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Abstract

We study the long-time behavior of an advection-diffusion equation with a general time-varying
(including random) shear flow imposing no-flux boundary conditions on channel walls. We derive
the asymptotic approximation of the scalar field at long times by using the center manifold theory.
We carefully compare it with existing time-varying homogenization theory as well as other existing
center manifold based studies, and present conditions on the flows under which our new approx-
imations give a substantial improvement to these existing theories. A recent study [Ding et al.,
Physica D, 432, 133118 (2022)] has shown that Gaussian random shear flows induce a deterministic
effective diffusivity at long times, and explicitly calculated the invariant measure. Here, with our
established asymptotic expansions, we not only concisely demonstrate those prior conclusions for
Gaussian random shear flows, but also generalize the conclusions regarding determinism to a much
broader class of random (non-Gaussian) shear flows. Such ergodicity-like results are important
since they assure an experimentalist only need to perform a single realization of a random flow to
observe the ensemble moment predictions at long times. Monte-Carlo simulations are presented
illustrating how the highly random behavior converges to the deterministic limit at long times.
Counterintuitively, we present a case demonstrating that the random flow may not induce larger
dispersion than its deterministic counterpart, and in turn present rigorous conditions under which
a random renewing flow induces a stronger effective diffusivity. Lastly, for white in time flows and

renewing flows, we derive the invariant measure and explore its Peclet number dependencies.
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1. INTRODUCTION

How fluid motion transports a diffusing scalar is an extremely important class of problems
in engineering, chemistry. Since G. I. Taylor [61] first introduced the calculation showing
that a steady pressure-driven flow in a pipe leads to a greatly enhanced effective diffusivity,
the literature on this topic has exploded in many directions spanning many disciplines.
Shortly following G. I. Taylor, Aris [5] presented an alternative approach for shear layers
yielding a hierarchy for the spatial moments of the scalar field. More recent moment analysis
shows how the boundary geometry of the pipe can be used to control the distribution of
solute which is advected by the pressure-driven flow [2-4].

Unsteady flows typically generate different properties than their steady counterparts.
Practical examples of unsteady flow include pulsatile blood flows [58] and tidal estuaries
[28]. The first investigation of the Taylor dispersion in time-dependent flow dates back to
Aris [6], who presented the study of a solute advected by pulsating flow in a circular tube.
After that, based on the Aris’ moment method, a number of studies reported on the en-
hanced diffusivity induced by the single-frequency pulsating flow|[16, 27, 40, 50, 68], the single
frequency Couette-Poiseuille [11-13, 52] and the multi-frequency flow [31, 65, 66]. Alterna-
tive approaches, using center manifold theory, [45, 46, 48, 49] or homogenization methods
29, 30, 41] not only predict the effective diffusivity but also give the direct expression for
the full concentration field at long times.

In this article, we study three points that have not been addressed well in the literature
regarding shear dispersion in time-varying flows. First, most of those theoretical studies
focused on the cross-sectional averaged concentration, while fewer studies have explored
asymptotic corrections which capture cross-channel variations. Here, with the center man-
ifold theory, we present a systematic procedure to construct an approximation to capture
the traverse variation of the scalar field. Second, several interesting articles [45, 48, 49]
implemented center manifold theory for such unsteady problems employing certain slowly
varying assumptions to simplify the calculation. Such assumptions restrict the applicability
of the effective dynamics. Here we relax this assumption by carefully incorporating the
temporal fluctuation of the flows into the analysis. Hence, our results can handle rapidly
fluctuating flows or even random flows. Third, recent results have explicitly calculated using

statistical moment closure the invariant measure for a diffusing passive scalar advected by



a class of random shear flows [20, 32] employing no-flux boundary conditions on channel
domains. These results generalize prior turbulent intermittency in free space of Majda [42]
and Kraichnan [44]. Interestingly, we establish here how the center manifold theory can
be used to greatly extend these theories to a much broader class of random shear flows,
particularly regarding their temporal statistics. We show that for this broader class of flows,
all effective diffusion coefficients converge to a deterministic value in the confined domain,
in contrast to Majda and others’ free-space analog [19, 47|, in which the effective diffusion
coefficients are random at all times. Such ergodicity-like results assure an experimentalist
only needs to perform a single realization of the random flow to observe the field moment
predictions at long times.

The paper is organized as follows. In section 2, we formulate the governing equation of
the shear dispersion problem and review the Aris moment method. In section 3, we discuss
the procedure of applying center manifold theory to the Taylor dispersion problem with
time-varying shear flow. By utilizing the first-order approximation for the cross-sectional
averaged concentration, we present a nonnegative asymptotic expansion of the scalar field
at long times which captures the transverse variations. We document situations in which
a time-varying cell problem produces a more accurate approximation than the parametric
(adiabatic) approach employed recently [45, 48, 49]. In section 4, we demonstrate that a
class of flows with finite correlation time will induce a deterministic effective diffusivity at
long times. Moreover, we establish conditions that guarantee that the renewing flow always
yields a larger effective diffusivity than its deterministic counterpart. By utilizing the derived
new effective equation, we compute the explicit formula of invariant measure of the random

passive field.

2. SETUP AND BACKGROUND OF THE PROBLEM
2.1. Governing Equation and Nondimensionalization
Advection-diffusion Equation

We consider the problem in a channel domain (z,y) € R x Q, where the z-direction
is the longitudinal direction of the channel and Q C R? stands for the cross-section of

the channel. Some practical examples of the boundary geometry includes the parallel-
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FIG. 1: A schematic of the setup for the special case of a quadratic shear flow.

plate channel Q = {y|y € [0, L]}, the circular pipe Q = {y|y? < L}, the rectangular duct
Q= {yly €0,L] x [0,H]}, and bowed rectangular channels [43]. As sketched in figure 1,
the passive scalar is governed by the advection-diffusion equation with a general time-varying

shear flow v(y,t) and no-flux boundary conditions,
O +v(y,t)0,T = kAT, T(x,y,0) =Ti(x,y), OnT|gysn =0, (1)

where £ is the diffusivity, T;(x,y) is the initial data, n is the outward normal vector of the

boundary R x 0€2 and 0f2 is the boundary of (2.

Nondimensionalization

With the change of variables

L2
L=z, Ly =y, —t=t UJSY, t)=0v(y,t), LO=Q,
K

Ty« y )L~ ! / Ti(z,y)dzdy = Ti(z,y),

Rx€)

T,y ¢)L / Ty(z,y)dedy = T(z,y, 1),
RxQ

after dropping the primes, we obtain the nondimensionalized advection-diffusion equation
0T + Pev(y,t)0,T = AT, T(z,y,0) =Ti(2,y), OnT|gyoq =0, (3)

where Pe = UL/ is the Péclet number.



Variance and skewness

The homogenization method in [21, 31] suggests that, assuming a scale separation in the
initial data, the solution of equation (1) can be approximated by a diffusion equation in
the longitudinal direction with an effective diffusion coefficient. Inspired by that, we are
interested in the variance and skewness of the longitudinal distribution of the scalar field.

The cross-sectional average of the scalar field is defined as T'(z,t) = ﬁ J T(z,y,t)dy,
where || is the area of Q. In this following context, we use the overline g‘éo denote the

cross-sectional average. The nth moment of T is defined by T,,(t) = [ 2"T(x,t)dz. The

—0o
effective longitudinal effective diffusivity could be computed through the Aris moments

(4)

where Var(T) = Ty — T} is the variance of the cross-sectional average T
The effective diffusivity characterizes the symmetric property of the longitudinal distri-
bution. We are also interested in the asymmetry properties of T. Skewness is the lowest
order integral measure of the asymmetry of a real-valued probability distribution, which is
defined as - o -
s(r) = B SO ®)
(T, —T})®

The information provided by the skewness and how it depends on the tube shape could

improve the design of microfluidic flow injection analysis [4, 62] and chromatographic sepa-

ration [15].

3. CENTER MANIFOLD DESCRIPTION OF THE SHEAR DISPERSION PROB-
LEM

3.1. Center manifold and reduction principle

In pioneering work, Mercer and Roberts [48] interpreted the long-time asymptotics of
the shear dispersion problem as the center manifold of a dynamical system, which pro-
vides a systematic and near rigorous approach to derive the approximation. In addition to
the shear dispersion problem, practical applications of the center manifold theory include

chromatographic model and reactors[10], elastic beam deformations[54], and thin fluid flows



dynamics [55, 56]. To explain the center manifold method, we consider an autonomous

differential system of the form

dx dy

E:Ax+f(X7Y)7 E:By—i_g(xa}")a (6)

where x € R™y € R". A, B are matrices whose eigenvalues have vanishing and negative real
parts, respectively. We also assume f(x,y), g(x,y) and their first order partial derivatives
are zero at x = 0,y = 0. These conditions guarantee the existence of a center manifold
y = h(x) which has two important features. First, the stability properties of the dynamical

system (6) at the origin are the same as the following lower-dimensional equation

dx
— = Ax+ f(x, h(x)). (7)
dt

Second, in the case of a stable equilibrium (x,y) = (0,0), each solution of the system

(6) which starts close to the origin exponentially decays to a particular solution on the
center manifold [23, 24]. With these two features of the center manifold, one can reduce the
original m + n-dimensional system (6) to a m-dimensional system (7) with only the price of
exponential corrections.

This classical center manifold theory and reduction principle could be generalized in many
directions. First, the dynamical system (6) could be an infinite-dimensional system where
the matrices A, B become linear operators [25]. Second, similar results hold for a more
general dynamical system % = Ax; + f(x1,...,xn,t), 1 < i < N and the restriction of
eigenvalues could be weakened [8, 63]. This generalization leads to a so-called two-mode
invariant manifold model for the shear dispersion problem [60, 69, 70]. Third, more related
to our topic, the system could be non-autonomous, where the center manifold becomes time-
dependent y = h(x,t) [7, 9]. Moreover, the nonlinear term could be discontinuous in ¢ as
long as it is strongly measurable with respect to ¢ [9]. A lower bound of the exponential
convergence rate is determined by the linear operators, A;. For further details regarding
center manifold theory, we refer to [8, 23] and references therein.

Notice that the advection-diffusion equation (3) is linear, while the center manifold theory
applies to a system with nonlinear terms. To apply center manifold theory to the passive

scalar problem, we first take the Fourier transform of equation (3) which is defined as



fk) = (27r)7% [ e f(x)dx and obtain
RN

oT . . . oT
— —ikPev(y, )T = —K*T + AT, —

ot = 07 T(k7Y>O) = T[(k,y) (8)

Rx0

Second, we conceptually non-linearize equation (8) by treating the wavenumber as a depen-
dent variable of the dynamical system. Notice that Ay has a null space that consists of all
functions which are independent of y. To fit the form of equation (6), we rewrite equation

(8) as

k 00| 0
at ~ = -~ + ~ e

T 0 Ay| |T ikPev(y,t)T — k*T
01" = AT + ikPeu(y, )T — k27" — kPeu(y, )T, (9)
oT

= 07 T(k7y7 O) = Tl(kay)a
Rx 09

where T"(z,y,t) and T(x,t) are the fluctuation and average of T'(z,y,t) with respect to y.
To weaken the nonlinear coupling, we assume that the initial condition T is supported in a
neighborhood of k = 0, which is the slow varying assumption used in homogenization theory.
Then this system satisfies the condition of theorem 2.1 in [9] which guarantees the existence
of a center manifold 7" = h(?, k,t). Additionally, the solution T in the neighborhood of
the center manifold converges to h(?7 k,t) + ? exponentially as ¢t — oo with the decay rate
determined by the diffusion time scale. For nonnegative and integrable initial conditions,
due to the diffusion effect, T" is a decaying scalar field, in which the energy concentrates near
the neighborhood of £ = 0 at long times. We can seek the expansion of h(?, k,t) for small
k and ?, h = i hn(y, t)k‘”? + O(?z). That is equivalent to approximating the scalar field
T by the deriv?c;ves of its cross-sectional average T with respect to z. This idea dated back
to Gill [34, 35] and also has been discussed in [74].

For simplicity, we rewrite all equations in term of physical variables,
OT = 0°T — Pev(y, t)0,T, 0T = AT + 0>T — Pev(y,t)0,T. (10)

The expansion becomes

T=T+T=T+MT)=> 0.y t)0;T. (11)
n=0



The fluctuation 7" has a zero mean, fQ T'dy = 0, which implies §y = 1 and §,, = 0if n > 1 at

long times. We have %Qn‘y = ( from the no-flux boundary conditions of 7. Substituting

€
expansion (11) into equation (10), we have

oT = O*T — Pevd, T, (12a)
> 00,007+ 0,000,T = AT + 92T — Pevd, T (12b)
n=0 n=0

Grouping all terms of the same order, namely 97T, we find that we have to solve the

sequence of equations

(0 — Ay) by =0,

(at — Ay) 91 = —Pe90 (’U — 90_1)) s (13)
n—1

(0 = Ay) 0, = —Pevly_y +Pe > Oy 100,
m=0

where 0, = 0 if n < 0. After solving 6,, successively, we obtain the closed evolution equation

of T by substituting T = 3 0,,(y,t)0*T into equation (10),
n=0

0T = 02T —Pe Y v6,0;M'T. (14)

n=0
Finally, once we solve equation (14) for T, we obtain the approximation of the scalar field

T via expansion (11).

3.2. The first and second order effective equation

In this subsection, we will compute equation (13) and (14) for the flow v(y,t) = £(t)u(y).
For more general non-separable flow v(y,t), one could reduce it to a separable form by
utilizing the Fourier transform in time. To simplify the calculation, we assume Tj(z,y) =
d(x). Otherwise, the general initial condition only creates extra exponential decaying terms
and yields the same asymptotic expansion at long times.

With the constraints of the average and boundary conditions of 6,,, we have 6, = 1.

Therefore, the equation of 8; becomes

(@ — Ay) 91 = —Pe(v — 6), 3n91|89 = 0. (15)



Since the theory concerns the long time dynamics of the scalar field and the long time limit
of 6; doesn’t depend on the initial condition, in principle, one can solve equation (15) with
arbitrary initial condition. To obtain a better approximation at earlier stage, one can choose
suitable initial condition of 6,, to match both sides of the expansion (11) at ¢ = 0. Then
when v(y,t) = &(t)u(y) and 6,(y,0) = 0, the solution of equation (15) is

(y.0) = =P o (w0 [ gs)as (16)
n=1

where (f,g) = ﬁ [ fgdy. ¢n, A, are the eigenfunctions and eigenvalues of the Laplace
Q

operator in the cross section of the channel €2 with no-flux boundary condition, i.e.,

When Q = {y|y € [0,1]}, we have ¢o = 1, A\g = 0 and ¢,, = v2cosnmy, \, = n’7%, n > 1.
Substituting 7 = T + 6,0,T into the evolution equation of T, we obtain the first order
effective equation

0, T + Pevd, T = agﬁii as = (1 — Pev_@l) ) (18)

The classical homogenization approach relies on the Fredholm alternative which involves a
space-time average. As a result, the effective equation is a constant coefficient equation even
for the time-varying flow case [29, 31]. Here, with the center manifold approach, we obtain
the effective equation (18) with time-dependent coefficients which could approximate the
scalar field better in an earlier stage. Comparing the definition of Aris moments (see [31])
and variance of the cross-sectional average, we have
t
Var(T) = Var(T}) + 2/a2(s)ds. (19)
0
For a periodic time-varying flow [65] and a class of random flows [20, 32], we have Var(T) =

2ket + O(1), where ke is the effective diffusivity

t

Keff = 1tlim Var_(T) = lim 1/ag(s)ds. (20)

—00 2t t—o00 t
0

In other words, as can be approximated by its time average at long times.
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Based on equation (16), the effective diffusivity induced by the flow v(y,t) = {(t)u(y) is

t

az = (1 — Pevf;) = 1+ Pe’ Z (u, ¢n)* E(1) / e (s)ds,
n=1 0

(21)

52

t

. 1 = $1—5§

o = 1+ Pe’ tlggo ;/Z (u, dn)? &(s2) /6/\”( 1792)¢ (51)ds s
0o n=l 0

With the initial condition T'(x,y,0) = ( 27?0)_1 exp (—%), the solution of equation (18)

gives an approximation of T as t — 00,

5.2

Tl t) = ——— exp (;TQ) o),

(22)

For steady flow, we have by = 0% + 2kgt. Then equation (22) reduces to the classical
Gaussian approximation [26]. Since the scalar field will be homogenized across the channel
at long times, T itself could be an approximation of 7. In fact, we could obtain a more
accurate approximation of 7T',

_ _ el(y,t)z) 1 (—:7:2) i
T~T+60,0,T=(1- —_— Ot 2). 23
+ 1 ( b2 \/mexp 2b2 + ( ) ( )

Since 9,7 is an odd function with respect to z, the error of approximation (23) is

still O(t~2). However, equation (23) practically performs better than T because it de-
picts the across channel variation of the scalar. To demonstrate that, we numerically
solved equation (3) with Pe = 200, u(y,t) = (coswt)y(l —y)/2, and initial condition
T = ( 27m)_1 exp (—%) ,0 = 1/40 by the method described in appendix 7.1. Figure 2
presents the relative errors of different approximations, ||7" — Thpproz||oo/|| T ||co- As shown in
figure 2, the relative error of approximation (22) (red curve) is around 0.1 at ¢t = 1, while, the
relative error of approximation (23) (blue curve) is around 1073. Since two approximations
are of the same asymptotic order at long times, presumably the differences between the two
approximations will reduce as time is further increased.

In many applications, the scalar field usually stands for the concentration which must
be nonnegative for all times. However, this approximation (23) could be negative for some

x and t, which may not be desirable in those applications. [72, 73] proposed the following
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FIG. 2: The relative error of various approximations ||T" — Tyupproz||co/||T||cc Where T is evaluated
numerically. The red solid curve, blue dashed curve, black dot-dash curve and purple curve are

the relative error of approximation (22), (23), (24) and (25), respectively.

nonnegative approximation to study the transverse distribution of concentration distribution

for the laminar tube flow,

~ 1 _(‘% _ el(yat))Q
T N\/mexp ( 20 ) . (24)

The approximation (24) converges asymptotically to approximation (23) as # — 0. However,

the relative difference between them doesn’t vanish as t — co. As shown in figure 2, there

is a visible difference between the approximation (24) (black curve) and (23) (blue curve).
Here, we propose a different nonnegative asymptotic expansion

0.(y,)z\> 1 — 72
T~|1-— — t . 25
( 2b2 vV 27Tb2 eXp 2b2 ’ B ( )

Since the difference between equation (23) and (25) is O(t~2), the relative difference between

them vanishes as ¢ — oo. From figure 2, we can see that the relative error of approximation
(23) and (25) is almost indistinguishable after ¢ = 0.1. We remark that the approximation
(25) may not conserve the mass of the scalar at the earlier stage of the evolution. However,
the size of the non-conserved mass decays as O(t72) at long time which is smaller than the
error in scalar field in this approximation: O(t~1). Hence, it is a reasonable approximation
at long time.

Next, we study the second order approximation of the scalar field. We have to solve the

12



equation for 65,

(8t - Ay) 82 = —PG<U¢91 - Qlﬁ — U_Ql), 292 =0. (26)
an oN

We have the expansion of vf; — 6,9 — v,

’091 - 916 - U_91 = Z <917 ¢n1> <¢n1 (U - ’D)? ¢n2> ¢n2- (27)
na,n1=1
That leads to the solution
t
(92 :Pe2 Z <u7 ¢n1> <¢n1 (u - a)v ¢n2> ¢n2 / <€>\n2(52_t)€(82)/ eAnl(SI_@)g(Sl)d‘Sl) ng.
ng,ni=1 0 0

(28)
Substituting T' = T + 0,0, T + 0,0°T into the evolution equation of T, the approximated

evolution equation for T' becomes a linearized Burgers-Korteweg-de Vries equation
atT + @amT = agaiT - aga,fT, as = PGU_QQ (29)

Next we can consider two cases based on a3 = Pevf,. First, we consider the case a3 =
Pevf, = 0, which implies the skewness of T' is zero. One such example is the linear shear
flow created by moving one boundary of a parallel-plate channel [31]. In this case, the
evolution equation for T reduces to a diffusion equation, where the Gaussian approximation

(22) is still valid. Then we obtain the approximation of the whole scalar field
T =T+ 0,0,T + 0,0°T

i 6y (72— bz)) 1 (_ﬁ) o (30)
=|1—-— — Ot ).
( b B varn, 2P g, ) O

Since 92T is an even function with respect to x, the error of approximation (30) is O(t~%)

which is more accurate than the approximation (23).

To demonstrate the validity of the approximation (30), we compare it with the numerical
solution of equation (3) with the flow v(y,t) = cosmy. The steady solution of equation (15)
and (26) are

Pe? 2 Pe?
6, = pelBTY o _PeeosCmy) o (P ), (31)
2 84 2

To fit the initial condition 77 and increase the accuracy, we can impose the initial condition

01(y,0) = 05(y,0) = 0 and obtain the time-dependent solutions,

0, = Pty <1 - e—“2t> L 0y = M (1 _ 6—47r2t> ’
2 Qrd
2

P
by = o2 + (W_ez (1 - e_”2t> + 2) t.
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in equation (32)

Figure 3 shows the relative error of different approximations. The numerical solution is
obtained via the method described in detail in appendix 7.1. We have three observations.
First, the formula (23) and (30) retaining cross-sectional variation provide more accurate
approximation than (22). Second, we can see that the second-order approximation (30)
has smaller error than the first-order approximation (23) at larger time. We expect this
difference will be more pronounced at longer times. Third, if we impose the initial condition
on ¢; and 65, then we obtain a more accurate approximation at an earlier stage.

Next, we consider the case az # 0. When the initial condition is T7(z,y) = d(x), the
integral representation of the solution is

o t
_ 1 —Lbok?—ik? [ az(s)ds+izk 1
= /e 2 0 dk = —/e_ébz’k’2 oS —k3/a3(s)ds+xk’ dk.

—00 0 0

[e%¢) t

(33)
We are interested in the asymptotic expansion of solution (33) at long times. It is a hard task
for a general time-varying flow. Therefore, we restrict our attention to the case where as, a3
are constant. For some time-varying flows, we can approximate as, az with their time average

at long times, for example, periodic time-varying flow. Hence, the asymptotic expansion we

14



derived in the section also applies to these cases.
If + < t and t — oo, the integrand in equation (33) is localized around k& = 0. Hence, we

have the approximation

o0

_ s ]{th 2
T(x,t) = / (1 —iask’t + %) exp(—agk®t +izk) + O(t?)

- 2 (34)

2 exp —_Tr-

“ g x 43 L (4“2t> -2

={1- — | T H < ) +O(t72),
< 23a§t% ’ (2 a2t) 27a3t ‘ 2v/ast > VAamast ()

where H, is the degree n Hermite polynomial associated with the weight function e~

382
The approximation (34) is identical to the Hermite polynomial representation proposed in
equation (5.7) in [59)].

¢
Last, we remark that for the initial condition discussed in this section, by and [ az(s)ds

0
are related to the variance and skewness provided in equation (4) and (5) respectively. For
the general time-varying flows, the eigenfunction series expansions of variance and skewness
are valid in [31, 65, 66]. Additionally, we would refer to table 1 in [29] which presents a

summary of flows and the methodologies used in the prior literature.

3.3. Improvements compared with previous studies

We remark that there are two subtle differences compared with the previous studies
[45, 48, 49]. First, the previous studies made not only the ansatz of the expansion of 7', but
also the expansion of T. Therefore, the recursive equations involve not only 6,,, but also the
coefficients in the expansion of T. Here, we avoid making the expansion ansatz for T by
utilizing equation (12a), which simplifies the calculation of 6,,.

Second, in the previous studies, time is considered as a parameter rather than a dependent
variable of the system. Hence, the equation for the auxiliary function ¢; derived in [45, 48, 49|
takes the form

—Ayf, = —Pe(u — 1), (35)

in which the time derivative term doesn’t appear. One possible justification for this approx-
imation could be that the flow u(y,?) varies slowly in time so that the time derivative term
is negligible. However, in situations involving flows admitting rapid temporal evolution,

this approximation will be invalid. Let’s consider a simple example, Q = [0,1], Pe = 1,

15



1wt cos y

T2 +iw

u = —e“'cosy. The solution of equation (15) is

, while the solution of equation
(35) is % The only difference between them is the denominator, which yields a O(w)
difference. Hence, for w < 1, the two solutions are close. However, for any fixed w, the corre-
sponding approximations of the solute distribution 7" diverge at long times, due to the vari-
ances having different growth rates. Recall that the variance,Var(T) = 2(1—Pevf; )t +O(1),
grows linearly at long times. The difference between the two variances arising from the
two different cell problems accumulates and becomes an O(1) difference at the frequency
time scale O (w™!). Since the solute distribution is characterized by the variance, the O(1)
difference between variances implies an O(1) difference in the distributions at that time.
Moreover, this difference in distributions will keep increasing as time increases. Hence, we
conclude that equation (35) should only be used with a slow varying flow and before the
frequency time scale. In addition, this can be considered an example of non-commutating
limits.

We know the center manifold becomes a good approximation if the exponential correction
is small, i.e., after the diffusion time scale L?/k, which is independent of the frequency time
scale of the flow. However, the simplification in equation (35) makes the approximation
unlikely to be valid after the frequency time scale. Hence, if the frequency time scale is less
than the diffusion time scale, then equation (35) is invalid for all time. That certainly limits
the application of the result based on equation (35). [45, 46] adopted equation (35) to study
dispersion induced by pulsating flows. One of their applications is blood flow. Consider the
following practical example. The typical frequency time scale in the human blood vessel is
1s (60 heartbeats per min). The sodium chloride (rk & 1.6 % 107%cm? /s in water [37]) diffuses
cross the blood vessel with diameter 0.2 mm takes around 25 s. In this case, the result based
on (35) is unlikely valid.

To demonstrate the validity of our analysis, we solve equation (3) numerically and present
the results in figure 4. For the time varying shear flow u(y) = &(t)y(1 — y)/2, [48] derived

the effective equation

5 Ped(t) ) - Pe2E(t)2\ o
0T 0T =1+ ——-—)0,T. 36
ST ( * 3040 ) (36)
If £(t) = coswt, the solution of equation (15) is
- (_1)71 +1 w Sln(tw) 22 COS(tW) 77277/2Pe€_7r2n2t
0 =Pe Z m2n2 cosnmy it + w2 + A T — Y] e . (37)
n=1
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FIG. 4: The first row shows the numerical solution of equation (3) at t = 1 with the shear flow
u(y,t) = (coswt) y(1 — y)/2, Pe = 200 and initial condition Ty = (v2ro) " exp (—%) Lo = 1/40,
where w = 7/5 in left panel, and w = 207 in right column. In the second row, the red curve is the
cross sectional average of the numerical solution. The blue dash curve is the solution of equation
(36). The black dot-dash curve is the solution of equation (38). The purple dot curve is the solution

of equation (39).

Hence the effective equation (18) derived by time-dependent center manifold theory is

o0

. . 2 cos?(t in(2t .
0T + Pe COSWtazT _ (1 L pe? Z cos®(tw) N w sin(2tw) ) 2T, (38)

12 w2n? (it 4+ w?)  wint (rint + w?)

n€event

where we neglect the exponential term in the solution of equation (15). When ¢ > w™!, we

could approximate the series in the effective equation by its time average

) NG . N

P o 1 sin (—) — sinh (—) -
o Pecossty o (4 pef 1 7 7 o7,
12 24w 420/ (cos (%) — cosh (‘/—5>>

[\

which is identical to the result of standard homogenization theory [29, 31]. Equation (39)
is simpler and performs as well as equation (38) at sufficiently large time scales. Of course,
at intermediate times scales or in the case with irregular fluctuating flows, equation (38)
performs better.

Figure 4 shows the comparison of the numerical solution and different approximations at
diffusion time scale ¢ = 1. The left column shows the result for a small frequency, w = 7/5.

The cross-sectional average of the numerical solution, the solution of effective equations (36)
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and (38) are almost indistinguishable. Recall that the standard homogenization result (39)
requires t > O(%) As we expected, the standard homogenization result on this timescale
is substantially worse than both center manifold results. Alternatively, at higher frequency,
with w = 207, (36) performs visibly worse than both standard homogenization (39) as well
as the time-dependent center manifold results (38). These observations from the numerical

simulation are consistent with our previous theoretical analysis.

4. TIME VARYING RANDOM FLOWS

Most studies of Taylor dispersion focused on periodic time varying flows, fewer studies
have addressed irregularly fluctuating flows and even random flows. In this section, we will
show that the theory we developed in the previous section can be applied to time vary-
ing random flows. Moreover, for random flows involving a white noise process or renewing
processes, we show that the effective diffusivity is deterministic at long times. This is also
inspired by our work [32] which studied the advection-diffusion equation with the shear flow
(v(y,&(t)),0) where £(t) is a stationary Ornstein-Uhlenbeck (OU) process in parallel-plate
channels enforcing the no-flux boundary conditions. In that work, we derived the effective
equation at long times via analyzing the N-point correlation function of the random scalar
field. The analysis shows an interesting result that, in this random system, the effective
diffusivity is deterministic at long times. We mention an interesting study regarding the
ensemble average for a different system without physical boundary conditions. In [53] the
authors considered a diffusing passive scalar advected by a non-sheared, two-dimensional
sinusoidal flow with a random phase shift in an unbounded domain using an operator split-
ting method (applying the advection operator and diffusion operator successively). They
demonstrated that a single-realization and ensemble-average effective diffusivities are the
same and applied the conclusions to the Fisher-Kolmogorov-Petrovskii-Piskunov (FKPP)
model.

We study two cases of flow in this paper. The first case we considered is a Gaussian
white noise process £(t) which is a zero-mean, Gaussian random process whose correlation
function is given by (£(¢)€(s)) = 0(t — s). The center manifold approach is valid for a
smoothly varying velocity field. As for the Gaussian white noise which is non-differentiable,

we can consider a sequence of functions that converges to the white noise process. The Wong-
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Zakai theorem states [33, 38, 71] that the convergence of a process to white noise process
yields the convergence of the systems driven by them. That justifies the application of the
center manifold approach in the non-differentiable case involving white noise. Additionally,
[67] showed how to apply the stochastic center manifold theory rigorously to analyze a one
dimensional reaction-diffusion equation with white noise terms.

Since the white noise process has a zero correlation time, we can approximate the
time dependent diffusion coefficient a, with its time average at the diffusion time scale,
namely the effective diffusivity keg. By utilizing the ergodicity of the white noise pro-
cess, or equivalently considering the Riemann sum and the law of large number, we have

t S92
tlim T [&(s2) [ eM(31752)€ (51 )ds dsy = 1 for all integer n > 1. Equation (21) reduces to,

. 2
Ket = 1 + Pe? Z (u, 6p)* = 1+ Pe? ’—;2’ /uQ(y)dy — ’—;2’ /u(y)dy . (40)
n=1 Q Q

Equation (40) is identical to equation (18) in [32] which is derived via the rigorous analysis
of N-point correlation function and Hausdorff moment problem. For the system with the
random flows, in general, one has to repeat the experiment with different realizations of
the flows to obtain the properties of the passive scalar via ensemble average. However, the
deterministic diffusivity presented in equation (40) implies that one need only observe a

single realization of the passive scalar to access some measurable quantities.
Second, we switch our attention to a class of stochastic flows with a finite correlation

time. Consider a shear flow takes the form (A(¢)(t)u(y),0), where £(t) is periodic function

with a base frequency w, or equivalent, a period L; = %’T A(t) is a piecewise-constant
zero-mean random function of time,
Alty=A,, nL;<t<(n+1)L;, neZ, (41)

where A, is an independent and identically distributed random variable with zero mean and
finite variance. This type of flow is in the class of renewing (renovating, innovation) flows,
that is, flows that decorrelate completely in a finite time, taken here to be the period L;.
Therefore, although it is not a stationary and ergodic process, it is a good approximation to
a stationary process with a finite correlation time. It has wide applications in the study of
the dynamo [14, 75] as well as in study of the intermittency of passive-scalar decay[l, 39, 64].

For this type of flow, the closed evolution equation for the statistical moment is unknown.
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Hence, the Hausdorff moment problem approach proposed in [32] for rigorously studying
the white noise flow case doesn’t apply to this case. However, we could apply the center
manifold approach to near rigorously derive the effective equation at long times.

In this case, the time averaged diffusion coefficient is

Kot = 1+ hm — Y {u, o) // (=g (5)A(s)E(T)A(T)drds. (42)

We can further simplify this formula by taking advantage of the periodicity. As presented
in figure 5, we tessellate the integral domain by squares and divided the domain into three
regions,
L7 1-1
O = |J {(s,7)]s € [kLq, (k+1)Ly], 7 € [kLy, 5]},
k=0
L7 1-1
Qo= |J {(s,7)[s € [kLy, (k+1)Ly], 7 € [0,kLy]} |
k=0

Q= {(S,T)\t E [LtLLitJ,t],T E [0,5]}.

According to this integral domain partition, we divide the double integral in equation

(43)

(42) into three parts,

LLttJ* (mi+1)L: s

/ / _drds = Z A2 / / e M () (T)drds,

miLy  mily
(m1+1)Lt (mg-ﬁ-l)Lt

/ [ aras= Z S odmdn [ [ e,

mi1=1 mgo=0 ma Lt ma Lt

/ / drds= Ay, /t / =g (5) A(r)e(7)drds,
Q3

Lelz;] O
where we omit the lengthy integrand on the left hand side of equations. In fact, only the

integral over (); grows linearly on time and contributes to the effective diffusivity. With
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FIG. 5: A schematic of domain tessellation. €;, ¢ = 1,2,3 are defined in equation (43). The

parameters are t = 4.5, L; = 1.

rearranging the order of the double summation, the integral over {25 becomes

[22]-1 w W

STY Ay Ao O / / e T (s)E(7)drds

00
e |—1 g rlled
= e Y A Ay / / e Mg (5)é(T)drds (45)
g=1 mi1=q 0O 0
2n 2n
[ La71 1 2 tw tw
_ “An(s—T) “ApZa o _ w
= [ [erimeeemanas e gt - 1-ah =0 (1521),
00 =1
)1
where the last line follows the law of large numbers, namely m Yo A A, =
2m

mi1=q

E(A,Ap) + o(1) almost surely for a fixed ¢q. Then the whole integral vanishes after dividing
by t and taking the long time limit.
Next, the integral over €3 in equation (44) is an integral over a bounded interval s €

[LtLLitJ ,t]. Tt is enough to show the integrand is a bounded function of s on this interval.
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We have

S

/ e E(5) A(T)E(r)dr

0

27 (mo+1)
: g R
=A| e / e METE(5)E(T)dT + Z A, / e MG (s)e(T)dr (46)
QJL%J ma= =0 27rm2
s L;‘;J 1 2?‘”
_2mm
=Ajse ) / e MO ()T 4 Y Apye T / MTE(s)E(T)dr,
mo= =0 0

152l

where both terms in the last step are bounded functions of s.
Hence, the integral over 5 and {3 in equation (44) vanishes after dividing by t and
taking the long time limit. Now, we have the leading order approximation of equation (42)

at long times,

L)1

P— —An(s—T) 2 -1
o = 14 lim — 1 (u, ) / / e E(s)é(rydrds Y A2 + Ot
n= 0

mi1=0

2

3

s

€|

P2

=1+ e M= (5)E(r)drds.

Var (Ap) i (u, qﬁn
n=1

\
—

00
where the second step follows the law of large numbers.

It is natural to compare the renewing flow (A(¢)¢(t)u(y),0) with its deterministic coun-
terpart (var(Ag)&(t)u(y),0), and ask the question which one induces a larger effective dif-
fusivity. One may expect the random motion creates a larger dispersion. However, it is
not always true. A counter example is the £(t) = cost, Pe = 1 and Var(A) = 1, where
the effective diffusivity induced by the renewing flow is keg, ~ 1.3993, while the effective
diffusivity induced by its deterministic counterpart is regq ~ 1.4124.

Interestingly, if we impose the continuity assumption on the renewing flow, then we have
Keffy > Keffd. The continuity of A(t)&(t) implies £(0) = &(Ly) = 0. Hence, £(t) admits a
sine expansion £(t) = Z cpsin kwt. Recall that, in the calculation of effective diffusivity
induced by the renewmg flow, the contribution of the integral over €5 in equation (44)
vanishes due to the mean zero property of the random process A(t). However, when A(t)

is a deterministic function, this term grows linearly on time and contributes to the effective
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diffusivity. Therefore, it is enough to establish that this term is non-positive. We have

(m1+1)Lt (mg—l—l)Lt
e MG e(5)E(T)drds

miLt molLt
27 27

:e—AnLt(ml—mg)//e—kn(s—’r)g(s)g(T)deS (48)
0 0

(e.)
—AnLi(mi—m
=e t(m1=m2) E Ck1ck2ck1,k27
k1,ka=1

where Ci, k, = fw (5=7) sin(kyws) sin(kywr)drds. It is enough to show the (possibly
0

Qo\a‘:‘

is semi-negative definite. In fact, we have

7r3n2 kl ]{32
w kiw? + N2 k3w? + N2

infinite) matrix

(49)

Ck17k2 = — 4w2 sinh2 (

Hence, for any n, C' is a rank one matrix with only one negative eigenvalue, which implies
C' is semi-negative definite. Now, we finished the proof of keg, > Kegra for the continuous
renewing flow.

To verify our theoretical results regarding the deterministic effective diffusivity, we solve
equation (3) with shear flows v(y,t) = (y — 1/2) A(t) sin 1007t by using the forward Monte-
Carlo method described in [31]. The computational domain is (x,y) € R x [0,1]. The time
step size is 1072, The total number of the random walkers is 2 x 10°. We divide a simulation
into 400 parallel jobs on UNC’s Longleaf computing cluster. In panel (a,b,c,d,e), Pe = 400.
In panel (f), Pe = 1200. In panel (a), A(t) is a white noise process. In panel (b), A(t) = 1.
A(t) is a renewing process with a coin-toss random variable taking values plus or minus

one with equal probability in panel (c¢), a standard Gaussian distributed random variable

respectively in panel (d) and a uniform distributed random variable on [—v/3, /3] in panel

(e,f). We plot Va;ET) as a function of time for 5 independent flow realizations and different
shear flows in figure 6. The curves with the same color are generated with the same seed
from the same random number generator.

From figure 6, we have five observations. First, in panel (a,c,d,e,f), all curves fluctuate
randomly at the earlier stage but converge at later times to a deterministic effective diffu-

sivity keg given by equation (47). Second, since all distributions in panel (c, d, e) have the

same unit variance, all renewing flows induce the same effective diffusivity at long times.
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FIG. 6: V%ET) as a function of time for 5 independent flow realizations and different random flows.
Note that equation (4) shows this quantity converges to the deterministic effective diffusivity at
long times. We compute keg by equation (40) for panel (a), by equation (21) for panel (b), by
equation (47) for panel (c, d, e, f) and report three significant digits of the effective diffusivity to
the right of each row. Pictures in the right column are simply zoom-in of pictures in the left column
at a larger time scale. The black dashed line indicates the theoretical limit k.. The dotted lines

are 0.95keg or 1.05Kef.

Third, comparing panel (b) and panel (c, d, e), we can see that renewing random flows in-
duce a larger effective diffusivity than their deterministic counterpart, as just proven above.
Fourth, from the right column of figure 6, we can see that if the distribution of A(¢) has a
heavier tail, then V%l@ takes a longer time to converge to the theoretical limit. Fifth, the
long-time asymptotic correction of effective diffusivity is proportional to the square of the
Péclet number. Hence, for a larger Péclet number, it will take a longer time to converge

in the sense of the absolute difference. However, notice that the effective diffusivity is also
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proportional to the square of the Péclet number. We expect it will take a similar time to

achieve the same relative difference. Panel (e,f) supports this analysis.

4.1. Invariant measure

Equation (22) is an approximation of the scalar field at long times, which is a powerful
tool to compute the invariance measure of the random field. Let’s consider the flow we
discussed in the previous section. First, when v(y,t) = £(t)u(y) and () is the Gaussian

white noise, equation (22) becomes

_ 1 —72 3
T(x,t) = ——— Ot 2 v = x — PeuB(t 50
(0.0 = e (50 ) + O D), &= PeaB() (50)

where B(t) is the standard Brownian motion and kg is provided in (40). Even though
the effective diffusivity is deterministic at long time, generally, the scalar itself may still
be random at long time, and the availability of the invariant measure is useful. To that
end, we apply the inverse transform method (we refer reader to [18] for details) to obtain
the invariant measure of T, i.e, the probability density function at long times, from the
probability density function of B(s). We consider the rescaling of T', T'(z,y,t) = /Amkegt T .
Without loss of generality, we focus on the scalar at point 2 = 0,y = 0, i.e., 7(0,0,). Thus,

the invariant measure is

=

PGS P —— ] (51)

/—nBlog(z)’

where g = Pe'@fult) _ Pea® | O(t™1) and v(t) is the variance of [&(s)ds. f#(z) always has

2tkeff 2K e

the logarithmic singularity at z = 1. It is continuous at z = 0 0Whem £ < 1, and singular
when 5 > 1 (see figure 7). Some physical insight can help interpret this result: Indeed, for
a weak input random signal, the scalar flied is nearly deterministic. Hence, the rescaled T’
at x = 0 is thus very likely to be 1. As the strength of the random signal increases, white
noise flow makes the blob to be most of the time away from the initial position and the value
of scalar at original point is more likely to be zero. As a result of that, when the strength
of the input random signal exceeds some certain threshold, the distribution changes from
negatively-skewed to positively-skewed as 3 increases.

Second, when the shear flow is the renewing flow v(y,t) = A(t)&(t)u(y), we also have

the Gaussian function approximation (22) with the effective diffusivity provided in equation
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FIG. 7: The invariant measure f7(z) in equation (51) for different parameters 3. The red solid
curve, blue dashed curve and black dot-dash curve stand for the case 5 = 1/20, 1, 20, respectively.

f7(2) changes from negatively-skewed to positively-skewed as (3 increases.

(47) and

t [£1-1 Ly t

T=x— Peﬁ/A(s)f(s)ds =12 — Peu t An/f(s)ds + ALL%J / () |- (52)

n=0
0 0 Lil ]

The rescaled scalar T'(z,t) becomes

(PeaX ztf(s)ds> 2

T(z,t) = VAmkegtT = exp | — Tl +0(t7), (53)
Reff Lit

&)1
where X = th j > A, ~ N(0,Var(A4p)) as t — oo follows the central limit theorem.
Ly n=0
With the same method, we find that the PDF of T" takes the same form provided in equation
Ly 2
<Peﬂ ({ f(s)ds) Var(Ap)

2K Lt

(51), but with a different expression of parameter g = Hence, the
renewing flows induces a same type of invariant measure as the one induced by the white
noise process at long times.

When Ljfﬁ (s)ds = 0, the PDF of the scalar field collapses to delta function much quicker
than the v(x)fhite noise case. We can still calculate the PDF of the scalar field via the PDF of

Ap, but the time-independent invariant measure is not available.
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5. CONCLUSION AND DISCUSSION

We have studied the long time behavior of an advection-diffusion equation with a gen-
eral time-varying (including random) shear flow imposing no-flux boundary conditions on
channel walls using center manifold theory. Our study extends and improves prior work of
[45, 48, 49] to properly incorporate general time variation into the effective theory. Com-
parisons with full simulations document conditions when this improved approach gives a
better approximation and also illustrates situations in which standard homogenization does
not perform well on finite timescales. Convergence studies illustrate how the accuracy of
the different approximations. Armed with this improved time-varying center manifold the-
ory, we derived new effective equations for random shear flows involving both white in time
statistics, as well as more correlated renewing flows. For white in time, these predictions
agree with our prior work [32], which forecasts a deterministic effective diffusivity at long
times. For the case of renewing flows, less is known, and our current work also a determin-
istic effective diffusivity, with new explicit formulae. These theories are demonstrated to be
quantitatively accurate through Monte-Carlo simulations. New conditions are derived which
guarantee when the random renewing flow generates a larger effective diffusivity than its
deterministic analog. Lastly, using the inverse transform method and the effective equations,
we derived the invariant measure and investigate its Péclet number dependence.

The future study includes a number of directions. First, in this study, we only considered
constant diffusivity. Future immediate areas of exploration include the case with spatial
variable-dependent diffusivity or even concentration-dependent diffusivity. A practical ex-
ample concerns the shear-enhanced diffusion in colloidal suspensions explored in [36]. The
nonlinearity in those systems imposes challenges to the traditional method. We expect the
center manifold theory could overcome the difficulties. Further, the center manifold theory
will apply nicely to study the mixing ability of time-varying flow in a non-flat channel to gen-
eralize the conclusion in [57]. Second, the perturbation method presented in the manuscript
only works for a decaying scalar field for which energy is localized at zero wavenumbers at
long times. We are interested in generalizing the result to plane wave initial data. In this
case, since the energy is always localized at a wavenumber isolated from k& = 0 (set by the
initial condition). Hence, the expansion around the zero wavenumbers would not be valid.

We expect that the asymptotic expansion is available in the large or small Péclet number
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limit via the method described in [19, 22]. Additionally, the non-decaying scalar field would
exist in the presence of net flux at the boundary or source inside the domain, which is an

interesting topic for future study.
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7. APPENDIX
7.1. Numerical Method

In this section, we document details of the numerical simulations for equation (1). The
computational domain is z x y € [—H, H| x [0, L]. When H is large enough, we can assume
there is a periodic boundary condition in the z-direction. Since there are non-penetration
conditions in the y-direction, we perform the even extension in the y-direction to obtain the
periodic condition on the extended domain. Thus, we can use the standard Fourier spectral
method to solve the advection-diffusion equation with periodic boundary conditions on the
rectangular domain [—H, H] x [0,2L]. In the dealiasing process at each time step, we apply
the all-or-nothing filter with the two-thirds rule to the spectrum, that is, we set the upper
one-third of the resolved spectrum to zero (see chapter 11 of the book [17] for details). The
typical parameters are H = 8w, L = 1. The grid resolution is 1024 x 64 before the even
extension and 1024 x 128 after the extension.

The diffusion operator is stiff, which requires a very small time step size for the explicit
method to ensure numerical stability. In order to use a larger time step size and improve
the efficiency, we adopt the implicit-explicit third-order Runge-Kutta method presented in
table 6 in [51]. In our application, we use the explicit Runge-Kutta method to integrate the
advection part and use the implicit diagonal Runge-Kutta method to integrate the diffusion

term. When the diffusivity is a constant, the diffusion operator is a diagonal matrix in
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the Fourier space. Thus, the implicit equation can be solved explicitly and efficiently. The
implicit-explicit method is as efficient as the explicit method at each iteration while allowing
a much larger time step size.

We also present the Butcher tableau of the explicit-implicit Runge-Kutta method in table
I here for convenience. Unfortunately, [51] only reported 13-14 significant digits of param-
eters («, 5,n) which are the key parameters defining the algorithm. That may potentially
deteriorate the accuracy of double-precision floating-point based or even higher precision

floating-point based algorithms. Hence, we documented the exact value for those parame-

9-V57 9-BT —6+57

. We also find another two groups of parameters that achieve the

same convergence order and ensure the L-stable, (1/2,1/8,0) and (9+%/§, 9+2ﬁ, _(’:ﬁ ).
00000 ala 0 0 0
00000 Ol 0O 0
10100 10 1-a o 0
300130 380 3-f-n-aa
orir b

TABLE I: Butcher tableau for the Explicit (left) Implicit (right) L-Stable scheme, («, 3,71) could

be (1/2,1/8,0), (25T, 9357 =O4J5T) op (243/T 94T —0-J5T)

7.2. Lists of abbreviations

See table II.

Full Form Abbreviation

Fisher-Kolmogorov-Petrovskii-Piskunov| FKPP

Ornstein-Uhlenbeck ou

Partial differential equation PDE
Probability density function PDF
Stochastic differential equation SDE

TABLE II: Lists of abbreviations.
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