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Abstract

We study the long-time behavior of an advection-diffusion equation with a general time-varying

(including random) shear flow imposing no-flux boundary conditions on channel walls. We derive

the asymptotic approximation of the scalar field at long times by using the center manifold theory.

We carefully compare it with existing time-varying homogenization theory as well as other existing

center manifold based studies, and present conditions on the flows under which our new approx-

imations give a substantial improvement to these existing theories. A recent study [Ding et al.,

Physica D, 432, 133118 (2022)] has shown that Gaussian random shear flows induce a deterministic

effective diffusivity at long times, and explicitly calculated the invariant measure. Here, with our

established asymptotic expansions, we not only concisely demonstrate those prior conclusions for

Gaussian random shear flows, but also generalize the conclusions regarding determinism to a much

broader class of random (non-Gaussian) shear flows. Such ergodicity-like results are important

since they assure an experimentalist only need to perform a single realization of a random flow to

observe the ensemble moment predictions at long times. Monte-Carlo simulations are presented

illustrating how the highly random behavior converges to the deterministic limit at long times.

Counterintuitively, we present a case demonstrating that the random flow may not induce larger

dispersion than its deterministic counterpart, and in turn present rigorous conditions under which

a random renewing flow induces a stronger effective diffusivity. Lastly, for white in time flows and

renewing flows, we derive the invariant measure and explore its Peclet number dependencies.
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1. INTRODUCTION

How fluid motion transports a diffusing scalar is an extremely important class of problems

in engineering, chemistry. Since G. I. Taylor [61] first introduced the calculation showing

that a steady pressure-driven flow in a pipe leads to a greatly enhanced effective diffusivity,

the literature on this topic has exploded in many directions spanning many disciplines.

Shortly following G. I. Taylor, Aris [5] presented an alternative approach for shear layers

yielding a hierarchy for the spatial moments of the scalar field. More recent moment analysis

shows how the boundary geometry of the pipe can be used to control the distribution of

solute which is advected by the pressure-driven flow [2–4].

Unsteady flows typically generate different properties than their steady counterparts.

Practical examples of unsteady flow include pulsatile blood flows [58] and tidal estuaries

[28]. The first investigation of the Taylor dispersion in time-dependent flow dates back to

Aris [6], who presented the study of a solute advected by pulsating flow in a circular tube.

After that, based on the Aris’ moment method, a number of studies reported on the en-

hanced diffusivity induced by the single-frequency pulsating flow[16, 27, 40, 50, 68], the single

frequency Couette-Poiseuille [11–13, 52] and the multi-frequency flow [31, 65, 66]. Alterna-

tive approaches, using center manifold theory, [45, 46, 48, 49] or homogenization methods

[29, 30, 41] not only predict the effective diffusivity but also give the direct expression for

the full concentration field at long times.

In this article, we study three points that have not been addressed well in the literature

regarding shear dispersion in time-varying flows. First, most of those theoretical studies

focused on the cross-sectional averaged concentration, while fewer studies have explored

asymptotic corrections which capture cross-channel variations. Here, with the center man-

ifold theory, we present a systematic procedure to construct an approximation to capture

the traverse variation of the scalar field. Second, several interesting articles [45, 48, 49]

implemented center manifold theory for such unsteady problems employing certain slowly

varying assumptions to simplify the calculation. Such assumptions restrict the applicability

of the effective dynamics. Here we relax this assumption by carefully incorporating the

temporal fluctuation of the flows into the analysis. Hence, our results can handle rapidly

fluctuating flows or even random flows. Third, recent results have explicitly calculated using

statistical moment closure the invariant measure for a diffusing passive scalar advected by
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a class of random shear flows [20, 32] employing no-flux boundary conditions on channel

domains. These results generalize prior turbulent intermittency in free space of Majda [42]

and Kraichnan [44]. Interestingly, we establish here how the center manifold theory can

be used to greatly extend these theories to a much broader class of random shear flows,

particularly regarding their temporal statistics. We show that for this broader class of flows,

all effective diffusion coefficients converge to a deterministic value in the confined domain,

in contrast to Majda and others’ free-space analog [19, 47], in which the effective diffusion

coefficients are random at all times. Such ergodicity-like results assure an experimentalist

only needs to perform a single realization of the random flow to observe the field moment

predictions at long times.

The paper is organized as follows. In section 2, we formulate the governing equation of

the shear dispersion problem and review the Aris moment method. In section 3, we discuss

the procedure of applying center manifold theory to the Taylor dispersion problem with

time-varying shear flow. By utilizing the first-order approximation for the cross-sectional

averaged concentration, we present a nonnegative asymptotic expansion of the scalar field

at long times which captures the transverse variations. We document situations in which

a time-varying cell problem produces a more accurate approximation than the parametric

(adiabatic) approach employed recently [45, 48, 49]. In section 4, we demonstrate that a

class of flows with finite correlation time will induce a deterministic effective diffusivity at

long times. Moreover, we establish conditions that guarantee that the renewing flow always

yields a larger effective diffusivity than its deterministic counterpart. By utilizing the derived

new effective equation, we compute the explicit formula of invariant measure of the random

passive field.

2. SETUP AND BACKGROUND OF THE PROBLEM

2.1. Governing Equation and Nondimensionalization

Advection-diffusion Equation

We consider the problem in a channel domain (x,y) ∈ R × Ω, where the x-direction

is the longitudinal direction of the channel and Ω ⊂ Rd stands for the cross-section of

the channel. Some practical examples of the boundary geometry includes the parallel-
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FIG. 1: A schematic of the setup for the special case of a quadratic shear flow.

plate channel Ω = {y|y ∈ [0, L]}, the circular pipe Ω = {y|y2 ≤ L}, the rectangular duct

Ω = {y|y ∈ [0, L]× [0, H]}, and bowed rectangular channels [43]. As sketched in figure 1,

the passive scalar is governed by the advection-diffusion equation with a general time-varying

shear flow v(y, t) and no-flux boundary conditions,

∂tT + v(y, t)∂xT = κ∆T, T (x,y, 0) = TI(x,y), ∂nT |R×∂Ω = 0, (1)

where κ is the diffusivity, TI(x,y) is the initial data, n is the outward normal vector of the

boundary R× ∂Ω and ∂Ω is the boundary of Ω.

Nondimensionalization

With the change of variables

Lx′ = x, Ly′ = y,
L2

κ
t′ = t, Uv′(y′, t′) = v(y, t), LΩ′ = Ω,

T ′I(x
′,y′)L−d−1

∫
R×Ω

TI(x,y)dxdy = TI(x,y),

T ′(x′,y′, t′)L−d−1

∫
R×Ω

TI(x,y)dxdy = T (x,y, t),

(2)

after dropping the primes, we obtain the nondimensionalized advection-diffusion equation

∂tT + Pev(y, t)∂xT = ∆T, T (x,y, 0) = TI(x,y), ∂nT |R×∂Ω = 0, (3)

where Pe = UL/κ is the Péclet number.

5



Variance and skewness

The homogenization method in [21, 31] suggests that, assuming a scale separation in the

initial data, the solution of equation (1) can be approximated by a diffusion equation in

the longitudinal direction with an effective diffusion coefficient. Inspired by that, we are

interested in the variance and skewness of the longitudinal distribution of the scalar field.

The cross-sectional average of the scalar field is defined as T̄ (x, t) = 1
|Ω|

∫
Ω

T (x,y, t)dy,

where |Ω| is the area of Ω. In this following context, we use the overline to denote the

cross-sectional average. The nth moment of T̄ is defined by T̄n(t) =
∞∫
−∞

xnT̄ (x, t)dx. The

effective longitudinal effective diffusivity could be computed through the Aris moments

κeff = lim
t→∞

Var(T̄ )

2t
, (4)

where Var(T̄ ) = T̄2 − T̄ 2
1 is the variance of the cross-sectional average T̄ .

The effective diffusivity characterizes the symmetric property of the longitudinal distri-

bution. We are also interested in the asymmetry properties of T̄ . Skewness is the lowest

order integral measure of the asymmetry of a real-valued probability distribution, which is

defined as

S(T̄ ) =
T̄3 − 3T̄2T̄1 + 2T̄ 3

1(
T̄2 − T̄ 2

1

) 3
2

. (5)

The information provided by the skewness and how it depends on the tube shape could

improve the design of microfluidic flow injection analysis [4, 62] and chromatographic sepa-

ration [15].

3. CENTER MANIFOLD DESCRIPTION OF THE SHEAR DISPERSION PROB-

LEM

3.1. Center manifold and reduction principle

In pioneering work, Mercer and Roberts [48] interpreted the long-time asymptotics of

the shear dispersion problem as the center manifold of a dynamical system, which pro-

vides a systematic and near rigorous approach to derive the approximation. In addition to

the shear dispersion problem, practical applications of the center manifold theory include

chromatographic model and reactors[10], elastic beam deformations[54], and thin fluid flows
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dynamics [55, 56]. To explain the center manifold method, we consider an autonomous

differential system of the form

dx

dt
= Ax + f(x,y),

dy

dt
= By + g(x,y), (6)

where x ∈ Rm,y ∈ Rn. A,B are matrices whose eigenvalues have vanishing and negative real

parts, respectively. We also assume f(x,y), g(x,y) and their first order partial derivatives

are zero at x = 0,y = 0. These conditions guarantee the existence of a center manifold

y = h(x) which has two important features. First, the stability properties of the dynamical

system (6) at the origin are the same as the following lower-dimensional equation

dx

dt
= Ax + f(x, h(x)). (7)

Second, in the case of a stable equilibrium (x,y) = (0, 0), each solution of the system

(6) which starts close to the origin exponentially decays to a particular solution on the

center manifold [23, 24]. With these two features of the center manifold, one can reduce the

original m+ n-dimensional system (6) to a m-dimensional system (7) with only the price of

exponential corrections.

This classical center manifold theory and reduction principle could be generalized in many

directions. First, the dynamical system (6) could be an infinite-dimensional system where

the matrices A, B become linear operators [25]. Second, similar results hold for a more

general dynamical system dxi
dt

= Aixi + f(x1, ...,xN , t), 1 ≤ i ≤ N and the restriction of

eigenvalues could be weakened [8, 63]. This generalization leads to a so-called two-mode

invariant manifold model for the shear dispersion problem [60, 69, 70]. Third, more related

to our topic, the system could be non-autonomous, where the center manifold becomes time-

dependent y = h(x, t) [7, 9]. Moreover, the nonlinear term could be discontinuous in t as

long as it is strongly measurable with respect to t [9]. A lower bound of the exponential

convergence rate is determined by the linear operators, Ai. For further details regarding

center manifold theory, we refer to [8, 23] and references therein.

Notice that the advection-diffusion equation (3) is linear, while the center manifold theory

applies to a system with nonlinear terms. To apply center manifold theory to the passive

scalar problem, we first take the Fourier transform of equation (3) which is defined as
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f̂(k) = (2π)−
N
2
∫
RN

e−i(x·k)f(x)dx and obtain

∂T̂

∂t
− ikPev(y, t)T̂ = −k2T̂ + ∆yT̂ ,

∂T̂

∂n

∣∣∣∣∣
R×∂Ω

= 0, T̂ (k,y, 0) = T̂I(k,y). (8)

Second, we conceptually non-linearize equation (8) by treating the wavenumber as a depen-

dent variable of the dynamical system. Notice that ∆y has a null space that consists of all

functions which are independent of y. To fit the form of equation (6), we rewrite equation

(8) as

∂t

k
T̂

 =

0 0

0 ∆y

k
T̂

+

 0

ikPev(y, t)T̂ − k2T̂

 ,
∂tT̂ ′ = ∆yT̂ ′ + ikPev(y, t)T̂ − k2T̂ ′ − ikPev(y, t)T̂ ,

∂T̂

∂n

∣∣∣∣∣
R×∂Ω

= 0, T̂ (k,y, 0) = T̂I(k,y),

(9)

where T ′(x,y, t) and T (x, t) are the fluctuation and average of T (x,y, t) with respect to y.

To weaken the nonlinear coupling, we assume that the initial condition T̂ is supported in a

neighborhood of k = 0, which is the slow varying assumption used in homogenization theory.

Then this system satisfies the condition of theorem 2.1 in [9] which guarantees the existence

of a center manifold T̂ ′ = h(T̂ , k, t). Additionally, the solution T̂ in the neighborhood of

the center manifold converges to h(T̂ , k, t) + T̂ exponentially as t→∞ with the decay rate

determined by the diffusion time scale. For nonnegative and integrable initial conditions,

due to the diffusion effect, T is a decaying scalar field, in which the energy concentrates near

the neighborhood of k = 0 at long times. We can seek the expansion of h(T̂ , k, t) for small

k and T̂ , h =
∞∑
n=1

hn(y, t)knT̂ +O(T̂
2

). That is equivalent to approximating the scalar field

T by the derivatives of its cross-sectional average T̄ with respect to x. This idea dated back

to Gill [34, 35] and also has been discussed in [74].

For simplicity, we rewrite all equations in term of physical variables,

∂tT̄ = ∂2
xT̄ − Pev(y, t)∂xT , ∂tT = ∆yT + ∂2

xT − Pev(y, t)∂xT. (10)

The expansion becomes

T = T ′ + T̄ = T̄ + h(T̄ ) =
∞∑
n=0

θn(y, t)∂nx T̄ . (11)
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The fluctuation T ′ has a zero mean,
∫

Ω
T ′dy = 0, which implies θ̄0 = 1 and θ̄n = 0 if n ≥ 1 at

long times. We have ∂
∂n
θn
∣∣
y∈∂Ω

= 0 from the no-flux boundary conditions of T . Substituting

expansion (11) into equation (10), we have

∂tT̄ = ∂2
xT̄ − Pev∂xT , (12a)

∞∑
n=0

∂tθn∂
n
x T̄ +

∞∑
n=0

θn∂
n
x∂tT̄ = ∆yT + ∂2

xT − Pev∂xT. (12b)

Grouping all terms of the same order, namely ∂nx T̄ , we find that we have to solve the

sequence of equations

(∂t −∆y) θ0 = 0,

(∂t −∆y) θ1 = −Peθ0

(
v − θ0v

)
,

(∂t −∆y) θn = −Pevθn−1 + Pe
n−1∑
m=0

θn−m−1vθm,

(13)

where θn = 0 if n < 0. After solving θn successively, we obtain the closed evolution equation

of T̄ by substituting T =
∞∑
n=0

θn(y, t)∂nx T̄ into equation (10),

∂tT̄ = ∂2
xT̄ − Pe

∞∑
n=0

vθn∂
n+1
x T. (14)

Finally, once we solve equation (14) for T̄ , we obtain the approximation of the scalar field

T via expansion (11).

3.2. The first and second order effective equation

In this subsection, we will compute equation (13) and (14) for the flow v(y, t) = ξ(t)u(y).

For more general non-separable flow v(y, t), one could reduce it to a separable form by

utilizing the Fourier transform in time. To simplify the calculation, we assume TI(x,y) =

δ(x). Otherwise, the general initial condition only creates extra exponential decaying terms

and yields the same asymptotic expansion at long times.

With the constraints of the average and boundary conditions of θn, we have θ0 = 1.

Therefore, the equation of θ1 becomes

(∂t −∆y) θ1 = −Pe(v − v̄), ∂nθ1|∂Ω = 0. (15)
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Since the theory concerns the long time dynamics of the scalar field and the long time limit

of θ1 doesn’t depend on the initial condition, in principle, one can solve equation (15) with

arbitrary initial condition. To obtain a better approximation at earlier stage, one can choose

suitable initial condition of θn to match both sides of the expansion (11) at t = 0. Then

when v(y, t) = ξ(t)u(y) and θ1(y, 0) = 0, the solution of equation (15) is

θ1(y, t) = −Pe
∞∑
n=1

φn 〈u, φn〉
∫ t

0

eλn(s−t)ξ(s)ds. (16)

where 〈f, g〉 = 1
|Ω|

∫
Ω

fgdy. φn, λn are the eigenfunctions and eigenvalues of the Laplace

operator in the cross section of the channel Ω with no-flux boundary condition, i.e.,

−∆φn = λnφn, ∂nφn|∂Ω = 0, 〈φn, φn〉 = 1. (17)

When Ω = {y|y ∈ [0, 1]}, we have φ0 = 1, λ0 = 0 and φn =
√

2 cosnπy, λn = n2π2, n ≥ 1.

Substituting T = T̄ + θ1∂xT̄ into the evolution equation of T̄ , we obtain the first order

effective equation

∂tT̄ + Pev̄∂xT̄ = a2∂
2
xT̄ , a2 =

(
1− Pevθ1

)
. (18)

The classical homogenization approach relies on the Fredholm alternative which involves a

space-time average. As a result, the effective equation is a constant coefficient equation even

for the time-varying flow case [29, 31]. Here, with the center manifold approach, we obtain

the effective equation (18) with time-dependent coefficients which could approximate the

scalar field better in an earlier stage. Comparing the definition of Aris moments (see [31])

and variance of the cross-sectional average, we have

Var(T̄ ) = Var(T̄I) + 2

t∫
0

a2(s)ds. (19)

For a periodic time-varying flow [65] and a class of random flows [20, 32], we have Var(T̄ ) =

2κefft+O(1), where κeff is the effective diffusivity

κeff = lim
t→∞

Var(T̄ )

2t
= lim

t→∞

1

t

t∫
0

a2(s)ds. (20)

In other words, a2 can be approximated by its time average at long times.
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Based on equation (16), the effective diffusivity induced by the flow v(y, t) = ξ(t)u(y) is

a2 =
(
1− Pevθ1

)
= 1 + Pe2

∞∑
n=1

〈u, φn〉2 ξ(t)
t∫

0

eλn(s−t)ξ(s)ds,

κeff = 1 + Pe2 lim
t→∞

1

t

t∫
0

∞∑
n=1

〈u, φn〉2 ξ(s2)

s2∫
0

eλn(s1−s2)ξ(s1)ds1ds2.

(21)

With the initial condition T (x,y, 0) =
(√

2πσ
)−1

exp
(
− x2

2σ2

)
, the solution of equation (18)

gives an approximation of T̄ as t→∞,

T̄ (x, t) =
1√

2πb2

exp

(
−x̃2

2b2

)
+O(t−

3
2 ),

b2(t) = σ2 + 2

t∫
0

a2(s)ds, x̃ = x− Pe

t∫
0

v̄(s)ds.

(22)

For steady flow, we have b2 = σ2 + 2κefft. Then equation (22) reduces to the classical

Gaussian approximation [26]. Since the scalar field will be homogenized across the channel

at long times, T̄ itself could be an approximation of T . In fact, we could obtain a more

accurate approximation of T ,

T ≈ T̄ + θ1∂xT̄ =

(
1− θ1(y, t)x̃

b2

)
1√

2πb2

exp

(
−x̃2

2b2

)
+O(t−

3
2 ). (23)

Since ∂xT̄ is an odd function with respect to x, the error of approximation (23) is

still O(t−
3
2 ). However, equation (23) practically performs better than T̄ because it de-

picts the across channel variation of the scalar. To demonstrate that, we numerically

solved equation (3) with Pe = 200, u(y, t) = (cosωt) y(1− y)/2, and initial condition

TI =
(√

2πσ
)−1

exp
(
− x2

2σ2

)
, σ = 1/40 by the method described in appendix 7.1. Figure 2

presents the relative errors of different approximations, ‖T − Tapprox‖∞/‖T‖∞. As shown in

figure 2, the relative error of approximation (22) (red curve) is around 0.1 at t = 1, while, the

relative error of approximation (23) (blue curve) is around 10−3. Since two approximations

are of the same asymptotic order at long times, presumably the differences between the two

approximations will reduce as time is further increased.

In many applications, the scalar field usually stands for the concentration which must

be nonnegative for all times. However, this approximation (23) could be negative for some

x and t, which may not be desirable in those applications. [72, 73] proposed the following
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FIG. 2: The relative error of various approximations ‖T − Tapprox‖∞/‖T‖∞ where T is evaluated

numerically. The red solid curve, blue dashed curve, black dot-dash curve and purple curve are

the relative error of approximation (22), (23), (24) and (25), respectively.

nonnegative approximation to study the transverse distribution of concentration distribution

for the laminar tube flow,

T ≈ 1√
2πb2

exp

(
−(x̃− θ1(y, t))2

2b2

)
. (24)

The approximation (24) converges asymptotically to approximation (23) as θ → 0. However,

the relative difference between them doesn’t vanish as t → ∞. As shown in figure 2, there

is a visible difference between the approximation (24) (black curve) and (23) (blue curve).

Here, we propose a different nonnegative asymptotic expansion

T ≈
(

1− θ1(y, t)x̃

2b2

)2
1√

2πb2

exp

(
−x̃2

2b2

)
, t→∞. (25)

Since the difference between equation (23) and (25) is O(t−
5
2 ), the relative difference between

them vanishes as t→∞. From figure 2, we can see that the relative error of approximation

(23) and (25) is almost indistinguishable after t = 0.1. We remark that the approximation

(25) may not conserve the mass of the scalar at the earlier stage of the evolution. However,

the size of the non-conserved mass decays as O(t−2) at long time which is smaller than the

error in scalar field in this approximation: O(t−1). Hence, it is a reasonable approximation

at long time.

Next, we study the second order approximation of the scalar field. We have to solve the
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equation for θ2,

(∂t −∆y) θ2 = −Pe(vθ1 − θ1v̄ − vθ1),
∂

∂n
θ2

∣∣∣∣
∂Ω

= 0. (26)

We have the expansion of vθ1 − θ1v̄ − vθ1,

vθ1 − θ1v̄ − vθ1 =
∞∑

n2,n1=1

〈θ1, φn1〉 〈φn1(v − v̄), φn2〉φn2 . (27)

That leads to the solution

θ2 =Pe2
∞∑

n2,n1=1

〈u, φn1〉 〈φn1(u− ū), φn2〉φn2

t∫
0

(
eλn2 (s2−t)ξ(s2)

∫ s2

0

eλn1 (s1−s2)ξ(s1)ds1

)
ds2.

(28)

Substituting T = T̄ + θ1∂xT̄ + θ2∂
2
xT̄ into the evolution equation of T̄ , the approximated

evolution equation for T̄ becomes a linearized Burgers-Korteweg-de Vries equation

∂tT̄ + v̄∂xT̄ = a2∂
2
xT̄ − a3∂

3
xT̄ , a3 = Pevθ2. (29)

Next we can consider two cases based on a3 = Pevθ2. First, we consider the case a3 =

Pevθ2 = 0, which implies the skewness of T̄ is zero. One such example is the linear shear

flow created by moving one boundary of a parallel-plate channel [31]. In this case, the

evolution equation for T̄ reduces to a diffusion equation, where the Gaussian approximation

(22) is still valid. Then we obtain the approximation of the whole scalar field

T = T̄ + θ1∂xT̄ + θ2∂
2
xT̄

=

(
1− θ1x̃

b2

+
θ2 (x̃2 − b2)

b2
2

)
1√

2πb2

exp

(
−x̃2

2b2

)
+O(t−2).

(30)

Since ∂2
xT̄ is an even function with respect to x, the error of approximation (30) is O(t−2)

which is more accurate than the approximation (23).

To demonstrate the validity of the approximation (30), we compare it with the numerical

solution of equation (3) with the flow v(y, t) = cos πy. The steady solution of equation (15)

and (26) are

θ1 = −Pe
cos πy

π2
, θ2 =

Pe2 cos(2πy)

8π4
, b2 = σ2 +

(
Pe2

π2
+ 2

)
t. (31)

To fit the initial condition TI and increase the accuracy, we can impose the initial condition

θ1(y, 0) = θ2(y, 0) = 0 and obtain the time-dependent solutions,

θ1 = −Pe
cos πy

π2

(
1− e−π2t

)
, θ2 =

Pe2 cos(2πy)

8π4

(
1− e−4π2t

)
,

b2 = σ2 +

(
Pe2

π2

(
1− e−π2t

)
+ 2

)
t.

(32)
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FIG. 3: The relative error of various approximations of numerical solution of equation (3) with

the flow v(y, t) = cos πy, Pe = 1 and initial condition TI =
(√

2πσ
)−1

exp
(
− x2

2σ2

)
, σ = 1/20. The

red solid, blue dashed and black dot-dash curve represent the relative error of approximation (22),

(23) and (30). Panel (a) θ1 and θ2 are provided in equation (31). Panel (b) θ1 and θ2 are provided

in equation (32)

Figure 3 shows the relative error of different approximations. The numerical solution is

obtained via the method described in detail in appendix 7.1. We have three observations.

First, the formula (23) and (30) retaining cross-sectional variation provide more accurate

approximation than (22). Second, we can see that the second-order approximation (30)

has smaller error than the first-order approximation (23) at larger time. We expect this

difference will be more pronounced at longer times. Third, if we impose the initial condition

on θ1 and θ2, then we obtain a more accurate approximation at an earlier stage.

Next, we consider the case a3 6= 0. When the initial condition is TI(x,y) = δ(x), the

integral representation of the solution is

T̄ (x, t) =
1

2π

∞∫
−∞

e
− 1

2
b2k2−ik3

t∫
0

a3(s)ds+ixk
dk =

1

π

∞∫
0

e−
1
2
b2k2

cos

−k3

t∫
0

a3(s)ds+ xk

 dk.

(33)

We are interested in the asymptotic expansion of solution (33) at long times. It is a hard task

for a general time-varying flow. Therefore, we restrict our attention to the case where a2, a3

are constant. For some time-varying flows, we can approximate a2, a3 with their time average

at long times, for example, periodic time-varying flow. Hence, the asymptotic expansion we

14



derived in the section also applies to these cases.

If x� t and t→∞, the integrand in equation (33) is localized around k = 0. Hence, we

have the approximation

T̄ (x, t) =

∞∫
−∞

(
1− ia3k

3t+
(−ia3k

3t)2

2

)
exp(−a2k

2t+ ixk) +O(t−2)

=

(
1− a3

23a
3
2
2 t

1
2

H3

(
x

2
√
a2t

)
+

a2
3

27a3
2t
H6

(
x

2
√
a2t

)) exp
(
−x2

4a2t

)
√

4πa2t
+O(t−2),

(34)

where Hn is the degree n Hermite polynomial associated with the weight function e−x
2
.

The approximation (34) is identical to the Hermite polynomial representation proposed in

equation (5.7) in [59].

Last, we remark that for the initial condition discussed in this section, b2 and
t∫

0

a3(s)ds

are related to the variance and skewness provided in equation (4) and (5) respectively. For

the general time-varying flows, the eigenfunction series expansions of variance and skewness

are valid in [31, 65, 66]. Additionally, we would refer to table 1 in [29] which presents a

summary of flows and the methodologies used in the prior literature.

3.3. Improvements compared with previous studies

We remark that there are two subtle differences compared with the previous studies

[45, 48, 49]. First, the previous studies made not only the ansatz of the expansion of T , but

also the expansion of T̄ . Therefore, the recursive equations involve not only θn, but also the

coefficients in the expansion of T̄ . Here, we avoid making the expansion ansatz for T̄ by

utilizing equation (12a), which simplifies the calculation of θn.

Second, in the previous studies, time is considered as a parameter rather than a dependent

variable of the system. Hence, the equation for the auxiliary function θ1 derived in [45, 48, 49]

takes the form

−∆yθ1 = −Pe(u− ū), (35)

in which the time derivative term doesn’t appear. One possible justification for this approx-

imation could be that the flow u(y, t) varies slowly in time so that the time derivative term

is negligible. However, in situations involving flows admitting rapid temporal evolution,

this approximation will be invalid. Let’s consider a simple example, Ω = [0, 1], Pe = 1,
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u = −eiωt cos πy. The solution of equation (15) is eiωt cosπy
π2+iω

, while the solution of equation

(35) is eiωt cosπy
π2 . The only difference between them is the denominator, which yields a O(ω)

difference. Hence, for ω � 1, the two solutions are close. However, for any fixed ω, the corre-

sponding approximations of the solute distribution T diverge at long times, due to the vari-

ances having different growth rates. Recall that the variance,Var(T̄ ) = 2(1−Pevθ1)t+O(1),

grows linearly at long times. The difference between the two variances arising from the

two different cell problems accumulates and becomes an O(1) difference at the frequency

time scale O (ω−1). Since the solute distribution is characterized by the variance, the O(1)

difference between variances implies an O(1) difference in the distributions at that time.

Moreover, this difference in distributions will keep increasing as time increases. Hence, we

conclude that equation (35) should only be used with a slow varying flow and before the

frequency time scale. In addition, this can be considered an example of non-commutating

limits.

We know the center manifold becomes a good approximation if the exponential correction

is small, i.e., after the diffusion time scale L2/κ, which is independent of the frequency time

scale of the flow. However, the simplification in equation (35) makes the approximation

unlikely to be valid after the frequency time scale. Hence, if the frequency time scale is less

than the diffusion time scale, then equation (35) is invalid for all time. That certainly limits

the application of the result based on equation (35). [45, 46] adopted equation (35) to study

dispersion induced by pulsating flows. One of their applications is blood flow. Consider the

following practical example. The typical frequency time scale in the human blood vessel is

1s (60 heartbeats per min). The sodium chloride (κ ≈ 1.6∗10−5cm2/s in water [37]) diffuses

cross the blood vessel with diameter 0.2 mm takes around 25 s. In this case, the result based

on (35) is unlikely valid.

To demonstrate the validity of our analysis, we solve equation (3) numerically and present

the results in figure 4. For the time varying shear flow u(y) = ξ(t)y(1 − y)/2, [48] derived

the effective equation

∂tT̄ +
Peξ(t)

12
∂xT̄ =

(
1 +

Pe2ξ(t)2

30240

)
∂2
xT̄ . (36)

If ξ(t) = cosωt, the solution of equation (15) is

θ =Pe
∞∑
n=1

(−1)n + 1

π2n2
cosnπy

(
ω sin(tω)

π4n4 + ω2
+
π2n2 cos(tω)

π4n4 + ω2
− π2n2Pee−π

2n2t

π4n4 + ω2

)
. (37)
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FIG. 4: The first row shows the numerical solution of equation (3) at t = 1 with the shear flow

u(y, t) = (cosωt) y(1− y)/2, Pe = 200 and initial condition TI =
(√

2πσ
)−1

exp
(
− x2

2σ2

)
, σ = 1/40,

where ω = π/5 in left panel, and ω = 20π in right column. In the second row, the red curve is the

cross sectional average of the numerical solution. The blue dash curve is the solution of equation

(36). The black dot-dash curve is the solution of equation (38). The purple dot curve is the solution

of equation (39).

Hence the effective equation (18) derived by time-dependent center manifold theory is

∂tT̄ +
Pe cosωt

12
∂xT̄ =

(
1 + Pe2

∞∑
n∈even+

2 cos2(tω)

π2n2 (π4n4 + ω2)
+

ω sin(2tω)

π4n4 (π4n4 + ω2)

)
∂2
xT̄ , (38)

where we neglect the exponential term in the solution of equation (15). When t� ω−1, we

could approximate the series in the effective equation by its time average

∂tT̄ +
Pe cosωt

12
∂xT̄ =

1 + Pe2

 1

24ω2
−

sin
(√

ω√
2

)
− sinh

(√
ω√
2

)
4
√

2ω5/2
(

cos
(√

ω√
2

)
− cosh

(√
ω√
2

))
 ∂2

xT̄ .

(39)

which is identical to the result of standard homogenization theory [29, 31]. Equation (39)

is simpler and performs as well as equation (38) at sufficiently large time scales. Of course,

at intermediate times scales or in the case with irregular fluctuating flows, equation (38)

performs better.

Figure 4 shows the comparison of the numerical solution and different approximations at

diffusion time scale t = 1. The left column shows the result for a small frequency, ω = π/5.

The cross-sectional average of the numerical solution, the solution of effective equations (36)
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and (38) are almost indistinguishable. Recall that the standard homogenization result (39)

requires t � O( 1
ω

). As we expected, the standard homogenization result on this timescale

is substantially worse than both center manifold results. Alternatively, at higher frequency,

with ω = 20π, (36) performs visibly worse than both standard homogenization (39) as well

as the time-dependent center manifold results (38). These observations from the numerical

simulation are consistent with our previous theoretical analysis.

4. TIME VARYING RANDOM FLOWS

Most studies of Taylor dispersion focused on periodic time varying flows, fewer studies

have addressed irregularly fluctuating flows and even random flows. In this section, we will

show that the theory we developed in the previous section can be applied to time vary-

ing random flows. Moreover, for random flows involving a white noise process or renewing

processes, we show that the effective diffusivity is deterministic at long times. This is also

inspired by our work [32] which studied the advection-diffusion equation with the shear flow

(v(y, ξ(t)), 0) where ξ(t) is a stationary Ornstein-Uhlenbeck (OU) process in parallel-plate

channels enforcing the no-flux boundary conditions. In that work, we derived the effective

equation at long times via analyzing the N -point correlation function of the random scalar

field. The analysis shows an interesting result that, in this random system, the effective

diffusivity is deterministic at long times. We mention an interesting study regarding the

ensemble average for a different system without physical boundary conditions. In [53] the

authors considered a diffusing passive scalar advected by a non-sheared, two-dimensional

sinusoidal flow with a random phase shift in an unbounded domain using an operator split-

ting method (applying the advection operator and diffusion operator successively). They

demonstrated that a single-realization and ensemble-average effective diffusivities are the

same and applied the conclusions to the Fisher-Kolmogorov-Petrovskii-Piskunov (FKPP)

model.

We study two cases of flow in this paper. The first case we considered is a Gaussian

white noise process ξ(t) which is a zero-mean, Gaussian random process whose correlation

function is given by 〈ξ(t)ξ(s)〉 = δ(t − s). The center manifold approach is valid for a

smoothly varying velocity field. As for the Gaussian white noise which is non-differentiable,

we can consider a sequence of functions that converges to the white noise process. The Wong-
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Zakai theorem states [33, 38, 71] that the convergence of a process to white noise process

yields the convergence of the systems driven by them. That justifies the application of the

center manifold approach in the non-differentiable case involving white noise. Additionally,

[67] showed how to apply the stochastic center manifold theory rigorously to analyze a one

dimensional reaction-diffusion equation with white noise terms.

Since the white noise process has a zero correlation time, we can approximate the

time dependent diffusion coefficient a2 with its time average at the diffusion time scale,

namely the effective diffusivity κeff . By utilizing the ergodicity of the white noise pro-

cess, or equivalently considering the Riemann sum and the law of large number, we have

lim
t→∞

1
t

t∫
0

ξ(s2)
s2∫
0

eλn(s1−s2)ξ(s1)ds1ds2 = 1 for all integer n ≥ 1. Equation (21) reduces to,

κeff = 1 + Pe2
∞∑
n=1

〈u, φn〉2 = 1 + Pe2

 1

|Ω|

∫
Ω

u2(y)dy −

 1

|Ω|

∫
Ω

u(y)dy

2 . (40)

Equation (40) is identical to equation (18) in [32] which is derived via the rigorous analysis

of N -point correlation function and Hausdorff moment problem. For the system with the

random flows, in general, one has to repeat the experiment with different realizations of

the flows to obtain the properties of the passive scalar via ensemble average. However, the

deterministic diffusivity presented in equation (40) implies that one need only observe a

single realization of the passive scalar to access some measurable quantities.

Second, we switch our attention to a class of stochastic flows with a finite correlation

time. Consider a shear flow takes the form (A(t)ξ(t)u(y), 0), where ξ(t) is periodic function

with a base frequency ω, or equivalent, a period Lt = 2π
ω

. A(t) is a piecewise-constant

zero-mean random function of time,

A(t) = An, nLt ≤ t < (n+ 1)Lt, n ∈ Z, (41)

where An is an independent and identically distributed random variable with zero mean and

finite variance. This type of flow is in the class of renewing (renovating, innovation) flows,

that is, flows that decorrelate completely in a finite time, taken here to be the period Lt.

Therefore, although it is not a stationary and ergodic process, it is a good approximation to

a stationary process with a finite correlation time. It has wide applications in the study of

the dynamo [14, 75] as well as in study of the intermittency of passive-scalar decay[1, 39, 64].

For this type of flow, the closed evolution equation for the statistical moment is unknown.
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Hence, the Hausdorff moment problem approach proposed in [32] for rigorously studying

the white noise flow case doesn’t apply to this case. However, we could apply the center

manifold approach to near rigorously derive the effective equation at long times.

In this case, the time averaged diffusion coefficient is

κeff = 1 + lim
t→∞

Pe2

t

∞∑
n=1

〈u, φn〉2
t∫

0

s∫
0

e−λn(s−τ)ξ(s)A(s)ξ(τ)A(τ)dτds. (42)

We can further simplify this formula by taking advantage of the periodicity. As presented

in figure 5, we tessellate the integral domain by squares and divided the domain into three

regions,

Ω1 =

b t
Lt
c−1⋃

k=0

{(s, τ)|s ∈ [kLt, (k + 1)Lt], τ ∈ [kLt, s]} ,

Ω2 =

b t
Lt
c−1⋃

k=0

{(s, τ)|s ∈ [kLt, (k + 1)Lt], τ ∈ [0, kLt]} ,

Ω3 =

{
(s, τ)|t ∈ [Ltb

t

Lt
c, t], τ ∈ [0, s]

}
.

(43)

According to this integral domain partition, we divide the double integral in equation

(42) into three parts,

∫∫
Ω1

. . . dτds =

b t
Lt
c−1∑

m1=0

A2
m1

(m1+1)Lt∫
m1Lt

s∫
m1Lt

e−λn(s−τ)ξ(s)ξ(τ)dτds,

∫∫
Ω2

. . . dτds =

b t
Lt
c−1∑

m1=1

m1∑
m2=0

Am1Am2

(m1+1)Lt∫
m1Lt

(m2+1)Lt∫
m2Lt

e−λn(s−τ)ξ(s)ξ(τ)dτds,

∫∫
Ω3

. . . dτds = Ab t
Lt
c

t∫
Ltb tLt c

s∫
0

e−λn(s−τ)ξ(s)A(τ )ξ(τ)dτds,

(44)

where we omit the lengthy integrand on the left hand side of equations. In fact, only the

integral over Ω1 grows linearly on time and contributes to the effective diffusivity. With
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FIG. 5: A schematic of domain tessellation. Ωi, i = 1, 2, 3 are defined in equation (43). The

parameters are t = 4.5, Lt = 1.

rearranging the order of the double summation, the integral over Ω2 becomes

b tω
2π
c−1∑

m1=1

m1∑
m2=0

Am1Am2e
−λn 2π(m1−m2)

ω

2π
ω∫

0

2π
ω∫

0

e−λn(s−τ)ξ(s)ξ(τ)dτds

=

b tω
2π
c−1∑

q=1

e−λn 2πq
ω

b tω
2π
c−1∑

m1=q

Am1Am1−q

 2π
ω∫

0

2π
ω∫

0

e−λn(s−τ)ξ(s)ξ(τ)dτds

=

2π
ω∫

0

2π
ω∫

0

e−λn(s−τ)ξ(s)ξ(τ)dτds

b tω
2π
c−1∑

q=1

e−λn
2πq
ω o(b tω

2π
− 1− qc) = o

(
b tω

2π
c
)
,

(45)

where the last line follows the law of large numbers, namely 1
b tω

2π
c−1−q

b tω
2π
c−1∑

m1=q

Am1Am1−q =

E(AqA0) + o(1) almost surely for a fixed q. Then the whole integral vanishes after dividing

by t and taking the long time limit.

Next, the integral over Ω3 in equation (44) is an integral over a bounded interval s ∈

[Ltb tLt c, t]. It is enough to show the integrand is a bounded function of s on this interval.
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We have

s∫
0

e−λn(s−τ)ξ(s)A(τ )ξ(τ)dτ

=Ab tω
2π
c

s∫
2π
ω
b tω

2π
c

e−λn(s−τ)ξ(s)ξ(τ)dτ +

b tω
2π
c−1∑

m2=0

Am2

2π(m2+1)
ω∫

2πm2
ω

e−λn(s−τ)ξ(s)ξ(τ)dτ

=Ab tω
2π
c

s∫
2π
ω
b tω

2π
c

e−λn(s−τ)ξ(s)ξ(τ)dτ +

b tω
2π
c−1∑

m2=0

Am2e
−λn(s− 2πm2

ω )

2π
ω∫

0

eλnτξ(s)ξ(τ)dτ,

(46)

where both terms in the last step are bounded functions of s.

Hence, the integral over Ω2 and Ω3 in equation (44) vanishes after dividing by t and

taking the long time limit. Now, we have the leading order approximation of equation (42)

at long times,

κeff = 1 + lim
t→∞

Pe2

t

∞∑
n=1

〈u, φn〉2
2π
ω∫

0

s∫
0

e−λn(s−τ)ξ(s)ξ(τ)dτds

b tω
2π
c−1∑

m1=0

A2
m1

+O(t−1)

= 1 +
Pe2ω

2π
Var(A0)

∞∑
n=1

〈u, φn〉2
2π
ω∫

0

s∫
0

e−λn(s−τ)ξ(s)ξ(τ)dτds.

(47)

where the second step follows the law of large numbers.

It is natural to compare the renewing flow (A(t)ξ(t)u(y),0) with its deterministic coun-

terpart (var(A0)ξ(t)u(y),0), and ask the question which one induces a larger effective dif-

fusivity. One may expect the random motion creates a larger dispersion. However, it is

not always true. A counter example is the ξ(t) = cos t, Pe = 1 and Var(A) = 1, where

the effective diffusivity induced by the renewing flow is κeff,r ≈ 1.3993, while the effective

diffusivity induced by its deterministic counterpart is κeff,d ≈ 1.4124.

Interestingly, if we impose the continuity assumption on the renewing flow, then we have

κeff,r ≥ κeff,d. The continuity of A(t)ξ(t) implies ξ(0) = ξ(Lt) = 0. Hence, ξ(t) admits a

sine expansion ξ(t) =
∞∑
k=1

ck sin kωt. Recall that, in the calculation of effective diffusivity

induced by the renewing flow, the contribution of the integral over Ω2 in equation (44)

vanishes due to the mean zero property of the random process A(t). However, when A(t)

is a deterministic function, this term grows linearly on time and contributes to the effective
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diffusivity. Therefore, it is enough to establish that this term is non-positive. We have

(m1+1)Lt∫
m1Lt

(m2+1)Lt∫
m2Lt

e−λn(s−τ)ξ(s)ξ(τ)dτds

=e−λnLt(m1−m2)

2π
ω∫

0

2π
ω∫

0

e−λn(s−τ)ξ(s)ξ(τ)dτds

=e−λnLt(m1−m2)

∞∑
k1,k2=1

ck1ck2Ck1,k2 ,

(48)

where Ck1,k2 =

2π
ω∫
0

2π
ω∫
0

e−λn(s−τ) sin(k2ωs) sin(k1ωτ)dτds. It is enough to show the (possibly

infinite) matrix C is semi-negative definite. In fact, we have

Ck1,k2 =− 4ω2 sinh2

(
π3n2

ω

)
k1

k2
1ω

2 + λ2
n

k2

k2
2ω

2 + λ2
n

. (49)

Hence, for any n, C is a rank one matrix with only one negative eigenvalue, which implies

C is semi-negative definite. Now, we finished the proof of κeff,r ≥ κeff,d for the continuous

renewing flow.

To verify our theoretical results regarding the deterministic effective diffusivity, we solve

equation (3) with shear flows v(y, t) = (y − 1/2)A(t) sin 100πt by using the forward Monte-

Carlo method described in [31]. The computational domain is (x, y) ∈ R× [0, 1]. The time

step size is 10−3. The total number of the random walkers is 2×106. We divide a simulation

into 400 parallel jobs on UNC’s Longleaf computing cluster. In panel (a,b,c,d,e), Pe = 400.

In panel (f), Pe = 1200. In panel (a), A(t) is a white noise process. In panel (b), A(t) = 1.

A(t) is a renewing process with a coin-toss random variable taking values plus or minus

one with equal probability in panel (c), a standard Gaussian distributed random variable

respectively in panel (d) and a uniform distributed random variable on [−
√

3,
√

3] in panel

(e,f). We plot Var(T̄ )
2t

as a function of time for 5 independent flow realizations and different

shear flows in figure 6. The curves with the same color are generated with the same seed

from the same random number generator.

From figure 6, we have five observations. First, in panel (a,c,d,e,f), all curves fluctuate

randomly at the earlier stage but converge at later times to a deterministic effective diffu-

sivity κeff given by equation (47). Second, since all distributions in panel (c, d, e) have the

same unit variance, all renewing flows induce the same effective diffusivity at long times.
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FIG. 6: Var(T̄ )
2t as a function of time for 5 independent flow realizations and different random flows.

Note that equation (4) shows this quantity converges to the deterministic effective diffusivity at

long times. We compute κeff by equation (40) for panel (a), by equation (21) for panel (b), by

equation (47) for panel (c, d, e, f) and report three significant digits of the effective diffusivity to

the right of each row. Pictures in the right column are simply zoom-in of pictures in the left column

at a larger time scale. The black dashed line indicates the theoretical limit κeff . The dotted lines

are 0.95κeff or 1.05κeff .

Third, comparing panel (b) and panel (c, d, e), we can see that renewing random flows in-

duce a larger effective diffusivity than their deterministic counterpart, as just proven above.

Fourth, from the right column of figure 6, we can see that if the distribution of A(t) has a

heavier tail, then Var(T̄ )
2t

takes a longer time to converge to the theoretical limit. Fifth, the

long-time asymptotic correction of effective diffusivity is proportional to the square of the

Péclet number. Hence, for a larger Péclet number, it will take a longer time to converge

in the sense of the absolute difference. However, notice that the effective diffusivity is also
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proportional to the square of the Péclet number. We expect it will take a similar time to

achieve the same relative difference. Panel (e,f) supports this analysis.

4.1. Invariant measure

Equation (22) is an approximation of the scalar field at long times, which is a powerful

tool to compute the invariance measure of the random field. Let’s consider the flow we

discussed in the previous section. First, when v(y, t) = ξ(t)u(y) and ξ(t) is the Gaussian

white noise, equation (22) becomes

T̄ (x, t) =
1√

4πκefft
exp

(
−x̃2

4κefft

)
+O(t−

3
2 ), x̃ = x− PeūB(t), (50)

where B(t) is the standard Brownian motion and κeff is provided in (40). Even though

the effective diffusivity is deterministic at long time, generally, the scalar itself may still

be random at long time, and the availability of the invariant measure is useful. To that

end, we apply the inverse transform method (we refer reader to [18] for details) to obtain

the invariant measure of T̄ , i.e, the probability density function at long times, from the

probability density function of B(s). We consider the rescaling of T , T̃ (x, y, t) =
√

4πκefftT .

Without loss of generality, we focus on the scalar at point x = 0, y = 0, i.e., T̃ (0, 0, t). Thus,

the invariant measure is

fT̃ (z) =
z

1
β
−1√

−πβ log(z)
, z ∈ [0, 1], (51)

where β = Pe2ū2v(t)
2tκeff

= Pe2ū2

2κeff
+O(t−1) and v(t) is the variance of

t∫
0

ξ(s)ds. fT̃ (z) always has

the logarithmic singularity at z = 1. It is continuous at z = 0 when β ≤ 1, and singular

when β > 1 (see figure 7). Some physical insight can help interpret this result: Indeed, for

a weak input random signal, the scalar flied is nearly deterministic. Hence, the rescaled T

at x = 0 is thus very likely to be 1. As the strength of the random signal increases, white

noise flow makes the blob to be most of the time away from the initial position and the value

of scalar at original point is more likely to be zero. As a result of that, when the strength

of the input random signal exceeds some certain threshold, the distribution changes from

negatively-skewed to positively-skewed as β increases.

Second, when the shear flow is the renewing flow v(y, t) = A(t)ξ(t)u(y), we also have

the Gaussian function approximation (22) with the effective diffusivity provided in equation
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FIG. 7: The invariant measure fT̃ (z) in equation (51) for different parameters β. The red solid

curve, blue dashed curve and black dot-dash curve stand for the case β = 1/20, 1, 20, respectively.

fT̃ (z) changes from negatively-skewed to positively-skewed as β increases.

(47) and

x̃ = x− Peū

t∫
0

A(s)ξ(s)ds = x− Peū


b t
Lt
c−1∑

n=0

An

Lt∫
0

ξ(s)ds+ Ab t
Lt
c

t∫
Ltb tLt c

ξ(t)

 . (52)

The rescaled scalar T̃ (x, t) becomes

T̃ (x, t) =
√

4πκefftT = exp

−
(

PeūX
Lt∫
0

ξ(s)ds

)2

4κeffLt

+O
(
t−1
)
, (53)

where X = 1√
b t
Lt
c

b t
Lt
c−1∑

n=0

An ∼ N (0,Var(A0)) as t → ∞ follows the central limit theorem.

With the same method, we find that the PDF of T̃ takes the same form provided in equation

(51), but with a different expression of parameter β =

(
Peū

Lt∫
0

ξ(s)ds

)2

Var(A0)

2κeffLt
. Hence, the

renewing flows induces a same type of invariant measure as the one induced by the white

noise process at long times.

When
Lt∫
0

ξ(s)ds = 0, the PDF of the scalar field collapses to delta function much quicker

than the white noise case. We can still calculate the PDF of the scalar field via the PDF of

A0, but the time-independent invariant measure is not available.
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5. CONCLUSION AND DISCUSSION

We have studied the long time behavior of an advection-diffusion equation with a gen-

eral time-varying (including random) shear flow imposing no-flux boundary conditions on

channel walls using center manifold theory. Our study extends and improves prior work of

[45, 48, 49] to properly incorporate general time variation into the effective theory. Com-

parisons with full simulations document conditions when this improved approach gives a

better approximation and also illustrates situations in which standard homogenization does

not perform well on finite timescales. Convergence studies illustrate how the accuracy of

the different approximations. Armed with this improved time-varying center manifold the-

ory, we derived new effective equations for random shear flows involving both white in time

statistics, as well as more correlated renewing flows. For white in time, these predictions

agree with our prior work [32], which forecasts a deterministic effective diffusivity at long

times. For the case of renewing flows, less is known, and our current work also a determin-

istic effective diffusivity, with new explicit formulae. These theories are demonstrated to be

quantitatively accurate through Monte-Carlo simulations. New conditions are derived which

guarantee when the random renewing flow generates a larger effective diffusivity than its

deterministic analog. Lastly, using the inverse transform method and the effective equations,

we derived the invariant measure and investigate its Péclet number dependence.

The future study includes a number of directions. First, in this study, we only considered

constant diffusivity. Future immediate areas of exploration include the case with spatial

variable-dependent diffusivity or even concentration-dependent diffusivity. A practical ex-

ample concerns the shear-enhanced diffusion in colloidal suspensions explored in [36]. The

nonlinearity in those systems imposes challenges to the traditional method. We expect the

center manifold theory could overcome the difficulties. Further, the center manifold theory

will apply nicely to study the mixing ability of time-varying flow in a non-flat channel to gen-

eralize the conclusion in [57]. Second, the perturbation method presented in the manuscript

only works for a decaying scalar field for which energy is localized at zero wavenumbers at

long times. We are interested in generalizing the result to plane wave initial data. In this

case, since the energy is always localized at a wavenumber isolated from k = 0 (set by the

initial condition). Hence, the expansion around the zero wavenumbers would not be valid.

We expect that the asymptotic expansion is available in the large or small Péclet number
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limit via the method described in [19, 22]. Additionally, the non-decaying scalar field would

exist in the presence of net flux at the boundary or source inside the domain, which is an

interesting topic for future study.
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7. APPENDIX

7.1. Numerical Method

In this section, we document details of the numerical simulations for equation (1). The

computational domain is x× y ∈ [−H,H]× [0, L]. When H is large enough, we can assume

there is a periodic boundary condition in the x-direction. Since there are non-penetration

conditions in the y-direction, we perform the even extension in the y-direction to obtain the

periodic condition on the extended domain. Thus, we can use the standard Fourier spectral

method to solve the advection-diffusion equation with periodic boundary conditions on the

rectangular domain [−H,H]× [0, 2L]. In the dealiasing process at each time step, we apply

the all-or-nothing filter with the two-thirds rule to the spectrum, that is, we set the upper

one-third of the resolved spectrum to zero (see chapter 11 of the book [17] for details). The

typical parameters are H = 8π, L = 1. The grid resolution is 1024 × 64 before the even

extension and 1024× 128 after the extension.

The diffusion operator is stiff, which requires a very small time step size for the explicit

method to ensure numerical stability. In order to use a larger time step size and improve

the efficiency, we adopt the implicit-explicit third-order Runge-Kutta method presented in

table 6 in [51]. In our application, we use the explicit Runge-Kutta method to integrate the

advection part and use the implicit diagonal Runge-Kutta method to integrate the diffusion

term. When the diffusivity is a constant, the diffusion operator is a diagonal matrix in
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the Fourier space. Thus, the implicit equation can be solved explicitly and efficiently. The

implicit-explicit method is as efficient as the explicit method at each iteration while allowing

a much larger time step size.

We also present the Butcher tableau of the explicit-implicit Runge-Kutta method in table

I here for convenience. Unfortunately, [51] only reported 13-14 significant digits of param-

eters (α, β, η) which are the key parameters defining the algorithm. That may potentially

deteriorate the accuracy of double-precision floating-point based or even higher precision

floating-point based algorithms. Hence, we documented the exact value for those parame-

ters, (9−
√

57
6

, 9−
√

57
24

, −6+
√

57
12

). We also find another two groups of parameters that achieve the

same convergence order and ensure the L-stable, (1/2, 1/8, 0) and (9+
√

57
6

, 9+
√

57
24

, −6−
√

57
12

).

0 0 0 0 0

0 0 0 0 0

1 0 1 0 0

1
2 0 1

4
1
4 0

0 1
6

1
6

2
3

α α 0 0 0

0 -α α 0 0

1 0 1-α α 0

1
2 β η 1

2 − β − η − α α

0 1
6

1
6

2
3

TABLE I: Butcher tableau for the Explicit (left) Implicit (right) L-Stable scheme, (α, β, η) could

be (1/2, 1/8, 0), (9−
√

57
6 , 9−

√
57

24 , −6+
√

57
12 ) or (9+

√
57

6 , 9+
√

57
24 , −6−

√
57

12 ).

7.2. Lists of abbreviations

See table II.

Full Form Abbreviation

Fisher-Kolmogorov-Petrovskii-Piskunov FKPP

Ornstein-Uhlenbeck OU

Partial differential equation PDE

Probability density function PDF

Stochastic differential equation SDE

TABLE II: Lists of abbreviations.
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