameters. In section 5, we derive
invariant measures for three classes of initial data, i.e., deterministic initial data, square-
integrable Gaussian random initial data, and wave function data with a Gaussian random
amplitude. In section 6, we summarize the conclusions from the findings in the paper and
briefly discuss future studies.

2. Setup and background of the Majda model

In this paper, we will study the following random advection diffusion equation with
initial condition TI (x, y) and impermeable channel boundary conditions,

∂tT + v(y, ξ(t))∂xT = κ∆T, T (x, y, 0) = TI(x, y), ∂yT |y=0,L = 0, (1)

where the domain is {(x, y)|x ∈ R, y ∈ [0, L]}, L is the gap thickness of the channel, κ is
the diffusivity. ξ(t) is a zero-mean, Gaussian random process with the correlation function
given by 〈ξ(t)ξ(s)〉 = R(t, s). A special case of flow v(y, ξ(t)) is the multiplicatively separable
function v(y, ξ(t)) = u(y)ξ(t). This type of flow can originate from either a time varying
pressure field, or by randomly moving portions of the boundary, in a high viscosity fluid,
see section 2 of [14] for more details. Two types of ξ(t) received great attention in the
literature: 1) ξ(t) is a Gaussian white noise in time so that R(t, s) = g2δ(t − s), or 2) ξ(t)
is a stationary Ornstein-Uhlenbeck process with damping γ and dispersion σ, which is the
solution of stochastic differential equation (SDE) dξ(t) = −γξ(t)dt + σdB(t) with initial
condition ξ(0) ∼ N (0, σ2/2γ). Here B(t) is the standard Brownian motion and N (a, b) is
the normal distribution with mean a and variance b. The correlation function of ξ(t) is
R(t, s) = σ2

2γ
e−γ|t−s|. γ−1 is often referred to as the correlation time of the OU process. It

is easy to check that the stationary Ornstein-Uhlenbeck process converges to the Gaussian
white noise process as the correlation time vanishes with fixed σ/γ. Due to this property,
we will focus on the OU process and consider the white noice process as a limiting case in
this paper.

Our recent study [21] regarding tracer dispersion induced by a periodically moving
wall led to the development of a realizable experimental framework, where the computer-
controlled robotic arm we developed can move the wall randomly and generate the desired
random shear flow with suitable parameters of the fluid and the channel. In this experi-
mental configuration, T (x, y, t) is the concentration of the tracer which can be measured by
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optical methods. Hence, it is natural to consider the initial condition with the constraints

TI(x, y) > 0 and
∞∫
−∞

xnTI(x, y)dx <∞, where n is a nonnegative integer.

Notice that γ ∼ Time−1, σ ∼ Time−
3
2 . With the change of variables,

Lx′ = x, Ly′ = y,
L2

κ
t′ = t, g =

σ

γ
,

κ

L2
γ′ = γ, U = Lg2,

Uv′(y′, ξ′(t)) = v(y, ξ(t)),
g
√
κ

L
ξ′(t′) = ξ(t),

T ′I(x
′, y′)L−2

∞∫
−∞

L∫
0

TI(x, y)dydx = TI(x, y),

T ′(x′, y′, t′)L−2

∞∫
−∞

L∫
0

TI(x, y)dydx = T (x, y, t),

(2)

we can drop the primes without confusion and obtain the nondimensionalized version of
(1):

∂tT + Pev(y, ξ(t))∂xT = ∆T, T (x, y, 0) = TI(x, y), ∂yT |y=0,1 = 0, (3)

where the domain is {(x, y)|x ∈ R, y ∈ [0, 1]}, and we have introduced the Péclet number
Pe = UL/κ = L2g2/κ. When ξ(t) is the white noise process, the correlation function
of ξ(t) is R(t, s) = δ(t − s). Conversely, when ξ(t) is the stationary Ornstein-Uhlenbeck
process, the underlying SDE becomes dξ(t) = −γξ(t)dt + dB(t) with the initial condition
ξ(0) ∼ N (0, γ

2
), and the correlation function of ξ(t) is R(t, s) = γ

2
e−γ|t−s|.

Define the N -point correlation function ΨN of the scalar field T (x, y, t): RN×RN×R+ →
R by ΨN(x,y, t) =

〈∏N
j=1 T (xj, yj, t)

〉
ξ(t)

, where x = (x1, x2, · · · , xN), y = (y1, y2, · · · , yN).

Here, the bracket 〈·〉ξ(t) denotes ensemble averaging with respect to the stochastic process
ξ(t). The closed form of ΨN associated with the free space version of (1) is known for
some special flows. When v(y, ξ(t)) = u(y)ξ(t) and ξ(t) is the Gaussian white noise process,
Majda [30] showed that ΨN satisfies the following evolution equation,

∂tΨN = ∆2NΨN +
Pe2

2

(
N∑
j=1

u (yj) ∂xj

)2

ΨN , ΨN(x,y, 0) =
N∏
j=1

TI(xj, yj), (4)

where ∆2N is the Laplacian operator in 2N dimensions ∆2N =
N∑
j=1

∂2
xj

+∂2
yj
. When u(y) = y,

Majda [30] derived the exact expression of ΨN . A rotation of coordinates reduces the N -
dimensional problem to a one-dimensional problem. Then the solution of (4) is available via
Mehler’s formula. Based on this exact N -point correlation function, the distribution of the
scalar field advected by a linear shear flow has been studied for deterministic and random
initial data. The non-Gaussian behaviors of PDF have been reported in [33, 11, 12].

When ξ(t) is the stationary Ornstein-Uhlenbeck process, Resnick [37] derived the PDE
for the N -point correlation function by utilizing the Feynman-Kac formula. By introducing
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an extra variable z to represent the initial value of the stationary OU process, we have

ΨN(x,y, t) = 1√
π

+∞∫
−∞

ψN(x,y, z, t)e−z
2
dz, where ψN(x,y, z, t) satisfies the following partial

differential equation:

∂tψN + Pe
N∑
j=1

v(yj, ξ(t))∂xjψN + γz∂zψN = ∆2NψN +
γ

2
∂2
zψN ,

ψN(x,y, z, 0) =
N∏
j=1

TI(xj, yj).

(5)

When u(y) = y, Resnick derived the exact expression for ΨN via the same strategy Majda
used for solving (4) and showed it converges to the solution of (4) in the limit γ → ∞ of
the damping OU parameter.

We note that using the same strategy, when the flow depends on M independent OU
processes, one can obtain the PDE for theN -point correlation function withM new variables
zi, 1 ≤ i ≤ M . This generalization allows one to study the flow which is driven by a more
general stochastic process, for example, the general stationary Gaussian random process
which can be represented as a linear combination of OU processes [37, 20], the Cox-Ingersoll-
Ross process in mathematical finance which is a sum of squared OU processes (chapter 6
of [25]).

These results are all derived in free space. The analytic formula of the N -point correla-
tion function ΨN for the boundary value problem (3) is unknown even for simple geometric
domains. For periodic boundary conditions, Bronski and McLaughlin [10] carried out a
second-order perturbation expansion for the ground state of periodic Schrödinger equations
to analyze the inherited probability measure for a passive scalar field advected by periodic
shear flows with multiplicative white noise. In [14, 13], equation (3) was studied with a
stationary OU process, where a dramatically different long time state resulting from the
existence of the impermeable boundaries was found. In particular, the PDF of the scalar in
the channel case has negative skewness for sufficiently small Péclet number, in stark contrast
to free space, where the limiting skewness is strictly positive for all Péclet number. Inspired
by that observation, we further explore here the PDF of the advected scalar in the presence
of impermeable boundaries by the perturbation method introduced in [10]. Briefly, the long
time behavior of the Fourier transform of N -point correlation function Ψ̂N of the scalar field
is dominated by the neighborhood of the zero wavenumber k = 0. This observation reduces
the series expansion of Ψ̂N to a single multi-dimensional Laplace type integral. Then, the
standard asymptotic analysis and inverse Fourier transform yield the long time asymptotic
expansion of ΨN .

3. Effective equation at long times

We begin by stating the key result of the paper as a theorem. In the following context,

we use ā to denote the cross sectional average of function a(y), i.e., ā =
1∫
0

a(y)dy.
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Theorem 3.1. If ā0 := 1√
π

∞∫
−∞

e−z
2

1∫
0

v(y, z)dydz = 0, the solution of equation (3) can be

approximated by the solution of the following equation (wind model) at long times:

∂tT + Pev̄(ξ(t))∂xT = κeff∂
2
xT + ∂2

yT, T (x, y, 0) = TI(x, y), ∂yT |y=0,1 = 0, (6)

where v̄(z) =
1∫
0

v(y, z)dy, κeff = λ(2)−λ(1,1)

2
,

λ(2) = 2 +
2iPe√
π

∞∫
−∞

e−z
2

1∫
0

v(y,
√
γz)φ(1)(y, z)dydz,

λ(1,1) =
2iPe√
π

∞∫
−∞

e−z
2

 1∫
0

v(y,
√
γz)dy

1∫
0

φ(1)(y, z)dy

 dz,

(7)

and φ(1)(y, z) satisfies the equation

0 = −iPev(y,
√
γz)− γz∂zφ(1) +

γ

2
∂2
zφ

(1) + ∂2
yφ

(1), ∂yφ
(1)
∣∣
y=0,1

= 0. (8)

Assume v(y,
√
γz) has the Hermite polynomial series representations v(y,

√
γz) =

∞∑
n=0

an(y,
√
γ)Hn(z),

where ā0 = 0 and Hn(z) is the n-th Hermite polynomial which is the orthogonal polynomial
with respect to the weight function e−z

2. We have the formula of λ(2) and λ(1,1),

λ(2) = 2 + 2Pe2
∞∑
n=0

n!2n
1∫

0

an(y) (nγ −∆)−1 an(y)dy,

λ(1,1) =
2Pe2

γ

∞∑
n=1

(n− 1)!2nā2
n =

4Pe2

γ

∞∫
−∞

ez
2

 z∫
−∞

e−z
2

v̄(z1)dz1

2

dz,

(λ−∆)−1 a(y) =
1√
λ

cosh
(√

λy
) ∫ 1

0
a(s) cosh

(√
λ(1− s)

)
ds

sinh
(√

λ
)

−
∫ y

0

a(s) sinh
(√

λ(y − s)
)

ds

)
,

∆−1a(y) =

y∫
0

y1∫
0

a(y2)dy2dy1 −
1∫

0

y∫
0

y1∫
0

a(y2)dy2dy1dy, if ā = 0.

(9)

Proof. To show two random fields has the same leading order asymptotic expansion
at long times, we need to prove that they have the same asymptotics of N -point joint
distribution at long times. Due to the maximum principle of heat equation, the solution
is bounded by the maximum value of initial condition. The Hausdorff moment problem
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[39] concludes that, for the random variable supported on a closed interval, the sequence
of moments are uniquely determine the distribution. Hence, we only need to show that
the solution of equation (3) and equation (6) have the same N -point correlation function
at long times. Here, we remark that when the initial condition is unbounded, the moment
problem becomes a Stieltjes moment problem (if 0 < TI < ∞) or a Hamburger moment
problem (if −∞ < T < ∞). In that case, the information of moments may not be enough
to determine a unique distribution. One has to examine some conditions for verifying the
uniqueness, e.g., Carleman’s condition, Krein’s condition [39].

Next, we derive the long time asymptotic expansion of N -point correlation function
of equation (3) with exponential decay correction with the ground state energy expansion
strategy described in [10, 13]. With the Fourier transform f̂(k) = (2π)−

N
2
∫
RN

e−i(x·k)f(x)dx,

equation (5) becomes

∂tψ̂N − iPe
√
γz

N∑
j=1

kjv(yj,
√
γz)ψ̂N + γz∂zψ̂N = ∆yψ̂N − |k|2ψ̂N +

γ

2
∂2
z ψ̂N ,

ψ̂N(k,y, z, 0) =
N∏
j=1

T̂I(kj, yj), ∂yj ψ̂N

∣∣∣
yj=0,1

= 0, ∀ 1 ≤ j ≤ N,

(10)

where ∆y =
N∑
j=1

∂yj and the N -point correlation function ΨN inherits the impermeable

boundary condition from the scalar field. The solution of (10) admits an eigenfunction
expansion

ψ̂N(k,y, z, t) =
∞∑
l=0

βN,l(k)φN,l(k,y, z)e−λN,l(k)t. (11)

λN,l(k), φN,l(k,y, z) are the eigenvalues and eigenfunctions of the eigenvalue problem,

−(λN,l − |k|2)φN,l = iPe
N∑
j=1

kjv(yj,
√
γz)φN,l − γz∂zφN,l +

γ

2
∂2
zφN,l + ∆yφN,l,

∂yjφN,l
∣∣
yj=0,1

= 0, ∀1 ≤ j ≤ N.

(12)

Notice that it is not a self-adjoint eigenvalue problem when k 6= 0. Hence, we introduce
λ∗N,l(k), ϕN,l(k,y, z) which are the eigenvalues and eigenfunctions of the adjoint eigenvalue
problem,

−(λ∗N,l − |k|
2)ϕN,l = −iPe

N∑
j=1

kjv(yj,
√
γz)ϕN,l − γz∂zφN,l +

γ

2
∂2
zϕN,l + ∆yϕN,l,

∂yjϕN,l
∣∣
yj=0,1

= 0, ∀1 ≤ j ≤ N,

(13)

where the asterisk denotes the complex conjugate.
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Here, we choose φN,l, ϕN,l such that {φN,l}∞l=0, {ϕN,l}
∞
l=0 form a bi-orthogonal system with

respect to the inner product 〈f(y, z), g(y, z)〉 = 1√
π

+∞∫
−∞

dz
∫

[0,1]N
f(y, z)g∗(y, z)e−z

2
dy, i.e.,

〈φN,l, ϕN,h〉 = δlh. With this definition of inner product and the properties of biorthogonal
system, we have βN,l(k) =

〈∏N
j=1 T̂0(kj, yj), ϕN,l(k,y, z)

〉
.

When k = 0, the eigenvalue problem is self-adjoint and the eigenvalues are real. Here,
we order the eigenvalues λN,l(k) as an increasing sequence with respect to l based on their
value at k = 0. Using standard perturbation theory with respect to small wavenumbers,
we have λN,l(0) = l2π2. Next, we will show that λN,0(k) has the global minimum value at
k = 0. Multiplying φ∗N,l on both side of equation (12) and integrating with respect to z and
y, we have

(λN,l − |k|2) 〈φN,l, φN,l〉

= −iPe
N∑
j=1

kj 〈v(yj,
√
γz)φN,l, φN,l〉+

γ

2

〈
∂φN,l
∂z

,
∂φN,l
∂z

〉
+

N∑
j=1

〈
∂yjφN,l, ∂yjφN,l

〉
.

(14)

The first term in the right hand side of equation (14) is purely imaginary. Hence, the real
part of λN,l(k) is non-negative for any k. Additionally, λN,l(k) = 0 if only if φN,l is a
constant function. It is easy to verify that the constant function becomes an eigenfunction
if only if k = 0, l = 0. Therefore, λN,0(0) = 0 is the global minimum value.

This observation yields the following asymptotic formula valid at long times for arbitrary
N -point correlation function of the scalar field as t →∞,

ΨN(x,y, t) = (2π)−
N
2

∫
R

e−z
2

√
π

∫
RN

ei(x·k)βN,0(k)φN,0(k,y, z)e−λN,0(k)tdkdz +O(e−π
2t). (15)

Equation (15) is a N dimensional Laplace type integral with respect to the wavenumber
k. It is well known that, for sufficiently large t, under suitable regularity conditions for the
function βN,0 the integral becomes localized near the global minimum of λ(k)[23, 27] which
occurs at zero wavenumber, as established above. We comment that in our prior work, [13],
the non self-adjoint eigenvalue problem was not formulated quite correctly, but the results
presented there are nonetheless correct since the eigenvalue problem is indeed self-adjoint
when k = 0. Applying the regular perturbation theory on the eigenvalue problem (12)
yields that λN,0(0) = 0, φN,0(0,y, z) = 1 ( see details in appendix 8.1.1). Hence, we have
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the approximation of (15) as t→∞,

ΨN(x,y, t) = (2π)−
N
2

∫
R

e−z
2

√
π

∫
RN

ei(x·k)βN,0(k)φN,0(0,y, z)e−
1
2
kΛN,1kTtdkdz +O(t−

N+2
2 )

= (2π)−
N
2

∫
RN

 ∫
[0,1]N

Ψ̂N(k,y, 0)dy

 ei(x·k)− 1
2
kΛN,1kTtdk +O(t−

N+2
2 )

=
exp

(
− 1

2t
xΛ−1

N,1x
T
)√

(2πt)N det(ΛN,1)

∫
[0,1]N

Ψ̂N(0,y, 0)dy +O(t−
N+2

2 )

=
exp

(
− 1

2t
xΛ−1

N,1x
T
)√

(2πt)N det(ΛN,1)
+O(t−

N+2
2 ),

(16)
where (ΛN,1)i,j = ∂2

∂ki∂kj
λN,0(k)|k=0 is the Hessian matrix of the eigenvalue λN,0(k) at

k = 0. The last step follows the nondimensionalization
∞∫
−∞

1∫
0

TI(x, y)dydx = 1. Since

the eigenvalue problem (12) are invariant under the permutation of frequency variables kj,
ΛN,1 only depends on the derivative of eigenvalue in one-dimensional eigenvalue problem
λ(2) = ∂2

∂k2
1
λ1,0(k1)|k1=0 and the derivative of eigenvalue in two-dimensional eigenvalue prob-

lem λ(1,1) = ∂2

∂k1∂k2
λ2,0(k1, k2)|k1=0,k2=0. Therefore we have that ΛN,1 =

(
λ(2) − λ(1,1)

)
I +

λ(1,1)eTe, where I is the identity matrix of size N ×N and e is a 1×N vector with 1 in all
coordinates. The explicit formula of λ(2), λ(1,1) can be obtained by the perturbation method
introduced in the appendix of [10]. Appendix 8.1.1 shows the details of the calculation. We
should remark that series formula of the λ(2), λ(1,1) we presented here may not be optimally
convergent. One can choose different basis to solve the recursive system based on the form
of v(y, z).

Clearly, the perturbation strategy for studying the N point correlation function of equa-
tion (3) also applies to equation (6). In fact, since the shear velocity v̄(ξ(t)) in equation (6)
is independent of y, the calculation of eigenvalues is easier. Here, we denote λ̃(2), λ̃(1,1) to
be the associated eigenvalues of equation (6). Based on the perturbation calculation and
explicit formula provided in the appendix 8.1.1, we have

λ̃(2) = 2κeff + λ̃(1,1),

λ̃(1,1) =
2Pe2

γ

∞∑
n=1

(n− 1)!2nā2
n =

4Pe2

γ

∞∫
−∞

ez
2

 z∫
−∞

e−z
2

v̄(z1)dz1

2

dz.
(17)

In addition, we have λ̃(1,1) = λ(1,1). Since the asymptotics are uniquely determined by the
associated eigenvalues, e.g., λ(2) and λ(1,1), we see that the asymptotics match if and only
if λ(2) = λ̃(2) which requires κeff = λ(2)−λ(1,1)

2
. This completes the proof.
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Remark 3.2. As we mentioned before, we can generalize the flow in theorem 3.1 to a
flow which depends on multiple independent OU processes. In this case, the calculation of
effective diffusivity involves solving a higher dimensional version of PDE (8).

Remark 3.3. Theorem 3.1 holds for the periodic boundary condition except with a different
definition of operator (λ−∆)−1,

(λ−∆)−1 a(y) =
sinh

(√
λ
(
y − 1

2

)) ∫ 1

0
a(s) sinh

(√
λ(L− s)

)
ds

2
√
λ sinh

(√
λ

2

)
+

cosh
(√

λ
(
y − 1

2

)) ∫ 1

0
a(s) cosh

(√
λ(1− s)

)
ds

2
√
λ sinh

(√
λ

2

)
−

∫ y
0
a(s) sinh

(√
λ(y − s)

)
ds

√
λ

,

∆−1a(y) =−
y∫

0

y1∫
0

a(y2)dy2dy1 + y

1∫
0

a(y2)dy2 +

1∫
0

y1∫
0

a(y2)dy2dy1 −
1∫

0

a(y2)dy2.

(18)
Appendix 8.1.2 shows the details of the calculation. Moreover, this suggests that Theorem 3.1
holds for a more general boundary geometry. One can obtain the explicit effective equation,
as long as one can explicitly solve the Helmholtz equation on that domain.

Remark 3.4. The condition ā0 = 0 is introduced for the convenience of analysis. For func-
tions a0(y) which do not satisfy this condition, one can apply the Galilean transformation

x̃ = x − t
1∫
0

a0(y)dy so that T (x̃, y, t) satisfies a same equation with zero cross sectional

average function ã0(y) = a0(y)−
1∫
0

a0(y)dy.

Remark 3.5. A special case of flow v(y, ξ(t)) is the multiplicatively separable function
v(y, ξ(t)) = u(y)ξ(t), which has received considerable interest in the literature [30, 33,
10, 13]. In this case, v(y,

√
γz) have the Hermite polynomial expansion with coefficients

a1 =
√
γ

2
u(y), an = 0 if n = 0, or n ≥ 2. By the theorem 3.1, we have κeff = λ(2)−λ(1,1)

2
and

λ(2) = 2 + Pe2√γ
∫ 1

0

dy u(y)

{
cosh

(√
γy
)

sinh
(√

γ
) ∫ 1

0

ds u(s) cosh (
√
γ (1− s))

−
∫ y

0

ds u(s) sinh (
√
γ(y − s))

}
,

λ(1,1) = Pe2ū2.

(19)

When γ → ∞, the stationary Ornstein-Uhlenbeck process converges to the Gaussian white

11



noise process and λ(2), λ(1,1) converge to

λ(2) = 2 + Pe2

1∫
0

u2(y)dy, λ(1,1) = Pe2

 1∫
0

u(y)dy

2

. (20)

In the following sections, we will elaborate the application of theorem 3.1 in the field of
shear dispersion and scalar intermittency.

4. Shear dispersion and ergodicity

The theorem 3.1 surprisingly shows that the stationary Ornstein-Uhlenbeck process
dependent random shear flow induces a deterministic effective diffusivity at long times. In
contrast, in free space, the effective diffusivity (the normalized, centered, second spatial
moment of the scalar) is random and time-dependent, see detailed discussion in section 5.1.
In this section, with the effective advection-diffusion equation derived in the theorem 3.1,
we will show the connection to the Taylor dispersion, the ergodicity of the random field,
and the long time asymptotic expansion of the functional of OU process.

4.1. Taylor dispersion
The theorem 3.1 provides a stochastic proof for Taylor dispersion induced by a steady

shear flow. We can eliminate the dependence of flow on stationary Ornstein-Uhlenbeck
process and obtain the deterministic steady flow either by choosing v(y, z) = v(y) or letting
the dispersion parameter σ of stationary OU process be zero in the dimensional equation
(1). The effective diffusivity in this case is

κeff =1− 1

2
Pe2

1∫
0

v(y)

y∫
0

y1∫
0

v(y2)dy2dy1dy = 1 +
1

2
Pe2

1∫
0

 y∫
0

v(y1)dy1

2

dy, (21)

where the second step follows the integration by parts. This is the formula of the Taylor
dispersion induced by a steady shear flow in a parallel-plate channel [16, 34].

The enhanced diffusivity induced by the steady flow is inversely proportional to the
molecular diffusivity [40, 16], the one induced by periodic time varying flow is proportional
to the molecular diffusivity [21, 26, 18]. However, for the random flow we study in this
paper, the enhanced diffusivity behaves differently from both of above cases. For example,
when v(y, ξ(t)) = yξ(t), the effective diffusivity in dimensional form is

κeff = κ+ g2

L2

24
− κ

2γ
+
κ3/2 tanh

(√
γL

2
√
κ

)
γ3/2L

 . (22)

There is a term in the expression for the effective diffusivity which is independent of κ and
a term which nonlinearly depends on κ. An extreme case is the zero correlation time, i.e.
γ−1 = 0, where ξ(t) becomes the Gaussian white noise process and equation (22) becomes

κeff = κ+
L2g2

24
. (23)
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Figure 2: The non-dimensional effective diffusivity κ′eff = κeff/κ from equation (22) as a function of the
non-dimensional damping parameter γ′ = γL2/κ with the parameter Pe = 1.

The equation (23) implies that the enhanced diffusivity is totally independent on κ when
the correlation time vanishes. For the other limit of the correlation time γ−1 → ∞, the
effective diffusivity has the following asymptotic expansion

κeff = κ+
γg2L4

240κ
+O(γ

3
2 ). (24)

The random flow acts more like a deterministic steady flow as the correlation time is longer.
As a result, effective diffusivity is inversely proportional to the term for molecular diffusivity.
In addition to that, figure 2 shows that the non-dimensional effective diffusivity κ′eff = κeff/κ
increases as the non-dimensional damping parameter γ′ = γL2/κ increases.

Last, we can interpret the eigenvalue as the energy of the associated two particle system
similar to what was done by Bronski and McLaughlin [10]. Since the ground state energy
of the fully interacting two particle problem is lower than the energy of two independent
particle problems, we always have λ(2) − 2 ≥ λ(1,1). The difference yields the enhanced
diffusion. Hence, similar to the deterministic flow, the enhanced diffusivity vanishes if and
only if there is no spatial dependence in the flow, that is, v(y, z) = v(z).

4.2. Ergodicity
In this section, we will show the ergodicity of the OU process yields the ergodicity of

the random passive scalar field. More precisely, we can construct the single point statistics
of scalar field from a single realization of the solution of the equation (3) and vice versa.
Here, the single-point statistics, namely the moment of the random scalar field at point
(x, y), are

〈
TN(x, y, t)

〉
= ΨN(x,y, t) , where all components of x,y are x, y, namely x =

x1 = x2 = ... = xN , y = y1 = y2 = ... = yN . By the Sherman-Morrison formula [38],
Λ−1

1 = (λ(2)−λ(1,1))−1
(
I − λ(1,1)eTe

λ(2)+(N−1)λ(1,1)

)
, and by the matrix determinant lemma, det(Λ) =

(λ(2) − λ(1,1))N
(

1 + Nλ(1,1)

λ(2)−λ(1,1)

)
. The equation (16) leads to the formula of N -th moment

〈
TN(x, y, t)

〉
=

exp

(
− Nx2

2t(λ(2)−λ(1,1))

(
1− Nλ(1,1)

λ(2)+(N−1)λ(1,1)

))
(2π(λ(2)−λ(1,1)))

N
2

√
1+ Nλ(1,1)

λ(2)−λ(1,1)

+O(t−
N+2

2 ). (25)

This formula (25) shows that λ(1,1) and λ(2) fully determines TN(x, y, t). Conversely, once
TN(x, y, t) is known, a simple algebraic calculation yields the values of λ(2), λ(1,1),

λ(1,1) =
1

2πt

√
(〈T (0, 0, t)〉)−4 − (〈T 2(0, 0, t)〉)−2, λ(2) =

1

2πt
(〈T (0, 0, t)〉)−2 . (26)
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From the positivity of the variance Var(T (0, 0, t)) = 〈T 2(0, 0, t)〉−〈T (0, 0, t)〉2 > 0, we know
(〈T (0, 0, t)〉)−4− (〈T 2(0, 0, t)〉)−2

> 0. Therefore, equation (26) is well-defined. To show the
ergodicity of this problem, it is enough to show that we can compute the λ(2), λ(1,1) by the
spatial and temporal average of a single realization of the random field. To do that, we first
review the Aris moment.

An alternative approach to study the enhanced dispersion induced by the shear flow is
using the Aris moments. Aris showed in [1] that one could write down a recursive system
of partial differential equations for the spatial moments of the tracer T . The streamwise
moment and full moment are defined as:

Tn(y, t) =

∞∫
−∞

xnT (x, y, t)dx, T̄n =

1∫
0

Tn(y, t)dy. (27)

The effective longitudinal diffusivity is defined as

κeff = lim
t→∞

Var(T̄ )

2t
, (28)

where Var(T̄ ) = T̄2 − T̄ 2
1 is the variance of the cross sectional average T̄ . The first two full

moments have the following long time asymptotic expansions (see appendix 8.2 for details)

T̄1 = Pe

t∫
0

v̄(ξ(s))ds+O(e−π
2

t), T̄2 − T̄ 2
1 = 2κefft+O(1). (29)

Using the ergodicity of ξ(t) and the theorem 3.1, we have

λ(2) − λ(1,1)

2
= lim

t→∞

T̄2 − T̄ 2
1

2t
, λ(1,1) = lim

A→∞

1

A

A∫
0

(
∂T̄1

∂t
(s)

)2

ds, (30)

where the equation holds for a multiplicatively separable function v(y, ξ(t)) = u(y)ξ(t). For
the non-multiplicative case, similar results hold. Hence, with the knowledge of a single
realization of the random scalar field T (x, y, t), we can compute the λ(2), λ(1,1) and all
ensemble moments

〈
TN(x, y, t)

〉
in turn.

To verify our theoretical results regarding the ergodic properties of this passive scalar
model, we solve equation (3) with the shear flow v(y, ξ(t)) = (y − 1/2)ξ(t), Pe = 3 by
using the forward Monte-Carlo method described in [21]. The time step size is 10−3 and
the number of time steps is 106. The total number of the random walkers is 2 × 106. We
divide the whole simulation into 400 parallel jobs. The computation of each job takes
approximately 2 hours on UNC’s Longleaf computing cluster. We plot Var(T̄ )

2t
as a function

of time for 5 independent flow realizations and 5 different OU damping parameters in figure
3. The curves with the same color are generated with the same seed of random number
generator. Pictures in the right column of figure 3 are simply a zoom-in of pictures in
the left column at a larger time scale. We report three significant digits of the theoretical
value of the effective diffusivity κeff given by equation (22) to the right of each row. We
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Figure 3: Var(T̄ )
2t as a function of time for 5 independent flow realizations and 5 different OU damping

parameters γ. Note the convergence of this quantity to the deterministic effective diffusivity given in
equation (28). We compute the theoretical value of κeff by equation (22) and report three significant digits
to the right of each row. Pictures in the right column are simply zoom-in of pictures in the left column at
a larger time scale.
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have two observations from figure 3. First, we can see that all simulations converge to the
effective diffusivity as time increases. Second, we can see that the curves become smoother
as correlation time γ−1 increases. Moreover, κeff decreases as correlation time increases
which is consistent with figure 2.

4.3. Long time asymptotic expansion of OU process related time integral
The effective diffusivity derived by the Aris moment approach and by theorem 3.1 must

be identical. By solving the recursive equation of Tn with the flow v(y, ξ(t)) = u(x)ξ(t),
we derive the formula of the first and second Aris moments in the appendix 8.2. Then, the
equation (27) leads to the relation:

κeff =1 + lim
t→∞

Pe2

t

∞∑
n=1

 1∫
0

u(y) cosnπydy

2 t∫
0

e−n
2π2sξ(s)

s∫
0

en
2π2τξ(τ)dτds. (31)

By the conclusion κeff = λ(2)−λ(1,1)

2
, we have the following relation

Pe2

t

∞∑
n=1

 1∫
0

u(y) cosnπydy

2 t∫
0

s∫
0

e−n
2π2(s−τ)ξ(τ)ξ(s)dτds =

λ(2) − λ(1,1)

2
− 1 +O(t−1).

(32)
This relation provides a bunch of novel long time asymptotic expansions of OU process
dependent integrals. For example, let u(y) = cosnπy, we have

I :=
1

t

t∫
0

e−n
2π2sξ(s)

s∫
0

en
2π2τξ(τ)dτds =

1

2
− π2n2

2 (γ + π2n2)
+O(t−1). (33)

In statistics, one interesting problem is to estimate the parameter γ based on (discrete or
continuous) observations of ξ(t), t ∈ [0, A] as A → ∞ when γ is unknown [32, 22]. The
equation (33) suggest an estimator of γ,

γ =
2n2π2I

1− 2I
, (34)

where I denotes the left hand side of equation (33). One could choose suitable u(y) to build
a better estimator of γ from relation (32).

4.4. Zero diffusivity
As the molecular diffusivity tends to zero, the non-dimensional γ′ = L2γ/κ→∞, where

ξ(t) converges to the Gaussian white noise. However, when the molecular diffusivity is
exactly zero, the effective diffusivity would be random. To further understand this, we
consider the equation (3) with line source initial data TI(x, y) = δ(x) and without the
diffusion term. In this case, the equation can be solved by the method of characteristics:

T (x, y, t) =δ(x− u(y)

t∫
0

ξ(s)ds). (35)
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Then it leads to the first and second Aris moment

T̄1 =

t∫
0

ξ(s)ds

1∫
0

u(y)dy, T̄2 =

 t∫
0

ξ(s)ds

2 1∫
0

u2(y)dy. (36)

Based on the formula (28), we have

κeff =

 1∫
0

u2(y)dy −

 1∫
0

u(y)dy

2
 lim

t→∞

1

2t

 t∫
0

ξ(s)ds

2

=

 1∫
0

u2(y)dy −

 1∫
0

u(y)dy

2
 1

2
B2(1).

(37)

In this case, κeff is a random variable. However, if we consider its ensemble average with
respect to the stochastic process ξ(t), we have

〈κeff〉ξ(t) =
1

2

 1∫
0

u2(y)dy −

 1∫
0

u(y)dy

2
 . (38)

The above equation shows that, when molecular diffusivity becomes zero, the equation (23)
is still valid in the sense of ensemble average.

5. Scalar intermittency

Now we switch our attention to the long time limiting PDF of the random scalar field.
The solution of the effective equation (6) have the same PDF as the original equation (3)
at long time. Unlike the original equation, the effective equation has an explicit expression.
Due to those properties the effective advection-diffusion equation is a powerful tool for
computing the long time limiting PDF. In this section, we will focus on the flow v(y, ξ(t)) =
u(x)ξ(t) for three classes of initial data, i.e., deterministic initial data, square integrable
Gaussian random initial data, and wave function with a Gaussian random amplitude.

5.1. Deterministic initial data
When the initial data is a deterministic integrable function, the long time asymptotic

expansion of the solution of equation (6) is

T (x, y, t) =
1√

4πκefft
exp

−
(
x− Peū

t∫
0

ξ(s)ds

)2

4κefft

+O
(

1

t
3
2

)
. (39)
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Figure 4: The invariant measure fT̃ (z) in equation (41) for different parameters β. fT̃ (z) changes from
negatively-skewed to positively-skewed as β increases.

To explore the invariant measure of T (x, t), we consider the rescaling of T (x, t),

T̃ (x, y, t) =
√

4πκefftT (x, y, t) = exp

−
(
x− Peū

t∫
0

ξ(s)ds

)2

4κefft

+O
(

1

t

)
. (40)

From the above equation, we see that every point in the domain has the same leading order
of the long time asymptotic expansion. Without loss of generality, we focus on the scalar
at point x = 0, y = 0, T̃ (0, 0, t). Thus, the invariant measure is

fT̃ (z) =
z

1
β
−1√

−πβ log(z)
, z ∈ [0, 1], (41)

where β = Pe2ū2v(t)
2tκeff

= Pe2ū2

2κeff
+ O(t−1) = λ(1,1)

λ(2)−λ(1,1) + O(t−1) and v(t) is the variance of
t∫

0

ξ(s)ds. fT̃ (z) always has the logarithmic singularity at z = 1. It is continuous at z = 0

when β ≤ 1, and singular when β > 1 (see figure 4).
Our recent analytical study of the skewness of the invariant measure [13] reports that,

for some flows, as Pe increases, fT̃ (z) changes from negatively-skewed to positively-skewed.
Moreover, for any flow which takes the form v(y, ξ(t)) = u(x)ξ(t) and ū 6= 0, fT̃ (z) is
negatively-skewed at a sufficiently low Péclet number. Our formula for the invariant measure
here quantitatively verifies that conclusion. The skewness is the normalized, centered third
moment,

S(T ) =
〈(T − 〈T 〉)3〉
〈(T − 〈T 〉)2〉

3
2

. (42)
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Figure 5: The skewness of the invariant measure S(T̃ ) as a function of β. S(T̃ ) changes sign at βc = 3.0677.

With the formula of the invariant measure (41), we have the expression of the skewness

S(T̃ ) =
− 3√

β+1
√

2β+1
+ 1√

3β+1
+ 2

(β+1)3/2(
1√

2β+1
− 1

β+1

)3/2
. (43)

Figure 5 shows S(T̃ ) is negative (positive) for small (large) β. The critical value βc ≈ 3.0677
for the sign change of skewness is the positive root of the polynomial 12 + 57β + 72β2 +
22β3 − 20β4 + β5. In the limit of zero Péclet number, λ(1,1) → 0, λ(2) → 2 and, as a result,
β → 0. Therefore, the skewness is negative in this limit, S(T̃ )→ −2

√
2.

Remark 5.1. Since the formula of N-th moment is available in this case, we can also derive
the invariant measure (41) by the Laplace transform based reconstruction method described
in the section 3.4 of [9]. By equation (25), we have

〈
TN(0, 0, t)

〉
=

1

(4πtλ
(2)−λ(1,1)

2
)
N
2

 1∫
0

T̂0(0, y)dy

N

1√
1 + Nλ(1,1)

λ(2)−λ(1,1)

+O(
1

t
N+2

2

). (44)

After rescaling, we have 〈
T̃N
〉

=
1√

Nβ + 1
+O(t−1). (45)

where β = λ(1,1)

λ(2)−λ(1,1) = Pe2ū2

2κeff
which is equivalent to previous definition of β. Define the

moment function as µ(s) =
〈
T̃ s
〉

= 1√
sβ+1

+ O(t−1) by extending the N-th moment for-

mula from the integer domain to the complex domain. Once the moment function of T̃ is
determined, we can compute the distribution of T̃ by the formula (3.4.2) in [9],

f(ξ) =
L −1(µ(s))(− ln ξ)

ξ
, (46)

where L denotes the Laplace transform. By inverse Laplace transform, we derive the in-
variant measure (41) again. This method requires the analytic formula of moment function
and its inverse Laplace transform. One may resort the effective equation approach when
those information are not available.
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Figure 6: The invariant measure of the solution of equation (3) with the flow Pev(y, ξ(t)) = Peyξ(t) and
initial condition T0(x, y) =

1√
π
e−x

2

. The red solid curve is the PDF from the numerical simulation at t = 1.
The blue dash curve is the graph of equation (41). The back dot dash curve is the graph of equation (47).
We use suitable rescaling factor for three of them such that the PDF from the simulation has the support
[0, 1].

Remark 5.2. The invariant measure formula (41) only used the single Fourier mode of the

initial data
1∫
0

T̂ (0, y)dy. One could obtain more accurate estimation of the rescaling factor

and β by using the whole information of initial data. For example, let’s assume the initial
data is T0(x, y) = exp

(
−x2

2s

)
/
√

2πs. computing the long time asymptotic expansion of the

solution of the wind model (6) without approximating
1∫
0

T̂ (k, y)dy by
1∫
0

T̂ (0, y)dy yields

T̃ (x, y, t) =
√

2πs+ 4πκefftT (x, y, t), β =
2Pe2ū2v(t)

4tκeff + 2s
. (47)

Formula (41), (47) and β lead to the same asymptotic result at long times. We implement
the backward Monte-Carlo method described in the section 5 of [13]. The simulation results
shown in figure 6 demonstrate that the formula (47) is more accurate than formula (41) at
shorter times.

Remark 5.3. With Gaussian random initial data and in the absence of impermeable bound-
aries, Vanden-Eijnden [43] shows that the invariant measure of the scalar is independent the
correlation time of the OU process. Whereas, in the presence of impermeable boundaries,
our formula (41) suggests that the correlation time has a significant impact on the shape of
invariant measure, even the number of singularities it has. To get a deeper understanding
about this, let’s briefly review the free space problem with the deterministic initial data. In
free space, we can derive the solution with the flow v(y, ξ(t)) = yξ(t) and the initial condition
TI(x, y) = δ(x) via method of characteristics:

T (x, y, t) =

exp

 −(x−yξ(t))2

4t(1+
t∫
0

(
s∫
0

ξ(τ)dτ)2ds)


√

4πt(1 +
t∫

0

(
s∫

0

ξ(τ)dτ)2ds)

. (48)
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From this expression, we can see that this type of flow will induce a time dependent random

anomalous effective diffusivity keff = 1 +
t∫

0

(
s∫

0

ξ(τ)dτ)2ds, where the second term on the

right hand side is refer to as the L2 norm of
t∫

0

ξ(s)ds. To obtain the invariant measure, we

consider the rescaling T̃ = t
√

4πT :

T̃ ∼


t∫

0

(
s∫

0

ξ(τ)dτ)2ds

t


− 1

2

∼

 1∫
0

B2(s)ds

−
1
2

, t→∞, (49)

where the second step follows the fact 1√
t

ts∫
0

ξ(τ)dτ = B(s) + o(1) as t → ∞. Hence, the

invariant measure only depends on the L2 norm of B(t) and is independent of the correlation
time of OU process. Unlike the quadratically growing variance in free space problem, the
linearly growing variance in the channel domain problem allows the exponential function
factor in the solution (39) to give a non vanishing contribution at long times.

5.2. Random initial data
Although each realization of the random initial data is bounded, there is no uniform

bound for all realizations of the initial data. This unboundedness makes the random field
fall into the category of Hamburger moment problem rather than Hausdorff moment problem
as the measure is not necessarily compactly supported. However, thanks to the incompress-
ibility of the flow and the diffusion, the infinity norm of the random field decays at least
algebraically. At a sufficiently large time and for the random initial data we studied in this
subsection, the random field is almost surely bounded. The conclusion of the Hausdorff
moment problem is valid thereafter. Another plausibility argument to fill this gap lies in
the law of total probability, conditioning on a single realization of the initial data. Denote
T, T ′ as the solution of the equation (3) and the effective equation (6) respectively. Then
we have

fT =

∫
g

fT |T0(T |T0 = g)fT0(g)dg ∼
∫
g

fT ′|T0(T ′|T0 = g)fT0(g)dg = fT ′ , (50)

where the first step follows the law of total probability by conditioning on the initial con-
dition. The second step follows the theorem 3.1: T and T ′ have the same PDF at long
time for the same deterministic initial condition. In addition, the law of total probabil-
ity turns out to be a useful tool for studying the random initial data in the free space
problem[15]. By conditioning on a single realization of the flow, one can take the advantage
of the Gaussianity of the initial data to compute the invariant measure more easily.

In this subsection, we will study the invariant measure of scalar field with the random
wave initial data and square integrable spectral density, which has been studied in [15] in
the free space or with periodic boundary condition [10].
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5.2.1. Square integrable spectral density
In this section we will consider the initial data with a square integrable spectral density

which depends only upon the spatial variable x,

TI =

∞∫
−∞

eihx |h|
α
2 φ̂0(h)dB(h), α > −1, (51)

where φ̂0(h) denotes a rapidly decaying (large h) cut-off function satisfying φ̂0(h) = φ̂∗0(−h), φ̂0(h) 6=
0 and dB(h) denotes complex Gaussian white noise with the correlation function

〈dB〉 = 0, 〈dB(h)dB(η)〉 = δ(h+ η)dhdη. (52)

The spectral parameter α appearing in the initial data is introduced to adjust the excited
length scales of the initial scalar field, with increasing α corresponding to initial data varying
on smaller scales. It is enough to derive the long time invariant measure of the solution of
equation (6). The solution with this type of initial condition can be obtained by the Fourier
transform and method of characteristic. The Fourier transform yields

T̂t − ikūξ(t)T̂ = −κeffk
2T̂

T̂ = T̂I exp(ikū

t∫
0

ξ(s)ds− κeffk
2t)

T̂ = 2π

∞∫
−∞

δ(h+ k) |h|
α
2 φ̂0(h)dB(h) exp(ikū

t∫
0

ξ(s)ds− κeffk
2t).

(53)

Then the inverse Fourier transform yields

T (x, t) =

∞∫
−∞

eihx |h|
α
2 φ̂0(h) exp(−ihū

t∫
0

ξ(s)ds− κeffh
2t)dB(h). (54)

The leading order of the long time asymptotic expansion of the solution is independent of
x. Without loss of generality, we focus on the solution at x = 0, namely,

T (0, t) =

∞∫
−∞

|h|
α
2 φ̂0(h) exp(−ihM

t∫
0

ξ(s)ds− κeffh
2t)dB(h). (55)

By the law of total probability, the PDF of T (0) has the integral representation

fT =

∞∫
−∞

fT |η(T |η = h)fη(h)dh, (56)
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where η =
t∫

0

ξ(s)ds. Notice that fT |η ∼ N (0,
∞∫
−∞
|h|α φ̂2

0(h) exp(−κeffk
2t)dk) and η ∼

N (0, t + e−γt−1
γ

). Hence, the PDF of T (0) independent of
t∫

0

ξ(s)ds and is a Gaussian ran-

dom variable with variance
∞∫
−∞
|h|α φ̂2

0(h) exp(−κeffh
2t)dh. This conclusion holds for any

stochastic process ξ(t), which generalizes the conclusion for Gaussian white noise process
in [10].

5.2.2. Random wave initial data
In this section we will study Gaussian random wave initial data possessing zero spatial

mean. We assume that the Fourier transform of the initial temperature profile is highly
localized as a function of the transform variable k,

T̂I(k) = 2π (Aδ(k + a) + A∗δ(k − a)) , (57)

where the asterisk denotes the complex conjugate, A is a standard complex Gaussian random
variable, that is, <(A),=(A) ∼ N (0, 1

2
) and <(A),=(A) are independent. We assume

a2t� 1 so that the the ground state energy expansion based theorem 3.1 applies.
In this case, we have

T̂ (k, t) = 2π (Aδ(k + a) + A∗δ(k − a)) exp(ikPeū

t∫
0

ξ(s)ds− κeffk
2t). (58)

The inverse Fourier transformation yields

T (x, t) = exp(−κeffa
2t)

A exp(−iax+ iaM

t∫
0

ξ(s)ds) + A∗ exp(iax− iaPeū

t∫
0

ξ(s)ds)


= 2 exp(−κeffa

2t)<(A) cos(ax+ aPeū

t∫
0

ξ(s)ds).

(59)
To explore the invariant measure of T (x, t), we consider the rescaling of T (x, t),

T̃ (x, t) = exp(κeffa
2t)T (x, t) = 2<(A) cos(η), (60)

where η = ax+ aPeū
t∫

0

ξ(s)ds. We have

η mod 2π ∼ U([0, 2π]) t→∞, 2<(A) cos(η)|η ∼ N (0, cos2(η)), (61)

where U([a, b]) is a uniform distribution on interval [a, b]. Hence, the leading order of the
PDF’s long time asymptotic expansion is independent of the spatial variable x. By the law
of total probability, we have

fT̃ (z) =

2π∫
0

fT |η(T̃ |η = h)fη(h)dh =
e−

z2

4 K0

(
z2

4

)
√

2π3/2
, (62)
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Figure 7: The semi-log plot of the distribution. The red solid curve is the long time limiting PDF of T̃ (x, t)
and the blue dashed curve is the PDF of T (0, 0) which is a standard normal random variable N (0, 1).

where Kn(z) is the modified Bessel function of the second kind. K0(z) is singular at z = 0.
The variance and fourth moment are

〈
T̃ 2
〉

= 1
2
,
〈
T̃ 4
〉

= 9
8
and then the kurtosis (flatness)

is 9/2 > 3, which suggests the distribution could be flatter than the Gaussian distribution.
In fact, the tail of the fT̃ (z) is

fT̃ (z) = e−
z2

2

(
1

πz
− 1

2πz3
+O

(
1

z5

))
, z →∞. (63)

which is smaller than the tail of Gaussian distribution. The comparison of the invariant
measure fT̃ (z) and the PDF of the initial condition T (0, 0, 0) in figure 7 shows that the
invariant measure has the larger core and smaller tails than the Gaussian distribution.

Bronski and McLaughlin [10] studied the problem with a Gaussian white noise process
ξ(t), ū = 0 and periodic boundary conditions, who showed the invariant measure is Gaussian
at some time scales. We also can obtain this conclusion by the effective equation approach.
When ū = 0, η is a deterministic value. Hence the T̃ becomes a Gaussian random variable.

6. Conclusion

We have studied a diffusing passive scalar in the presence of an OU process dependent
random shear flow in the presence of no-flux boundaries. Long time asymptotic analysis of
the closed moment equations produce simple formulae for the general N -point correlator.
We subsequently identified an effective advection-diffusion equation with random drift and
deterministic enhanced diffusivity possessing the same exact long time moments as the full
problem. This advection-diffusion equation enjoys many properties, such as the centered
second Aris moment being deterministic at all times. Since the two equations have the
exact same ensemble moments at long times, by the Hausdorff moment theorem, they have
the same identical PDF at long times. Consequently, given a single realization of the
random velocity field, the centered second Aris moment of the original problem divided by
t must converge at long times to a deterministic constant set by the first two ensemble field
moments. Such ergodic are properties are rare in random partial differential equations, and
here is particularly important when considering comparing the output of an experiment
performed with a randomly moving wall (either normal or tangentially moving) with such
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a theory: It guarantees that one need only observe a single realization of the wall motion
for the theory to be relevant at least in some measurable quantities. Given these results, we
additionally explored three different classes of initial data. First, for deterministic initial
data, we present formulae for the invariant measure. Second, for a square integrable random
initial data, we show that the invariant measure will be Gaussian at long times. Third, for
waves with random amplitude, we show that the long time measures are non-Gaussian
assuming the spatial average of the flow, ū, is non-zero, otherwise, the limiting distribution
will be Gaussian. These results extend prior results of Bronski and McLaughlin [10] for
more general random processes, and notably here for the case of random wave initial data,
we compute the complete PDF (not just the flatness factors) for OU and white in time
processes. In previous work, we established results for the first three moments at long
times [13]. There we noted that in contrast with work in free-space by Vanden-Eijnden [43]
where the PDF was observed to be independent of the correlation time at infinite time. This
distinction between free space and channel geometries we have extended in the present work
to the full long time limiting PDF. An interesting immediate direction involves computing
the asymptotic corrections to the invariant measure. The procedure employed by Bronski
and McLaughlin [10] (who computed such corrections in the white noise limit through
the fourth-order ground state derivative) can be extended to these more general random
processes. Noteworthy, the OU case is considerably more involved as the odd derivatives
do not vanish.

Future work will include considering an experimental campaign with the associated the-
oretical analysis. First, our recent study [21] regarding the enhanced diffusion [40] and third
spatial Aris moment [1] induced by a periodically moving wall led to the development of
an experimental framework of the model explored in this paper. The computer-controlled
robotic arm we developed for the periodic study can be applied to the case of a randomly
moving wall, such as the OU process ξ(t), with suitable parameters for the fluid and the
channel. The induced flow in the channel can be modeled by yξ(t). Hence, the tracers in
the fluid satisfy the advection-diffusion equation (1). The properties of the tracer’s PDF
can be predicted by the theory we developed here. Second, perhaps even more interesting
will be considering cases in which the physical shear flow is not decomposed into a product
of a function of space and a function of time, such as happens with the general nonlinear
solutions to Stoke’s second problem at finite viscosities. We note that the general construc-
tion presented here for an OU process dependent shear flow does not quite cover this case.
A more involved analysis will clearly be needed to study these interesting configurations.
Third, the random tangential motion of a non-flat wall will generate random non-sheared
motions in the fluid. We expect that applications of center manifold theory [34, 35, 46, 2, 3]
may well be extendable to the case of random flows in such geometries particularly regard-
ing ergodicity in a passive scalar. We also note that the same methodology developed here
can be applied to temporally varying pressure-driven random shear flows in tubes of dif-
ferent cross-sectional shapes. Fourth, in more general studies where explicit formulas like
those derived in this paper are unavailable, we anticipate that large-deviation methods and
central-limit theorem [43, 6] could apply.

Last, another possible application could be the diffusing diffusivity model [19, 24, 41, 42].
The process r(t) are usually modeled by a Langevin equation with a time-dependent and
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fluctuating diffusivity D(t),

dr(t)

dt
=− αD(t)r(t) +

√
2D(t)Ẇ (t), (64)

where Ẇ (t) is the Gaussian white noise process, the diffusivity could be the square of OU
process, D(t) = ξ(t)2. By the Feynman-Kac formula, the ensemble average over the white
noise would satisfies an advection-diffusion equation with variable random coefficients. The
N -point correlation function with respect to D(t) can be derived by the same derivation
procedure of equation (5) (see [37] for details). We expect the the strategy we presented in
this paper could yield the long time asymptotic expansion of correlation functions in the
diffusing diffusivity model.
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8. Appendix

8.1. Expansion of eigenvalue and eigenfunction
In this section, we derive the expansion of eigenvalue and eigenfunction around k = 0

for impermeable boundary conditions and periodic boundary conditions.

8.1.1. Impermeable boundary condition
After substituting the Taylor expansion of λN,0(k) and φN,0(k,y) with respect to k

into equation (12), we obtain the recursive relation of the coefficients in the expansion by
comparing the coefficients of monomials of k. We denote λαN,0 = ∂

|α|
kαλN,0(k)|k=0, φαN,0 =

∂
|α|
kαφN,0(k,y)|k=0, where α = (α1, α2, . . . , αn) is a multi-index and |α| =

n∑
i=1

ai. Since we can

know the dimension of the problem from α and only focus on the first eigenvalue problem,
we can drop the subscript N and 0 without confusion. After substituting the expansion of
eigenvalue and eigenfunction into equation (12), we obtain the equation for λ(0), φ(0),

− λ(0)φ(0) = −γz∂zφ(0) +
γ

2
∂2
zφ

(0) + ∂2
yφ

(0), ∂yφ
(0)
∣∣
y=0,1

= 0. (65)

λ(0) = 0, φ(0) = 1 are the solution. λ(1), φ(1) satisfy the equation

− λ(1) = −iPev(y,
√
γz)− γz∂zφ(1) +

γ

2
∂2
zφ

(1) + ∂2
yφ

(1), ∂yφ
(1)
∣∣
y=0,1

= 0. (66)

Fredholm alternative gives λ(1) = 0. Substituting the Hermite polynomial series represen-

tations v(y,
√
γz) =

∞∑
n=0

an(y,
√
γ)Hn(z), φ(1)(y, z) = −iPe

∞∑
n=0

bn(y,
√
γ)Hn(z) into the equa-

tion (66), whereHn(z) is the n-th Hermite polynomial, gives the equation of an(y,
√
γ), bn(y,

√
γ):

an − nγbn + ∂2
ybn = 0, ∂ybn|y=0,1 = 0, (67)
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where we omit the argument √γ in an, bn to shorten the formula. We also introduce the
inverse operator b(y) = (−∆ + λ)−1 a(y) which maps the function a(y) to the solution of
the Helmholtz equation

− ∂2
yb(y) + λb(y) = a(y), ∂yb|y=0,1 = 0. (68)

and the inverse operator has the integral representation

−∆−1a(y) =−
y∫

0

y1∫
0

a(y2)dy2dy1,

(−∆ + λ)−1 a(y) =
1√
λ

cosh
(√

λy
) ∫ 1

0
a(s) cosh

(√
λ(1− s)

)
ds

sinh
(√

λ
)

−
∫ y

0

a(s) sinh
(√

λ(y − s)
)

ds

)
.

(69)

With this notation, we have bn = (nγ −∆)−1 an. We remark that this boundary value
problem has the solution only if ā0 = 0. Due to this, we impose this constrain in theorem
3.1.

λ(2), φ(2) satisfy the equation

− λ(2) + 2 = −2iPev(y,
√
γz)φ(1) − γz∂zφ(2) +

γ

2
∂2
zφ

(2) + ∂2
yφ

(2), ∂yφ
(2)
∣∣
y=0,1

= 0. (70)

Fredholm alternative gives

λ(2) =2 +
〈
2iPev(y,

√
γz)φ(1)

〉
=2 + 2Pe2

∞∑
n=0

n!2n
1∫

0

an(y) (nγ −∆)−1 an(y)dy,
(71)

where the second step follows the identity 1√
π

∞∫
−∞

H2
n(z)e−z

2
dz = n!2n. λ(1,1), φ(1,1) satisfy

the equation:

−λ(1,1) = −iPe
(
v(y1,

√
γz)φ(0,1) + v(y2,

√
γz)φ(1,0)

)
− γz∂zφ(1,1) +

γ

2
∂2
zφ

(1,1) + ∆2φ
(1,1),

∂yjφ
(1,1)
∣∣
yj=0,1

= 0, j = 1, 2.

(72)
Fredholm alternative yields

λ(1,1) = 2
〈
iPev(y1,

√
γz)φ(0,1)(y2), 1

〉
=

2Pe2

γ

∞∑
n=1

(n− 1)!2n

 1∫
0

an(y)dy

2

, (73)
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where the second step follows the series representation of
1∫
0

φ(1)(y, z)dy,

1∫
0

φ(1)(y, z)dy = −iPe
∞∑
n=1

1

γn

1∫
0

an(y)dyHn(z). (74)

Alternative expression of λ(1,1) is available from the integral representation of
1∫
0

φ(1)(y, z)dy:

1∫
0

φ(1)(y, z)dy =
−2iPe

γ

 z∫
0

ez
2
2

z2∫
−∞

e−z
2
1 v̄(z1)dz1dz2 −

1√
π

∞∫
−∞

e−z
2

z∫
0

ez
2
2

z2∫
−∞

e−z
2
1 v̄(z1)dz1dz2dz

 .

(75)
Hence, we have

λ(1,1) =
4Pe2

γ

∞∫
−∞

ez
2

 z∫
−∞

e−z
2

v̄(z1)dz1

2

dz. (76)

8.1.2. Periodic boundary condition
Instead of the impermeable boundary condition, we consider the periodic boundary

condition and periodic flow in this section. We still have λ(0) = 0, φ(0) = 1, λ(1) = 0.
Then, we need to solve the equation 66 with the periodic boundary conditions. Assuming
v(y,
√
γz), φ(1)(y, z) have the same form of Hermite polynomial series representations, the

coefficient an(y), bn(y) satisfy the equation

an − nγbn + ∂2
ybn = 0, bn(0) = bn (1) , ∂ybn(0) = ∂ybn(1). (77)

We can also represent the solution as bn = (nγ −∆)−1 an. Now the operator has a different
integral representation

(λ−∆)−1 a(y) =
sinh

(√
λ
(
y − 1

2

)) ∫ 1

0
a(s) sinh

(√
λ(L− s)

)
ds

2
√
λsinh

(√
λ

2

)
+

cosh
(√

λ
(
y − 1

2

)) ∫ 1

0
a(s) cosh

(√
λ(1− s)

)
ds

2
√
λsinh

(√
λ

2

)
−

∫ y
0
a(s) sinh

(√
λ(y − s)

)
ds

√
λ

,

∆−1a(y) =−
y∫

0

y1∫
0

a(y2)dy2dy1 + y

1∫
0

a(y2)dy2 +

1∫
0

y1∫
0

a(y2)dy2dy1 −
1∫

0

a(y2)dy2.

(78)
With the similar perturbation analysis, we have the same form of series representation

of λ(2), λ(1,1) except a different definition of operator (λ−∆)−1.
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8.2. Aris moment for the flow u(y)ξ(t)

In this section, we will derive the second centered Aris moment for the flow u(y)ξ(t) and
line source initial data TI(x, y) = δ(x). The Aris moments defined in equation (79) satisfy
the recursive relationship called Aris equation,

(∂t−∆)Tn = n(n−1)Tn−2+nPeu(y, t)Tn−1, Tn(y, 0) =

∞∫
−∞

xnTI(x, y)dx, ∂nT |∂Ω = 0, (79)

where Tn = 0 if n ≤ −1. The full moments of T are then obtained though the cross-

sectional average of the moments T̄n =
1∫
0

Tndy. Applying the divergence theorem and

boundary conditions gives the recursive relationship of full moments,

dT̄n
dt

= n(n− 1)T̄n−2 + nPeu(y, t)Tn−1, T̄n(0) =

1∫
0

∞∫
−∞

xnTI(x, y)dxdy. (80)

To compute the effective longitudinal diffusivity, we need to compute the Aris moments
T0, T1, T̄2 in turn. When n = 0, the equation (79) becomes:

∂tT0 − ∂2
yT0 = 0, T0(y, 0) = 1, ∂yT0|y=0,1 = 0. (81)

The solution is T0 = 1. When n = 1, the equation (79) is:

∂tT1 − ∂2
yT1 = Peu(y)ξ(t)T0, T1(y, 0) = 0, ∂yT1|y=0,1 = 0. (82)

The eigenfunction and eigenvalue of the Laplace operator on the cross section is λ = 0,
φ = 1, λn = n2π2, φn =

√
2 cosnπy, n ≥ 1 which are also the orthogonal basis of the cross

section. To compute T̄2 − T̄ 2
1 with the flow u(y)ξ(t) is equivalent to compute T̄2 with the

flow
(
u(y)−

1∫
0

u(y)dy

)
ξ(t). Hence we will neglect the zero frequency mode in the series

expansion of u(y). We assume the following expansion of T1 and u(y)ξ(t),

v(y, ξ(t)) =
∞∑
n=1

〈u, φn〉 ξ(t)φn, T1(y, t) =
∞∑
n=1

an(t)φn. (83)

ai(0) = 0 follows the initial condition T1(y, 0) = 0. Substituting those expansions into the
equation of (82), we obtain the equation of an,

a′n(t) + λnan(t) = Pe 〈u, φn〉 ξ(t). (84)

The solution is

an = Pe 〈u, φn〉 e−λnt
∫ t

0

eλnsξ(s)ds. (85)

T̄2 satisfies the equation

∂tT̄2 = 2T̄0 + 2Peξ(t)u(y)T1, T̄2(0) = 0. (86)
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The solution is

T̄2(t) = 2t+ 2Pe2
∞∑
n=1

〈u, φn〉2
t∫

0

e−λnsξ(s)

s∫
0

eλnτξ(τ)dτds. (87)

By definition (28), we have the effective longitudinal diffusivity

κeff = 1 + lim
t→∞

Pe2

t

∞∑
n=1

〈u, φn〉2
t∫

0

e−λnsξ(s)

s∫
0

eλnτξ(τ)dτds. (88)

8.3. Lists of abbreviations
See table 1.

Full form Abbreviation
Ornstein-Uhlenbeck OU
Partial differential equation PDE
Probability density function PDF
Stochastic differential equation SDE

Table 1: Lists of abbreviations.
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