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Abstract

The optimized effective potential (OEP) equation is an ill-conditioned linear system
when using finite basis sets. Without any special treatment, the obtained exchange-
correlation (XC) potential may have unphysical oscillations. One way to alleviate this
problem is to regularize the solutions; however, a regularized XC potential is not the
exact solution to the OEP equation. As a result, the system’s energy is no longer
variational against the Kohn-Sham (KS) potential, and the analytical forces cannot be
derived from the Hellmann-Feynman theorem. In this work, we develop a robust and
nearly black-box OEP method to ensure that the system’s energy is variational against
the KS potential. The basic idea is to add a penalty function that regularizes the XC
potential to the energy functional. Analytical forces can then be derived based on the
Hellmann-Feynman theorem. Another key result is that the impact of the regularization
can be much reduced by regularizing the difference between the XC potential and an
approximate XC potential, rather than regularizing the XC potential. Numerical tests
show that forces and the energy differences between systems are not sensitive to the
regularization coefficient, which indicates that in practice accurate structural and elec-

tronic properties can be obtained without extrapolating the regularization coefficient
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to zero. We expect this new method to be found useful for calculations that employ ad-
vanced, orbital-based functionals, especially for these applications that require efficient

force calculations.

1 Introduction

The accuracy of Kohn-Sham density functional theory (KS-DFT)"* depends on the accuracy
of the exchange-correlation (XC) energy functional. Advanced XC functionals that depend
on the KS orbitals were actively developed in the past.” For example, the correlation energy
functional based on the random-phase approximation (RPA) shows good results for the a-v
phase transition pressure of cerium,? the bulk properties of solids,” van der Waals energy
between graphene and metals,® and CO’s adsorption energies on transition metals.”

For orbital-dependent functionals, their XC potential can be obtained by solving the
optimized effective potential (OEP) equation.**"! Unfortunately, the OEP equation is an
ill-conditioned linear system when finite basis sets are used.™®! As a result, the obtained
XC potential can contain unphysical oscillations in real space. Note that the OEP equation

.14 Based on

can be avoided, if we directly minimize the total energy against the KS potentia
this idea, analytical forces have been derived for the exact exchange.® However, in practice
KS-DFT is usually solved by an efficient iterative scheme,'® which requires solving the OEP
equation. Therefore, in this work we stick with the iterative scheme and focus on solving
the OEP equation.

Various methods have been developed in the past to solve the OEP equation. One group
of methods solve the equation approximately, such as the Krieger-Li-Iafrate approximation,*
the common energy denominator approximation,'® the localized Hartree-Fock method,*
and the effective local potential method.”” Some other methods solve the OEP equation by
tackling the singularity of the KS linear response. Hirata et al. removed the singularity by

projecting the OEP equation into the space spanned by the vectors that are not in the null

space of the KS linear response.’®¥ With properly constructed basis functions, the OEP



equation has been solved for the exact exchange“#? and the RPA correlation,?**¥ and the
corresponding analytical forces were derived.?224
A more black-box method for solving the OEP equation was developed by Yang and

250200 i1 which the unphysical oscillations are suppressed using the regularization

coworkers,
technique. The drawback is that the regularized XC potential is no longer the exact solution
to the OEP equation. Thus, the system’s energy is not variational against the KS potential,
and analytical forces cannot be derived from the Hellmann-Feynman theorem. Without
efficient force calculations, many important tasks, such as structure optimization, molecular
dynamics, and vibrational frequency calculations, become time-consuming.

The goal of this work is to develop a new OEP method that allows for deriving analytical
forces based on the Hellmann-Feynman theorem. The basic idea is to add a penalty function
that regularizes the XC potential to the energy. The OEP equation derived from this modified
energy is automatically regularized. Since the modified energy is variational to the KS
potential, analytical forces can be derived from the Hellmann-Feynman theorem. Another
goal of this work is to reduce the impact of the penalty function on DFT calculations.
Different from our previous work that regularized the XC potential itself,*” here we regularize
the difference between the XC potential and an approximate XC potential. This greatly
reduces the impact of regularization on DF'T calculations.

The paper is organized as follows. In Section [2] we introduce a new regularization scheme
that regularizes the difference between an XC potential and an approximate XC potential.
The magnitude of the regularization is controlled by the regularization coefficient A. To
extrapolate the energies to A = 0, we derive the asymptotic behavior of the energies for
A — 0. We then derive the regularized OEP equation and the analytical forces. In Section
we first examine the convergence speed of the new OEP method and then demonstrate the
extrapolation of the energies to A = 0. We show that, with the same A, the new regularization
scheme produces much less error than the old scheme. We then validate the analytical forces

and show that the forces are not sensitive to A. In the end, we focus on the energy difference



calculations and demonstrate that the energy differences are also not very sensitive to \.

2 Theoretical methods

2.1 Regularize the XC potential

The total energy of KS-DFT is defined as
EKS:T9+Exc+J+EeJ:t_TS (1)

where T is the KS kinetic energy, F,. is XC energy, J is the Hartree energy, E.,; is the
external energy, 1" is the electronic temperature, and S is the electronic entropy. The occu-
pation numbers of the KS orbitals are assigned according to the Fermi-Dirac distribution.
To regularize the XC potential, we recently introduced a regularization term F, to the total

energy.?’ The modified total energy is
E = Exgs+ \E, (2)

with

By =31 [ IVl0ao®) = on) = vl )

where ¢ is the spin index. vs, and vy are the KS and Hartree potentials, respectively. E,, is
defined based on the observation that at the convergence v, , — Vg — Vgt is equal to the sum
of the XC potential v, and the regularization potential v, , = 0E,/dp,. The OEP equation
derived based on the modified energy FE is regularized, so that the physical solutions can be
obtained.*” In addition, the modified energy E is variational against the KS potential, and
analytical forces can be derived.?’

A key result of this work is that the impact of E, on DFT calculations can be signifi-

cantly reduced by only regularizing the difference between (v,.+wv,) and an approximate XC



potential. In this work, Perdew-Wang local density approximation“® (LDA) XC potential

vEPA is used as the approximate XC potential. The new definition for E, is

By =Y 1 [ 1V0aal?) = ) = ve(?) = oE22 Pl (@)

Since v, is much smaller than v,. in practice, equation 4 mainly regularize the difference

LDA

. In this work, all the results are calculated using the new regularization

between v, and v

(Eq. , unless explicitly specified. To simplify future discussions, let’s define
ua(?) = US,U(F) - Ueact(F) - UH<F) - Ui‘i??(F)’ (5)

and Eq. [4] becomes
1 -
E, = 1 Z/ |Vu, (7))?dr®. (6)

Similarly, the total energy can be re-organized as
E=T,+ EPY + J+ Eept — TS + (Epe — EEPY + 0E,), (7)

in which the terms in the parenthesis are now treated as a correction to the KS-DFT-LDA

energy. The potential due to these terms is

5(Exc - E;J(PA + )\Ep)
dpo(T) ’

UXCPJ(F) =

which is obtained by solving the OEP equation discussed later.



2.2 [Estimate the total energy at A =0

The total energy E defined by Eq. |2 is a function of A. To estimate E at A = 0, we derive

its first-order correction. The gradient of £ with respect to A is

dE §F dvsg (7) OE _
Z/MM dr® + o5 = E,, (9)

in which we have used the fact that 0F/dvs, = 0 at convergence. The first-order corrected

energy F; is obtained as

E, = E — \E, = Egs, (10)

which means that we can just take Fxg as the first-order corrected energy at the end of
the calculations. In this work, energy-related quantities, such as energy differences and bulk
modulus, are all calculated using EFxg unless explicitly specified.

To obtain a more accurate estimation of £ at A\ = 0, next we derive a formula for
extrapolating the energies to A = 0. Note that E,, which measures the fluctuation of the XC
potentials, diverges as A — 0. Let’s denote its asymptotic behavior as E,(\) ~ cA™® with
0 < o <1 and c being an unknown constant. The reason for o < 1 is that A\E), is expected
to be zero at A = 0. With Eq. [9] we have

dE
= _E
dA b

XN (11)
Integrating Eq. we obtain the asymptotic behavior of E) for A — 0

C
E=E,+ — )\ 12
0+1—Oé ) ( )

where Fj denotes the energy at A = 0. The asymptotic behavior of Fxg can be derived
based on Eq. [12 as

Exs = (13)



Eqgs. [12] and [13] are used to extrapolate £ and Ekg to A = 0 in this work for obtaining the

benchmarks.

2.3 The OEP equation

The derivation of the OEP equation follows the similar idea as in our previous work,2” but

with the new definition of E, from Eq. @ The OEP equation is

(B, — ELPA + \E,) o (1) 3
§ 14
0vs o (T / Usepr( 5vsg( )drl’ (14)

which can be written compactly in the matrix representation as

§(Eye—ELPALANE,)

505 .o . Xaa on,B chp,a (15)
§(Eze—EXPALAE,) ‘

5o s Xpa Xpg| |Vxep

Xoor = 0py/0vs 4 is the KS linear response. In this work, a modified Heyd-Scuseria-Ernzerhof
(HSE) functional®* is used for E,. (see Appendix A for details). The derivations of
§Eqe/0vs, and § ELPA /§u, , are given in Appendix B.

In what follows, we derive 0E,/dv,,. For the spin «, we have

(5’&0 1) 3
ma Z/ S0 () van(?) T (16)

Based on u,’s definition in Eq. 5] in the matrix representation, we have

g

5 B T Ky (X + Xpa) — KEPAX,, — KIDAX, (17)
Vs,

OUS L K(Xae+ Xoo) — K LDA X, — KEPAX (18)
5vsa — H aq Ba 8B Ba T N pa ao

where Ky (7,7,) = 1/|7"y — 7| is the kernel of the Hartree energy and KLP# is the kernel

of the LDA XC energy KIDA(F),7,) = 62ELPA /5p,(71)0po (72). Insert Egs. 17 and [18] into



Eq. |16 and note 6E,/0u, = —3V?u,, we obtain

OF 1
5 P _ —5[1 — (Xoa + Xap) Kir — Xoa KEPA — X s KEPAV 20,
7 1
—5[—()(0,& + Xog) K — XagKED® — Xao KRNV ug. (19)

Similarly, for the spin 8 we have

0E 1
= I; = 5l = (X + Xs) Ky = XpsKig" = Xpo K 5" V2 ug
1
—5 [ (Xap + Xpo) Ky = Xpa Ko™ = Xgg K" V2t (20)

To simplify the derivations, we re-write Eqgs. [19] and [20] as

SE, 1,
— ty — =V2u, 21
0Vs o 2v Y (21)
SE, 1,
= t5 — =V2ug. 22
Song T gV U (22)

where ¢, and t3 contains all the terms on the right-hand side of Egs. [19| and except the

terms involving the identity matrices, and are

ta 1 Xaa Xoeﬂ U1

=3 (23)
tﬁ Xﬁa ng (%)
with
v = (Ky 4+ KM Vua + (Ky + K2PY)Vug (24)
vo = (K + K52 Vua + (Ky + K55t ) Vug. (25)

The right-hand side of Eq. can be calculated with the first-order perturbation theory

by solving the Sternheimer equation for a perturbing potential whose spin-a and spin-f



components are v; and v, respectively.®?
Inserting Eqgs. 21 and 22]into Eq. [I5] and noting that u, equals vy, at the convergence,

we obtain the regularized OEP equation

MEJ;;L?PA) + ta Xaa Xaﬁ %VQ 0 Uxep,a 2
8(Epe—Bt) | 4 - Xso X ! 0 V2 | 0
T ome T8 o BB 2 Vxepf

Compared to the original OEP equation [I5] Eq. 26]is regularized by the additional Laplacian

terms which increase as ¢? in the Fourier space and suppress the unphysical oscillations in

VUxcp,o -

2.4 Analytical forces

Next, we derive the analytical forces for the total energy defined in Eq.[2] E depends on the
atomic positions {R;}, the KS orbitals {¢;,}, and the KS potential v,, (through E,). In
this work, Kleinman-Bylander norm-conserving potentials (NLPSs) are used.**** v, , only
contains the local potentials of these NLPSs and does not contain the nonlocal projectors.

The analytical force for atom i is calculated as

dE

dR
with the three components
OF  dvs,(7)
S dr® 2
Z/avsﬁ dR; ' (%8)
oF 8gz§w ) 4
——dr 29
Z Z/ 00is () OR; (%9)
- 8E
Fie=——. (30)
OR;



F;, is due to the change of v, with {ﬁfz} fixed. Since OE/0vs, = 0 at convergence, we have
Fiy = 0.

Next, we discuss ﬁib. When ]-?il changes, both the local potential and the nonlocal
projectors of atom i’'s NLPS change. In Eq. , 8¢ig/8}§i is calculated by only considering
the change of atom i’s nonlocal projectors, since the change of the local potential (contained
in vs ) has been considered when calculating ﬁm. a%/afzi can be calculated by solving the
Sternheimer equation for a variation of atom #’s nonlocal projectors with the KS potential

fixed. The term 0E/0¢;, in Eq. [29|is calculated as

0B 8(Ts+J + Bept + Eu = TS) (B + AE,)

— = — + — 31
56 (7) 560 (7) 56007 31)
in which the first part on the right-hand side is computed as
0Ts+J+ FEepy + Epyy — TS
( : : ) = fia[eia - (UgI;?gA + chp U)]¢iav (32)

5¢ia’

where €;, and f;, are the eigenvalue and occupation number of the orbital i, respectively.
In Eq. 0E../0¢;s has already been calculated during the OEP calculations and can be

directly used here to save the computational cost. §E,/d¢;, in Eq. [31]is calculated as

_ 1+ 2 5“0( ) 3
5% - Z/ Vi (1) (33)

Since v, ,, is fixed for the calculation of F i, the change of E, is only due to the changes of

the Hartree and the LDA XC potentials through ¢;,, and we have

5u0'<Fl) - _ |:| 1 r )k’LDA( ) fzo¢za( ) (34>

8io (1) ol T

r— 17|

For F;. in Eq. , é?E/aéi is calculated by only considering the explicit dependence of
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E on Ri, which gives

OE  O(Eew + By + AE))

- : 35
OR; OR; (35)

where F,,; is the nonlocal pseudopotential energy due to the nonlocal projectors of the NLPSs.
The last term above needs some special treatment. Note that F, explicitly depends on Rl

through v.,; that consists of the local potentials of the NLPSs. By the chain rule, we have

dri, (36)

% _/ aEp leoc,i(f’l)
OR; Qioei(Th)  OR,

where vj,.; is the local potential of atom i’s NLPS. In this work, avloc,,-/aéi is calculated

using the centered finite difference method by slightly displacing the atom .

2.5 The flowchart of the self-consistent OEP calculations

The flowchart of our OEP scheme is similar to the conventional KS-DFT calculations. The
major difference is that at each iteration a self-consistent KS-DFT-LDA calculation is per-

formed with an additional external potential vy, (7). The flowchart is given below.

1. Perform a self-consistent KS-DFT calculation with the Perdew-Burke-Ernzerhof (PBE)
functional®® to obtain the initial guess for the KS orbitals, based on which we calculate

Uxep(T) by solving the OEP equation [26]

2. Perform a self-consistent KS-DFT-LDA calculation with vy, (7) being an additional

external potential.
3. Based on the results from Step 2, obtain a new vy, () by solving the OEP Eq. .

4. Check the convergence of vy, (7). If it is not converged, go back to Step 2 for the next

iteration.

The convergence of vy, () can be accelerated by performing the Pulay mixing®? at Step 3.

11



3 Numerical Details

Our new OEP scheme is implemented in the ABINIT program.®® The OEP equation [26] is
solved using the minimal residual method (MINRES) method.*** MINRES is not precon-
ditioned in this work. When a reasonable regularization parameter is used, its convergence
is fast. If the regularization parameter is very small, such as 1075, the convergence becomes
slow. The product between the KS linear response matrix and a vector is calculated by solv-
ing the Sternheimer equation.”® NLPSs are used for all calculations. For N, C, O, Al, Si, Ga,
As, and Cu, their NLPSs are generated using the FHI98pp program.?? For Ti, Fe, and Mn,
the optimized norm-conserving Vanderbilt pseudopotentials are used,?® which is more accu-
rate due to the inclusion of the semicores. All the structures used in the OEP calculations
are relaxed using the Vienna Ab initio Simulation Package (VASP) program.* !

The kinetic energy cutoffs for the calculations of Ny, Al bulk, Si bulk, CO/Cu(111), Fe
bulk, GaAs, TiOs, Mn3Oy4, and the isomerization reactions are 800 eV, 500 eV, 800 eV, 600
eV, 1200 eV, 800 eV, 800 eV, 800 eV, and 800 eV, respectively. The Fermi-Dirac smearing
is used for all calculations. For Al bulk, Si bulk, CO/Cu(111), and Mn3O, calculations, a
smearing temperature of 0.1 eV is used. For TiOy and GaAs, a smearing temperature of 0.05
eV is used. For Fe bulk calculations, a smearing temperature of 0.2 eV is used.

For Al bulk calculations, the Monkhorst-Pack k-point mesh®® of 8x8x8 is used for the
face-centered cubic (FCC), body-centered cubic (BCC), cubic diamond (CD), and hexagonal
close-packed (HCP) structures. For the simple cubic (SC) structure, a k-point mesh of
10x10x10 is used. The unit cells contain 4, 2, 1, 2, and 4 atoms for FCC, BCC, SC, CD,
and HCP structures, respectively. For Si bulk calculations, a k-point mesh of 8x8x8 is
used for the CD, hexagonal diamond (HD), /-tin, body-centered-tetragonal 5 (bct5), SC,
BCC, FCC, and HCP structures. A k-point mesh of 4x4x4 is used for the complex body-
centered-cubic (BC8) structure.** ™! Details about these silicon structures can be found in
Ref.®253 The unit cells contain 2, 4, 8, 1, 2, 4, and 2 atoms for the CD, HD, BCS8, B-tin,

beth, SC, HCP, FCC, and BCC structures, respectively. For TiOs, the unit cells of anatase

12



and rutile both contain six atoms. A k-point mesh of 4x4x4 is used for both anatase and
rutile structures. For GaAs, a k-point mesh of 6x6x6 is used for both zincblende and
wurtzite structures. The unit cells contain two and four atoms for zincblende and wurtzite
structures, respectively. For CO/Cu(111), the copper surface slab contains four layers, with
a 2 x 2 surface. A k-point mesh of 4x4x1 is used in all calculations. For Mn3Oy,, a k-point
mesh of 3x3x3 is used in all calculations. For BCC Fe, a k-point mesh of 6 x 6 x 6 is used,

and the unit cell contains two atoms.

4 Results and discussions

4.1 Convergence test

With the regularization, we can obtain well converged solutions to the OEP equation for
a reasonable A\, which leads to good convergences for the DFT calculations. In Fig. [1| we
show the convergences for three systems CO/Cu(111), BCC Fe, and Mn3O,4. For Mn3Qy, its
ferromagnetic state is used. For all systems, the total energies converge to 10~* €V within five
iterations. The convergence of CO/Cu(111) is slower, which should be due to the difficulty
of solving the OEP equation in the vacuum region. We address that, for all the systems
without vacuum studied in this work, their convergences are as excellent as BCC Fe and
Mn;30y.

The observed fast convergences are due to several reasons. First, a self-consistent KS-
DFT-PBE calculation is performed at the start, which generates a good initial guess for
the later OEP calculations. The second reason is that we only iterate vy, which is a small
part of the KS potential. The last important reason is that, by iterating vy.p, we avoid the
“charge sloshing” problem caused by the Hartree potential 4% As a result, there is no need
to precondition the difference of vy, between successive iterations. Note that the charge
sloshing problem still exists in the self-consistent KS-DFT-LDA calculations (Step 2 in the
flowchart, Section [2.5).

13
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Figure 1: The convergences of the total energies for CO/Cu(111), Mn3O, and BCC Fe,
calculated with the regularization parameter A = 1074

4.2 Extrapolate energies to A = 0

The energies at A = 0 can be estimated by extrapolating the energies based on Egs. [12| and
13l As an example, the extrapolation for CD silicon is given in Fig. E decreases faster
as A approaches zero, due to the fact that the slope dE/d\ = E, increases as A decreases.
This observation is consistent with Eq. Similarly, Fxs also drops faster as A increases,
which is consistent with Eq. Based on Eqs. [12] and we extrapolate both F and Fgg
to A = 0 and obtained similar parameters from the fittings: o = 0.4624, ¢ = 2.54 x 1073,
Ey = —214.4761 eV for E, and o = 0.4033, ¢ = 4.51 x 1073, and Ey = —214.4760 eV for
FExg. Such similarities indicate that the asymptotic behaviors from Egs. [12] and [13|are valid.
Note that the obtained « are smaller than 1, which validates our previous assumption that
the regularization term AE, goes to zero as A — 0. Figure [2 also shows that, for a given A,
FExgs is much closer to the exact energy than F, which is due to the fact that Exg is the

first-order corrected energy (see Eq. [10).

4.3 Performance of the new regularization scheme

A key result in this work is the new regularization scheme defined in Eq. [ which much

reduces the magnitude of the regularization term and in turn reduces the impact of the
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Figure 2: The extrapolation of the total energy E (black circles) and the first-order corrected
energy Fxs (red squares) to A = 0 for CD silicon. The data are fitted using Egs. |12|and

regularization on the total energy. In Fig. |3 the performance of the new scheme is compared
against the old scheme (Eq. [3) for CD silicon at two regularization parameters A = 1073 and

A = 10~ The error due to the regularization is defined as
Eer = EN) — E(A=0), (37)

where E(A = 0) is obtained through the extrapolation. Fig. 3| shows that the new scheme

reduces E.,, by nearly one order of magnitude for both A values. The reason is that we only

LDA

o+ with the new scheme, while, with the old

regularize the difference between v,., and v

scheme, we regularize the fluctuations of vp.

4.4 Forces

We now validate the analytical forces derived in Section 2.4, We evaluate the analytical
forces at different bond lengths of Ny and compare them against the benchmarks obtained
using the centered finite difference method by displacing the atoms by £0.001 A. The results
are given in Table [I A good agreement between the analytical forces and the benchmarks
is observed.

In practice, we hope that forces do not depend much on the regularization parameter A,
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Figure 3: The energy errors per atom for CD silicon, calculated using the old (Eq. [3) and
new (Eq. {4) regularization schemes.

Table 1: Forces (Ha/bohr) calculated using analytical (Fynay) and finite-difference (Fiq)
methods at different bond lengths (a, A) for Ny, with A = 1073,

a Fanaly Ffd
0.9 1.0702 1.0701
1.0 0.3409  0.3408
1.1 -0.0460 -0.0458
1.2 -0.2370 -0.2367
1.3 -0.3189 -0.3188
1.4 -0.3425 -0.3425
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so that structural properties can be accurately obtained using a reasonable A, without the
extrapolation. In Table [2, we investigate the dependence of forces on A. It is found that
the forces are not sensitive to A. This can be explained by Fig. [4 in which we plot total
energy versus bond length for different A values. The lower subplot gives the errors. The
errors are uniform over a wide range of the bond length, which is the main reason why the
forces are not sensitive to . Since the forces are insensitive to A\, we expect that structural
properties are also insensitive to A. This is confirmed in Table [3| which shows the structural
properties of Ny, CD Si, Fe BCC, and rutile TiOs calculated for a wide range of A\. To
calculate the bulk modulus of rutile TiO,, its structure is first relaxed, and then the unit cell
is uniformly scaled with the atoms’ fractional coordinates fixed. For BCC Fe, we also find

that the magnetic moment per atom is nearly unchanged (=2.94 pp) for all the A values.

Table 2: The analytical forces (Ha/bohr) calculated for different bond lengths (a, A) of Ny.

A
a 1072 1073 1074
0.9 1.0704 1.0702 1.0703
1.0 0.3408 0.3409 0.3408
1.1 -0.0460 -0.0460 -0.0460
1.2 -0.2371 -0.2370 -0.2369
1.3 -0.3189 -0.3189 -0.3188
1.4 -0.3424 -0.3425 -0.3425

Table 3: The equilibrium bond length b (A) and the force constant k (N/m) of Ny, the
equilibrium lattice constant a (A) and bulk modulus B (GPa) of CD silicon and BCC Fe,
and the equilibrium volume (A?) and bulk modulus (GPa) of rutile TiO,, calculated using
different regularization parameters.

N2 Si Fe TIOQ
A b k a B a B Vo B
1072 1.095 2300.50 5.444 96.1 2.928 139.7 61.801 309.2
1073 1.095 2300.63 5.444 96.2 2.927 139.3 61.660 312.0
107% 1.095 2300.59 5.444 96.2 2.928 139.3 61.660 312.0
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Figure 4: (Upper plot) Total energy versus the bond length for Ny, calculated using different
regularization parameter A\. The energies extrapolated to A = 0 are denoted as A = 0.
(Lower plot) The total energy error per atom (E\ — Fy—)/2.

4.5 Energy differences

One important task in practice is calculating the energy differences between systems. It is
important that the energy differences are not sensitive to the regularization parameter A, so
that we do not need to extrapolate the results to A = 0 in practice. In Table[d] we investigate
the dependence of the energy differences on A. All the energy differences are calculated based

on Fkg, and the errors due to the regularization are defined as

Eerrks = Exs(A) — Exs(A = 0). (38)

For all examples, except CO/Cu(111), the benchmarks (Fxs(A = 0)) are obtained by first
extrapolating each system’s energy to A = 0, and then calculating the difference between
the two extrapolated energies. For the CO/Cu(111) case, the benchmark is obtained by first
extrapolating the top-site adsorption energy (Ei,,) and the hollow-site adsorption energy

(Enollow) to A = 0 separately and then calculating the difference.
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Table 4: Tsomerization energies for the four reactions listed in Fig. . For Al, all energies (per
atom) are referenced to FCC Al. For Si, all energies (per atom) are referenced to CD silicon.
For TiOs, the energy differences (per formula) between the rutile (rut) and anatase (ana)
phases are listed. For GaAs, the energy differences (per formula) between the wurtzite (WZ)
and zincblende (ZB) phases are listed. For CO/Cu(111), we list the adsorption energies
at the top and hollow sites, and their differences. For Mn3Oy, the energy differences (per
formula) with respect to FiM6 are shown. The benchmarks (“extrap.”) are obtained by
extrapolating the energies to A = 0 (see the text for details). All energies are in eV.

A
5x 1072 1073 107*  extrap.
Isomerization
reaction 1 -0.0721 -0.0722 -0.0722 -0.0722
reaction 2 0.8475  0.8475 0.8476  0.8476
reaction 3 0.7802  0.7796 0.7795 0.7795
reaction 4 0.6196 0.6199 0.6199 0.6199
Al
HCP 0.0458  0.0459  0.0459 0.0459
BCC 0.1278  0.1278 0.1278 0.1279
SC 0.4211 0.4212 0.4212 0.4210
CD 0.8088  0.8089 0.8089 0.8090
Si
HD 0.0130  0.0119 0.0114 0.0111
BC8 0.1910 0.1899 0.1893 0.1891
[£-tin 0.3825  0.3818 0.3814 0.3811
beth 0.4028  0.4024 0.4020 0.4015
SC 0.5581 0.5577 0.5574 0.5569
HCP 0.6408  0.6405 0.6402 0.6400
FCC 0.6737 0.6734 0.6731 0.6729
BCC 0.6844  0.6841 0.6839 0.6837
TiO,
Eot — Eona 0.0746  0.0747 0.0747 0.0747
GaAs
Evwy — E7p 0.0124 0.0124 0.0124 0.0124
CO/Cu(111)
Eiop 0.8611 0.8624 0.8630 0.8632
Ehonow 0.8234  0.8244 0.8249 0.8250
Fiop — Enoiow ~ 0.0378  0.0380  0.0381  0.0382
Mn304
FiM1 0.0386  0.0378 0.0378 0.0379
FiM2 0.1167 0.1160 0.1159 0.1160
FiM3 0.1364  0.1358 0.1357 0.1357
FiM4 0.0292  0.0293 0.0294 0.0295
FiM5 0.1433  0.1426 0.1425 0.1425

FM 0.2243 . 0.2240 0.2241  0.2241




We first examine the reaction energies of the isomerization reactions listed in Fig. |5l The
agreement with the benchmark is excellent (on the order of 0.1 meV) for all reactions and for
a wide range of A. Such a good agreement is due to the good cancellation of E.,, ks between
the reactant and the product. Taking reaction 1 as an example, with A =5 x 1073, E.,,. ks
is 4.6 meV for the reactant and 4.8 meV for the product, which gives an error of about 0.2
meV for the reaction energy. All the good results obtained for the following examples are
also due to the good cancellation of E.,, ks between systems.

(1) HC——C=—CH — H,C——=C——=CH,

CH,
(2) HC—C==CH —
HC=—=CH
i i
@) c —  HC CH
HiC” OH ~No 8
o
/ \
(4) HC CH, — CH, CH\
ne | N0 CH,
CHy—CH,

Figure 5: The four isomerization reactions used in this work. The reactions are drawn using
the ChemSketch®® program.

In Table [4] we calculate the energy differences between different Al bulk structures and
FCC Al. Again, a good agreement with the benchmarks is observed. Particularly, we are
able to well reproduce the small energy difference between the FCC and HCP structures.

Silicon is another good testbed, since many of its structures are close in energy. In
Table[d] all the energies are referenced to CD silicon. A good agreement with the benchmarks
is observed. Importantly, the new OEP method gives accurate energy differences between
several structures that are close in energy, e.g., the energy difference between CD and HD,
between [S-tin and bet), between HCP and FCC, and between FCC and BCC. In Table 4] we
also examine the energy differences between TiO,’s anatase and rutile phases and between
GaAs’s wurtzite and zincblende phases. Again, both energy differences are well reproduced.

We also examine CO’s adsorption energies at the top and hollow sites of Cu(111). Both

Eiop and Eygniow converge quickly with respect to A\. Even with A = 5 x 1073, they differ from
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the benchmarks by less than 2 meV. A more important quantity is the difference between
Eiop and Eyonow, which measures the relative stability of these two adsorption sites. We find
that (Etop — Ehollow) converges even faster.

The last example in Table [] is about the energy differences between different magnetic
states of Mn3O,4. This is a challenging example, since the cancellation of E.,, ks between
different magnetic states may not be as good as the non-spin-polarized cases, due to the
fact that the spin-up and spin-down electron numbers can be different for different magnetic
states. Our calculations mainly follow Ref.,”® and collinear spin-polarized calculations are
performed for all systems. The structure of Mn3O4 is shown in Fig. [l In Table [ FM
denotes the ferromagnetic state and FiM denotes the ferrimagnetic state. The directions of
the magnetic moments of the six Mn atoms (see Fig.[6) are (JJ1111) for FIM1, ($41111) for
FiM2, (T1J11) for FiM3, (T41)) for FiM4, (M1 11) for FiM5, and (141)1)) for FiM6.
All structures are fully relaxed with VASP using the LDA+U+J method®” with U = 4 eV
and J = 1.2 eV. In Table[d] all energies are referenced to FiM6 which has the lowest energy.
It is encouraging to see that the errors are less than 1 meV for all magnetic states and for
a wide range of \. We are able to reproduce the small energy differences between these
magnetic states that are close in energy, e.g., the energy difference (26 meV) between FiM2

and FiM5.

Figure 6: The unit cell for Mn3O4. Mn atoms are purple and oxygen atoms are red. To
better illustrate the coordination of Mn atoms, the periodic images of some oxygen atoms
are shown. The figure is made using the VESTA program.®®
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5 Conclusions

In this work, we developed a new self-consistent OEP scheme that allows us to derive an-
alytical forces based on the Hellmann-Feynman theorem. This is achieved by adding a
regularization term that regularizes the XC potential to the total energy. In addition, we
introduced a new regularization scheme to much reduce the impact of the regularization on
DFT calculations. The key is to regularize the difference between the XC potential and an
approximate XC potential, rather than regularizing the XC potential itself. The numerical
results showed that forces and energy differences between systems are insensitive to a wide
range of the regularization parameter. Therefore, many properties, such as ground-state
structures, vibrational frequencies, and ground-state electronic states, can be calculated us-
ing a reasonable regularization parameter, without extrapolating the parameter to zero. This
new OEP scheme is robust and nearly black-box (except for the regularization parameter).
With increasing computer power, DF'T calculations employing advanced, orbital-based XC
functionals will become popular in the near future. We hope our method will facilitate these

calculations, especially for applications where forces are required.
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A A modified HSE06 functional

The short-range exact exchange (EXX) of the HSEO6 functional is defined based on the
EXX derived from the adiabatic connection fluctuation-dissipation theory (ACFDT).n#761
The reason is that ACFDT-based EXX satisfies the sum rule of the exchange hole even for

the cases where the KS orbitals are fractionally occupied.®® The short-range EXX is therefore
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defined as

SR erfe(p|r — 7|)
E;L, — __za:z,fza Z]O’// |T—’f’1|

X i (7)o (71) G (F1) S5 (7) dr 'y (39)

where 1= 0.2 A~ and i and j loop over occupied orbitals. The original expression for Cijo
is Cjjo = 1 + sign(e;r — eja),5 where €;, is the orbital i’s eigenvalue. This expression causes
problems for calculating dEfR/ de;> when €;, and €j, are identical. In this work, we modified
Cij. by approximating the sign function with the tanh function, and the new expression is

Cijo = 1 + tanh(v(e;r — €;,)) With 7 set to 100 atomic unit.

B Calculate 6F,./dv;,

ESR is a function of the occupation numbers, eigenvalues, and orbitals. The derivative is

calculated as

5ESR OESE (wa OESE 5%
Ovs o (7 ZZ Ofior 0Vs (7 Z O€ie 05 (T

SESR (5gbw 1)
Z/5¢za Tl 51}50( )d ' (4())

The derivatives of EER with respect to fi,, €, and ¢;, are straightforward. With the first-
order perturbation theory, we have d¢;,/0v,,(F) = ¢4 (7). To calculate the last term in
Eq. , we note 0¢;,(71)/0vs o (1) = Gip (71, 7)dis (7), where G, is the KS Green’s function.

The last term of Eq. [40] then becomes

5ESR
Z / 6¢ZU QSZO' drl Z ¢ZU wza (41)
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where 1;,(7) is the orbital shift defined as
al) = [ p7)Gun(F, T (42)
with p(7) = ESR /8¢, (). 1is(F) can be efficiently calculated using the equation
(Ho = €io) [tig) = —(I = |i0) (i) [P) (43)

where H, is the KS Hamiltonian of spin o.
The other parts of the HSE06 functional are functionals that only depend on the electron
density, and it is easy to calculate their derivatives. For example, the derivative of the

long-range part of HSE(6 is calculated as

dri. (44)

OENY / SELR bpo ()
I5.5(T) N - dpor (1) dVs.4(T)

Note that dp,/dvs, is the KS linear response, so the above integral can be calculated using
the first-order perturbation theory. The calculation of §ELPA /v, , in Eq. [14] follows the

same route.
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