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Abstract

The optimized e�ective potential (OEP) equation is an ill-conditioned linear system

when using �nite basis sets. Without any special treatment, the obtained exchange-

correlation (XC) potential may have unphysical oscillations. One way to alleviate this

problem is to regularize the solutions; however, a regularized XC potential is not the

exact solution to the OEP equation. As a result, the system's energy is no longer

variational against the Kohn-Sham (KS) potential, and the analytical forces cannot be

derived from the Hellmann-Feynman theorem. In this work, we develop a robust and

nearly black-box OEP method to ensure that the system's energy is variational against

the KS potential. The basic idea is to add a penalty function that regularizes the XC

potential to the energy functional. Analytical forces can then be derived based on the

Hellmann-Feynman theorem. Another key result is that the impact of the regularization

can be much reduced by regularizing the di�erence between the XC potential and an

approximate XC potential, rather than regularizing the XC potential. Numerical tests

show that forces and the energy di�erences between systems are not sensitive to the

regularization coe�cient, which indicates that in practice accurate structural and elec-

tronic properties can be obtained without extrapolating the regularization coe�cient
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to zero. We expect this new method to be found useful for calculations that employ ad-

vanced, orbital-based functionals, especially for these applications that require e�cient

force calculations.

1 Introduction

The accuracy of Kohn-Sham density functional theory (KS-DFT)1,2 depends on the accuracy

of the exchange-correlation (XC) energy functional. Advanced XC functionals that depend

on the KS orbitals were actively developed in the past.3 For example, the correlation energy

functional based on the random-phase approximation (RPA) shows good results for the α-γ

phase transition pressure of cerium,4 the bulk properties of solids,5 van der Waals energy

between graphene and metals,6 and CO's adsorption energies on transition metals.7

For orbital-dependent functionals, their XC potential can be obtained by solving the

optimized e�ective potential (OEP) equation.3,8�11 Unfortunately, the OEP equation is an

ill-conditioned linear system when �nite basis sets are used.12,13 As a result, the obtained

XC potential can contain unphysical oscillations in real space. Note that the OEP equation

can be avoided, if we directly minimize the total energy against the KS potential.14 Based on

this idea, analytical forces have been derived for the exact exchange.15 However, in practice

KS-DFT is usually solved by an e�cient iterative scheme,16 which requires solving the OEP

equation. Therefore, in this work we stick with the iterative scheme and focus on solving

the OEP equation.

Various methods have been developed in the past to solve the OEP equation. One group

of methods solve the equation approximately, such as the Krieger-Li-Iafrate approximation,17

the common energy denominator approximation,18 the localized Hartree-Fock method,19

and the e�ective local potential method.20 Some other methods solve the OEP equation by

tackling the singularity of the KS linear response. Hirata et al. removed the singularity by

projecting the OEP equation into the space spanned by the vectors that are not in the null

space of the KS linear response.12,13 With properly constructed basis functions, the OEP
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equation has been solved for the exact exchange21,22 and the RPA correlation,23,24 and the

corresponding analytical forces were derived.22,24

A more black-box method for solving the OEP equation was developed by Yang and

coworkers,25,26 in which the unphysical oscillations are suppressed using the regularization

technique. The drawback is that the regularized XC potential is no longer the exact solution

to the OEP equation. Thus, the system's energy is not variational against the KS potential,

and analytical forces cannot be derived from the Hellmann-Feynman theorem. Without

e�cient force calculations, many important tasks, such as structure optimization, molecular

dynamics, and vibrational frequency calculations, become time-consuming.

The goal of this work is to develop a new OEP method that allows for deriving analytical

forces based on the Hellmann-Feynman theorem. The basic idea is to add a penalty function

that regularizes the XC potential to the energy. The OEP equation derived from this modi�ed

energy is automatically regularized. Since the modi�ed energy is variational to the KS

potential, analytical forces can be derived from the Hellmann-Feynman theorem. Another

goal of this work is to reduce the impact of the penalty function on DFT calculations.

Di�erent from our previous work that regularized the XC potential itself,27 here we regularize

the di�erence between the XC potential and an approximate XC potential. This greatly

reduces the impact of regularization on DFT calculations.

The paper is organized as follows. In Section 2, we introduce a new regularization scheme

that regularizes the di�erence between an XC potential and an approximate XC potential.

The magnitude of the regularization is controlled by the regularization coe�cient λ. To

extrapolate the energies to λ = 0, we derive the asymptotic behavior of the energies for

λ→ 0. We then derive the regularized OEP equation and the analytical forces. In Section 4,

we �rst examine the convergence speed of the new OEP method and then demonstrate the

extrapolation of the energies to λ = 0. We show that, with the same λ, the new regularization

scheme produces much less error than the old scheme. We then validate the analytical forces

and show that the forces are not sensitive to λ. In the end, we focus on the energy di�erence
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calculations and demonstrate that the energy di�erences are also not very sensitive to λ.

2 Theoretical methods

2.1 Regularize the XC potential

The total energy of KS-DFT is de�ned as

EKS = Ts + Exc + J + Eext − TS (1)

where Ts is the KS kinetic energy, Exc is XC energy, J is the Hartree energy, Eext is the

external energy, T is the electronic temperature, and S is the electronic entropy. The occu-

pation numbers of the KS orbitals are assigned according to the Fermi-Dirac distribution.

To regularize the XC potential, we recently introduced a regularization term Ep to the total

energy.27 The modi�ed total energy is

E = EKS + λEp (2)

with

Ep =
∑︂
σ

1

4

∫︂
|∇[vs,σ(r⃗)− vH(r⃗)− vext(r⃗)]|2dr3 (3)

where σ is the spin index. vs,σ and vH are the KS and Hartree potentials, respectively. Ep is

de�ned based on the observation that at the convergence vs,σ − vH − vext is equal to the sum

of the XC potential vxc,σ and the regularization potential vp,σ = δEp/δρσ. The OEP equation

derived based on the modi�ed energy E is regularized, so that the physical solutions can be

obtained.27 In addition, the modi�ed energy E is variational against the KS potential, and

analytical forces can be derived.27

A key result of this work is that the impact of Ep on DFT calculations can be signi�-

cantly reduced by only regularizing the di�erence between (vxc+vp) and an approximate XC
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potential. In this work, Perdew-Wang local density approximation28 (LDA) XC potential

vLDA
xc is used as the approximate XC potential. The new de�nition for Ep is

Ep =
∑︂
σ

1

4

∫︂
|∇[vs,σ(r⃗)− vH(r⃗)− vext(r⃗)− vLDA

xc,σ (r⃗)]|2dr3. (4)

Since vp is much smaller than vxc in practice, equation 4 mainly regularize the di�erence

between vxc and vLDA
xc . In this work, all the results are calculated using the new regularization

(Eq. 4), unless explicitly speci�ed. To simplify future discussions, let's de�ne

uσ(r⃗) = vs,σ(r⃗)− vext(r⃗)− vH(r⃗)− vLDA
xc,σ (r⃗), (5)

and Eq. 4 becomes

Ep =
1

4

∑︂
σ

∫︂
|∇uσ(r⃗)|2dr3. (6)

Similarly, the total energy can be re-organized as

E = Ts + ELDA
xc + J + Eext − TS + (Exc − ELDA

xc + λEp), (7)

in which the terms in the parenthesis are now treated as a correction to the KS-DFT-LDA

energy. The potential due to these terms is

vxcp,σ(r⃗) =
δ(Exc − ELDA

xc + λEp)

δρσ(r⃗)
, (8)

which is obtained by solving the OEP equation discussed later.
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2.2 Estimate the total energy at λ = 0

The total energy E de�ned by Eq. 2 is a function of λ. To estimate E at λ = 0, we derive

its �rst-order correction. The gradient of E with respect to λ is

dE

dλ
=

∑︂
σ

∫︂
δE

δvs,σ(r⃗)

dvs,σ(r⃗)

dλ
dr3 +

∂E

∂λ
= Ep, (9)

in which we have used the fact that δE/δvs,σ = 0 at convergence. The �rst-order corrected

energy E1 is obtained as

E1 = E − λEp = EKS, (10)

which means that we can just take EKS as the �rst-order corrected energy at the end of

the calculations. In this work, energy-related quantities, such as energy di�erences and bulk

modulus, are all calculated using EKS unless explicitly speci�ed.

To obtain a more accurate estimation of E at λ = 0, next we derive a formula for

extrapolating the energies to λ = 0. Note that Ep, which measures the �uctuation of the XC

potentials, diverges as λ → 0. Let's denote its asymptotic behavior as Ep(λ) ≈ cλ−α with

0 < α < 1 and c being an unknown constant. The reason for α < 1 is that λEp is expected

to be zero at λ = 0. With Eq. 9, we have

dE

dλ
= Ep ≈ cλ−α. (11)

Integrating Eq. 11, we obtain the asymptotic behavior of Eλ for λ→ 0

E = E0 +
c

1− α
λ1−α, (12)

where E0 denotes the energy at λ = 0. The asymptotic behavior of EKS can be derived

based on Eq. 12 as

EKS = E − λEp = E0 +
cα

1− α
λ1−α, (13)
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Eqs. 12 and 13 are used to extrapolate E and EKS to λ = 0 in this work for obtaining the

benchmarks.

2.3 The OEP equation

The derivation of the OEP equation follows the similar idea as in our previous work,27 but

with the new de�nition of Ep from Eq. 6. The OEP equation is

δ(Exc − ELDA
xc + λEp)

δvs,σ(r⃗)
=

∑︂
σ′

∫︂
vxcp,σ′(r⃗1)

ρσ′(r⃗1)

δvs,σ(r⃗)
dr31, (14)

which can be written compactly in the matrix representation as

⎡⎢⎣ δ(Exc−ELDA
xc +λEp)

δvs,α

δ(Exc−ELDA
xc +λEp)

δvs,β

⎤⎥⎦ =

⎡⎢⎣Xαα Xαβ

Xβα Xββ

⎤⎥⎦
⎡⎢⎣vxcp,α
vxcp,β

⎤⎥⎦ . (15)

Xσσ′ = δρσ/δvs,σ′ is the KS linear response. In this work, a modi�ed Heyd-Scuseria-Ernzerhof

(HSE) functional29�32 is used for Exc (see Appendix A for details). The derivations of

δExc/δvs,σ and δELDA
xc /δvs,σ are given in Appendix B.

In what follows, we derive δEp/δvs,σ. For the spin α, we have

δEp

δvs,α(r⃗)
=

∑︂
σ

∫︂
δEp

δuσ(r⃗1)

δuσ(r⃗1)

vs,α(r⃗)
dr31. (16)

Based on uσ's de�nition in Eq. 5, in the matrix representation, we have

δuα
δvs,α

= I −KH(Xαα +Xβα)−KLDA
αα Xαα −KLDA

αβ Xβα (17)

δuβ
δvs,α

= −KH(Xαα +Xβα)−KLDA
ββ Xβα −KLDA

βα Xαα (18)

where KH(r⃗1, r⃗2) = 1/|r⃗1 − r⃗2| is the kernel of the Hartree energy and KLDA
σ′σ is the kernel

of the LDA XC energy KLDA
σσ′ (r⃗1, r⃗2) = δ2ELDA

xc /δρσ(r⃗1)δρσ′(r⃗2). Insert Eqs. 17 and 18 into
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Eq. 16 and note δEp/δuσ = −1
2
∇2uσ, we obtain

δEp

δvs,α
= −1

2
[I − (Xαα +Xαβ)KH −XααK

LDA
αα −XαβK

LDA
βα ]∇2uα

−1

2
[−(Xαα +Xαβ)KH −XαβK

LDA
ββ −XααK

LDA
αβ ]∇2uβ. (19)

Similarly, for the spin β we have

δEp

δvs,β
= −1

2
[I − (Xββ +Xβα)KH −XββK

LDA
ββ −XβαK

LDA
αβ ]∇2uβ

−1

2
[−(Xββ +Xβα)KH −XβαK

LDA
αα −XββK

LDA
βα ]∇2uα. (20)

To simplify the derivations, we re-write Eqs. 19 and 20 as

δEp

δvs,α
= tα − 1

2
∇2uα (21)

δEp

δvs,β
= tβ −

1

2
∇2uβ. (22)

where tα and tβ contains all the terms on the right-hand side of Eqs. 19 and 20, except the

terms involving the identity matrices, and are

⎡⎢⎣tα
tβ

⎤⎥⎦ =
1

2

⎡⎢⎣Xαα Xαβ

Xβα Xββ

⎤⎥⎦
⎡⎢⎣v1
v2

⎤⎥⎦ (23)

with

v1 = (KH +KLDA
αα )∇2uα + (KH +KLDA

αβ )∇2uβ (24)

v2 = (KH +KLDA
βα )∇2uα + (KH +KLDA

ββ )∇2uβ. (25)

The right-hand side of Eq. 23 can be calculated with the �rst-order perturbation theory

by solving the Sternheimer equation for a perturbing potential whose spin-α and spin-β
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components are v1 and v2, respectively.33

Inserting Eqs. 21 and 22 into Eq. 15 and noting that uσ equals vxcp,σ at the convergence,

we obtain the regularized OEP equation

⎡⎢⎣ δ(Exc−ELDA
xc )

δvs,α
+ tα

δ(Exc−ELDA
xc )

δvs,β
+ tβ

⎤⎥⎦ =

⎛⎜⎝
⎡⎢⎣Xαα Xαβ

Xβα Xββ

⎤⎥⎦+

⎡⎢⎣λ
2
∇2 0

0 λ
2
∇2

⎤⎥⎦
⎞⎟⎠

⎡⎢⎣vxcp,α
vxcp,β

⎤⎥⎦ . (26)

Compared to the original OEP equation 15, Eq. 26 is regularized by the additional Laplacian

terms which increase as q2 in the Fourier space and suppress the unphysical oscillations in

vxcp,σ.

2.4 Analytical forces

Next, we derive the analytical forces for the total energy de�ned in Eq. 2. E depends on the

atomic positions {R⃗i}, the KS orbitals {ϕiσ}, and the KS potential vs,σ (through Ep). In

this work, Kleinman-Bylander norm-conserving potentials (NLPSs) are used.34,35 vs,σ only

contains the local potentials of these NLPSs and does not contain the nonlocal projectors.

The analytical force for atom i is calculated as

F⃗ i = − dE

dR⃗i

= F⃗ ia + F⃗ ib + F⃗ ic (27)

with the three components

F⃗ ia = −
∑︂
σ

∫︂
∂E

∂vs,σ(r⃗)

dvs,σ(r⃗)

dR⃗i

dr3 (28)

F⃗ ib = −
∑︂
σ

∑︂
i

∫︂
δE

δϕiσ(r⃗)

∂ϕiσ(r⃗)

∂R⃗i

dr3 (29)

F⃗ ic = − ∂E

∂R⃗i

. (30)
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F⃗ ia is due to the change of vs,σ with {R⃗i} �xed. Since ∂E/∂vs,σ = 0 at convergence, we have

F⃗ ia = 0.

Next, we discuss F⃗ ib. When R⃗i changes, both the local potential and the nonlocal

projectors of atom i's NLPS change. In Eq. 29, ∂ϕiσ/∂R⃗i is calculated by only considering

the change of atom i's nonlocal projectors, since the change of the local potential (contained

in vs,σ) has been considered when calculating F⃗ ia. ∂ϕiσ/∂R⃗i can be calculated by solving the

Sternheimer equation for a variation of atom i's nonlocal projectors with the KS potential

�xed. The term δE/δϕiσ in Eq. 29 is calculated as

δE

δϕiσ(r⃗)
=
δ(Ts + J + Eext + Enl − TS)

δϕiσ(r⃗)
+
δ(Exc + λEp)

δϕiσ(r⃗)
, (31)

in which the �rst part on the right-hand side is computed as

δ(Ts + J + Eext + Enl − TS)

δϕiσ

= fiσ[ϵiσ − (vLDA
xc,σ + vxcp,σ)]ϕiσ, (32)

where ϵiσ and fiσ are the eigenvalue and occupation number of the orbital i, respectively.

In Eq. 31, δExc/δϕiσ has already been calculated during the OEP calculations and can be

directly used here to save the computational cost. δEp/δϕiσ in Eq. 31 is calculated as

δEp

δϕiσ(r⃗)
= −1

2

∑︂
σ′

∫︂
∇2uσ′(r⃗1)

δuσ′(r⃗1)

ϕiσ(r⃗)
dr31. (33)

Since vs,σ is �xed for the calculation of F⃗ ib, the change of Ep is only due to the changes of

the Hartree and the LDA XC potentials through ϕiσ, and we have

δuσ′(r⃗1)

δϕiσ(r)
= −

[︃
1

|r⃗ − r⃗1|
+ δ(r⃗ − r⃗1)k

LDA
σ′σ (r⃗)

]︃
fiσϕiσ(r⃗). (34)

For F⃗ ic in Eq. 27, ∂E/∂R⃗i is calculated by only considering the explicit dependence of
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E on R⃗i, which gives
∂E

∂R⃗i

=
∂(Eext + Enl + λEp)

∂R⃗i

, (35)

where Enl is the nonlocal pseudopotential energy due to the nonlocal projectors of the NLPSs.

The last term above needs some special treatment. Note that Ep explicitly depends on R⃗i

through vext that consists of the local potentials of the NLPSs. By the chain rule, we have

∂Ep

∂R⃗i

=

∫︂
∂Ep

∂vloc,i(r⃗1)

∂vloc,i(r⃗1)

∂R⃗i

dr31, (36)

where vloc,i is the local potential of atom i's NLPS. In this work, ∂vloc,i/∂R⃗i is calculated

using the centered �nite di�erence method by slightly displacing the atom i.

2.5 The �owchart of the self-consistent OEP calculations

The �owchart of our OEP scheme is similar to the conventional KS-DFT calculations. The

major di�erence is that at each iteration a self-consistent KS-DFT-LDA calculation is per-

formed with an additional external potential vxcp(r⃗). The �owchart is given below.

1. Perform a self-consistent KS-DFT calculation with the Perdew-Burke-Ernzerhof (PBE)

functional36 to obtain the initial guess for the KS orbitals, based on which we calculate

vxcp(r⃗) by solving the OEP equation 26.

2. Perform a self-consistent KS-DFT-LDA calculation with vxcp(r⃗) being an additional

external potential.

3. Based on the results from Step 2, obtain a new vxcp(r⃗) by solving the OEP Eq. 26.

4. Check the convergence of vxcp(r⃗). If it is not converged, go back to Step 2 for the next

iteration.

The convergence of vxcp(r⃗) can be accelerated by performing the Pulay mixing37 at Step 3.

11



3 Numerical Details

Our new OEP scheme is implemented in the ABINIT program.38 The OEP equation 26 is

solved using the minimal residual method (MINRES) method.39�41 MINRES is not precon-

ditioned in this work. When a reasonable regularization parameter is used, its convergence

is fast. If the regularization parameter is very small, such as 10−6, the convergence becomes

slow. The product between the KS linear response matrix and a vector is calculated by solv-

ing the Sternheimer equation.33 NLPSs are used for all calculations. For N, C, O, Al, Si, Ga,

As, and Cu, their NLPSs are generated using the FHI98pp program.42 For Ti, Fe, and Mn,

the optimized norm-conserving Vanderbilt pseudopotentials are used,43 which is more accu-

rate due to the inclusion of the semicores. All the structures used in the OEP calculations

are relaxed using the Vienna Ab initio Simulation Package (VASP) program.44�47

The kinetic energy cuto�s for the calculations of N2, Al bulk, Si bulk, CO/Cu(111), Fe

bulk, GaAs, TiO2, Mn3O4, and the isomerization reactions are 800 eV, 500 eV, 800 eV, 600

eV, 1200 eV, 800 eV, 800 eV, 800 eV, and 800 eV, respectively. The Fermi-Dirac smearing

is used for all calculations. For Al bulk, Si bulk, CO/Cu(111), and Mn3O4 calculations, a

smearing temperature of 0.1 eV is used. For TiO2 and GaAs, a smearing temperature of 0.05

eV is used. For Fe bulk calculations, a smearing temperature of 0.2 eV is used.

For Al bulk calculations, the Monkhorst-Pack k-point mesh48 of 8×8×8 is used for the

face-centered cubic (FCC), body-centered cubic (BCC), cubic diamond (CD), and hexagonal

close-packed (HCP) structures. For the simple cubic (SC) structure, a k-point mesh of

10×10×10 is used. The unit cells contain 4, 2, 1, 2, and 4 atoms for FCC, BCC, SC, CD,

and HCP structures, respectively. For Si bulk calculations, a k-point mesh of 8×8×8 is

used for the CD, hexagonal diamond (HD), β-tin, body-centered-tetragonal 5 (bct5), SC,

BCC, FCC, and HCP structures. A k-point mesh of 4×4×4 is used for the complex body-

centered-cubic (BC8) structure.49�51 Details about these silicon structures can be found in

Ref.52,53 The unit cells contain 2, 4, 8, 1, 2, 4, and 2 atoms for the CD, HD, BC8, β-tin,

bct5, SC, HCP, FCC, and BCC structures, respectively. For TiO2, the unit cells of anatase
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and rutile both contain six atoms. A k-point mesh of 4×4×4 is used for both anatase and

rutile structures. For GaAs, a k-point mesh of 6×6×6 is used for both zincblende and

wurtzite structures. The unit cells contain two and four atoms for zincblende and wurtzite

structures, respectively. For CO/Cu(111), the copper surface slab contains four layers, with

a 2× 2 surface. A k-point mesh of 4×4×1 is used in all calculations. For Mn3O4, a k-point

mesh of 3×3×3 is used in all calculations. For BCC Fe, a k-point mesh of 6× 6× 6 is used,

and the unit cell contains two atoms.

4 Results and discussions

4.1 Convergence test

With the regularization, we can obtain well converged solutions to the OEP equation for

a reasonable λ, which leads to good convergences for the DFT calculations. In Fig. 1, we

show the convergences for three systems CO/Cu(111), BCC Fe, and Mn3O4. For Mn3O4, its

ferromagnetic state is used. For all systems, the total energies converge to 10−4 eV within �ve

iterations. The convergence of CO/Cu(111) is slower, which should be due to the di�culty

of solving the OEP equation in the vacuum region. We address that, for all the systems

without vacuum studied in this work, their convergences are as excellent as BCC Fe and

Mn3O4.

The observed fast convergences are due to several reasons. First, a self-consistent KS-

DFT-PBE calculation is performed at the start, which generates a good initial guess for

the later OEP calculations. The second reason is that we only iterate vxcp which is a small

part of the KS potential. The last important reason is that, by iterating vxcp, we avoid the

�charge sloshing� problem caused by the Hartree potential.46,54 As a result, there is no need

to precondition the di�erence of vxcp between successive iterations. Note that the charge

sloshing problem still exists in the self-consistent KS-DFT-LDA calculations (Step 2 in the

�owchart, Section 2.5).
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Figure 1: The convergences of the total energies for CO/Cu(111), Mn3O4 and BCC Fe,
calculated with the regularization parameter λ = 10−4.

4.2 Extrapolate energies to λ = 0

The energies at λ = 0 can be estimated by extrapolating the energies based on Eqs. 12 and

13. As an example, the extrapolation for CD silicon is given in Fig. 2. E decreases faster

as λ approaches zero, due to the fact that the slope dE/dλ = Ep increases as λ decreases.

This observation is consistent with Eq. 12. Similarly, EKS also drops faster as λ increases,

which is consistent with Eq. 13. Based on Eqs. 12 and 13, we extrapolate both E and EKS

to λ = 0 and obtained similar parameters from the �ttings: α = 0.4624, c = 2.54 × 10−3,

E0 = −214.4761 eV for E, and α = 0.4033, c = 4.51 × 10−3, and E0 = −214.4760 eV for

EKS. Such similarities indicate that the asymptotic behaviors from Eqs. 12 and 13 are valid.

Note that the obtained α are smaller than 1, which validates our previous assumption that

the regularization term λEp goes to zero as λ → 0. Figure 2 also shows that, for a given λ,

EKS is much closer to the exact energy than E, which is due to the fact that EKS is the

�rst-order corrected energy (see Eq. 10).

4.3 Performance of the new regularization scheme

A key result in this work is the new regularization scheme de�ned in Eq. 4, which much

reduces the magnitude of the regularization term and in turn reduces the impact of the
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Figure 2: The extrapolation of the total energy E (black circles) and the �rst-order corrected
energy EKS (red squares) to λ = 0 for CD silicon. The data are �tted using Eqs. 12 and 13.

regularization on the total energy. In Fig. 3, the performance of the new scheme is compared

against the old scheme (Eq. 3) for CD silicon at two regularization parameters λ = 10−3 and

λ = 10−4. The error due to the regularization is de�ned as

Eerr = E(λ)− E(λ = 0), (37)

where E(λ = 0) is obtained through the extrapolation. Fig. 3 shows that the new scheme

reduces Eerr by nearly one order of magnitude for both λ values. The reason is that we only

regularize the di�erence between vxcp and vLDA
xc with the new scheme, while, with the old

scheme, we regularize the �uctuations of vxcp.

4.4 Forces

We now validate the analytical forces derived in Section 2.4. We evaluate the analytical

forces at di�erent bond lengths of N2 and compare them against the benchmarks obtained

using the centered �nite di�erence method by displacing the atoms by ±0.001 Å. The results

are given in Table 1. A good agreement between the analytical forces and the benchmarks

is observed.

In practice, we hope that forces do not depend much on the regularization parameter λ,
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Figure 3: The energy errors per atom for CD silicon, calculated using the old (Eq. 3) and
new (Eq. 4) regularization schemes.

Table 1: Forces (Ha/bohr) calculated using analytical (Fanaly) and �nite-di�erence (Ffd)
methods at di�erent bond lengths (a, Å) for N2, with λ = 10−3.

a Fanaly Ffd

0.9 1.0702 1.0701
1.0 0.3409 0.3408
1.1 -0.0460 -0.0458
1.2 -0.2370 -0.2367
1.3 -0.3189 -0.3188
1.4 -0.3425 -0.3425
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so that structural properties can be accurately obtained using a reasonable λ, without the

extrapolation. In Table 2, we investigate the dependence of forces on λ. It is found that

the forces are not sensitive to λ. This can be explained by Fig. 4, in which we plot total

energy versus bond length for di�erent λ values. The lower subplot gives the errors. The

errors are uniform over a wide range of the bond length, which is the main reason why the

forces are not sensitive to λ. Since the forces are insensitive to λ, we expect that structural

properties are also insensitive to λ. This is con�rmed in Table 3 which shows the structural

properties of N2, CD Si, Fe BCC, and rutile TiO2 calculated for a wide range of λ. To

calculate the bulk modulus of rutile TiO2, its structure is �rst relaxed, and then the unit cell

is uniformly scaled with the atoms' fractional coordinates �xed. For BCC Fe, we also �nd

that the magnetic moment per atom is nearly unchanged (=2.94 µB) for all the λ values.

Table 2: The analytical forces (Ha/bohr) calculated for di�erent bond lengths (a, Å) of N2.

λ
a 10−2 10−3 10−4

0.9 1.0704 1.0702 1.0703
1.0 0.3408 0.3409 0.3408
1.1 -0.0460 -0.0460 -0.0460
1.2 -0.2371 -0.2370 -0.2369
1.3 -0.3189 -0.3189 -0.3188
1.4 -0.3424 -0.3425 -0.3425

Table 3: The equilibrium bond length b (Å) and the force constant k (N/m) of N2, the
equilibrium lattice constant a (Å) and bulk modulus B (GPa) of CD silicon and BCC Fe,
and the equilibrium volume (Å3) and bulk modulus (GPa) of rutile TiO2, calculated using
di�erent regularization parameters.

N2 Si Fe TiO2

λ b k a B a B V0 B
10−2 1.095 2300.50 5.444 96.1 2.928 139.7 61.801 309.2
10−3 1.095 2300.63 5.444 96.2 2.927 139.3 61.660 312.0
10−4 1.095 2300.59 5.444 96.2 2.928 139.3 61.660 312.0
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Figure 4: (Upper plot) Total energy versus the bond length for N2, calculated using di�erent
regularization parameter λ. The energies extrapolated to λ = 0 are denoted as λ = 0.
(Lower plot) The total energy error per atom (Eλ − Eλ=0)/2.

4.5 Energy di�erences

One important task in practice is calculating the energy di�erences between systems. It is

important that the energy di�erences are not sensitive to the regularization parameter λ, so

that we do not need to extrapolate the results to λ = 0 in practice. In Table 4, we investigate

the dependence of the energy di�erences on λ. All the energy di�erences are calculated based

on EKS, and the errors due to the regularization are de�ned as

Eerr,KS = EKS(λ)− EKS(λ = 0). (38)

For all examples, except CO/Cu(111), the benchmarks (EKS(λ = 0)) are obtained by �rst

extrapolating each system's energy to λ = 0, and then calculating the di�erence between

the two extrapolated energies. For the CO/Cu(111) case, the benchmark is obtained by �rst

extrapolating the top-site adsorption energy (Etop) and the hollow-site adsorption energy

(Ehollow) to λ = 0 separately and then calculating the di�erence.
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Table 4: Isomerization energies for the four reactions listed in Fig. 5. For Al, all energies (per
atom) are referenced to FCC Al. For Si, all energies (per atom) are referenced to CD silicon.
For TiO2, the energy di�erences (per formula) between the rutile (rut) and anatase (ana)
phases are listed. For GaAs, the energy di�erences (per formula) between the wurtzite (WZ)
and zincblende (ZB) phases are listed. For CO/Cu(111), we list the adsorption energies
at the top and hollow sites, and their di�erences. For Mn3O4, the energy di�erences (per
formula) with respect to FiM6 are shown. The benchmarks (�extrap.�) are obtained by
extrapolating the energies to λ = 0 (see the text for details). All energies are in eV.

λ
5× 10−3 10−3 10−4 extrap.

Isomerization
reaction 1 -0.0721 -0.0722 -0.0722 -0.0722
reaction 2 0.8475 0.8475 0.8476 0.8476
reaction 3 0.7802 0.7796 0.7795 0.7795
reaction 4 0.6196 0.6199 0.6199 0.6199

Al
HCP 0.0458 0.0459 0.0459 0.0459
BCC 0.1278 0.1278 0.1278 0.1279
SC 0.4211 0.4212 0.4212 0.4210
CD 0.8088 0.8089 0.8089 0.8090

Si
HD 0.0130 0.0119 0.0114 0.0111
BC8 0.1910 0.1899 0.1893 0.1891
β-tin 0.3825 0.3818 0.3814 0.3811
bct5 0.4028 0.4024 0.4020 0.4015
SC 0.5581 0.5577 0.5574 0.5569
HCP 0.6408 0.6405 0.6402 0.6400
FCC 0.6737 0.6734 0.6731 0.6729
BCC 0.6844 0.6841 0.6839 0.6837

TiO2

Erut − Eana 0.0746 0.0747 0.0747 0.0747

GaAs
EWZ − EZB 0.0124 0.0124 0.0124 0.0124

CO/Cu(111)
Etop 0.8611 0.8624 0.8630 0.8632
Ehollow 0.8234 0.8244 0.8249 0.8250
Etop − Ehollow 0.0378 0.0380 0.0381 0.0382

Mn3O4

FiM1 0.0386 0.0378 0.0378 0.0379
FiM2 0.1167 0.1160 0.1159 0.1160
FiM3 0.1364 0.1358 0.1357 0.1357
FiM4 0.0292 0.0293 0.0294 0.0295
FiM5 0.1433 0.1426 0.1425 0.1425
FM 0.2243 0.2240 0.2241 0.2241
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We �rst examine the reaction energies of the isomerization reactions listed in Fig. 5. The

agreement with the benchmark is excellent (on the order of 0.1 meV) for all reactions and for

a wide range of λ. Such a good agreement is due to the good cancellation of Eerr,KS between

the reactant and the product. Taking reaction 1 as an example, with λ = 5× 10−3, Eerr,KS

is 4.6 meV for the reactant and 4.8 meV for the product, which gives an error of about 0.2

meV for the reaction energy. All the good results obtained for the following examples are

also due to the good cancellation of Eerr,KS between systems.

Figure 5: The four isomerization reactions used in this work. The reactions are drawn using
the ChemSketch55 program.

In Table 4, we calculate the energy di�erences between di�erent Al bulk structures and

FCC Al. Again, a good agreement with the benchmarks is observed. Particularly, we are

able to well reproduce the small energy di�erence between the FCC and HCP structures.

Silicon is another good testbed, since many of its structures are close in energy. In

Table 4, all the energies are referenced to CD silicon. A good agreement with the benchmarks

is observed. Importantly, the new OEP method gives accurate energy di�erences between

several structures that are close in energy, e.g., the energy di�erence between CD and HD,

between β-tin and bct5, between HCP and FCC, and between FCC and BCC. In Table 4, we

also examine the energy di�erences between TiO2's anatase and rutile phases and between

GaAs's wurtzite and zincblende phases. Again, both energy di�erences are well reproduced.

We also examine CO's adsorption energies at the top and hollow sites of Cu(111). Both

Etop and Ehollow converge quickly with respect to λ. Even with λ = 5×10−3, they di�er from
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the benchmarks by less than 2 meV. A more important quantity is the di�erence between

Etop and Ehollow, which measures the relative stability of these two adsorption sites. We �nd

that (Etop − Ehollow) converges even faster.

The last example in Table 4 is about the energy di�erences between di�erent magnetic

states of Mn3O4. This is a challenging example, since the cancellation of Eerr,KS between

di�erent magnetic states may not be as good as the non-spin-polarized cases, due to the

fact that the spin-up and spin-down electron numbers can be di�erent for di�erent magnetic

states. Our calculations mainly follow Ref.,56 and collinear spin-polarized calculations are

performed for all systems. The structure of Mn3O4 is shown in Fig. 6. In Table 4, FM

denotes the ferromagnetic state and FiM denotes the ferrimagnetic state. The directions of

the magnetic moments of the six Mn atoms (see Fig. 6) are (↓↓↑↑↑↑) for FiM1, (↑↓↑↑↑↑) for

FiM2, (↑↑↓↓↑↑) for FiM3, (↑↑↑↓↑↓) for FiM4, (↑↑↑↓↑↑) for FiM5, and (↑↓↑↓↑↓) for FiM6.

All structures are fully relaxed with VASP using the LDA+U+J method57 with U = 4 eV

and J = 1.2 eV. In Table 4, all energies are referenced to FiM6 which has the lowest energy.

It is encouraging to see that the errors are less than 1 meV for all magnetic states and for

a wide range of λ. We are able to reproduce the small energy di�erences between these

magnetic states that are close in energy, e.g., the energy di�erence (26 meV) between FiM2

and FiM5.

Figure 6: The unit cell for Mn3O4. Mn atoms are purple and oxygen atoms are red. To
better illustrate the coordination of Mn atoms, the periodic images of some oxygen atoms
are shown. The �gure is made using the VESTA program.58
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5 Conclusions

In this work, we developed a new self-consistent OEP scheme that allows us to derive an-

alytical forces based on the Hellmann-Feynman theorem. This is achieved by adding a

regularization term that regularizes the XC potential to the total energy. In addition, we

introduced a new regularization scheme to much reduce the impact of the regularization on

DFT calculations. The key is to regularize the di�erence between the XC potential and an

approximate XC potential, rather than regularizing the XC potential itself. The numerical

results showed that forces and energy di�erences between systems are insensitive to a wide

range of the regularization parameter. Therefore, many properties, such as ground-state

structures, vibrational frequencies, and ground-state electronic states, can be calculated us-

ing a reasonable regularization parameter, without extrapolating the parameter to zero. This

new OEP scheme is robust and nearly black-box (except for the regularization parameter).

With increasing computer power, DFT calculations employing advanced, orbital-based XC

functionals will become popular in the near future. We hope our method will facilitate these

calculations, especially for applications where forces are required.
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A A modi�ed HSE06 functional

The short-range exact exchange (EXX) of the HSE06 functional is de�ned based on the

EXX derived from the adiabatic connection �uctuation-dissipation theory (ACFDT).59�61

The reason is that ACFDT-based EXX satis�es the sum rule of the exchange hole even for

the cases where the KS orbitals are fractionally occupied.62 The short-range EXX is therefore
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de�ned as

ESR
x = −1

2

∑︂
σ

∑︂
ij

fiσCij,σ

∫︂∫︂
erfc(µ|r⃗ − r⃗1|)

|r⃗ − r⃗1|

×ϕiσ(r⃗)ϕjσ(r⃗1)ϕiσ(r⃗1)ϕjσ(r⃗)dr
3dr31 (39)

where µ = 0.2 Å−1 and i and j loop over occupied orbitals. The original expression for Cij,σ

is Cij,σ = 1 + sign(ϵiσ − ϵjσ),5 where ϵiσ is the orbital i's eigenvalue. This expression causes

problems for calculating dESR
x /dϵiσ when ϵiσ and ϵjσ are identical. In this work, we modi�ed

Cij,σ by approximating the sign function with the tanh function, and the new expression is

Cij,σ = 1 + tanh(γ(ϵiσ − ϵjσ)) with γ set to 100 atomic unit.

B Calculate δExc/δvs,σ

ESR
x is a function of the occupation numbers, eigenvalues, and orbitals. The derivative is

calculated as

δESR
x

δvs,σ(r⃗)
=

∑︂
σ′

∑︂
i

∂ESR
x

∂fiσ′

δfiσ′

δvs,σ(r⃗)
+
∑︂
i

∂ESR
x

∂ϵiσ

δϵiσ
δvs,σ(r⃗)

+
∑︂
i

∫︂
δESR

x

δϕiσ(r⃗1)

δϕiσ(r⃗1)

δvs,σ(r⃗)
dr31. (40)

The derivatives of ESR
x with respect to fiσ, ϵiσ, and ϕiσ are straightforward. With the �rst-

order perturbation theory, we have δϵiσ/δvs,σ(r⃗) = ϕiσ(r⃗)
2. To calculate the last term in

Eq. 40, we note δϕiσ(r⃗1)/δvs,σ(r⃗) = Giσ(r⃗1, r⃗)ϕiσ(r⃗), where Giσ is the KS Green's function.

The last term of Eq. 40 then becomes

∑︂
i

∫︂
δESR

x

δϕiσ(r⃗1)
Giσ(r⃗1, r⃗)ϕiσ(r⃗)dr

3
1 =

∑︂
i

ϕiσ(r⃗)ψiσ(r⃗) (41)
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where ψiσ(r⃗) is the orbital shift de�ned as

ψiσ(r⃗) =

∫︂
p(r⃗1)Giσ(r⃗1, r⃗)dr

3
1 (42)

with p(r⃗) = δESR
x /δϕiσ(r⃗). ψiσ(r⃗) can be e�ciently calculated using the equation

(Ĥσ − ϵiσ) |ψiσ⟩ = −(Î − |ϕiσ⟩ ⟨ϕiσ|) |p⟩ , (43)

where Ĥσ is the KS Hamiltonian of spin σ.

The other parts of the HSE06 functional are functionals that only depend on the electron

density, and it is easy to calculate their derivatives. For example, the derivative of the

long-range part of HSE06 is calculated as

δELR
xc

δvs,σ(r⃗)
=

∑︂
σ′

∫︂
δELR

xc

δρσ′(r⃗1)

δρσ′(r⃗1)

δvs,σ(r⃗)
dr31. (44)

Note that δρσ′/δvs,σ is the KS linear response, so the above integral can be calculated using

the �rst-order perturbation theory. The calculation of δELDA
xc /δvs,σ in Eq. 14 follows the

same route.
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