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ABSTRACT

We study allocation of COVID-19 vaccines to individuals based on
the structural properties of their underlying social contact network.
Using a realistic representation of a social contact network for the
Commonwealth of Virginia, we study how a limited number of vac-
cine doses can be strategically distributed to individuals to reduce
the overall burden of the pandemic. We show that allocation of vac-
cines based on individuals’ degree (number of social contacts) and
total social proximity time is significantly more effective than the
usually used age-based allocation strategy in reducing the number
of infections, hospitalizations and deaths. The overall strategy is
robust even: (i) if the social contacts are not estimated correctly; (ii)
if the vaccine efficacy is lower than expected or only a single dose
is given; (iii) if there is a delay in vaccine production and deploy-
ment; and (iv) whether or not non-pharmaceutical interventions
continue as vaccines are deployed. For reasons of implementability,
we have used degree, which is a simple structural measure and can
be easily estimated using several methods, including the digital
technology available today. These results are significant, especially
for resource-poor countries, where vaccines are less available, have
lower efficacy, and are more slowly distributed.
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1 INTRODUCTION

New vaccines typically take a decade to develop and distribute, but
vaccines for COVID-19, the disease caused by the novel coronavirus
SARS-CoV-2, have been developed in record time to help mitigate
the raging pandemic. As of May 23, 2022, the reported numbers of
confirmed cases and deaths are over 83M and 1M in the US, and
over 525M and 6M worldwide, respectively. Vaccines offer a safe
and effective way to contain the pandemic quickly. However, the
supply of COVID-19 vaccines is limited at the beginning of the
pandemic, and in underdeveloped countries. It is a challenge how
to distribute vaccines in a timely manner to bring a pandemic under
control before most of the population are infected.

Vaccination priority is complex and intertwined with age, race,
occupation, health equity, geography, and politics. Data shows that
COVID-19 disproportionately affects individuals with comorbidi-
ties, as well as people of low socio-economic status and high social
vulnerability. There can be many criteria for prioritization, for exam-
ple: (i) risk of infection,; (ii) risk of death; (iii) risk of transmission if
infected; and (iv) occupation, such as healthcare workers, teachers,
cashiers, etc. The public seemed to agree with prioritizing people
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with serious comorbidities, certain occupations, and those who had
been disproportionately affected by COVID-19 [40]. Estimating
the consequences of different prioritization strategies is compli-
cated by production limitations, however. Additionally, vaccine
distribution requires complex logistical support, such as cold-chain
storage, transportation, qualified personnel, and scheduling etc. for
any prioritization scheme to achieve its results in an effective and
equitable manner. See [4] for a comprehensive discussion on this
topic.

The prioritization order used by the US Centers for Disease Con-
trol and Prevention (CDC) recommended healthcare personnel and
long-term facility care residents be vaccinated first; followed by
frontline essential workers, and those aged 75 years and older be-
cause they are at a higher risk of hospitalization, illness and death;
followed by those aged 65-74 years; followed by those aged 16-64
years with underlying medical conditions and other essential work-
ers. In this paper we retrospectively study the vaccine allo-
cation problem assuming a situation in January 2021, when
COVID-19 vaccines became available but were still limited
in the US. We are interested in a better allocation strategy, that
could have had a larger reduction of infections, hospitalizations,
and deaths, than the age-based one.

Our contributions. When vaccine supply was limited and emerg-
ing variants were accelerating the pandemic in different parts of
the world, as was the situation in early 2021, a natural question is:
can we prioritize vaccine distribution so as to significantly reduce the
overall burden of COVID-19 quickly?

We propose prioritization schemes based on properties of indi-
viduals within social contact networks with the goal of bending
the pandemic curve and improving overall pandemic outcome. We
synthesize a digital twin of Virginia, which is a detailed social con-
tact network model for the Commonwealth of Virginia (8 million
individuals), and use an agent-based model (ABM) to study the effec-
tiveness of various prioritization schemes. In contrast to other such
networks, our networks incorporate detailed information about
the population, their activities and the built infrastructure. Further
information on how such a digital twin is constructed and its struc-
tural properties can be found in [13]. Our ABM simulates disease
propagation and a complex set of interventions, including various
non-pharmaceutical interventions (NPIs) and vaccine allocation
schemes.

Our prioritization schemes based on simple, individual-based yet
computable, structural properties of the underlying social contact
network are motivated by: (i) recent advances in network science
that have studied such schemes in more abstract settings; (ii) our
ability to construct detailed, realistic social contact networks at
scale; (iii) our ability to simulate and assess such strategies even
for complex disease transmission models and public health control
measures; and (iv) recent progress in development of digital apps
that can be used for measuring structural properties in large pop-
ulations relatively accurately, rendering such schemes potentially
operationalizable.

Our prioritization schemes can be stated simply as follows: vac-
cinate individuals who typically exhibit high social contact (degree or
total contact time in the social contact network). Some key points to
note: (i) we focus on simple network structural properties that can
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be estimated in a privacy-preserving way, (ii) we do not insist on
strict ordering of individuals nor an exact estimation of their social
contacts, and (iii) while our analysis uses a realistic representation
of the social contact networks, implementation of the policy does
not require one to synthesize the social network.

There is folklore that degree-based heuristics to allocate vaccines
often work well. The folklore is based on mathematical results for
highly structured random networks or on computational experi-
ments based on relatively simple classes of social contact networks
[8, 37, 46]. But the folklore has never been tested in time-varying
realistic social contact networks such as the one constructed here
and intended to capture the network evolution due to adaptive NPIs
and vaccine allocation that is undertaken in a time varying manner.
Our results show for the first time that degree-based heuristics are
likely to work even for such time-varying social contact networks;
see Sections 5 and [13] for further discussions on this topic.

Our results suggest that in just two months (i.e. by the end
of March 2021), compared to age-based allocation, the proposed
degree-based strategy can result in averting an additional 56—110k
infections (8-16%), 3.2-5.4k hospitalizations (8—13%), and 700-900
deaths (6—8%) just in the state of Virginia. Extrapolating these results
per capita for the entire US, we estimate this strategy will lead to
3-6 million fewer infections, 181-306k fewer hospitalizations, and 51—
62k fewer deaths compared to the age-based allocation. The results
continue to hold qualitatively and show that we can avert many
more infections, hospitalizations, and deaths even if the current
social distancing measures are relaxed. Furthermore, similar results
hold even for vaccines with 50% efficacy; this is important, as most
resource-poor countries did not have access to high efficacy vac-
cines at this point in time. The basic intuition behind our results
is that vaccinating individuals with high degree not only protects
them but also confers significant protection to individuals who
come in close proximity in their contact network.

A natural question is: how can such individuals be identified? A
person could be designated as “high degree" through identifying
data or proxy characteristics to necessary statistical precision that
show the individual belongs to such a critical group identified by the
model. We discuss how currently deployed digital contact tracing
apps can be modified in a very simple manner to achieve the goal of
identifying high degree individuals in [13]. Such individuals can also
be identified by observing that certain occupations naturally lead to
a high level of social interactions. Our methods are robust to partial
mis-estimation of these social contacts and their implementation
does not require access to the social contact network. It’s worth
pointing out that our results are consistent with high degree-
based strategies but implementation of such policies is the
key.

2 EXPERIMENT SETTINGS AND DESIGN

For the experiments, we use an agent-based simulation model, Epi-
Hiper. The simulation’s input parameters specify the population de-
mographics and contact network, COVID-19 disease model, initial
configuration Sy, NPIs, and vaccination schedule. The simulation
output is a dendrogram: a directed graph that tells us who infects
whom and on what day. From the output data, we can compute
epidemiological measures such as daily new infections, cumulative
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Figure 1: The COVID-19 disease model is represented as a prob-
abilistic timed transition system (PTTS): the state transitions are
probabilistic, and, in many cases, are timed, i.e., transitions after a
given time period. An individual starts from the Susceptible state.
The dashed lines represent state transitions triggered by either in-
teractions with infectious individuals or vaccination. The solid lines
represent probabilistic timed state transitions.

infections, prevalence in each age group, total hospitalizations, and
deaths, as well as many other measures.

2.1 Simulation parameterization

The initial settings are calibrated to the conditions in Virginia as of
January 1, 2021. Every simulation is run for 90 days, until March
31, 2021. Since the simulations are stochastic, each simulation is
repeated for 30 replicates, and distributions of the measures are
computed. The boxplots and curves in figures presented in Section 3
(Figure 2 through 8) are all based on data from 30 replicates. The
curves show an uncertainty of one standard deviation above and
below the mean.

Disease model. The disease model is the best guess version of
“COVID-19 Pandemic Planning Scenarios” prepared by the US Cen-
ters for Disease Control and Prevention (CDC) SARS-CoV-2 Model-
ing Team [11]. It is an SEIR model where states and transitions are
shown in Figure 1. Individuals of different age groups have differ-
ent infectivity and susceptibility; dwell time distributions and state
transition probability distributions are stratified by the following
age groups: preschool (0-4 years), students (5-17), adults (18-49),
older adults (50-64) and seniors (65+). Furthermore, individuals that
are vaccinated have different disease parameter values than those
that are not vaccinated. Detailed parameterization for unvaccinated
individuals is summarized in [13].

Initializations. The simulations are initialized at the county level
by age group using the detailed data of confirmed cases from [49].
The initialization specifies the health state of each individual. Based
on county-level cumulative confirmed cases through December 19,
2020, we derive the number of prior infections in each county by
scaling the cumulative number by a case ascertainment ratio of 3
(i.e., only one third of all infections are reported), then computing
the number of prior infections in each age group of this county
using the age distribution in cases. We randomly choose individuals
in each age group in each county and set their health states to
recovered to reflect that they have already been infected. Based
on county-level daily confirmed cases from December 20, 2020
to January 5, 2021, we derive the number of individuals that are
infected each day by the same scaling, and seed the simulation by
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setting randomly chosen individuals to exposed by day in each age
group of each county.

Non-pharmaceutical interventions. We consider four NPIs: (i)
Infectivity reduction (IR). Infectivity is universally reduced (by 60%)
through preventive behavior, e.g., mask wearing and hand washing.
(ii) Generic social distancing (GSD). A fraction (25%) of the pop-
ulation chooses to reduce non-essential (shopping, religion, and
other) activities. (iii) Virtual learning (VL). A fraction (50%) of K-
12 students choose virtual learning. (iv) Voluntary home isolation
of symptomatic cases (VHI). With probability 75%, a symptomatic
person chooses to stay home for 14 days, reducing the weights on
household contacts by 50%. For this person, all outside contacts
are disabled and at-home contacts are reduced by 50% temporarily
during these 14 days.

Scenarios based on relaxing social distancing measures. We
assume that these NPIs are in place when a simulation starts, but
adherence may change during the simulation. We consider three
scenarios for adherence to the NPIs:

o As-is. NPI parameters remain the same for the duration of
the simulation.

o Slow relaxation. NPI parameters change every 30 days from
January 30, 2021, so that in 7 months, infectivity reduction de-
creases from 60% to 10%, generic social distancing decreases
from 25% to 10%, and virtual learning decreases from 50% to
25%. Note that this is used to specify the speed of relaxation.
Nevertheless the results are only reported for the period
until end of March.

o Fast relaxation. NPI parameters change every 30 days from
January 30, 2021, so that in 5 months, they reach the same
levels as in the slow relaxation scenario.

2.2 Vaccination: supply, schedule and priority
groups

Vaccine schedule. In the experiment, we consider a vaccination
schedule of 25 million people being vaccinated per month in the
US, starting from late December 2020. Assuming that vaccines are
allocated to all states proportional to population size, Virginia has
650K people being vaccinated per month. We also consider a sched-
ule where vaccination in Virginia occurs at half this rate. Therefore
we consider three vaccination schedules: none (no vaccination), fast
(vaccinating 650K people per month), and slow (vaccinating 325K
people per month). The later schedule is intended to capture the
current challenges faced in distributing the vaccines to individuals.
For simplicity, all individuals vaccinated during each month are
assumed to be vaccinated on the first day of that month; spreading
the vaccines over the month does not change the overall results by
much.

Vaccine efficacy. Overall vaccine efficacy is characterized by three
numbers: (i) ey, efficacy against infection; (ii) ep, efficacy against
severe illness (requiring hospitalization or leading to death) given
infection; and (iii) er, efficacy against onward transmission given
infection. We assume that e = 90% and ep = 50% starting only 21
days after vaccination. In our sensitivity analyses, we also consider
e; = 50%. In all cases, we ignore er.
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Vaccination prioritization. The Pfizer-BioNTech vaccine and the
Moderna vaccine were not approved for people younger than 16
years and 18 years, respectively, until May 2021. Therefore, we only
allocate vaccines to people who are at least 18 years old. Among
those people, we consider the following prioritization strategies.

o No priority. Everyone 18+ years old is vaccinated with the
same probability. This is our baseline strategy.

o Essential workers. This strategy targets those who work for
medical, care facilitation, retail, education, military, and gov-
ernment.

o Older people. This strategy prioritizes those who are at least
50 years old.

e High degree. Degree of an individual is the number of con-
tacts per day. This strategy targets those in the top quartile
among all 18+ years old in terms of degree.

e Long total contact (also denoted as weighted degree). Weighted
degree of an individual is the total contact time this indi-
vidual has with other people in a day. This strategy targets
those in the top quartile among all 18+ years old in terms of
weighted degree.

Most vaccines are allocated to the targeted groups, but we al-
low some to be given to other groups. This accounts for potential
inaccuracy and precision in identifying and locating the targeted
people. For example, since we do not know people’s daily number
of contacts, which may vary, we can only estimate it using proxy
attributes, such as age, household size and occupation, or from data
collected through digital devices. We consider the following rates
of enforcement: 100%, 80%, and 60%.

2.3 Experimental design

The design consists of 4 factors: (i) 3 adherence scenarios (as-is, slow
relaxation, fast relaxation); (ii) 3 vaccination schedules (none, fast,
slow); (iii) 5 prioritization targets (no priority, essential workers,
older people, high degree, high weighted degree); and (iv) 3 levels of
priority enforcement (100%, 80%, 60%). Combining (iii) and (iv) we
have the baseline (no-priority) plus 12 prioritized strategies named
according to the target group (essential, old-age, high degree, high
weighted degree) and the fraction of vaccine given to the target
group (100%, 80%, 60%), e.g., “essential 100%" or “high degree 60%".
We also consider vaccines with a 50% efficacy against infection (er)
and compare the effectiveness of degree-based vaccinations under
this assumption against that under 90% efficacy.

3 RESULTS AND ANALYSIS

In Figure 2, we show daily new infections under three scenarios (as-
is, slow relaxation and fast relaxation) without vaccination. If NPI
adherence can be maintained, then we expect infections to decrease
after January. With slow relaxation, the infections will fluctuate
around a level that will be a little higher than the January-end level.
With fast relaxation, the infections show a steady increase in the
next three months. The sharp increase every 30 days is caused by
the implementation of the relaxation of NPIs and does not have any
influence on the results presented. Next we show the effectiveness
of vaccination strategies under various assumptions. Due to the
page limit, many figures were omitted here but are available in
Section 3 of Supplementary Information [13].
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Figure 2: Daily number of new infections without vaccination un-
der different NPI relaxation scenarios. The sudden surge in the be-
ginning of each month is caused by NPI relaxation. Without NPI re-
laxation, the incidence peaks in early February, then starts decreas-
ing. With slow relaxation, daily incidence increases then fluctuates.
With fast relaxation, the incidence keeps rising,.

3.1 Effectiveness of degree- and weighted
degree-based strategies

Prioritizing vaccinations based on individual degree and weighted
degree are extremely effective in controlling the pandemic. In par-
ticular, depending on the scenario, the reductions in the number
of infections and hospitalizations by these schemes are over 50%
more than the reductions from the age-based prioritization schemes.
For example, assuming that the current non-pharmaceutical inter-
ventions remain at the same level over the next few months, our
experiment shows that by the end of March 2021, degree-based
schemes can result in 56-110k fewer infections, 3.2-5.4k fewer
hospitalizations, and 700-900 fewer deaths in the state of Virginia,
compared to age-based schemes. Note that the ranges come from
different levels of priority enforcement (three levels for both age-
based and degree-based schemes). Figure 3 shows the estimated
reductions by one of the age-based schemes and the further re-
ductions by one of the degree-based schemes. Extrapolating these
results for the entire US, we estimate that degree-based schemes
will lead to 3—6 million fewer infections, 181-306k fewer hospital-
izations, and 51-62k fewer deaths by the end of March, compared
to age-based schemes. If the NPIs are relaxed, the reductions in in-
fections, hospitalizations, and mortality are even more substantial.
This implies that when conditions worsen, the marginal gains from
a more effective strategy are even higher.

Figure 4 compares incidence reduction up to March 31, 2021,
under different prioritization strategies for the fast vaccine distribu-
tion schedule. We find that all strategies targeting either essential
workers or high degree people outperform the no-priority distri-
bution. The degree-based strategies reduce incidence more than
any other strategy. For example, with no NPI relaxation (as-is), all
degree-based strategies can reduce infections by over 20% while all
other strategies can reduce infections by at most 20%. Strategies
targeting older people perform worse than the no-priority distribu-
tion in terms of reducing incidence. Similar results are obtained for
the slow vaccine distribution schedule, as shown in Figure 5. One
reason to consider weighted degree-based heuristics is that they are
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Figure 3: Vaccination targeting old people can reduce (a) total infec-
tions, (b) total hospitalizations, and (c) total mortality significantly,
assuming current non-pharmaceutical interventions remain at the
same level. Vaccination targeting high degree people can further re-
duce total infections, hospitalizations, and mortality. Numbers in
the plots show total reductions up to the end of March 2021.

potentially easier to implement in the current digital apps; we will
discuss this further in later sections. All degree-based strategies
outperform the other strategies.

Targeting high degree people is also the most effective strategy
for reducing mortality. Prioritization of older people is effective
in reducing mortality compared to other strategies, but not when
compared to a high degree strategy. See additional figures in [13].
Figure 6 shows that prioritizing people with high weighted degree
(total contact durations) is even more effective than prioritizing
those with high degree. For example, with no relaxation of NPIs,
targeting people of high weighted degree can reduce infections by
about 23-30%, compared to targeting high degree people, which
can reduce infections by about 21-26%. In the case where NPIs are
relaxed, the strategy prioritizing high weighted degree can cause
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Figure 4: Total reduction in incidence under the fast vaccine
distribution schedule. Degree-based strategies outperform all
other ones, while age-based strategies are outperformed by all
other ones.
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Figure 5: Total reduction in incidence under the slow vaccine
distribution schedule. Degree-based strategies still reduce more
infections than other strategies and are more effective if accu-
racy is higher.

over 40% reduction in infections if it can be implemented with high
precision.

3.2 The high degree prioritization schemes are
effective even when we cannot accurately
estimate the degree of a node

Our results show that prioritization schemes based on degree and
weighted degree (total contact time) work even when they are not
accurately estimated. Specifically, even when we can only estimate
the degree for 60% of the nodes (as being in the first quartile or
not), we notice significant improvement in the overall control of
the pandemic. This is highlighted in Figure 7, where we compare
degree-based schemes of various accuracies with the age-based
scheme and show improvement even at lower levels of accuracy.
Targeting high degree people with only 60% accuracy improves
the reduction from 10% by the age-based strategy to 20% (with
no relaxation), from 15% to 30% (with slow relaxation), or from
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Figure 6: Comparison of degree and weighted degree-based strate-
gies under fast vaccine distribution schedule. Both can reduce infec-
tions much more than the baseline strategy. The weighted degree-
based strategy outperforms the degree-based one at any prioritiza-
tion level.
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Figure 7: Even with lower (80% or 60%) accuracy in identifying and
vaccinating high degree people, this strategy is still much more ef-
fective than the age-based strategy in reducing infections.

17.5% to 33% (with fast relaxation). In fact, these strategies require
neither knowledge of the exact degree of each person, nor that of
the complete ranking of people by degree. They only depend on
knowing which nodes have high degrees (are in the top quartile);
they are tolerant to a certain amount of inaccuracy.

3.3 Effectiveness when social distancing
measures are relaxed

The effectiveness of degree-based strategies holds in three hypo-
thetical scenarios for social distancing: one in which there is no
relaxation, and the other two wherein social distancing is progres-
sively relaxed 5 or 7 months from January 2021. Our results show
that the value of these prioritization schemes is even higher when
social distancing measures are relaxed quickly. Recall in Figure 3 we
observe that, with no relaxation, the degree-based strategy results
in another reduction of 85K infections and an additional reduction
of 900 mortality, compared to the age-based strategy. In Figure 8,
we find that with relaxation of NPIs, the degree-based strategy can
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Figure 8: Reductions in infections from degree-based allocation
strategies are even larger when NPIs are relaxed when compared to
the age-based schemes. This figure shows reductions in infections
with: (a) slow relaxation of NPIs, and (b) fast relaxation of NPIs.

reduce even more infections (152K with slow relaxation and 192K
with fast relaxation) and more mortality (1.3K with slow relaxation
and 1.5K with fast relaxation; mortality figures available in [13]).
These observations highlight the importance of vaccination priori-
tization if the current NPIs are relaxed, which will likely happen as
vaccines get distributed.

3.4 Effectiveness with low efficacy vaccines

We have assumed that vaccines have 90% efficacy regarding protec-
tion against infection (ey). Our results also hold when the vaccine
efficacy is lower than that of the Pfizer and Moderna vaccines. We
study this for two reasons: (i) there was a discussion about giving
just one dose of these vaccines which may result in lower efficacy
(about 50%) or approving a low efficacy vaccine!, and (ii) most other
vaccines are traditional vaccines with a lower efficacy.

To this end we study the degree-based strategies assuming 50%
vaccine efficacy. We find that while the reduction in infections
decreases with low efficacy vaccines, it is still significant. For ex-
ample, regardless of NPI relaxation, a degree-based strategy with
even 60% accuracy can reduce infections by over 10% with fast

Lhttps://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-
update-fda-takes-action-help-facilitate-timely-development-safe-effective-covid
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vaccine distribution or over 5% with slow vaccine distribution, as-
suming ey = 50%. The reductions on hospitalizations and mortality
are also significant. The figures are omitted due to the page limit,
but interested readers can find more detailed results in Section 3.3
of [13].

4 DISCUSSION

These results are obtained using a realistic, data-driven and highly
resolved agent-based model and individual-based social contact
network of the Commonwealth of Virginia. The agent-based model
represents individual-level activities that are spatially explicit. It al-
lows us to: (i) capture details of within-host disease progression, as
well as between-host transmission, including the impact of vaccines,
(if) model the complicated set of interventions that are currently in
play, (iii) represent network-based vaccine prioritization schemes,
(iv) represent the expected vaccine deployment schedule, includ-
ing the expected mix of vaccine efficacy against infection, severe
illness, and onward transmission estimates, (v) incorporate current
surveillance data, and (vi) study counter-factual and hypothetical
scenarios, such as a steady relaxation of social distancing mea-
sures. This is the first study we know of that accounts for all of these
components, not just for COVID-19, but for any infectious disease
outbreak.

The efficacy of the proposed policy is based on the assumption
that the synthetic contact network is a realistic representative of
the real-world social contact world. While the structural metrics
may vary over time, we show the results are fairly robust to mis-
identification of high degree individuals. We believe both these
assumptions hold and discuss this in more detail below. Further
discussion on this topic can be found in the Supplementary Infor-
mation [13], where we describe how our networks are synthesized,
their structural properties, and the way the pandemic is simulated.

The potential efficacy of degree-based heuristics has been dis-
cussed in several earlier papers—this includes both provable analy-
ses on different random graph models (under mean field assump-
tions in some cases), e.g., [3, 8, 39], and empirical analysis in various
real world networks, e.g., [3, 15, 54]; a notion of weighted degree is
also considered in [15]. However, it is important to note that these
results are not directly applicable in our context for the following
reasons. First, many of the theoretical results show the efficacy of
these methods for simple power law-type models — the networks
we generate are similar to power law networks, but with a very dif-
ferent exponent. Additionally, the network exhibits other features
of social networks (local clustering, low diameter, and relatively
high expansion). Second, many of the results are shown when vac-
cines are applied at the start of the epidemic process, and the results
do not say anything of what happens when the vaccine is applied
temporally - this is important, because the temporal epidemic pro-
cess infects individuals, thereby changing the network structure
substantially, including the application of NPIs.

Nevertheless, the intuition behind the efficacy of such methods
is simply stated as follows: vaccinating high degree nodes not only
protects them, but also confers a higher level of indirect protec-
tion on their neighbors as they interact with many individuals
who might themselves be conferred similar protection. Our data-
driven approach shows, in fact, that real-world social networks
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have sufficient nodes of high degree to ensure that such heuristics
are effective. Note that, by virtue of degree bias in social networks,
even traditional approaches such as contact tracing will lead us to
high degree individuals. The proposed approach makes identify-
ing these individuals as a proactive, rather than reactive, step in
infection control. It is important to note, however, that just the pres-
ence of high degree nodes does not guarantee that degree-based
heuristics would work. See [13] for further discussion.

Identification of nodes with high degrees can be done in multiple
ways, including using digital apps that have been deployed for
contact tracing, interviewing individuals, and identifying typical
job categories or other demographic attributes that entail higher
social interactions. Further, even when other prioritization schemes
are considered, one can use high social contact to further prioritize
the distribution. For example, when distributing vaccines based on
age, one can further subselect individuals with higher social contact
in the case of limited supply.

Our results suggest that degree-based prioritization should be
considered by larger and resource-poor countries to quickly bend
the epidemic curve. The benefits of the proposed degree-based
prioritization are so significant that even a partially successful
campaign will likely have a large impact.

5 RELATED WORK

There has been a lot of work on analyzing interventions to control
epidemics, and this falls into two broad categories. The first involves
using a system of coupled differential equations to represent the
dynamics, e.g., [34, 35, 45, 52, 53]. Even though closed-form solu-
tions are not available even for simple models, when the system is
not very large, it can be solved by brute-force local search methods,
e.g., [35]. For some types of models, greedy strategies have been
used [51, 53].

The second class of methods is network or agent based, of the
form we study here, e.g.,[16, 21, 23, 31, 32]. Analyzing interventions
to minimize the expected outbreak size (or to optimize other epi-
demic outcomes) in network models is much harder. Prior work has
generally attempted to solve these problems by either simplifying
the network (e.g., assuming random graph models), or simplify-
ing the disease model. The simplest setting is that of transmission
probability of 1 (modeling a highly contagious disease), with a
fixed source. Even this setting is challenging, and work by [17, 24]
designs bicriteria approximation algorithms for this problem.

A variation of this setting is when the source is chosen ran-
domly, and, in this case, the problem of minimizing the number
of infections corresponds to deleting a subset of nodes such that
the sum of squares of the component sizes in the residual network
is minimized. A minor modification of the results of [6, 29] gives
approximation algorithms for this objective. We note that [47] uses
a stochastic optimization approach for minimizing the expected
number of infections. While their worst case approximation factor
can be quite large, their empirical performance is quite good. The
work of [3, 8] on the robustness of networks can be viewed as
interventions to reduce the spread of an outbreak.

It is well understood that the network structure has a significant
impact on the dynamics of epidemic spread. This has motivated
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a lot of research on modifying network properties to control epi-
demic spread. One of the most studied properties is degree, and
in many network models, as well as in a broad class of real world
networks, it has been found that removing the highest degree nodes
(equivalently, vaccinating high degree nodes) turns out to be very
effective [3, 8, 14, 15, 39, 54]. Cohen et al [14] show that a simple
decentralized strategy of “acquaintance immunization” has the ef-
fect of selecting high degree nodes. Another set of properties that
has been studied extensively are spectral properties, namely the
eigenvalues and eigenvectors associated with the adjacency matrix
of the graph and its Laplacian. It has been shown using multiple
approaches [20, 36, 41] that epidemic spread exhibits a threshold
behavior—if the spectral radius (the largest absolute value of an
eigenvalue) is below a certain threshold, the disease dies out. This
has motivated a considerable amount of work on reducing the
spectral radius to control the outbreak [37, 42, 43, 46, 50]. Inter-
ventions based on other structural measures, such as betweenness
centrality [26], coreness [27], and complex centrality [22], are also
proven to be effective in epidemic containment. But these measures
are difficult to estimate in real world contact networks. In general,
the theoretical studies do not apply to temporal vaccine allocation
problems — in such cases the network is constantly changing as the
epidemic spreads and vaccines are distributed in time.

In the context of COVID-19, where we have multiple approved
vaccine candidates, the role of vaccine efficacy, especially whether
it reduces susceptibility to disease or transmission becomes impor-
tant [30]. A study by Bubar et al. [9] identified that under different
underlying assumptions, vaccine prioritization policies vary from
20-49 years to adults over 60 years old. They also note that priori-
tizing seronegative individuals could improve the marginal impact
of a given policy. A similar study at a global scale using different
supply assumptions was reported in [25]. See [1, 7, 19, 25, 33, 45, 48]
for other recent papers on this topic. Multiple studies have also
identified the tradeoffs based on the underlying policy objectives
[10, 33] using compartmental models. In [44] a vaccination plan
starting with superspreaders followed by descending age groups
is shown to be more effective than an age-based plan, using an
age-stratified compartmental model where a superspreader group is
defined in addition to the age groups. The current allocation policy
in the US at the federal level is centered around the framework
developed by the National Academies of Sciences, Engineering, and
Medicine (NASEM) [38].

Very few papers have studied vaccine allocation problems when

there is a vaccine schedule (temporal vaccine allocation). Further-
more, they do not study how robust such methods are against un-
certainty in estimating the structural properties, which is a crucial
contribution of this paper. Nevertheless, these results do suggest
the potential value of such methods.
Digital apps to estimate network properties. Digital contact
tracing apps have been deployed in several countries [2, 5, 12, 18, 28]
with mixed success. Challenges include low penetration levels,
compliance, and accuracy of the apps in discovering neighbors
accurately. Our allocation method is based on exploiting simple
network properties that can be estimated using digital devices.
Digital contact tracing apps can potentially measure both degree
and weighted degree measures that we use here quite accurately.
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6 CONCLUSIONS AND LIMITATIONS

We present an analysis of various vaccine prioritization strategies
based on demographic attributes, occupation, and structural at-
tributes of social contact networks. Our results show that vaccine
prioritization schemes based on network degrees and total contact
time can provide significant reductions in incidence, mortality, and
hospitalizations. The results hold even for low efficacy vaccines
and even when degrees and contact networks are estimated only
approximately. Network-based prioritization is often more than
twice as effective as other strategies. The results suggest that such
methods should be considered when vaccines are available in lim-
ited supply; the benefits are likely to be greater in resource-poor
and highly populated regions of the world. The advantage of our
approach is in leveraging the mechanistic and network-based un-
derstanding of disease spread, and creating priority categories that
cut across age, risk, and other demographic characteristics. Simi-
larly, other high degree-based interventions, e.g., mask mandate on
high degree people or closure of places where many people mix,
may be effective too.

The study has a number of limitations: (i) our assumptions re-
garding the background interventions are our best estimates; (ii)
in the case that a vaccinated node gets infected, we assume that
they can transmit like any other node; (iii) our results depend
on estimating the degrees and weighted degrees of nodes. While
we have shown that the results are robust to mis-estimation, the
overall efficacy of the scheme does depend on the ability to infer
these degrees. Finally, the effectiveness results need to be combined
with ethicalness while being considered for vaccine prioritization
policies.
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