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Abstract—Real-time forecasting of non-stationary time series is
a challenging problem, especially when the time series evolves
rapidly. For such cases, it has been observed that ensemble
models consisting of a diverse set of model classes can perform
consistently better than individual models. In order to account
for the nonstationarity of the data and the lack of availability of
training examples, the models are retrained in real-time using
the most recent observed data samples. Motivated by the robust
performance properties of ensemble models, we developed a
Bayesian model averaging ensemble technique consisting of
statistical, deep learning, and compartmental models for fore-
casting epidemiological signals, specifically, COVID-19 signals.
We observed the epidemic dynamics go through several phases
(waves). In our ensemble model, we observed that different
model classes performed differently during the various phases.
Armed with this understanding, in this paper, we propose a
modification to the ensembling method to employ this phase
information and use different weighting schemes for each
phase to produce improved forecasts. However, predicting the
phases of such time series is a significant challenge, especially
when behavioral and immunological adaptations govern the
evolution of the time series. We explore multiple datasets that
can serve as leading indicators of trend changes and employ
transfer entropy techniques to capture the relevant indicator.
We propose a phase prediction algorithm to estimate the
phases using the leading indicators. Using the knowledge of
the estimated phase, we selectively sample the training data
from similar phases. We evaluate our proposed methodology
on our currently deployed COVID-19 forecasting model and
the COVID-19 ForecastHub models. The overall performance
of the proposed model is consistent across the pandemic. More
importantly, it is ranked second during two critical rapid
growth phases in cases, regimes where the performance of
most models from the ForecastHub dropped significantly.

1. Introduction

An ensemble of models has been studied extensively
and have shown to produce superior performance when
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compared to individual models [1]. In forecasting, ensemble
models, specifically, Bayesian model averaging (BMA) [2],
which are suitable for ensembling probabilistic forecasts,
have been shown to produce superior performance over
individual models in varied applications such as epidemi-
ology [3], [4], [5], weather predictions [2], hydrology [6],
political sciences [7], etc. Given, its wide-spread use in
probabilistic forecasting, we developed a multi-class BMA
ensemble model for COVID-19 case forecasting [8] to pro-
vide weekly forecasts to the CDC’s COVID-19 ForecastHub
(also referred to as The Hub) [9]. We have been one of the
teams contributing forecasts (listed as UVA-ENSEMBLE)
since July 2020 and have focused on incident cases and
hospitalizations at a gran- ular level. The constituent models
in the UVA-ENSEMBLE forecasting method include several
standard statistical, deep learning and compartmental mod-
els. Specifically, we employ autoregressive models and their
variants (AR with exogenous spatial regressor, ARIMA), an
LSTM model, an ensemble Kalman filter (EnKF), and a
compartmental model (SEIR). A detailed description of the
models is available in our work [8]. We retrain the models
every week to account for nonstationarity of the case time
series.

An ensemble model, despite providing robust perfor-
mances, is dependent on the quality of its constituent mod-
els. Despite the efforts of the forecasting community, there
is considerable lack of understanding of disease dynamics
as teams have struggled to predict the onset, growth rate,
peak size, and duration of the various waves. Achieving
good forecasting accuracy during the growth or surge phase
is of high importance as it enables the effective allocation
of medical resources which are strained during these times.
Hence, the ensemble models have suffered from outlying
forecasts and have failed to catch the local peaks [10],
a trend we have also observed in our ensemble model
forecasts.

Key observations from our real-time forecasting effort

e In the COVID-19 cases time series, we observe
three distinct phases characterized by periods of rapid
growth, plateau, and steady decline. The rapid growth
phases are particularly critical as they often lead to a
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severe burden on medical resources.

e An ensemble model, despite providing robust perfor-
mances, dependents on its constituent models’ quality.
Despite the best effort of the modelers, due to a lack
of understanding of the disease dynamics of the novel
virus, most teams struggled to forecast the waves,
including our models.

o A retrospective evaluation of our deployed model [8]
in The Hub across the forecasting weeks indicates that
the BMA model performs close to The Hub’s ensemble
model. Further, we performed model ablation analysis
to understand the influence of individual models on
the ensemble. Our analysis indicates that: (i) com-
partmental models are useful during the growth and
decline phases but tend to over-predict during the surge
and decline phases; (:¢) purely data-driven models like
LSTMs have a latency in picking up the change in
phases, but can quickly learn the patterns and (¢i7)
Statistical AR methods or Kalman filters based methods
show superior performance during the time of relative
steady phase of the pandemic.

These observations have prompted us to modify the en-
semble model training to incorporate the phase information
and propose a phase-informed BMA model. These new
methods employ big data analytics and machine learning
techniques such as transfer entropy [11] to improve forecast-
ing performance. The contribution of this paper is threefold
and is summarized as follows:

1.1. Summary of contributions.

Development of a new phase-informed BMA. We propose
modifying the BMA training where only training samples
corresponding to a particular phase are employed to deter-
mine the weights. This selective sampling helps influence
the BMA to assign higher weights to models with superior
performance during similar phases observed historically.
Identifying leading indicators from multiple data
sources. In the phase prediction, a major challenge is deter-
mining leading indicators to the case time series. We propose
a transfer entropy technique [11] to obtain the leading
indicators and then predict the phase for the target time
series as a function of the phases of the leading indicators
(sources).

Phase inference. We present a new, simple method to
address the problem of phase classification of a given time
series. The phase classification involves assigning each time
point to one of three phases {Surge, Plateau, Decline}. This
is achieved by approximating the time series as a piece-wise
linear signal and then inferring the phase based on the slope
of the linear fits.

Using the phase information, the BMA model is able to
leverage the context-specific historical performance of in-
dividual methods, thus leading to improved forecast per-
formance of the ensemble at critical phases. Although we
analyze the efficacy of the proposed training method using
our BMA model, the training scheme is fairly generic and
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can be applied to real-time forecasting tasks, for example to
the likes of COVID-19 Forecasthub ensemble models.

An outline of the steps included in the pipeline is given
in Figure 1.

1.2. Related Works

In epidemic forecasting, auxiliary data sources have
been employed extensively to improve forecast accuracy.
In influenza-like illness and dengue forecasting tasks, addi-
tional sources such as Google health search trends, medical
health records, and weather data have been incorporated in
model training and have shown to improve forecasting ac-
curacy [12], [13], [14]. Similarly, in COVID-19 forecasting,
mobility data, digital thermometers, medical records, etc.
[15], [16], [17], [18]. The COVIDcast [19] data repository,
has been able to aggregate data from multiple providers and
Facebook surveys. The utility of the dataset in forecasting
is discussed in [20].

Multiple measures exist for determining the information
flow between two signals; a popular method is the Granger
causality test [21] which determines the linear relationship
between signals. Unfortunately, we rarely observe a linear
relationship between signals in practice. Under such circum-
stances, the use of information-theoretic approaches such as
transfer entropy [11], mutual information [22], and symbolic
transfer entropy [23] have been shown to capture the source-
target information flows.

2. Phase-Informed Bayesian Model Averaging

Motivated by the observation that specific models per-
form better during certain phases, we propose a method
to supply the phase information during the BMA ensemble
training. In the BMA framework, we train independently,
one model per location. Considering K models per location,
the BMA assumes that the conditional density of observing
case count y given the forecasts fi,..., fx generated from
models My, Mo, ..., Mg is given by

K
plfis far o i) =D wrgr(lfr), (D

k=1

where wy, is the posterior probability of the k" model’s
forecast being the best one and g (y|fx) is the conditional
density of y given fi. With normal approximation for the
conditional density i.e. y| fx ~ N (fx,03%), (1) is a finite mix-
ture of Gaussians and we proceed to determine the weights
wyg and og. Given the distribution (1), the weights and
variance parameters are obtained as the maximum likelihood
estimate using the standard expectation-maximization (EM)
algorithm [2], which alternates between the E-step and the
M-step with the updates for wy, and o}, in the j" iteration
given by the (E-step)

7 Zf; wz(j_l)g(yt|f¢,t,0§j_l))

) wz(cjil)g(yt|fk,t,0;(gjil))
2ot
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Figure 1: Workflow of the proposed phase-informed BMA
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In the existing framework [8], 7 corresponds to the
previous N contiguous weeks of training samples, that is,
for a forecast week T, T = {T - 1,T —2,--- ,T — N}.
Given the highly non-stationary data, in order to ensure that
the most recent trend is captured, we consider only the most
recent N weeks of performance in the training and not the
entire set of historical forecasts.

Since the weights are estimated based on the individual
model performances over the past N weeks, this introduces
a latency in picking the best model during a phase change.
The BMA model has to observe sufficient forecasts from
the best performing model over the next few weeks to put
higher weights on it. This latency leads to the BMA model
producing underperforming forecasts.

We identify and address this issue by designing a BMA
ensemble that uses the knowledge of the relevant phase to
get improved forecasts. On that note, for a weekly case
counts time series, we first segment the ground truth week
indices into surge (S), decline (D), and plateau (P) phases.
Let Tg, Tp, and Tp be the set of indices (weeks) corre-
sponding to the surge, decline, and plateau, respectively.
The phase-informed BMA then considers all the historical
forecasts made by individual methods during the specified
phase for training the weights. That is, for a particular phase
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r € {S,D, P}, estimation of weights and variance in (2)
(M-Step) can be modified as

; 1
w}(cj)

_ Ly g - Deen il — S
;T |7;‘ = St N Zteﬂ 2kt

We next discuss the phase prediction technique that enables
us to determine 7.

2.1. Transfer Entropy for Identifying Leading In-
dicators

2.1.1. Data Sources. Since early 2020, [24] has collabo-
rated with data partners to collect, curate, and make pub-
licly available numerous real-time spatio-temporal COVID-
19 indicators. These indicators have been aggregated to
provide multiple views of pandemic activity in the United
States [19]. Some data sources have been observed to be
leading indicators of the case time series [20]. Additionally,
these indicators are available at multiple resolutions (state
level, county level, etc.). In this paper, we consider signals
only at the state-level as the reporting has been relatively
consistent and less noisy compared to county-level signals.
The set of sources or indicator signals are mainly ob-
tained through the COVIDcast application programming
interface [19]. Several signals are available at COVIDcast,
but we only consider signals that are categorized as early
indicators. The individual signals are as follows:
Doctors visits COVID-like illness (DV-CLI): Estimated
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percentage of outpatient doctor visits primarily about
COVID-related symptoms, based on data from health system
partners.

Facebook-survey-based COVID-like illness (FB-CLI):
Percentage of people with COVID-like illness symptoms
estimated from Facebook survey responses (average of ~
40,000 surveys per day).

Anti-gen COVID-19 tests (Testing): Percentage of anti-
gen tests that were positive for COVID-19 as provided by
Quidel.

Google health trends (GHT): This aggregated, anonymized
dataset shows trends in search patterns for symptoms. This
data reflects the volume of Google searches for a broad set
of symptoms, signs, and health conditions. We considered
keywords 'COVID-19 Symptoms’, "COVID-19 test’, ’Sore
throat’, ’loss of smell’, ’"COVID-19 Home test’ and consid-
ered the median of the relative frequency of searches of
these keywords.

COVID-19 Hospitalizations (hosp): The health and hu-
man services department provides multiple data concerning
COVID-19 hospitalizations. Here we consider the sum of
adult and pediatric confirmed COVID-19 hospital admis-
sions occurring daily.

It is to be noted that these data streams undergo a con-
siderable amount of revisions or backfills across days/weeks.
For example, DV-CLI data observed for the current day gets
revised substantially over the next few days or even weeks.
Estimating the backfill patterns is a non-trivial problem
and is referred to as nowcasting [20]. We do not attempt
nowecasting in this paper and consider the unrevised data as
observed on the date of forecasting in all the subsequent
analyses.

2.1.2. Transfer Entropy for Various Sources. Several
methods exist in literature for measuring information flows.
The most popular is the Granger Causality [21], a statistical
test, which looks at the linear dependence of the target time
series on the lagged source time series. However, many
of the signals of interest do not exhibit linear dependence
with the target time series, which is often the case, then
Granger causality test fail to capture the information flow.
Under such circumstances, information theoretic approach
of transfer entropy (TE) [11], [25] is shown to capture
the source-target information flows and has been employed
in different applications [26], [27]. TE computes the con-
ditional mutual information between a target and lagged
version of the source series. For a k£ order Markov process
Y the Shannon transfer entropy measures the information
flow from a process X to process Y and is defined as

> (v (e 0000 0)

yeY,zeX
ply(t + Dly™ @), w‘”t)) @
pyt+Dy® (@) )’
where y*) (t) = (y(t),...,y(t —k +1)) and (D (t) =
(z(t),...,z(t—1+1)) are the observed sequences of Y and
X, respectively.

TExov (k1) =

X log
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Given m data auxiliary data sources Xi,...,X,,, we
compute the transfer entropy for each pair (X;,Y). To
estimate the joint and conditional densities required in (4),
we consider the recent 42 weeks of data for each bi-variate
distribution (X;,Y’). We denote A = {1,...,m} to be the
index set of m auxiliary data source. Note that the set of
indicators can change over time and we denote let A(t) C A
be the set of leading indicators at time ¢ with non-zero TE
values.

In this work, TEs have been computed using the IDTxL
toolbox [28]. In the heatmap (cf. Figure 2) and the mosaic
plots in 3a and Figure 3b, we observe that the number
of leading indicators vary over the observed time period.
Figure 4a and Figure 4b describe the distributions of TE
(across all states) during two surge phases and the overall
observed time period. We observe from these two figures
that the distribution of TE for various sources change over
time. In-particular, we observe that GHT and DV-CLI are
both heavy tailed compared to other sources in the overall
observed time period whereas during the Delta wave hosp
and DV-CLI have higher TE values and during the Omicron
wave, only GHT has slightly higher TE values compared to
other sources while all other sources get similar TE values.
With this observation, we note that it is essential to re-
identify the leading indicators (with significant TE) with
every new set of observed data points.

2.1.3. Phase inference and Prediction. Once the indicators
are obtained, we segment the cases and the indicator time
series into different phases. Despite heterogeneity in the
COVID-19 time series, we broadly observe three phases
and classify the observed time period based on the rate of
change of reported cases: Surge (period of steep growth
in cases), Decline, and Plateau. The primary purpose of
phase classification is to capture distinct trends in the time
series and leverage that information to better train the BMA
model. We want to note that the definitions of phases are
subjective (several exist') and can be user annotated or
obtained through standard time-series change point detection
algorithms [29].

We first approximate the nonlinear time series with a
piece-wise linear function. We use a standard R package
segmented [30] to estimate multiple break-points. Note
that, in real-time forecasting, since we obtain a new data
point each week, the phase segments have to be re-estimated
each week. Given the new data point, we would want to
refine our estimates of phases. In order to ensure that all
of the historical phase estimates do not change, we apply
the segmentation each week on data starting from the most
recent two break points. The algorithm is described in
Algorithm 1.

Using the estimated break points {b1,...,b,,} with Al-
gorithm 1 for the ground truth yq,...,y;, we classify the
time interval between any two consecutive break-points as
a Surge (S), Decline (D), or Plateau (P) phase. We employ

1. https://www.cdc.gov/flu/pandemic-resources/planning-
preparedness/global-planning-508.html
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Figure 2: Temporal evolution of sources. Heatmap shows the total number of states for which an individual signal was
identified as a sources (signal with significant TE values) for each week. DV-CLI is a source for a significant number of

states for a majority of the forecasting weeks.
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Figure 3: Mosaic plot of the leading indicators for selected states during: 3a Delta wave (15 July 2021 to 15 August 2021)
and Omicron wave (15 December 2021 to 15 January 2022) and 3b overall observed time period i.e. from May 2021 to
July 2022. Here the width of a bar denotes the frequency for the overall trends for a state and height of each rectangle
within each bar represents the frequency proportion of a specific source.

a simple criterion for the phase classification, which defines
a time interval (b, by+1] as surge (or decline) phase if there
is at least a 10% increment (or at least a 10% reduction) in
the case count from the start of the time interval b, to end
of the interval by, and plateau phase otherwise. Let P(t)
and Py (t),..., Pn(t), be the phase time series for the piece-
wise constant versions (as defined in Algorithm 1) of Y (¢)
and X (t),..., X, (t) respectively. The algorithm to obtain
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the phase time series for a given time series is described in
Algorithm 3.

Let P®)(t) = (P(t),...,P(t — k+1)) and PP () =
(Pi(t),...,Pi(t —k+1)), then we assume that P(t) is a
Markov process that depends only on Py (t—1) = {P;(t —
1);i € A(t)} and P (t — 1), where 7 = max; 7;. That
is, the phase at time ¢ for the case count time series P(t)
can be written as a function of past 7 values of itself and
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Figure 4: Histogram of the observed transfer entropy (TE) across all states during 4a the Delta and Omicron wave, and

4b overall observed time period.

past 7; phases of the X; when i is restricted to the leading
indicators set A(t). Thus we have

P(t) = f(PT(t — 1), Pux(t — 1)), 5)

where f is a {S,D, P} valued random function such that
for a given phase sequence at time t — 1, P(7)(t — 1) = w

and PU(t — 1) = w;
S wp. pi(?)
flw,wi,...,wp) =< D wp. 1—po(t) —pi(t)
P w.p. po(t)

where the probabilities py(t) and p; (t) are estimated empir-
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ically at every time ¢ as
p1(t)
_HP® =S} (POt —1) =w, P (¢~ 1) = wizi € AW}
(POt — 1) =w, P (t—1) = w;i € A1)}

and
Pol(t)
CH{P®) = PYn{PM(t —1) = w, P (t — 1) = wi;i € A(t)}]
Bl HPO)(t—1) = w, P (t — 1) = wi;i € A(t)}] ‘

As an example, suppose we obtain a subset of signals
{1,2,5} as the leading indicators with lags {1, = 2,7, =
1,75 = 1}. Since the maximum lag is 2, 7 = 2. Thus P(t) =
(P(t_ 1)’P(t—2)), Paux(t) = (Pl(t_1)7P1(t_2)aP2(t_
1), Ps(t — 1)). Now, the vector w = (w,ws,wq,ws) =
[P(t_1>7P(t_2)a Pl(t_l)a Pl(t_Z)a P2<t_1)a PS(t_l)]
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Algorithm 1 Piece-wise linear fit

Algorithm 3 Phase classification

Input: Ground truth y(1),...,y(T)
Output: Piece-wise linear version of y(1),...
points {b1,...,bm}

1: Start with tg = 15

2: Get a piece-wise fit for y(1),y(2),...,

b(tO) < < b(tO)

3 B(to) « {1, b“U) b(tO)}

4: whllet0+1<t<Td0
Get a piece-wise fit for {ys : b(t 1) 5 < s <t} with break points
1<b) <pf) <<
6 b} emaxB(tfl) b3 emaxB( )\bf
70 B() « (Bt — 1)\ {b3, 631 U {1,687, b}
8: end while
9
0
1

,y(T) and set of break

y(to) with break points 1 <

b

: Let B(t) = {b1,...,bm}and bg =1
10: for 0 < i < m do

11: {g(t); b; < t < bjq1} is the linearly interpolation between y(b;)
and y(biy1)

12: end for

13: return g(1),...g(T) and breakpoints set {b1,...,bm}

Algorithm 2 Transfer Entropy

Input: Auxiliary sources A = {1,...,m}.
Observed target case count time series y(t).
Observed source time series x;(t), for each ¢ € A.
Output: Probabilistic estimate of P(t + 1)

1: Obtain phase time series P(t), Pi(t),...
Algorithm 3 for y, x1,...,Zp.

2: Compute h; = TEx,_,y for each pair (X;,Y) with
appropriate order ;.

3: Obtain A(¢) using Python package IDTxL.

T < MaX;ea(t) Ti

P(t) = (P(t),P(t—1),P(t — 7 + 1))

P, (t) from

e

s: for i € A(t) do
6: Pl(t) = (Pl(t),PZ(t—].),7P,L(t—7'1+].))
7: end for
8: Given Pi(t) = w;
no<—\{PZ(s):wl, ieAt),1<s<t—1}
9: if A(t) =0 or n, = 0 then
10 P(t+1)« P(t)
11: else
12:  while n,/t <0.1 do
13: update A(t) <= A(t) \ {j : hj = min;er() hi}
14:  end while _ _
5. Pt+1) < f(P(), Bi(t))
16: end if

17: return (p1(t), po(t))

In Figure 5, we illustrate the process of predicting the phase.

3. Results

In all our analysis, we consider aggregate performance
across three regimes, (¢) Overall-80 forecasts weeks (1
August, 2020 — 1 January, 2022), (i7) Delta wave surge

1600

Input: Time series y(t).
Output: Phase time series P(t).
Parameters: ¢§
1: Approximate y(t) with a piece-wise linear time series
g(t) with breakpoints by, ...b,

2: if yp,., > (1 +9)yp, then

3: P(t) «— Sforte (b“ bi-i—l]

4: else

5: if UYbspr < (1 - 5)yb1 then

6: P(t) < D forte (bi, bi+1]
7:  else

8: P(t) ~— P

9: end if

10: end if

region (15 July 2021 — 15 August 2021), and (4¢7) Omicron
wave (15 December, 2021 — 15 January 2022). The latter
two regimes are specifically considered as these correspond
to the surge phases where most models failed to forecast the
rapid increase in cases [10].

3.1. Retrospective Evaluation: A Comparison with
The Hub Models

Since early 2020, over 100 models from dozens of teams
have submitted forecasts to The Hub, with the numbers
varying each week. The model details are available in [31].
Among the several teams, only a handful have provided
forecasts consistently, especially at the county level. As a
fair comparison, we only consider teams that have been
providing consistent forecasts across most counties and tar-
gets since August 2020. It should be noted that across the
80 forecasting weeks, 15 models have provided a signifi-
cant number of forecasts. As the pandemic progressed, we
observed that the number of models started to drop after
July 2021. The teams provide probabilistic forecasts in the
quantile format. To compare the forecast quantiles of the
different models, we use the Weighted Interval Score (WIS),
the de facto standard in the epidemiological forecasting
community for probabilistic forecast evaluation [32]:
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where y is the observed value (ground truth case count
corresponding to a week) for a given location and date, F' is
the forecast defined in terms of the median m, upper quan-
tiles uy, and lower quantiles [y, of the predictive distribution,
respectively. K = 3 is the number of intervals considered.
The model performances are first ranked for each fore-
cast week and target horizon by considering its median
WIS score across all the counties (model having the lowest
median score is ranked one). We next determine the median
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Figure 5: An example of phase prediction.

ranking of different models during different regimes, and the
results are shown in Figures 6a and 6b for 2 weeks ahead
and 4 weeks ahead forecast horizons, respectively. The blue
bars, which corresponds to the median ranking computed
across all forecasting weeks, indicate that both BMA (UVA-
Ensemble) and PI-BMA are ranked around 6—7. Focusing
on the more challenging target of 4-weeks ahead (since
the uncertainty is higher), we observe that the PI-BMA
is one the top-ranked models during the critical phases
of Delta wave surge (median ranking of 2 out of 9)
and Omicron wave surge (median ranking of 2 out of
6). The PI-BMA’s performance indicates that the model
is able to effectively incorporate the phase information
and provide considerably better forecasts during critical
phases when compared to both BMA (UVA-Ensemble)
and the rest of the forecast hub models. It should be
noted that, the COVIDhub ensemble and COVIDhub-
trained_ensemble use forecasts from highly tuned indi-
vidual models but our model is able to out perform
them during the critical phases. This validates the use
of selective sampling of training data by ensembling
methods.

4. Conclusion

Based on the observations made during the COVID-19
forecasting efforts, this paper proposed a novel phase-based
Bayesian model averaging, a modification of the current
model. The paper provides three critical contributions, (4)
a phase-based sampling approach for training the ensemble,
(i) a novel transfer-entropy-based leading indicator identifi-
cation method, and (¢i¢) a phase prediction method that uses
the phases from the leading indicators to predict the future
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phase. The performance of the PI-BMA model validates
the utility of the phase-based training methodology. The
proposed method is fairly generic and can be incorporated
in most ensemble model.

In future work, we plan on exploring other variants of
transfer entropy. In addition, several of the auxiliary data
sources undergo revision and developing a model to correct
for it might improve phase forecasting.
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Figure 6: A comparison of several The Hub models perfor-
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regimes, respectively. Blue bars shows the median ranking
of models computed across all the forecasting weeks, orange
bars correspond to the median ranking of models computed
for the Delta wave’s surge phase, and green bars correspond
to the median ranking of models during the Omicron wave’s
surge phase. The rankings across different phases in-
dicate that the PI-BMA (red box) is able to provide
significantly better forecasts that our UVA-Ensemble
model, especially 4 weeks ahead, for critical surge phases
corresponding to the Delta wave (median ranking of 2)
and the Omicron wave (median ranking of 2).
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