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ABSTRACT

This work presents a control scheme for wind-induced vibration mitigation for tall buildings based on a gated recurrent
unit (GRU) encoder-decoder model which operates using readings from multiple sensors to define a unique system state.
The sensors include a distributed network of pressure probes installed on surrounding buildings, accelerometers installed
on the principal building, and atmospheric conditions. The encoder-decoder GRU is trained from timeseries sensor
readings to construct a unique internal representation (hidden state) of the evolving wind and building conditions. A 1:400-
scale aeroelastic building model with motorized plates acting as aerodynamic control surfaces is used in wind tunnel
experiments to conduct this study. An online genetic reinforcement learning (GRL) algorithm uses a series of multi-layer
perceptron (MLP) networks to determine optimum actuator orientations for different flow conditions. The algorithm stores
previously discovered solutions in the MLPs sorted by their fitness. The GA operates by obtaining a solution from each of
the MLPs and performing GA operations on them to choose the next combination of plate angles to try. A chance also
exists for trying completely random plate angles to prevent the GA from stalling. The MLPs are continuously trained
during online optimization using findings obtained from new trials. The system eliminates the need for holding wind
conditions, which are uncontrollable, constant during online training but still uses a pseudo-random search technique to
obtain global optimum solutions. Results show a considerable reduction in building RMS acceleration when compared
with a large collection of results with random constant plate angle orientations.
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1. INTRODUCTION

Wind-induced vibration (WIV) resistance is an important consideration in tall building design. WIV occurs due to the
fluctuation in wind forces, either because of fast varying wind conditions or flow separation around bluff building
geometries. WIV can seriously affect occupant comfort and render the building unserviceable or cause damage to building
components such as the fagade or internal walls. In severe cases, WIV can cause catastrophic failure if the structural
components are not designed to withstand the resulting fatigue stresses [1]. Therefore, most design codes require buildings
to withstand severe wind conditions with 50-year return periods. Compliance with these codes with respect to WIV
contributes significantly to the high investment cost of tall buildings [1].

Various solutions have been developed to mitigate WIV in tall buildings. Tuned mass dampers (TMDs) consist of a large
mass hanging from the top of the building like a pendulum. Tuned sloshing or liquid dampers (TLDs) consist of a liquid
tank placed on top of the building that has internal flow constrictions. TMDs and TLDs operate by absorbing energy from
the host structure after the vibration has started [2]. They are known to consume internal space at higher floors, where the
real-estate value is usually higher. Aerodynamic modification (AM) of the building geometry is another approach of WIV
reduction. It can be used independently or in conjunction with TMDs/TLDs [3]. AMs depend on changing the external
geometry of the building to change the dominant wind force frequencies. The building can become less susceptible to WIV
when the structural natural frequencies are located further from the dominant wind force frequencies. AMs have the
capacity to inhibit even the initial formation of WIV.

Major AMs consist of changes to the overall geometry of the building such as taper, setbacks or helix shapes [4]. Minor
AMs consist of chamfers, cuts or rounding at the building corners without changing the overall geometry [4]. Sharma et
al. (2018) presented a comprehensive review of AMs applied to tall buildings. The authors concluded that minor AMs



could result in 30-60% reduction in WIV. It was also noted that minor AMs can have adverse effects depending on the
local environmental conditions such as wind flow characteristics and surrounding structures [4]. This means that different
wind conditions and surrounding environments require different AM configurations or orientations. Abdelaziz et al. (2021)
performed a simulation study of a smart facade system consisting of four vertical plates installed on the corners of a
building [5]. The plates could rotate around their own axis of symmetry, which provided a means for active AM. A genetic
algorithm (GA) optimization procedure was used to determine the plate orientations that resulted in reduced WIV responses
at different wind conditions. The optimum plate orientations were found to reduce the building deflection amplitudes by
up to 80%. Abdelaziz and Hobeck (2022) performed wind tunnel experiments of a scaled building model with four vertical
corner plates installed on the top section of the building [6]. An iterative optimum training (IOT) procedure was developed
to optimally train an artificial neural network (ANN)-based controller using a reduced number of experiments. The
controller determined the optimum plate orientations using the wind direction and time-averaged readings of the wind
speed. A reduction of 40-90% in WIV acceleration was obtained when using the developed controller. The cases where
synchronized wind vortices were formed saw the greatest reduction in WIV accelerations. While the developed smart
fagade system showed considerable effectiveness, the authors noted several concerns that may greatly hinder its adoption
in real-life deployments. First, the training process was time consuming and required wind conditions to be held constant
in a repeatable manner, which is not feasible for full-scale buildings. Second, potentially destructive wind conditions may
need to be encountered by the training process before it can learn how to mitigate their effects. Lastly, defining wind
conditions around a building with only two parameters (speed and direction) ignores many other spatiotemporal features
about the wind that may be valuable for effective control. The control approach presented in this paper, addresses these
concerns.

Gated recurrent units (GRUs) are a form of recurrent neural networks (RNNs) that can ‘forget’ irrelevant information in
the hidden state and only keep information that affects the GRU’s prediction capability [7]. GRUs have been utilized for
wind speed forecasting, wind turbine condition monitoring, unmanned underwater vehicle state estimation, among other
applications [8, 9, 10]. GRUs are less computationally expensive than long-short term memory (LSTMs), and their
performance is comparable [11]. This work uses an encoder-decoder GRU model to define a unique system state using
timeseries readings from multiple sensor systems. The sensors include a distributed network of pressure probes installed
on surrounding structures, accelerometers installed on the principal building, and an atmospheric conditions sensor.
Overall, the GRU acts as a time-sensitive encoder for the wind-building system. The use of the sensor systems in
conjunction with the GRU model eliminates the need to directly measure the wind speed and direction while providing a
prediction window in which the system can act to prevent incoming hazardous wind events. Finally, the inclusion of the
temporal depth of the sensor readings exposes the GRU model to various patterns of system behavior that can be common
among different wind conditions (e.g., vortex structures). This is expected to improve the model’s ability to generalize to
wind conditions it did not specifically encounter during training.

One of the challenges to the original smart fagade system was the requirement to hold the wind conditions constant until
the system learns how to mitigate the WIV effects, i.e., forcing the environment to be static. Alternatively, reinforcement
learning (RL) offers a way of programming agents through trial-and-error in a dynamic environment. For each state the
agent encounters, RL training presents the agent with a set of possible actions. After the agent performs one of the actions,
the RL training rewards it in proportion to how favorable the resulting system state was. Deep RL algorithms attracted
increasing interest from machine learning researchers. It was successfully used for autonomous driving, learning to walk,
human-level performance in 3d multiplayer games, path planning for unmanned aerial vehicles, among others [12, 13, 14,
15]. Despite its success, efficient exploration of complex domains remains challenging for RL algorithms [16, 17]. This
limitation can make the RL-generated policy unable to provide global optimum solutions especially for systems with
infinite possible states and actions, such as the wind-building-plates system at hand. It is known that greater WIV
acceleration response is coincident with the formation of vortices that eventually synchronize with the building motion
(i.e., aeroelastic lock-in) [4, 6]. Therefore, it is desirable to generate an agent able to obtain global minimum WIV
accelerations in one plate rotation action, rather than a series of actions, to minimize the possibility of aeroelastic lock-in.

This work presents a genetic reinforcement learning (GRL) algorithm which enhances RL exploration and enables it to
more quickly obtain global optimum solutions. GRL employs genetic algorithms (GAs) integrated with a series of trainable
multi-layer perceptron (MLP) policy functions. The MLP policy functions take the current GRU hidden state as an input
and provide the plate orientations dictated by the policy as an output. The genetic reinforcement learning (GRL) procedure
starts by sorting the current solution (plate orientations) into the set of MLP policies according to how favorable the
recorded building accelerations were. The first MLP policy is always trained using the best-found solutions for the
encountered GRU hidden states, the second MLP policy is trained using the second-best solutions, and so on. To determine



the plate orientations to explore next, the solutions suggested by all MLP policies for the current hidden state are combined
to form a population of solutions to perform GA operations on. While GAs inherently provide means for controlling
exploration and exploitation, a chance for trying fully random solutions is also added to further enhance this control. As
the training progresses, each MLP policy represents a different ‘front” of solution quality which provides a mechanism for
elitism while maintaining solution diversity. GRL can still find better solutions for states it did not exactly encounter
because both the GRU and the MLP policies have inherent interpolation ability. During operation, only the best MLP
policy (trained from best-found solutions) is used to determine the plate orientations to use for the current GRU hidden
state. The developed procedure eliminates the need to keep the uncontrollable wind conditions constant while performing
a pseudo-random search capable of obtaining minimum WIV accelerations in one plate rotation action.

This paper is organized as follows: Section 2 details the experimental setup and the problem definition. Section 3 explains
the methods used to train the encoder-decoder and the GRL procedure. Section 4 illustrates the obtained WIV mitigation
results and compares to the established baselines. Finally, Section 5 lists the conclusions of this work and possible future
extensions and improvements.

2. EXPERIMENTAL SETUP

2.1 Overview

The Commonwealth Aeronautical Advisory Research Committee (CAARC) standard building model is used in this study
because it is thoroughly studied in the literature. The building has the dimensions 180 % 45 x 30 m (Height Hx Width Bx
Depth D) with an average density of 160 kg/m>. Figure 1 illustrates the wind tunnel experimental setup which uses a 1:400
scaled robotic aeroelastic model (450 x 112.5 x 75 mm) that was designed and manufactured by Abdelaziz and Hobeck
[6]. The model has 4 lumped masses (floor plates + added masses) that distribute the weight equally along the height. The
floors are connected only by 4 columns (threaded rods) that have variable diameters along the height. The top floor
accounts for two consecutive floors in the mass budget because it includes the motors, the rotating plates and their
accessories. The model was designed using a genetic algorithm (GA) optimization that matched the dynamic characteristics
of the scaled model with the those of the full-scale building [6]. Figure 1 also shows the degrees of freedom (DOFs) of
interest: along-wind sway (bending, x), cross-wind sway (bending, y) and torsional (twisting, 8) along with the wind speed
direction U. This study considers only this direction of wind speed because it was found to be the most severe in previous
research studies [6]. The scaled building model has four corner plates with orientation angles a; ... a4 as they can freely
rotate around their axis of symmetry. The length of the plates covers about 30% of the building height to minimize the
investment costs associated with employing the system. Separation of the air flow happens at the corners and wind forces
cause the greatest bending and twisting moments at the top, so the plates were placed at these locations to maximize their
effect on the wind-building system. The experimental setup includes a rigid building model with dimensions 400 X 85 X
75 mm placed upstream of the aeroelastic model. This rigid building is included to test the system’s ability to handle
complex wind flow patterns, such as turbulent wakes and vortex structures.

2.2 Sensor network

Figure 1 also shows a pressure sensor network consisting of 5 differential pressure sensors that were fitted inside 3d-printed
housings with extension tubes on the high-pressure port of the sensors so they can sense the wind flow. The low-pressure
port is contained inside the housing to sense the static pressure value. All dimensions are measured relative to the tips of
the sensors indicated in Figure 1. The wind tunnel floor is used as a reference for all height measurements. Sensor 1 is
installed inside the upstream building at a height of 380 mm. Sensor 2 is installed on top of another rigid foam cube at a
height of 75 mm. Sensors 3 and 4 are oriented at 45° from the wind direction U and installed on a steel tube extending
from the tunnel floor at a height of 200 mm. Sensor 5 is installed on another similar tube at a height of 360 mm. The
placement and count of the sensors have a strong effect on the encoder-decoder GRU’s ability to fully define the system
state. For this initial study, the sensors were placed using human experience. For example, sensor 3 is positioned to endure
most of the vortex shedding effect from the upstream rigid building. Though the current placement is shown later to provide
acceptable predictions from the encoder-decoder GRU, the optimal placement of the sensors is still being considered for
future studies. In addition to the pressure sensors, two accelerometers are installed on the top floor of the scaled building
model [6]. Their readings are combined to obtain the accelerations for the 3 DOFs of interest. Finally, an ambient
atmospheric conditions sensor is installed outside the wind tunnel to measure temperature, humidity and barometric
pressure. As discussed in Section 3.1, the collection of all sensor readings is used in conjunction with the encoder-decoder
GRU to define the system state.
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Figure 1. A top view of the wind tunnel experiment setup showing: Figure 2. A schematic showing the various components of the
(1) the 1:400 scaled aeroelastic model centered in the width of the cyber-physical setup for the wind tunnel experiments. The
tunnel with four rotating plates installed at its corners; (2) the python script controls all aspects of the online
measurement conventions for the DOFs of interest (x, y and 6), training/control experiment.

plate angles (a; ...a,) and the wind direction U; and (3) the
upstream building and the pressure sensor locations and shape.

2.3 Cyber-physical setup

Figure 2 illustrates the cyber-physical setup used to implement the training and control procedures described in Section 3.
In addition to sensors described in the previous section, four rotational position encoders are installed on the free end of
the plates to provide their current position. The plate position readings are not directly used by the encoder-decoder GRU
to determine the system state to avoid redundancy with the building accelerations (which partly result from the plate
positions). The plate position readings are used by the controller as described in Section 3.3 to determine the current plate
angles. All sensors and encoders provide analog outputs which are connected to an NI DAQmx® 6463 data acquisition
unit. The sampling rate is set at 200 Hz which is determined from the maximum response time of the Sensirion SPD810
differential pressure sensors which were used. The plate motors are controlled by an Arduino® microcontroller. A python
script controls the data acquisition through the nidagmx software library, the wind tunnel speed through analog output and
the plate motors through a serial connection to the Arduino microcontroller. The script also implements the online training
and control procedures described in the next section. This includes tasks such as timing the experiments, data collection,
experiment numbering and online training.

3. CONTROLLER DESIGN
3.1 Encoder-decoder GRU

Figure 2 shows the encoder-decoder GRU model. The inputs to the model are the sensor readings Jj ... §,, and the outputs
are the future sensor readings 8,,41 ... 044 for n input and m output time steps, respectively. The model uses the inputs
to populate an internal hidden state array S. The sensor readings at time t, &, are:

S=1Ipo p1 P2 Ps Pa P» T H % § 6l (1)

where py ... p, are the pressure sensor readings (see Figure 1), pj, is the barometric pressure, T is the ambient temperature,
H is the humidity, ¥, j and 6 are the acceleration components indicated in Figure 1. The encoder portion of the model is
stateful, so the hidden state S accumulates its information from all previous inputs as well as the current input. The
architecture for the encoder-decoder GRU follows a standard powers-of-2 units for each layer.
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Figure 4. The modified RL procedure indicating how the previous plate
angles A,, GRU state S, and acceleration sum Q,, (Equation 2) are used to
train the policy MLPs (1 ). The policy MLPs are then used to determine
the future plate angles A using the future GRU state S¢.

The encoder has 4 stateful GRU layers with 16, 32, 64 and 256 units respectively. The decoder has the same number of
layers, but the unit count is reversed. The number of layers was obtained by trial until an acceptable prediction performance
was reached. The encoder-decoder GRU is trained from randomly collected wind tunnel data. The prediction (decoder)
portion is not used after initial training. It is only used so the training process can automatically prune the hidden state S
to only keep information that is relevant for fully defining the system state.

3.2 Controller objective

The desired function of the controller is to obtain plate orientations that minimize WIV accelerations at different wind
conditions, i.e.:

Min.Q(S,A) = RMS(%) + RMS(5) + > RMS(6) )

In reference to Figure 1 and Equation 1, A = [@1 ... Q4] are the plate angles (0-180°). S is the current system state.
RMS is the root-mean-square, and ¥, j and @ are the accelerations of the DOFs of interest. The RMS of 4 is numerically
scaled by half of the building width B (the radius of twist) to have the same units as the other components. The range of
0° to 180° for a; covers all the possible solutions because the plates are aerodynamically symmetric. If nonsymmetric
plates (e.g., wing profiles) are used, then a 360° range should be considered.

3.3 Genetic reinforcement learning algorithm

Figure 4 illustrates the GRL algorithm that runs after each control interval [0, t.]. At the point of control (indicated by an
arrow to the ‘Start’ bubble), the previous plate angles A, and GRU state S, are known. Also, the future GRU state Sf is
obtained by feeding the previous sensor information &y ... §;, to the GRU. The algorithm is required to do the following:
(1) use the previous information to train the MLP policies (14, 75, ...) and (2) chose which future plate angles Ay to try.
The policies have the form (S) = [4, Q], so they not only provide the plate angles dictated by the policy, but also the
expected RMS sum when these angles are used. The procedure starts by calculating Equation 2 (Q,,) from previous sensor
information (accelerations only in Equation 1). Starting from 74, the procedure compares the calculated RMS sum @, with



the policy’s prediction Q. If the calculated sum is smaller, the training data is added to the storage for the current policy
only and the comparison is not performed for the other policies. The accumulated effect of these comparisons is that the
best solutions found would be stored for 7;, and solutions that perform worse would be stored for ,, and so on. Each of
the policies 7 is trained frequently using the collection of data stored for it.

To determine the next plate angles to try Ay, a random number is generated and compared with the probability p,. If the
random number is smaller than p,., Af is set to a completely random value to enhance exploration. Otherwise, each of the
policies provides optimum angles A}, and expected RMS sum Q,, for the future GRU state S¢. A single GA iteration is
performed on the generated solutions with crossover and mutation probabilities p. and p,,, respectively. The future plate
angles Ay are chosen at random from the GA result. The GA selection (tournament selection) makes it more probable that
better solutions would be chosen, so the accumulated effect of the GA iteration is to provide a tendency to try solutions
expected to provide better performance for the future state S¢. The probabilities p,., p. and p,,, provide convenient control
of the balance between exploitation and exploration. During operation (after training), 7; (S) is evaluated directly and Af
is set to A7.

4. RESULTS AND DISCUSSION
4.1 Encoder-decoder GRU prediction

The time step for the encoder-decoder GRU model was set to 0.01 s and the sensor readings were down-sampled to match
it. The training data is collected from constantly varying random wind conditions and plate orientations. Therefore,
increasing the input/output time steps (prediction time) negatively impacts the prediction performance when the condition
variations no longer have precursors in the input data. For this study, the prediction time was increased gradually starting
from 1 second until the prediction performance started to diminish. The prediction time reached 7.5 s (750 time steps)
without considerable impact to the prediction performance. The time scale with the full-scale building is 1/33, so 7.5
seconds equals approximately 4 minutes for the full-scale building. This gives the control system enough time to respond
to most wind events [6]. Figure 5 compares the predicted and the actual rotational acceleration 8 for a 16-minute data set
collected from the wind tunnel. The figure also zooms on a full 7.5 seconds of encoder-decoder output. For the full 16
minutes of prediction, the mean absolute error was only 3.5% of the maximum rotational acceleration. The rotational
acceleration & is used in this comparison because it was found to be the most significant acceleration component. The
comparison confirms the encoder-decoder model’s ability to predict and thus fully define the system in its hidden state.

4.2 Controller performance

In reference to Figure 4, Table 1 lists the parameters used to test the GRL algorithm. The control interval t. was set by
observing the stability of the RMS accelerations at constant wind and plate conditions. When the RMS acceleration
becomes constant, it means that the important oscillatory features have already been captured in the considered control
length.
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Figure 5. A comparison between the predicted and actual building rotational acceleration & for 16 minutes and 7.5 seconds
of data.
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Figure 6. Evolution of the controller WIV mitigation performance
during 10 iterations of the GRL algorithm subjected to randomly
generated wind speed profiles compared to baseline data created with
90 combinations of static (not controlled) plate angles and random wind
speed profiles.

The control interval is double the GRU input/output time, so the GRU is dispatched two times per control interval to
construct the hidden state. The MLP policy count k was initially set to 12, but the GRL algorithm only managed to store
data for 7 out of 12 policies. The process was then repeated using only 7 policy MLPs. The random probability p, was set
at 0.3 for this initial study. In future studies, p, may be set to 1.0 until the policies have enough data points to construct
reasonable predictions. The crossover and mutation probabilities p. and p,,, are typical values for GAs.

The procedure illustrated in Figure 4 was run on random variations of the wind tunnel speed. The intervals of the speed
changes as well as the speed values were randomized. The length of every generated wind speed profile was 10 minutes.
Figure 6 illustrates the change in the RMS sum Q (Equation 2) across subsequent GRL training iterations which are run
against different wind speed profiles. To establish a baseline for the controller performance, random plate angle
combinations were tested against the same wind speed profiles. For each 10-minute randomly varying wind profile, the
plate angles were positioned at a constant (not controlled) random position. This was done for 90 different combinations
of wind profiles and plate angles. The RMS sum Q values for each random case is plotted in Figure 6. It is important to
note that the minimum Q value attained from these static tests corresponds to a specific combination of plate angles and
random wind profile. If a different wind profile was used for this same set of plate angles, the Q value will certainly
increase, thus motivating the need for an active (rather than static/passive) facade system. Figure 6 also shows that the
controller performance indicated by the green training points improves (decreases) across iterations despite being subjected
to all random wind speed profiles. The RMS sum Q points for the controller during training does not subject the building
to worst-case plate angles, which is an important practical consideration and large improvement from previous controller
designs. The controller manages to surpass the performance of the best random plate angles after 5 training iterations.
These findings confirm the effectiveness of the GRL algorithm. After the controller was trained for 10 iterations, several
aspects of its performance are discussed herein.

Figure 7 focuses on two different timeseries locations of interest. In both cases, the wind speed U is changing in a way that
causes the acceleration response to increase. This is also evident from the RMS acceleration plot. As soon as the
acceleration’s control interval t, passes, it detects this increase and repositions the plates according to the trained policy
MLP m;. As a result, the acceleration response decreases even though the wind speed keeps increasing. This experiment
confirms that the controller can anticipate incoming wind events and adjust for them before accelerations become severe.
This prevents phenomena such as aeroelastic lock-in from occurring.

To further illustrate the WIV mitigation mechanism, Figure 8 compares the RMS rotational acceleration 8 with and without
using the trained controller. The RMS is calculated using a 20-second window. The wind speed profile is randomly
generated but constant for both cases to make a fair comparison. The comparison shows that the controller reduces RMS
rotational acceleration by up to 75% and maintains accelerations significantly lower than the uncontrolled case for a vast
majority of the time.
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Figure 7. Two different cases where the trained controller automatically responded to the increase in the rotational acceleration
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To get an overall representation of the trained controller performance across many conditions, Figure 9 tests the trained
controller by subjecting it to multiple wind speed profiles and compares the RMS sum performance with the random
baseline. This differs from Figure 6, which focuses on the WIV acceleration response during training. It is shown that the
controller performance is not strongly affected by changing the wind conditions. This proves that the controller trained
using the GRL algorithm can generalize to conditions it did not specifically encounter during training. This is an important
practical consideration because the real-life conditions are infinite and training for all of these conditions is not feasible.

5. CONCLUSIONS

This work presents a control system for wind-induced vibration mitigation in tall buildings. The system uses four plates
that are able to rotate about their axes of symmetry to function as aerodynamic control surfaces. A technique that enables
defining fast varying and complex wind conditions is presented. A sensor network consisting of a set of pressure probes,
accelerometers and ambient conditions sensor are used as time series inputs to an encoder-decoder GRU model. The model
uses the inputs to define an instantaneous hidden state that fully defines the wind-building system state and ‘remembers’
long-term effects relevant for predicting future sensor readings. A genetic reinforcement learning procedure is developed
to use the encoder-decoder hidden state to perform pseudo-random optimization in a highly dynamic environment. The



process used a series of trainable policy MLP functions as ‘agents’ that can provide a genetic algorithm with a set of diverse
solutions. The control system was tested on a 1:400 scale robotic aeroelastic building model in wind tunnel experiments.
The important findings of this work are summarized below:

1.

The encoder-decoder GRU model was trained from wind tunnel experiment data and was able to predict the future
rotational acceleration from the current rotational acceleration with an average absolute error that is only 3.5% of
the maximum encountered acceleration. This confirms that the encoder-decoder GRU hidden state fully defines
the wind-building system.

The GRL algorithm managed to considerably improve the controller performance within only five 10-minute
training iterations. During training, the algorithm did not subject the building to severe catastrophic conditions
such as encountered by some of the baseline random plate angles.

The trained controller reduced the RMS rotational acceleration by up to 75% for the same test wind speed profile.

The trained controller was able to detect adverse wind conditions before the peak wind speed occurred. So, it can
anticipate severe conditions and adjust for them before they happen.

The controller performance was not affected considerably when tested against a group of random wind speed
profiles, which confirms its ability to generalize to conditions it was not specifically trained for.

In future work, a sensitivity analysis of the different controller parameters will be carried out to establish guidelines for
setting these parameters. This includes the number of iterations to train the controller for, among others. Comparison with
other reinforcement learning techniques and variations in the literature is also an area of potential future work.
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