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ABSTRACT   

This work presents a control scheme for wind-induced vibration mitigation for tall buildings based on a gated recurrent 
unit (GRU) encoder-decoder model which operates using readings from multiple sensors to define a unique system state. 
The sensors include a distributed network of pressure probes installed on surrounding buildings, accelerometers installed 
on the principal building, and atmospheric conditions. The encoder-decoder GRU is trained from timeseries sensor 
readings to construct a unique internal representation (hidden state) of the evolving wind and building conditions. A 1:400-
scale aeroelastic building model with motorized plates acting as aerodynamic control surfaces is used in wind tunnel 
experiments to conduct this study. An online genetic reinforcement learning (GRL) algorithm uses a series of multi-layer 
perceptron (MLP) networks to determine optimum actuator orientations for different flow conditions. The algorithm stores 
previously discovered solutions in the MLPs sorted by their fitness. The GA operates by obtaining a solution from each of 
the MLPs and performing GA operations on them to choose the next combination of plate angles to try. A chance also 
exists for trying completely random plate angles to prevent the GA from stalling. The MLPs are continuously trained 
during online optimization using findings obtained from new trials. The system eliminates the need for holding wind 
conditions, which are uncontrollable, constant during online training but still uses a pseudo-random search technique to 
obtain global optimum solutions. Results show a considerable reduction in building RMS acceleration when compared 
with a large collection of results with random constant plate angle orientations. 
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1. INTRODUCTION  
Wind-induced vibration (WIV) resistance is an important consideration in tall building design. WIV occurs due to the 
fluctuation in wind forces, either because of fast varying wind conditions or flow separation around bluff building 
geometries. WIV can seriously affect occupant comfort and render the building unserviceable or cause damage to building 
components such as the façade or internal walls. In severe cases, WIV can cause catastrophic failure if the structural 
components are not designed to withstand the resulting fatigue stresses [1]. Therefore, most design codes require buildings 
to withstand severe wind conditions with 50-year return periods. Compliance with these codes with respect to WIV 
contributes significantly to the high investment cost of tall buildings [1]. 

Various solutions have been developed to mitigate WIV in tall buildings. Tuned mass dampers (TMDs) consist of a large 
mass hanging from the top of the building like a pendulum. Tuned sloshing or liquid dampers (TLDs) consist of a liquid 
tank placed on top of the building that has internal flow constrictions. TMDs and TLDs operate by absorbing energy from 
the host structure after the vibration has started [2]. They are known to consume internal space at higher floors, where the 
real-estate value is usually higher. Aerodynamic modification (AM) of the building geometry is another approach of WIV 
reduction. It can be used independently or in conjunction with TMDs/TLDs [3]. AMs depend on changing the external 
geometry of the building to change the dominant wind force frequencies. The building can become less susceptible to WIV 
when the structural natural frequencies are located further from the dominant wind force frequencies. AMs have the 
capacity to inhibit even the initial formation of WIV. 

Major AMs consist of changes to the overall geometry of the building such as taper, setbacks or helix shapes [4]. Minor 
AMs consist of chamfers, cuts or rounding at the building corners without changing the overall geometry [4]. Sharma et 
al. (2018) presented a comprehensive review of AMs applied to tall buildings. The authors concluded that minor AMs 



 
 

 
 

 
 

could result in 30-60% reduction in WIV. It was also noted that minor AMs can have adverse effects depending on the 
local environmental conditions such as wind flow characteristics and surrounding structures [4]. This means that different 
wind conditions and surrounding environments require different AM configurations or orientations. Abdelaziz et al. (2021) 
performed a simulation study of a smart façade system consisting of four vertical plates installed on the corners of a 
building [5]. The plates could rotate around their own axis of symmetry, which provided a means for active AM. A genetic 
algorithm (GA) optimization procedure was used to determine the plate orientations that resulted in reduced WIV responses 
at different wind conditions. The optimum plate orientations were found to reduce the building deflection amplitudes by 
up to 80%. Abdelaziz and Hobeck (2022) performed wind tunnel experiments of a scaled building model with four vertical 
corner plates installed on the top section of the building [6]. An iterative optimum training (IOT) procedure was developed 
to optimally train an artificial neural network (ANN)-based controller using a reduced number of experiments. The 
controller determined the optimum plate orientations using the wind direction and time-averaged readings of the wind 
speed. A reduction of 40-90% in WIV acceleration was obtained when using the developed controller. The cases where 
synchronized wind vortices were formed saw the greatest reduction in WIV accelerations. While the developed smart 
façade system showed considerable effectiveness, the authors noted several concerns that may greatly hinder its adoption 
in real-life deployments. First, the training process was time consuming and required wind conditions to be held constant 
in a repeatable manner, which is not feasible for full-scale buildings. Second, potentially destructive wind conditions may 
need to be encountered by the training process before it can learn how to mitigate their effects. Lastly, defining wind 
conditions around a building with only two parameters (speed and direction) ignores many other spatiotemporal features 
about the wind that may be valuable for effective control. The control approach presented in this paper, addresses these 
concerns. 

Gated recurrent units (GRUs) are a form of recurrent neural networks (RNNs) that can ‘forget’ irrelevant information in 
the hidden state and only keep information that affects the GRU’s prediction capability [7]. GRUs have been utilized for 
wind speed forecasting, wind turbine condition monitoring, unmanned underwater vehicle state estimation, among other 
applications [8, 9, 10]. GRUs are less computationally expensive than long-short term memory (LSTMs), and their 
performance is comparable [11]. This work uses an encoder-decoder GRU model to define a unique system state using 
timeseries readings from multiple sensor systems. The sensors include a distributed network of pressure probes installed 
on surrounding structures, accelerometers installed on the principal building, and an atmospheric conditions sensor. 
Overall, the GRU acts as a time-sensitive encoder for the wind-building system. The use of the sensor systems in 
conjunction with the GRU model eliminates the need to directly measure the wind speed and direction while providing a 
prediction window in which the system can act to prevent incoming hazardous wind events. Finally, the inclusion of the 
temporal depth of the sensor readings exposes the GRU model to various patterns of system behavior that can be common 
among different wind conditions (e.g., vortex structures). This is expected to improve the model’s ability to generalize to 
wind conditions it did not specifically encounter during training. 

One of the challenges to the original smart façade system was the requirement to hold the wind conditions constant until 
the system learns how to mitigate the WIV effects, i.e., forcing the environment to be static. Alternatively, reinforcement 
learning (RL) offers a way of programming agents through trial-and-error in a dynamic environment. For each state the 
agent encounters, RL training presents the agent with a set of possible actions. After the agent performs one of the actions, 
the RL training rewards it in proportion to how favorable the resulting system state was. Deep RL algorithms attracted 
increasing interest from machine learning researchers. It was successfully used for autonomous driving, learning to walk, 
human-level performance in 3d multiplayer games, path planning for unmanned aerial vehicles, among others [12, 13, 14, 
15]. Despite its success, efficient exploration of complex domains remains challenging for RL algorithms [16, 17]. This 
limitation can make the RL-generated policy unable to provide global optimum solutions especially for systems with 
infinite possible states and actions, such as the wind-building-plates system at hand. It is known that greater WIV 
acceleration response is coincident with the formation of vortices that eventually synchronize with the building motion 
(i.e., aeroelastic lock-in) [4, 6]. Therefore, it is desirable to generate an agent able to obtain global minimum WIV 
accelerations in one plate rotation action, rather than a series of actions, to minimize the possibility of aeroelastic lock-in. 

This work presents a genetic reinforcement learning (GRL) algorithm which enhances RL exploration and enables it to 
more quickly obtain global optimum solutions. GRL employs genetic algorithms (GAs) integrated with a series of trainable 
multi-layer perceptron (MLP) policy functions. The MLP policy functions take the current GRU hidden state as an input 
and provide the plate orientations dictated by the policy as an output. The genetic reinforcement learning (GRL) procedure 
starts by sorting the current solution (plate orientations) into the set of MLP policies according to how favorable the 
recorded building accelerations were. The first MLP policy is always trained using the best-found solutions for the 
encountered GRU hidden states, the second MLP policy is trained using the second-best solutions, and so on. To determine 



 
 

 
 

 
 

the plate orientations to explore next, the solutions suggested by all MLP policies for the current hidden state are combined 
to form a population of solutions to perform GA operations on. While GAs inherently provide means for controlling 
exploration and exploitation, a chance for trying fully random solutions is also added to further enhance this control. As 
the training progresses, each MLP policy represents a different ‘front’ of solution quality which provides a mechanism for 
elitism while maintaining solution diversity. GRL can still find better solutions for states it did not exactly encounter 
because both the GRU and the MLP policies have inherent interpolation ability. During operation, only the best MLP 
policy (trained from best-found solutions) is used to determine the plate orientations to use for the current GRU hidden 
state. The developed procedure eliminates the need to keep the uncontrollable wind conditions constant while performing 
a pseudo-random search capable of obtaining minimum WIV accelerations in one plate rotation action.  

This paper is organized as follows: Section 2 details the experimental setup and the problem definition. Section 3 explains 
the methods used to train the encoder-decoder and the GRL procedure. Section 4 illustrates the obtained WIV mitigation 
results and compares to the established baselines. Finally, Section 5 lists the conclusions of this work and possible future 
extensions and improvements. 

2. EXPERIMENTAL SETUP 
2.1 Overview 

The Commonwealth Aeronautical Advisory Research Committee (CAARC) standard building model is used in this study 
because it is thoroughly studied in the literature. The building has the dimensions 180 × 45 × 30 m (Height H× Width B× 
Depth D) with an average density of 160 kg/m3. Figure 1 illustrates the wind tunnel experimental setup which uses a 1:400 
scaled robotic aeroelastic model (450 × 112.5 × 75 mm) that was designed and manufactured by Abdelaziz and Hobeck 
[6]. The model has 4 lumped masses (floor plates + added masses) that distribute the weight equally along the height. The 
floors are connected only by 4 columns (threaded rods) that have variable diameters along the height. The top floor 
accounts for two consecutive floors in the mass budget because it includes the motors, the rotating plates and their 
accessories. The model was designed using a genetic algorithm (GA) optimization that matched the dynamic characteristics 
of the scaled model with the those of the full-scale building [6]. Figure 1 also shows the degrees of freedom (DOFs) of 
interest: along-wind sway (bending, ), cross-wind sway (bending, ) and torsional (twisting, ) along with the wind speed 
direction . This study considers only this direction of wind speed because it was found to be the most severe in previous 
research studies [6]. The scaled building model has four corner plates with orientation angles  as they can freely 
rotate around their axis of symmetry. The length of the plates covers about 30% of the building height to minimize the 
investment costs associated with employing the system. Separation of the air flow happens at the corners and wind forces 
cause the greatest bending and twisting moments at the top, so the plates were placed at these locations to maximize their 
effect on the wind-building system. The experimental setup includes a rigid building model with dimensions 400  85  
75 mm placed upstream of the aeroelastic model. This rigid building is included to test the system’s ability to handle 
complex wind flow patterns, such as turbulent wakes and vortex structures. 

2.2 Sensor network 

Figure 1 also shows a pressure sensor network consisting of 5 differential pressure sensors that were fitted inside 3d-printed 
housings with extension tubes on the high-pressure port of the sensors so they can sense the wind flow. The low-pressure 
port is contained inside the housing to sense the static pressure value. All dimensions are measured relative to the tips of 
the sensors indicated in Figure 1. The wind tunnel floor is used as a reference for all height measurements. Sensor 1 is 
installed inside the upstream building at a height of 380 mm. Sensor 2 is installed on top of another rigid foam cube at a 
height of 75 mm. Sensors 3 and 4 are oriented at 45  from the wind direction  and installed on a steel tube extending 
from the tunnel floor at a height of 200 mm. Sensor 5 is installed on another similar tube at a height of 360 mm. The 
placement and count of the sensors have a strong effect on the encoder-decoder GRU’s ability to fully define the system 
state. For this initial study, the sensors were placed using human experience. For example, sensor 3 is positioned to endure 
most of the vortex shedding effect from the upstream rigid building. Though the current placement is shown later to provide 
acceptable predictions from the encoder-decoder GRU, the optimal placement of the sensors is still being considered for 
future studies. In addition to the pressure sensors, two accelerometers are installed on the top floor of the scaled building 
model [6]. Their readings are combined to obtain the accelerations for the 3 DOFs of interest. Finally, an ambient 
atmospheric conditions sensor is installed outside the wind tunnel to measure temperature, humidity and barometric 
pressure. As discussed in Section 3.1, the collection of all sensor readings is used in conjunction with the encoder-decoder 
GRU to define the system state. 



 
 

 
 

 
 

  
Figure 1. A top view of the wind tunnel experiment setup showing: 
(1) the 1:400 scaled aeroelastic model centered in the width of the 
tunnel with four rotating plates installed at its corners; (2) the 
measurement conventions for the DOFs of interest ( ,  and ), 
plate angles ( ) and the wind direction ; and (3) the 
upstream building and the pressure sensor locations and shape. 

Figure 2. A schematic showing the various components of the 
cyber-physical setup for the wind tunnel experiments. The 
python script controls all aspects of the online 
training/control experiment. 

 

2.3 Cyber-physical setup 

Figure 2 illustrates the cyber-physical setup used to implement the training and control procedures described in Section 3. 
In addition to sensors described in the previous section, four rotational position encoders are installed on the free end of 
the plates to provide their current position. The plate position readings are not directly used by the encoder-decoder GRU 
to determine the system state to avoid redundancy with the building accelerations (which partly result from the plate 
positions). The plate position readings are used by the controller as described in Section 3.3 to determine the current plate 
angles. All sensors and encoders provide analog outputs which are connected to an NI DAQmx® 6463 data acquisition 
unit. The sampling rate is set at 200 Hz which is determined from the maximum response time of the Sensirion SPD810 
differential pressure sensors which were used. The plate motors are controlled by an Arduino® microcontroller. A python 
script controls the data acquisition through the nidaqmx software library, the wind tunnel speed through analog output and 
the plate motors through a serial connection to the Arduino microcontroller. The script also implements the online training 
and control procedures described in the next section. This includes tasks such as timing the experiments, data collection, 
experiment numbering and online training. 

3. CONTROLLER DESIGN 
3.1 Encoder-decoder GRU 

Figure 2 shows the encoder-decoder GRU model. The inputs to the model are the sensor readings  and the outputs 
are the future sensor readings  for  input and  output time steps, respectively. The model uses the inputs 
to populate an internal hidden state array . The sensor readings at time ,  are: 

   (1) 

where  are the pressure sensor readings (see Figure 1),  is the barometric pressure,  is the ambient temperature, 
 is the humidity, ,  and  are the acceleration components indicated in Figure 1. The encoder portion of the model is 

stateful, so the hidden state  accumulates its information from all previous inputs as well as the current input. The 
architecture for the encoder-decoder GRU follows a standard powers-of-2 units for each layer. 



 
 

 
 

 
 

 

 

 

 
 

 

Figure 3. A schematic diagram of the encoder-decoder 
GRU model indicating the sensors inputs , 
outputs  and the hidden state . 

 

 
 Figure 4. The modified RL procedure indicating how the previous plate 

angles , GRU state  and acceleration sum  (Equation 2) are used to 
train the policy MLPs ( ). The policy MLPs are then used to determine 
the future plate angles  using the future GRU state . 

 

The encoder has 4 stateful GRU layers with 16, 32, 64 and 256 units respectively. The decoder has the same number of 
layers, but the unit count is reversed. The number of layers was obtained by trial until an acceptable prediction performance 
was reached. The encoder-decoder GRU is trained from randomly collected wind tunnel data. The prediction (decoder) 
portion is not used after initial training. It is only used so the training process can automatically prune the hidden state  
to only keep information that is relevant for fully defining the system state. 

3.2 Controller objective 

The desired function of the controller is to obtain plate orientations that minimize WIV accelerations at different wind 
conditions, i.e.: 

    (2) 

In reference to Figure 1 and Equation 1,  are the plate angles (0-180 ).  is the current system state. 
RMS is the root-mean-square, and ,  and  are the accelerations of the DOFs of interest. The RMS of  is numerically 
scaled by half of the building width  (the radius of twist) to have the same units as the other components. The range of 
0  to 180  for  covers all the possible solutions because the plates are aerodynamically symmetric. If nonsymmetric 
plates (e.g., wing profiles) are used, then a 360  range should be considered. 

3.3 Genetic reinforcement learning algorithm 

Figure 4 illustrates the GRL algorithm that runs after each control interval . At the point of control (indicated by an 
arrow to the ‘Start’ bubble), the previous plate angles  and GRU state  are known. Also, the future GRU state  is 
obtained by feeding the previous sensor information  to the GRU. The algorithm is required to do the following: 
(1) use the previous information to train the MLP policies ( ) and (2) chose which future plate angles  to try. 
The policies have the form , so they not only provide the plate angles dictated by the policy, but also the 
expected RMS sum when these angles are used. The procedure starts by calculating Equation 2 ( ) from previous sensor 
information (accelerations only in Equation 1). Starting from , the procedure compares the calculated RMS sum  with 



 
 

 
 

 
 

the policy’s prediction . If the calculated sum is smaller, the training data is added to the storage for the current policy 
only and the comparison is not performed for the other policies. The accumulated effect of these comparisons is that the 
best solutions found would be stored for , and solutions that perform worse would be stored for , and so on. Each of 
the policies  is trained frequently using the collection of data stored for it. 

To determine the next plate angles to try , a random number is generated and compared with the probability . If the 
random number is smaller than ,  is set to a completely random value to enhance exploration. Otherwise, each of the 
policies provides optimum angles  and expected RMS sum  for the future GRU state . A single GA iteration is 
performed on the generated solutions with crossover and mutation probabilities  and , respectively. The future plate 
angles  are chosen at random from the GA result. The GA selection (tournament selection) makes it more probable that 
better solutions would be chosen, so the accumulated effect of the GA iteration is to provide a tendency to try solutions 
expected to provide better performance for the future state . The probabilities ,  and  provide convenient control 
of the balance between exploitation and exploration. During operation (after training),  is evaluated directly and  
is set to . 

4. RESULTS AND DISCUSSION 
4.1 Encoder-decoder GRU prediction 

The time step for the encoder-decoder GRU model was set to 0.01 s and the sensor readings were down-sampled to match 
it. The training data is collected from constantly varying random wind conditions and plate orientations. Therefore, 
increasing the input/output time steps (prediction time) negatively impacts the prediction performance when the condition 
variations no longer have precursors in the input data. For this study, the prediction time was increased gradually starting 
from 1 second until the prediction performance started to diminish. The prediction time reached 7.5 s (750 time steps) 
without considerable impact to the prediction performance. The time scale with the full-scale building is 1/33, so 7.5 
seconds equals approximately 4 minutes for the full-scale building. This gives the control system enough time to respond 
to most wind events [6]. Figure 5 compares the predicted and the actual rotational acceleration  for a 16-minute data set 
collected from the wind tunnel. The figure also zooms on a full 7.5 seconds of encoder-decoder output. For the full 16 
minutes of prediction, the mean absolute error was only 3.5% of the maximum rotational acceleration. The rotational 
acceleration  is used in this comparison because it was found to be the most significant acceleration component. The 
comparison confirms the encoder-decoder model’s ability to predict and thus fully define the system in its hidden state. 

4.2 Controller performance 

In reference to Figure 4, Table 1 lists the parameters used to test the GRL algorithm. The control interval  was set by 
observing the stability of the RMS accelerations at constant wind and plate conditions. When the RMS acceleration 
becomes constant, it means that the important oscillatory features have already been captured in the considered control 
length. 

 
Figure 5. A comparison between the predicted and actual building rotational acceleration  for 16 minutes and 7.5 seconds 
of data. 



 
 

 
 

 
 

 

Table 1. GRL ALGORITHM PARAMETERS 

Parameter Value 

Control interval  15 s 

Policy MLP count  7 

Random probability  0.3 

Crossover probability  0.8 

Mutation probability  0.2 
 

 

 
Figure 6. Evolution of the controller WIV mitigation performance 
during 10 iterations of the GRL algorithm subjected to randomly 
generated wind speed profiles compared to baseline data created with 
90 combinations of static (not controlled) plate angles and random wind 
speed profiles. 

The control interval is double the GRU input/output time, so the GRU is dispatched two times per control interval to 
construct the hidden state. The MLP policy count  was initially set to 12, but the GRL algorithm only managed to store 
data for 7 out of 12 policies. The process was then repeated using only 7 policy MLPs. The random probability  was set 
at 0.3 for this initial study. In future studies,  may be set to 1.0 until the policies have enough data points to construct 
reasonable predictions. The crossover and mutation probabilities  and  are typical values for GAs. 

The procedure illustrated in Figure 4 was run on random variations of the wind tunnel speed. The intervals of the speed 
changes as well as the speed values were randomized. The length of every generated wind speed profile was 10 minutes. 
Figure 6 illustrates the change in the RMS sum  (Equation 2) across subsequent GRL training iterations which are run 
against different wind speed profiles. To establish a baseline for the controller performance, random plate angle 
combinations were tested against the same wind speed profiles. For each 10-minute randomly varying wind profile, the 
plate angles were positioned at a constant (not controlled) random position. This was done for 90 different combinations 
of wind profiles and plate angles. The RMS sum Q values for each random case is plotted in Figure 6. It is important to 
note that the minimum Q value attained from these static tests corresponds to a specific combination of plate angles and 
random wind profile. If a different wind profile was used for this same set of plate angles, the Q value will certainly 
increase, thus motivating the need for an active (rather than static/passive) façade system. Figure 6 also shows that the 
controller performance indicated by the green training points improves (decreases) across iterations despite being subjected 
to all random wind speed profiles. The RMS sum  points for the controller during training does not subject the building 
to worst-case plate angles, which is an important practical consideration and large improvement from previous controller 
designs. The controller manages to surpass the performance of the best random plate angles after 5 training iterations. 
These findings confirm the effectiveness of the GRL algorithm. After the controller was trained for 10 iterations, several 
aspects of its performance are discussed herein. 

Figure 7 focuses on two different timeseries locations of interest. In both cases, the wind speed  is changing in a way that 
causes the acceleration response to increase. This is also evident from the RMS acceleration plot. As soon as the 
acceleration’s control interval  passes, it detects this increase and repositions the plates according to the trained policy 
MLP . As a result, the acceleration response decreases even though the wind speed keeps increasing. This experiment 
confirms that the controller can anticipate incoming wind events and adjust for them before accelerations become severe. 
This prevents phenomena such as aeroelastic lock-in from occurring. 

To further illustrate the WIV mitigation mechanism, Figure 8 compares the RMS rotational acceleration  with and without 
using the trained controller. The RMS is calculated using a 20-second window. The wind speed profile is randomly 
generated but constant for both cases to make a fair comparison. The comparison shows that the controller reduces RMS 
rotational acceleration by up to 75% and maintains accelerations significantly lower than the uncontrolled case for a vast 
majority of the time. 



 
 

 
 

 
 

  
Figure 7. Two different cases where the trained controller automatically responded to the increase in the rotational acceleration 

 (resulting from the change in wind speed ) by changing the plate angles which immediately reduced the rotational 
acceleration. 

  
Figure 8. A comparison of the RMS rotational acceleration (20-
second window) for the same randomly varying wind speed 
profile when the controller is turned off and on. 

Figure 9. The effect of changing the wind speed profile on the 
controller performance  compared with the performance of the 
evaluated random plate angles. 

 

To get an overall representation of the trained controller performance across many conditions, Figure 9 tests the trained 
controller by subjecting it to multiple wind speed profiles and compares the RMS sum performance with the random 
baseline. This differs from Figure 6, which focuses on the WIV acceleration response during training. It is shown that the 
controller performance is not strongly affected by changing the wind conditions. This proves that the controller trained 
using the GRL algorithm can generalize to conditions it did not specifically encounter during training. This is an important 
practical consideration because the real-life conditions are infinite and training for all of these conditions is not feasible. 

5. CONCLUSIONS 
This work presents a control system for wind-induced vibration mitigation in tall buildings. The system uses four plates  
that are able to rotate about their axes of symmetry to function as aerodynamic control surfaces. A technique that enables 
defining fast varying and complex wind conditions is presented. A sensor network consisting of a set of pressure probes, 
accelerometers and ambient conditions sensor are used as time series inputs to an encoder-decoder GRU model. The model 
uses the inputs to define an instantaneous hidden state that fully defines the wind-building system state and ‘remembers’ 
long-term effects relevant for predicting future sensor readings. A genetic reinforcement learning procedure is developed 
to use the encoder-decoder hidden state to perform pseudo-random optimization in a highly dynamic environment. The 



 
 

 
 

 
 

process used a series of trainable policy MLP functions as ‘agents’ that can provide a genetic algorithm with a set of diverse 
solutions. The control system was tested on a 1:400 scale robotic aeroelastic building model in wind tunnel experiments. 
The important findings of this work are summarized below: 

1. The encoder-decoder GRU model was trained from wind tunnel experiment data and was able to predict the future 
rotational acceleration from the current rotational acceleration with an average absolute error that is only 3.5% of 
the maximum encountered acceleration. This confirms that the encoder-decoder GRU hidden state fully defines 
the wind-building system. 

2. The GRL algorithm managed to considerably improve the controller performance within only five 10-minute 
training iterations. During training, the algorithm did not subject the building to severe catastrophic conditions 
such as encountered by some of the baseline random plate angles. 

3. The trained controller reduced the RMS rotational acceleration by up to 75% for the same test wind speed profile. 

4. The trained controller was able to detect adverse wind conditions before the peak wind speed occurred. So, it can 
anticipate severe conditions and adjust for them before they happen. 

5. The controller performance was not affected considerably when tested against a group of random wind speed 
profiles, which confirms its ability to generalize to conditions it was not specifically trained for. 

In future work, a sensitivity analysis of the different controller parameters will be carried out to establish guidelines for 
setting these parameters. This includes the number of iterations to train the controller for, among others. Comparison with 
other reinforcement learning techniques and variations in the literature is also an area of potential future work. 
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