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Partially wetting droplets under an airflow can exhibit complex behaviours that arise from
the coupling of surface tension, inertia of the external flow and contact-line dynamics.
Recent experiments by Hooshanginejad et al. (J. Fluid Mech., vol. 901, 2020) revealed that
a millimetric partially wetting water droplet under an impinging jet can oscillate in place,
split or depin away from the jet, depending on the magnitude (i.e. 5–20 m s−1) and position
of the jet. To rationalise the experimental observations, we develop a two-dimensional
lubrication model of the droplet that incorporates the external pressure of the impinging
high-Reynolds-number jet, in addition to the capillary and hydrostatic pressures of the
droplet. Distinct from the previous model by Hooshanginejad et al. (J. Fluid Mech.,
vol. 901, 2020), we simulate the motion of the contact line using precursor film and
disjoining pressure, which allows us to capture a wider range of droplet behaviours,
including the droplet dislodging to one side. Our simulations exhibit a comparable
time-scale of droplet deformations and similar outcomes as the experimental observations.
We also obtain the analytical steady-state solutions of the droplet shapes and construct the
minimum criteria for splitting and depinning.

Key words: drops, contact lines, lubrication theory

1. Introduction
The application of a high-speed gas jet onto a liquid film or a droplet-laden surface is
relevant in many industrial applications, such as coating and drying processes (Tuck 1983;
Lacanette et al. 2006), oxygen steelmaking (Koria & Lange 1984; Dogan, Brooks &
Rhamdhani 2009) and immersion lithography (Berendsen et al. 2012). In particular, the
complex behaviours of liquid films under gas flows have been studied in diverse contexts.
Banks & Chandrasekhara (1963) experimentally and theoretically determined the shape
and size of the cavity formed in a liquid layer for varying jet speeds, as the air jet is applied
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from a nozzle. They also identified the formation of liquid drops as the jet velocity at the
interface exceeds a critical value. A theoretical study by Rosler & Stewart (1968) identified
three liquid film behaviours under a jet flow: stable, oscillating and dispersing cavities,
as a function of the jet velocity and surface tension coefficient. In addition, there have
been a series of theoretical studies (Moriarty, Schwartz & Tuck 1991; Mckinley, Wilson &
Duffy 1999; Mckinley & Wilson 2001) that consider the spreading of a liquid film under
spin coating or, equivalently, under a vertical air jet. Berendsen et al. (2012) combined
experiments and theory to study the dewetting phenomena and film rupture for thin liquid
layers. Their results showed that the time of film ruptures depends on the Reynolds number,
Re. More recently, Ojiako et al. (2020) studied the deformation and dewetting of liquid
films under a gas jet with direct numerical simulation (DNS) and successfully compared
the numerical results with experimental data.

In contrast to a high-speed gas jet impinging on a liquid layer, only a few studies have
considered the effects of a high-Reynolds-number airflow on partially wetting droplets
(Hooshanginejad & Lee 2017; Hooshanginejad et al. 2020; White & Schmucker 2021;
Hooshanginejad & Lee 2022), most of which focus on uniform airflow parallel to the solid
substrate. In this context, high-Reynolds-number airflows have Re of O(102) or higher,
where Re is associated with the external flow and the typical droplet size (Acarlar & Smith
1987). Fan, Wilson & Kapur (2011) experimentally demonstrated that the critical jet speed
leading to droplet motion is related to the contact angle and the droplet size. They also
provided a theoretical model based on a force balance between the capillary forces at the
contact line and the viscous stress induced by the airflow. Based on a diffuse-interface
method, Ding, Gilani & Spelt (2010) numerically simulated the motion and deformation
of a three-dimensional droplet on a solid substrate under an imposed shear flow and
studied the critical condition for droplet entrainment. Seiler et al. (2019) theoretically
and experimentally studied droplet motion and the underlying force balance of a partially
wetting droplet driven by a fully turbulent horizontal channel flow.

Distinct from the existing studies, Hooshanginejad & Lee (2017) experimentally
considered the effects of a more complex airflow on a partially wetting droplet by
placing the droplet behind a solid hemispherical obstruction which separates the incoming
airflow. Their results demonstrated that the droplet exhibits drafting, upstream motion and
splitting, depending on the droplet’s position relative to the reattachment length of the
separated airflow. However, the pressure distribution inside the airflow is not described
explicitly in their study.

More recently, Hooshanginejad et al. (2020) experimentally and theoretically
investigated the dynamics of a partially wetting droplet when a jet of air is applied
perpendicularly to the substrate. Their experiments revealed three distinct behaviours of
the droplet: droplet oscillating in place, splitting and depinning to one side of the jet,
depending on the strength and position of the jet. The authors also considered a lubrication
model of the droplet with a fixed contact line under a two-dimensional stagnation-point
flow. Although their model qualitatively captures the threshold of droplet splitting, there
are two major shortcomings of their theoretical model. First, the model cannot reproduce
the depinning behaviour of the droplet, as the contact line is fixed in place. Second, the
stagnation-point flow used in the model does not correctly describe the decay of the jet
speed away from the nozzle.

Inspired by the experiments and theory by Hooshanginejad et al. (2020), we develop a
new lubrication model of the motion of a partially wetting droplet in the present study.
The new model incorporates a moving contact line model with a precursor film and the
disjoining pressure which accounts for the intermolecular interactions near the contact line
(Schwartz 1998; Espín & Kumar 2015; Park & Kumar 2017). The presence of the precursor
943 A32-2
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film eliminates a stress singularity that arises when the no-slip boundary is applied at the
contact line (Huh & Scriven 1971; Savva & Kalliadasis 2011). In addition, the disjoining
pressure has been extensively used to model the liquid–solid interactions in thin films
(Herminghaus et al. 1998), which is also relevant in the droplet breakup mechanism in our
analysis. Another new feature of our model is the inclusion of a turbulent gas jet that is
modelled as a self-similar Gaussian form with a decaying centreline speed (Kriegsmann,
Miksis & Vanden-Broeck 1998; Schlichting & Gersten 2016). As the dominant effects
of the turbulent jet on the droplet are through the imposed normal stress, we neglect
the tangential stress in our model formulation (e.g. Lunz & Howell 2018). However, in
a different regime, the effects of shear stress from the turbulent jet can be modelled based
on an experimentally validated theoretical framework (Phares, Smedley & Flagan 2000)
or an empirical expression derived from the numerical simulations (Ojiako et al. 2020).

Overall, our new model can reproduce macroscopic droplet behaviours, such as droplet
splitting and depinning, as observed by Hooshanginejad et al. (2020), whereas it neglects
fast-time-scale droplet oscillations. Our analysis also includes the steady-state solutions
that rationalise the threshold of the droplet splitting and that of the droplet depinning.
The paper is organised as follows: we introduce the formulation of the mathematical
model and the numerical method in § 2. Section 3 comprises the results of the numerical
simulations and the analytical solutions, in comparison with the experimental observations
by Hooshanginejad et al. (2020). We conclude the paper with the summary and discussion
in § 4.

2. Theory

2.1. Model set-up and assumptions
We construct a mathematical model based on the experiments by Hooshanginejad et al.
(2020) and their characteristic parameters. The schematic of the model is shown in figure 1.
In a two-dimensional system, we consider a water droplet (viscosity µd = 8.9 × 10−4 Pa s
and density ρd = 997 kg m−3) attached to a solid surface, where the shape of the droplet
is specified as h(x, t). The initial droplet half-width is given by l, whose typical value
ranges from 1 to 20 mm, whereas the equilibrium contact angle θ0 is approximately 30◦.
A nozzle with a width d0 is placed above the substrate with a vertical distance H, where
d0 = 0.2 mm and H = 30 mm unless stated otherwise. The air jet from the nozzle has the
magnitude U0 that is varied from 5 to 70 m s−1, whereas the viscosity and density of air
correspond to µa = 1.8 × 10−5 Pa s and ρa = 1.2 kg m−3, respectively. The horizontal
distance between the centre of the nozzle and that of the droplet is characterised by a
dimensionless parameter, α, which has been normalised by l. Hence, α = 0 corresponds
to the case where the jet and the droplet are centred. As the nozzle is turned on, the air flow
strikes the droplet surface, and the droplet starts to deform and spread, causing the contact
line to move. The contact-line locations are specified as x = s1(t) and x = −s2(t). If the
centre of the jet and the centre of the droplet are not aligned (i.e. α /= 0), then s1 /= s2. For
α = 0, we assume s1 = s2 for simplicity, by neglecting the air jet fluctuations that may
cause symmetry breaking.

We now summarise the list of major assumptions that go into our analysis. First, as
mentioned previously, we treat the droplet as two-dimensional. In the experiments by
Hooshanginejad et al. (2020), the air jet is a two-dimensional sheet that is created using an
air knife. Hence, despite the three-dimensional nature of the droplet itself, the dominant
response of the droplet to the incoming two-dimensional jet may be reasonably modelled
using a two-dimensional system, as demonstrated by Hooshanginejad et al. (2020).
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Figure 1. Schematic of a two-dimensional partially wetting droplet that is deforming under an impinging jet
with magnitude U0. The x-axis is parallel to the solid substrate, while the z-axis is normal to the substrate. The
nozzle is located at a vertical distance H from the substrate and has an opening width of d0. The horizontal
distance between the initial centre of the droplet and that of the nozzle corresponds to αl. The shape of
the deforming droplet is given by h(x, t) with a precursor film with thickness b, subject to the external air
pressure denoted as Pa(x, z). The locations of the apparent contact lines are given by x = s1(t) and x = −s2(t),
respectively, while the corresponding contact angles are θ1 and θ2. The inset shows the initial droplet shape
(with half-width l and static contact angle θ0) prior to the jet application.

Second, we employ lubrication theory by assuming that the droplet is thin (h $ l).
Hence, we define a small parameter, ε ≈ tan(θ0/2), which is the characteristic aspect
ratio of the droplet (Hooshanginejad et al. 2020). Although we acknowledge that ε is
not strictly small based on θ0 = 30◦ (i.e. ε ≈ 0.26), lubrication approximations have been
successfully implemented even in the cases where the small-slope limits are not perfectly
met (Krechetnikov 2010; Espín & Kumar 2017; Hooshanginejad et al. 2020).

Third, we simplify the model of the impinging jet by neglecting the inherent unsteady
fluctuations and the shear stress on the droplet surface. Instead, we only focus on the
one-way coupling of the external pressure from the impinging jet on the droplet, which
allows us to treat the jet profile as steady and independent of the evolving droplet shape.
We further justify the neglect of the shear stress in §§ 2.2–2.3.

Finally, consistent with lubrication approximations, we neglect the inertia of the droplet.
When coupled with the neglect of jet fluctuations, this simplification eliminates the
fast-time-scale oscillations of the droplet that are observed in the experiments. Instead, we
focus on the evolution of the droplet profile on a longer time-scale and the macroscopic
droplet behaviours due to the impinging air jet. Overall, given the simplified nature of
our current model, our goal is to gain deeper understanding of the physical mechanisms
that drive different droplet behaviours (e.g. splitting versus depinning). We also focus on
qualitatively reproducing some key aspects of the experiments by Hooshanginejad et al.
(2020), rather than making quantitative comparisons.

2.2. Two-dimensional lubrication model
Based on lubrication approximations, the linear momentum balance inside the droplet in
the x- and z-directions can be simplified to

−∂pd

∂x
+ µd

∂2ud

∂z2 = 0, (2.1)
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∂pd

∂z
= −ρdg, (2.2)

where ud corresponds to the x-component of the velocity inside the droplet and pd(t, x, z)
is the internal pressure of the droplet. At the droplet–air interface z = h(x, t), the kinematic
boundary condition is given by

∂h
∂t

+ ud
∂h
∂x

= 0. (2.3)

The dynamic boundary conditions in the tangential and normal directions correspond to

µd
∂ud

∂z

∣∣∣∣
z=h

= τs, (2.4)

pd(x, h) = Pa(x, h) − Π(x, h) − σκ(x, t). (2.5)

Here, τs denotes the external shear stress acting on the droplet surface. In (2.5), the
pressure inside the droplet, pd, is balanced by the external pressure from the impinging
jet Pa, the disjoining pressure Π and the Laplace pressure σκ . Note that σ is the
surface tension coefficient and κ is the curvature of the droplet surface, where κ =
hxx/(1 + h2

x)
3/2. Then, in the limit of ε $ 1, κ can be approximated as hxx.

Motivated by previous studies of droplet motion (Savva & Kalliadasis 2011; Pham &
Kumar 2017, 2019; Charitatos & Kumar 2020), we use a combination of a precursor
film and disjoining pressure to model the contact-line dynamics, which is one of two
well-established methods used to model contact-line dynamics within the lubrication
framework. The alternative method involves specification of a slip law and contact angle
that depends on the speed of the contact line. However, because the position of the contact
line is not known a priori, this method tends to be computationally challenging. By
contrast, the current approach with a precursor film and disjoining pressure eliminates
the need for a slip law at the unknown contact line position. Instead, the precursor-film
thickness can be chosen to control the spreading speed, whereas the disjoining pressure
is set to obtain an equilibrium contact angle. As a consequence, this approach is easier to
implement computationally, as the contact-line location can be simply obtained from the
droplet profile (Pham & Kumar 2019).

Therefore, we incorporate a precursor film into our model and introduce disjoining
pressure that accounts for the intermolecular interactions near the contact line (Huh
& Scriven 1971; Savva & Kalliadasis 2011). Note that the precursor film describes
a microscopic layer of fluid that exists in front of the contact line, and it has been
experimentally observed during droplet spreading. The scale of the precursor film ranges
from a few hundred angstroms to a few micrometres (Popescu et al. 2012). To simplify
our model, we assume the precursor film begins at the edges of the droplet and extends to
cover the entire domain.

The disjoining pressure accounts for the London–van der Waals force between the liquid
and the substrate. Here, we use the following form of a two-term disjoining pressure to
describe the repulsive and attractive forces of the liquid and the substrate (Schwartz &
Eley 1998; Leal 2007):

Π = A
[(

b
h

)n
−

(
b
h

)m]
, (2.6)
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where b is the thickness of the precursor film. In addition, the Hamaker constant, A, is
related to the equilibrium contact angle θ0 (Schwartz & Eley 1998; Leal 2007), via

A = σθ2
0
(n − 1)(m − 1)

2b(n − m)
. (2.7)

Following the previous works, we choose m = 2 and n = 3 to provide an appropriate
physical description of contact-line motion along with a reasonable computational cost
(Espín & Kumar 2015; Park & Kumar 2017).

Finally, to obtain Pa, we model the external air flow as a far-field irrotational turbulent
free jet (Phares et al. 2000), where the characteristic Reynolds number is defined as
Re = ρaU0d0/µa and is of O(102) or higher. As the position of the nozzle in our analysis
is far from the substrate (i.e. H & d0), the centreline velocity of the jet is reduced from
U0, as the jet entrains more air and widens while approaching the substrate. Hence, we
employ the solution of the centreline velocity of the turbulent free jet to describe the decay
of centreline velocity (Banks & Chandrasekhara 1963; Schlichting & Gersten 2016). The
velocity profile of the air flow, U(x, z), is assumed to fit a classic Gaussian distribution
(Lunz & Howell 2018; Ojiako et al. 2020), in good agreement with the experimental
measurements (Lemoine, Wolff & Lebouche 1996):

U(x, z)
U0

= K1

√
d0

H − z
exp

[

− 1
C2

1

(
x

H − z

)2
]

. (2.8)

Here, K1 is an empirical constant ranging from 2.3 to 2.6, which has been experimentally
validated by Banks & Chandrasekhara (1963) for a wide range of U0 (i.e. 7.7–128 m s−1).
For simplicity, we set K1 = 2.5 in the present study. In addition, C1 ≈ 0.255, which is
obtained based on momentum conservation of the air jet between the nozzle and substrate:

ρaU2
0d0 =

∫ ∞

−∞
ρaU2(x, 0) dx. (2.9)

As the droplet profile is assumed to be thin in our model, we neglect the effects of the
droplet on the air jet itself. In addition, we further approximate the jet profile on the droplet
surface as that on the substrate, so that U(x, h) ≈ U(x, 0). Finally, the external pressure
distribution, Pa, can be derived by combining (2.8) and the Bernoulli equation:

Pa(x) − Pa(∞) = 1
2
ρaU2

0K2
1

(
d0

H

)
exp

[

− 1
C2

1

( x
H

)2
]2

. (2.10)

As we model the air pressure distribution with a far-field free turbulent jet, the changes in
air pressure due to the presence of the droplet is ignored herein.

In addition to the external pressure, the turbulent jet is also expected to impose
shear stress on the droplet surface, which can further deform the droplet via (2.4).
Phares et al. (2000) developed a theoretical framework for estimating the wall
shear stress under an impinging jet, which they also validated with experimental
measurements. Their results show that the wall shear stress τw under a two-dimensional
jet scales as ρaU2

0Re−1/2(H/d0)
−5/4. In § 2.3, we non-dimensionalise τs in (2.4) with

ρaU2
0Re−1/2(H/d0)

−5/4 and systematically compare the effects of shear stress with those
of pressure from the impinging jet.
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2.3. Evolution equation
Next, we non-dimensionalise the governing equations and boundary conditions using the
following characteristic scales:

u∗
d = ud

Us
, (x∗, z∗) =

( x
L

,
z
εL

)
, h∗ = h

εL
, b∗ = b

εL
, t∗ = tUs

L
,

P∗ = Pa

ρaU2
0
, π∗ = Π

εσ/L
, τ ∗

s = τs
√

Re
ρaU2

0(d0/H)5/4
,





(2.11)

where the asterisk denotes dimensionless variables. Here, Us = ε3σ/3µd is the
characteristic capillary speed, which comes from balancing µd∂

2ud/∂z2 with σhxxx by
combining (2.1) and (2.5). Note that L corresponds to the characteristic half-width of the
droplet, which is related to and yet distinct from the initial radius l. As further explained
in § 2.4, the introduction of L is necessary to initiate the simulations, as l is not known a
priori for all droplet sizes but is computed as part of the solution. The plot of the initial
droplet radius l as a function of the input parameter L is shown in figure 10 in Appendix A.

By integrating (2.1) and (2.2) and combining with (2.3)–(2.5), we derive the
dimensionless evolution equation for h∗(x∗, t∗):

∂h∗

∂t∗
= ∂

∂x∗

[(
We

∂P∗
a

∂x∗ − ∂3h∗

∂x∗3 + Bo
∂h∗

∂x∗ − ∂π∗

∂x∗

)
h∗3 − 3

2
We

(d0/H)5/4

ε
√

Re
τ ∗

s h∗2
]

,

(2.12)

with Weber number We = ρaU2
0L/εσ and Bond number Bo = ρdgL2/σ . Based on the

characteristic experimental parameters in Hooshanginejad et al. (2020), the magnitude of
We is around O(101) to O(102) whereas ε−1Re−1/2(d0/H)5/4 is approximately O(10−3).
Therefore, we presently neglect the shear stress term (Kriegsmann et al. 1998; Lunz &
Howell 2018) and further reduce (2.12) to

∂h∗

∂t∗
= ∂

∂x∗

[(
We

∂P∗
a

∂x∗ − ∂3h∗

∂x∗3 + Bo
∂h∗

∂x∗ − ∂π∗

∂x∗

)
h∗3

]
. (2.13)

Henceforth, we drop the asterisks for brevity and assume that all the variables (e.g. h, x, t
and Pa) are dimensionless unless otherwise stated. Note that the physical input parameters
(e.g. L, l, U0, H, d0) remain dimensional.

2.4. Numerical method
Equation (2.13) can be solved numerically within the domain [−L,L], with the following
boundary conditions:

h(±L, t) = b,
∂h
∂x

(±L, t) = 0. (2.14a,b)

Combining (2.13) and (2.14a,b), numerical solutions can be obtained by using a fully
implicit finite-difference scheme. All spatial derivatives are approximated by second-order
centred differences, and the time-integration is performed with the DDASPK iterative
solver (Brown, Hindmarsh & Petzold 1994). We set L = 5 with the spatial resolution
varying between 200 and 1000 points per unit length for all the simulations reported
herein. Note that most of the simulations are run using 200 nodes per length, as this
corresponds to the largest mesh size that produces mesh-independent results (see figure 12
in Appendix C). However, for U0 > 30 m s−1, a finer resolution in time is required to
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fully capture the droplet deformations, which also decreases the mesh size for numerical
stability.

For the initial condition, we first consider a fourth-order polynomial placed between
x = −1 and x = 1, such that the entire liquid profile within the domain is smooth and
satisfies (2.14a,b). The shape of the polynomial is determined by fixing the value of the
enclosed dimensionless droplet area A. The total area in the system is given by A + 2bL.
Next, we start the simulation with U0 = 0 m s−1 and allow the droplet to relax until it
reaches a steady state. We regard this steady-state profile as the initial droplet shape, from
which we extract the initial droplet radius l. Note that this initial droplet shape is slightly
different from the analytical solution for a sessile droplet, due to the presence of a precursor
film. If one employs an alternative method (e.g. slip law) to resolve the contact line motion,
it would be more straightforward to directly initiate the simulation with a sessile droplet
shape with radius l. In addition, t = 0 in the following discussion refers to the time at
which the jet is applied, after the initial droplet relaxation. Finally, at t = 0, we set the
values of U0 and α and run the simulations for t ∼ O(102), or until the droplet exhibits
a clear behaviour (e.g. splitting). The numerical solutions to the evolution equation are
presented in § 3.

2.5. Steady-state solutions
In addition to the numerical solutions to (2.13), we seek analytical solutions of the
droplet shape in the steady state. In this limit, the moving-contact-line model is no longer
an important factor because the droplet is static. Therefore, we neglect the effects of
disjoining pressure and the precursor film in order to obtain the steady-state droplet profile.
Based on the above discussion, (2.13) can be simplified as

d3h
dx3 − Bo

dh
dx

+ We β(x − α) exp

[
−2
C2

1

(
x − α

H/L

)2
]

= 0, (2.15)

where β = 4K2
1d0L2/C2

1H3. We solve (2.15) analytically with the following boundary
conditions:

h(s1) = h(−s2) = 0,

∫ s1

−s2

h dx = A. (2.16a,b)

Here, s1 and s2 are the dimensionless contact-line locations that have been normalised by
L. As the analytical solution to (2.15) can be obtained using a standard symbolic math
solver (e.g. Mathematica), we presently do not include the full expression of h(x) in the
manuscript for brevity.

Notably, s1 and s2 are unknown a priori for given dimensionless area A. Hence, we
simultaneously solve for s1 and s2 by imposing constraints on the contact angles, or

− dh
dx

(s1) = θ1

ε
,

dh
dx

(−s2) = θ2

ε
. (2.17a,b)

Here, we specify the values of θ1 and θ2 based on different physical situations, which
will be discussed more explicitly in the next section. Note that the division by ε stems
from non-dimensionalising dh/dx, which scales with ε based on the characteristic scales
introduced in (2.11).
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Figure 2. (a) Time-sequential images of the droplet hanging regime from the simulation and the experiment at
dimensional times, t = 0, 34, 130 ms. (i) The simulation results are for a droplet of l = 7.7 mm under a centred
jet (α = 0) with the jet speed U0 = 9.8 m s−1. (ii) The experimental results correspond to l = 7.7 mm (200 µl),
α = 0 and U0 = 6.6 m s−1. (b) We plot pd(x, h), the internal pressure distribution at z = h(x, t), as a function
of the normalised horizontal location, xN = (2x − s1 + s2)/(s2 + s1), at different time instants; pd(x, h)
corresponding to the three time instants in (i) are marked as solid black lines.

3. Results

3.1. Droplet behaviours
Previously, Hooshanginejad et al. (2020) experimentally studied the dynamics of a
partially wetting droplet under an impinging jet. In their experimental results, they divided
the observed droplet behaviours into three categories: (i) droplet reaches the equilibrium
state, (ii) the droplet moves towards one side and (iii) droplet splits into two. These three
droplet regimes are referred to as ‘hanging’, ‘depinning’ and ‘splitting’, respectively. In
this section, we reproduce the aforementioned regimes with our lubrication model for
varying U0 and α, in comparison with the experiments. We note that given the idealised
two-dimensional nature of the model, it is not reasonable to quantitatively match the
results of the simulations and experiments for the same parameter values. Instead, we
focus on demonstrating that the simulations can qualitatively reproduce all three droplet
behaviours and exhibit similar time scales. Hence, we fix the values of the initial droplet
radius, l and α, but use slightly different U0 from the experiments to simulate the
observed droplet motion. Specifically, we let l = 7.7 mm (corresponding to 200 µl in
the experiments), A = 1000, b = 10−3 and A = 0.5. Based on the current values of A
and b, the equilibrium contact angle θ0 is equal to 30◦, which matches the experimental
observation by Hooshanginejad et al. (2020). The simulation results are presented in
figures 2–4, along with the images from the corresponding experiments. We also include
the simulation videos of the evolving droplet shapes as supplementary material available
at https://doi.org/10.1017/jfm.2022.450.

Figure 2(a) shows time-sequential images of droplet ‘hanging’ for α = 0 from the
simulation (left) and the experiment (right). As the jet speed in both the experiment
(U0 = 6.6 m s−1) and the simulation (U0 = 9.8 m s−1) is relatively low, the droplet
deforms only slightly near the centre, until it reaches an equilibrium state. Note that, in
the experiments, the droplet continues to oscillate about the equilibrium shape, which is
not captured in the current model due to the neglect of the droplet inertia as well as the
fluctuations in the free jet.
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Figure 3. (a) Time-sequential images of the splitting regime from the simulation and the experiment at
dimensional times, t = 0, 170, 300 ms. (i) The simulation results are for a droplet of l = 7.7 mm under a centred
jet (α = 0) with the jet speed U0 = 19 m s−1. (ii) The experimental results correspond to l = 7.7 mm (200 µl),
α = 0 and U0 = 13.4 m s−1. (b) We plot pd(x, h), the internal pressure distribution at z = h(x, t), as a function
of the normalised horizontal location, xN , at different time instants; pd(x, h) corresponding to the three time
instants in (i) are marked as solid black lines.
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Figure 4. (a) Time-sequential images of the depinning regime from the simulation and the experiment at
dimensional times, t = 0, 225, 375 ms. (i) The simulation results are for a droplet of l = 7.7 mm under an
off-centred jet (α = −0.53) with the jet speed U0 = 17 m s−1. (ii) The experimental results correspond to
l = 7.7 mm (200 µl), α = −0.53 and U0 = 15 m s−1. (b) We plot pd(x, h), the internal pressure distribution
at z = h(x, t), as a function of xN for increasing time; pd(x, h) corresponding to the three time instants in (i) are
marked as solid black lines.

To gain understanding of the underlying physics, we plot the dimensionless internal
pressure of the droplet pd(z = h) over time in figure 2(b). Here, the horizontal axis xN
is the normalised location of the droplet contact line, i.e. xN = (2x − s1 + s2)/(s2 + s1),
so that the droplet is bounded within [−1, 1]. When the jet is first applied, pd increases
near the centre but gradually flattens due to the balance of the external, hydrostatic and
capillary pressures. Then, when the dimensional time reaches 130 ms, pd becomes uniform
throughout, which coincides with the new equilibrium state of the droplet. The value of
constant pd at the final time is higher than that at the initial time (i.e. U0 = 0 m s−1), as
the overall droplet shape has changed due to the external flow. However, it is important to
point out the existence of a large capillary pressure gradient near the contact line that is
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Droplet dynamics under an impinging air jet

balanced by a large disjoining pressure gradient, so the total pressure is only approximately
constant.

To consider the case of droplet splitting, we increase the jet speed over the threshold
(U0 > Ucr), whereas the droplet size and α remain unchanged from the hanging case. As
shown in figure 3(a), the droplet continues thinning at the centre due to the strong air jet
in both the experiment (U0 = 13.4 m s−1) and the simulation (U0 = 19 m s−1), in clear
departure from the ‘hanging’ regime. Then, at around 300 ms, the droplet breaks up and
forms two residual droplets. This new droplet outcome is made clear in the evolution of
the internal pressure pd. As shown in figure 3(b), no equilibrium state (i.e. uniform pd)
is reached in this simulation, as the pressure continues to increase near the centre over
time. In particular, near the time of droplet rupture (300 ms), the droplet height near the
centre is close to that of the precursor film b, allowing the disjoining pressure to become
dominant (Lenz & Kumar 2007). Then, the pressure difference between xN = 0 and near
the edges ensures that the fluid continues to drain from the centre, which, in turn, enhances
the pressure difference and eventually causes the droplet to rupture.

In figure 4, we consider the case with α = −0.53 that induces droplet depinning with a
jet speed of U0 = 15 m s−1 in the experiment and U0 = 17 m s−1 in the simulation. When
the jet is first applied, the droplet tends to spread out, with the contact line advancing from
its initial position on both sides. Shortly following the initial spreading, the droplet deforms
asymmetrically and gradually moves away from the nozzle, as illustrated in figure 4(a).
Specifically, the right edge (further from the nozzle) keeps advancing, whereas the contact
line on the left side changes its direction of motion and starts to recede, so that the droplet
as a whole moves to the right away from the nozzle.

This droplet dynamics can be understood by examining the dimensionless internal
pressure in figure 4(b). Namely, pd near the left contact line increases over time and
overcomes the large pressure from the nozzle. Around 225 ms, the pressure monotonically
decreases from the left to right edges, which is followed by the droplet depinning (see
figure 4a). Then, at 375 ms, the droplet is shown to have further dislodged away from the
nozzle. However, the droplet appears to be more asymmetrical in the experiment than
in the simulation, due to the continuous oscillations and the lateral flow of air in the
experiment that are not captured by our model. Hence, the two requisite conditions for
droplet depinning are (i) U0 that is not large enough to cause splitting and (ii) sufficient
asymmetry in the internal pressure set by α /= 0, so that the resulting pressure distribution
is either monotonically increasing or decreasing from one side of the droplet to the other.
Note that the direction of droplet depinning and the sign of the pressure gradient will
reverse for α > 0.

3.2. The case of a centred jet
In this section, we consider the case of a centred jet (α = 0) and identify the velocity
threshold for droplet splitting (Ucr), by combining the numerical simulations and
analytical solutions. For the simulations, we set A = 1000, b = 10−3 and A = 1. Then, to
obtain Ucr, we gradually increase the jet speed U0 with an increment of 1 m s−1 for given
L (or l) until the droplet behaviour transitions from ‘hanging’ to ‘splitting’. In figure 5,
the maximum U0 for droplet hanging is marked with an ‘x’, whereas the minimum U0
for droplet splitting is shown with a filled square. Then, Ucr is bounded within these
two marked values of U0 and is shown as a grey-shaded region in figure 5. Note that
resultant Ucr decreases with l, which is qualitatively consistent with the experimental
observations of Hooshanginejad et al. (2020). In particular, Ucr appears to plateau to a
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Figure 5. Plot of the critical jet speed for droplet splitting Ucr versus l from the numerical simulations (grey
area), the steady-state prediction that accounts for the contact line motion (solid blue line) and the steady-state
solution with a pinned contact line by Hooshanginejad et al. (2020) (dashed red line). For the simulation results,
we note the droplet splitting behaviour with a filled square and the hanging regime with a cross, which provide
the upper and lower bounds for Ucr .

constant value just above 15 m s−1 for large l (i.e. l > 5 mm), which sits outside the
available experimental range.

To rationalise the relationship between Ucr and l, we consider the steady-state solution
described in § 2.5. When U0 = Ucr, we assume that h(x) must satisfy the splitting criterion
of h(x = 0) = 0. Hence, Ucr is equivalent to the maximum jet speed at which the droplet
reaches equilibrium. However, h(x) involves an additional unknown, s1 = s2 = s, which is
the dimensionless position of the contact line. In order to compute s as part of the solution,
we impose θ1 = θ2 = θ0 in (2.17a,b) for simplicity, because the dynamic contact angle for
droplet spreading must be equal to (or greater than) the equilibrium contact angle, θ0.
Finally, to extract Ucr, we start with the initial guess of s = 1 and compute h(x), after
we set L and A = 1. By imposing h(x = 0) = 0, we solve for Ucr (or, equivalently, Wecr),
as shown in (B1). Then, if the resultant h(x) does not meet the contact-angle condition,
we increase s with an increment of 0.001 and repeat the process, until θ1 = θ2 = θ0. The
resultant Ucr from the analytical solutions is included in figure 5 as a solid line, and it
matches the numerical simulations with no additional fitting parameters beyond previously
described assumptions and approximations. This agreement between the simulations and
theory helps validate our splitting criterion and the contact-angle condition, as well as the
neglect of the disjoining pressure in the current physical regime.

The decrease of Ucr with l in both the numerical and steady-state solutions can
be understood by considering the dominant physical effects at play. For small l, it is
reasonable to assume that the droplet dynamics are set by the competition between the
capillary pressure and the external air pressure, while the hydrostatic pressure is negligible.
In fact, the initial pressure inside small droplets must scale as l−1. Hence, it would require
a larger external pressure to overcome this capillary pressure and split the droplet into
two, which corresponds to Ucr decreasing with increasing l. Then, for large droplets,
we expect the droplet dynamics to be governed by the balance between the hydrostatic
pressure and the external airflow, which no longer explicitly depends on l. The transition
from ‘small’ to ‘large’ droplets can be estimated as when the droplet height becomes
constrained by the capillary length, or hm = 2

√
σ/(ρg) sin (θ0/2) ≈ 1.4 mm (de Gennes,

Brochard-Wyart & Quéré 2004). Assuming a simple circular segment as the initial droplet
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Droplet dynamics under an impinging air jet

shape, the transitional droplet size is given by l = hm sin θ0/(1 − cos θ0) ≈ 5.3 mm, which
reasonably matches the transition to constant Ucr in figure 5.

Furthermore, we perform an asymptotic analysis to explain this plateau in Ucr for large l.
We take the analytical solution for Wecr in the limit of

√
Bos → ∞, with the details shown

in Appendix B. Note that the limit of large
√

Bos, or large L, is equivalent to the limit of
large l, as there is a clear monotonic relationship between l and L for given dimensionless
area, A (see Appendix A). Finally, the resultant Wecr in the asymptotic limit is given by

Wecr ∝
√

Bo
s(d0/L)

, (3.1)

where s is shown to scale linearly with L for large L (see Appendix B), such that s(d0/L)

is a constant. Therefore, in the large-droplet limit, Wecr is shown to scale with
√

Bo, and
Ucr becomes independent of the droplet size, consistent with the simulations. Physically
speaking, this balance of Wecr and

√
Bo confirms that as l is increased, the external air

pressure is indeed mostly balanced by the hydrostatic pressure inside the droplet.
Figure 5 also includes Ucr based on the steady-state solution with a pinned contact line

(Hooshanginejad et al. 2020). In general, pinning the contact line is expected to increase
the critical jet speed required for splitting, as the droplet can split only by draining from the
centre and not by spreading of the droplet caused by a change of the contact-line locations.
This explains why the pinned contact-line model exhibits a larger Ucr compared with the
moving contact-line model for l < 5 mm. However, this physical picture breaks down for
l > 5 mm, as Ucr with the fixed contact line continues to decrease with l with no plateau,
distinct from the moving contact-line simulations and theory. This discrepancy is caused
by the fact that the contact line is pinned at the location given by the radius of a circular cap
with the equivalent area. Note that a circular cap as the initial droplet geometry is valid for
small droplets (i.e. l < 5 mm) but becomes problematic for large droplets (i.e. l > 5 mm)
that form puddles under gravity. Hence, for l > 5 mm, the model by Hooshanginejad et al.
(2020) tends to pin the contact line at a smaller radius than where the contact line would
initially be. This likely causes larger interfacial deformations near the contact line and
larger pressure gradients necessary to drive the draining flow from the centre towards the
edge, leading to a decrease in Ucr.

3.3. Case of an off-centred jet
Next, we consider the case of an off-centred jet and identify the droplet behaviours under
different U0 and α for given l. For l = 4.9 mm (50 µl in the experiment) and 7.7 mm
(200 µl in the experiment), we set A = 1000, b = 10−3, A = 1 and gradually change U0
(with an increment of 1 m s−1) and α (with an increment of 0.05) in the simulations. The
resulting droplet regimes are summarised in the α − U0 phase diagrams in figure 6, with
‘x’ marking the ‘hanging’ regime, a triangle denoting depinning and a square indicating
splitting. Note that figures 6(b) and 6(d) show corresponding phase diagrams from the
experimental data of Hooshanginejad et al. (2020).

The phase diagrams based on the simulations (figures 6a and 6c) clearly exhibit three
regimes: hanging, depinning and splitting, in a manner that is qualitatively consistent with
the experiments. For both values of l, the critical jet speed for droplet splitting increases
with increasing α, whereas the transitional velocity from hanging to depinning decreases
with α. Hence, the range of U0 over which depinning occurs increases with α for both
droplet sizes. In the case of l = 7.7 mm only, we observe no droplet depinning for α <
0.1, whereas we observe droplet depinning for all non-zero values of α in the case of
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Figure 6. Phase diagrams summarising the outcomes of the droplet dynamics with varying U0 and α, for
(a) l = 4.9 mm and (c) l = 7.7 mm. Three regimes are identified: droplet splitting (square), depinning
(triangle) and hanging (cross). The corresponding experimental results for (b) l = 4.9 mm and (d) l = 7.7 mm,
respectively.

l = 4.9 mm. In Appendix D, we also consider the droplet behaviours in the larger range of
α, which shows the elimination of droplet splitting for α > 1 (see figure 13).

To further investigate this apparent suppression of depinning for large l, we conduct
additional simulations for l ranging from 2.4 mm to 12.8 mm. The results are summarised
in a series of phase diagrams in figure 7(a). Similar to the case of l = 4.9 mm, droplet
depinning is observed for all α > 0 at l = 2.4 mm (see figures 7a–7i), and the depinning
region gradually increases with α. For larger droplets, depinning is suppressed below some
threshold α, whose value grows with l. We refer to this threshold as αsup and mark its
position with a vertical dashed line in the α − U0 phase diagrams in figure 7(a). Then,
as shown in figure 7(b), αsup is equal to zero for small droplets, or l < 5 mm, and then
monotonically increases with l for l > 5 mm.

The physical mechanism behind depinning suppression can be understood by comparing
the size of the droplet l and the size of the external pressure distribution. We define the
characteristic half-width of the external pressure distribution as δ. The requirement for
droplet depinning is a large enough internal pressure difference between the two edges of
the droplet to drive the fluid from one side to the other. However, for small α, if the size
of the droplet is greater than the size of the external pressure distribution (i.e. l > δ), the
internal pressure near the contact line is not influenced by the air jet and is unable to meet
this requirement.

Going back to figure 7(a), there exists a critical α (denoted as αcr) that separates the
hanging and depinning regimes at fixed U0, which is shown with a horizontal dashed line
in the phase diagrams for U0 = 11 m s−1. This allows us to investigate the relationship

943 A32-14

1�
��

:

  

�7
2�7

�0
 �

��
��

�	
 �/

5
��

��
��

��
��

��
�4

2:
1.

��
7�

42�
.�

�!
��

�5
��

2�
0.

�

�2

 .
�:

2�!
��

�.
::

https://doi.org/10.1017/jfm.2022.450


Droplet dynamics under an impinging air jet

α

U
0 (

m
 s–1

)
U

0 (
m

 s–1
)

l (mm)

(i)

(iii)

α
su

p

α

(ii)

(iv)

70

35

20

10

0

20

10

20

10

00.25 0.3 0.60.50

0 0.2 0.4 0 0.2 0.4

1.00

0.75

0.50

0.25

0 5 10 15 20

(a) (b)

Figure 7. (a) The numerical α − U0 phase diagrams for the following droplet sizes: (i) l = 2.4 mm, (ii) l =
6.6 mm, (iii) l = 8.8 mm and (iv) l = 12.8 mm, with splitting (square), depinning (triangle) and hanging (cross)
regimes. Vertical and horizontal dashed lines indicate the values of αsup and αcr , respectively. (b) The value of
αsup (below which depinning is suppressed) is computed from the simulations and plotted as a function of l.
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Figure 8. Simulation results (grey area) and theoretical predictions (dashed lines) of αcr at U0 = 11 m s−1

and for varying l, whereas we set the vertical location of the nozzle to be: (a) H = 20 mm, (b) H = 30 mm and
(c) H = 40 mm, respectively. The different dashed lines (coloured from dark to light green) correspond to the
different values of λ = 1, 1.1, 1.2 and 1.3, which determine the location of the contact line prior to receding
relative to the initial position of the droplet’s centre. The inset in (a) shows the zoomed-in plot of the region
highlighted in the main panel.

between αcr and l by combining the simulations and steady-state solutions. Note that αsup
is the minimum of αcr for given l. In the simulation, we set l and U0 = 11 m s−1, in addition
to A = 1000, b = 10−3 and A = 1. We obtain αcr by gradually increasing α with an
increment of 0.005 and identifying the droplet behaviour until it transitions from hanging
to depinning. As shown in figure 8, we note the maximum value of α for droplet hanging
(marked with an ‘x’) and the minimum α for droplet depinning (a triangle), respectively.
Then, αcr from the simulations is bounded within the two values of α for varying l, which
is shown as a grey region in figure 8.

We also obtain the theoretical prediction for αcr based on the steady-state solutions of
h(x) discussed in § 2.5. Namely, we seek a steady droplet profile with A = 1 that satisfies
the onset of depinning, depicted in figure 9(a). Here, the onset of depinning corresponds
to the formation of the maximum contact angle (θ2) on the advancing contact line and the
minimum contact angle (θ1) on the receding side (Hooshanginejad & Lee 2017, 2022).
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Figure 9. (a) The schematic of the droplet at the onset of droplet depinning. (b) The three schematics describe
the qualitative relationship between the size of the jet (δ) for different droplet sizes, l: (i) δ > l, (ii) δ ≈ l and
(iii) δ < l.

Note that the current configuration dictates that the droplet depins from right to left,
which is observed experimentally and numerically for α > 0 only. Based on the simulation
results, we set θ2 = 30◦ and θ1 = 25◦ in (2.17a,b). In addition, we set s1 = λ as a reference
point, where λ is a dimensionless position of the receding contact line at the time of
depinning relative to the initial position of the droplet’s centre. Fixing λ and, thereby, the
droplet’s centre at t = 0 is important to define α, as α in the experiments corresponds to the
dimensionless distance between the position of the nozzle and the droplet’s centre prior to
the jet application. Finally, for given l, U0 and λ, we compute αcr by performing two nested
iterations. First, to solve for h(x) at the onset of depinning, we set α and incrementally
increase s2 from 1, until the contact angle conditions are met. Next, if no such steady-state
solution exists at given α, we vary α and repeat the process until the solution is found,
which eventually leads to αcr.

Both the simulation and theoretical results in figure 8(a) demonstrate that αcr exhibits
a convex behaviour with varying l at U0 = 11 m s−1. The qualitative match between the
simulation and theory confirms the validity of the simple depinning criterion based on
contact angles. Notably, the general trend in theoretical αcr versus l is independent of the
specific value of λ. However, at λ = 1, αcr becomes negative for some range of l, which is
outside of the reasonable range for a droplet depinning from right to left. This implies that
the initial position of the droplet’s centre we have arbitrarily set is incorrect and needs to
be shifted further left. Consistent with this picture, when we increase λ to 1.2 and move
the droplet’s centre further from the droplet’s right edge, αcr is no longer negative and
closely matches the simulation results. Hence, in order to correctly capture αcr(l) at given
U0, the position of the receding contact line at the time of depinning needs to be adjusted
until αcr is no longer negative.

The key physical feature of this convex behaviour can be captured by again considering
the droplet size l, relative to the characteristic half-width of the external jet δ. Figure 9(b)
illustrates the comparison of three different droplet sizes under a fixed external pressure
distribution. When l < δ, a large enough α is necessary for depinning, because the pressure
variation near the centre of the jet is relatively small. Hence, for the internal pressure to
have a large enough difference between the contact-line positions, the droplet needs to be
exposed to the jet away from its centre (see figure 9b-i). Similarly, the case of l > δ also
requires large α to ensure that there is sufficient asymmetry in the internal pressure, as
illustrated in figure 9(b-iii). Finally, when l ≈ δ (see figure 9b-ii), relatively small α can
cause a sufficient internal pressure difference for droplet depinning.

Based on this physical picture, we hypothesise that an increase in δ should lead to
larger l at which αcr(l) reaches a minimum. To test this idea, we increase the value of
δ by increasing the nozzle height H and reproduce the plot of αcr(l) for H = 30 mm and
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H = 40 mm, respectively. Figures 8(b) and 8(c) shows that the value of l where αcr is the
minimum increases as H is increased, confirming our hypothesis.

4. Summary and conclusions
In summary, we theoretically analyse the dynamics of partially wetting droplets under
an impinging jet based on a two-dimensional lubrication model that incorporates a
moving contact line. The numerical simulations reproduce some of the droplet behaviours
observed in the experiments by Hooshanginejad et al. (2020): droplet hanging, splitting
and depinning away from the jet, for the varying jet strength (U0) and position (α).
The three regimes are summarised in a phase diagram as a function of U0 and α,
for the given droplet diameter l, in qualitative agreement with the experiments. The
simulations also provide the evolution of the droplet internal pressure corresponding to
each droplet behaviour. Specifically, the internal pressure distribution (i) becomes uniform
throughout (hanging), (ii) peaks at the position of the jet impingement (splitting) and
(iii) monotonically increases or decreases (depinning), respectively. In addition to
capturing the droplet regimes, the numerical simulations and the analytical steady-state
solutions are able to qualitatively reproduce the critical jet speed for droplet splitting (Ucr),
which plateaus in the limit of large l. By applying an asymptotic analysis to the steady-state
solutions, we demonstrate that this plateau stems from the balance of the external air
pressure and the hydrostatic pressure as l increases. We also observe that Ucr no longer
plateaus but continues to decrease when the contact line is pinned.

Furthermore, when the jet is applied off-centre (i.e. α /= 0), our simulations show that
the droplet depinning is suppressed below a certain threshold value of α, consistent with
the experimental observations. This threshold αsup is equal to zero for small droplets and
monotonically increases with l. The transition to non-zero αsup occurs as the size of the
droplet becomes greater than the characteristic width δ of the external jet. Finally, by
combining the numerical simulations and steady-state solutions, we obtain a theoretical
prediction of αcr, which separates the hanging and depinning regimes at fixed U0. The
results show that αcr exhibits a convex behaviour with varying l.

Our two-dimensional lubrication model successfully captures some macroscopic
behaviours of a partially wetting droplet under a turbulent jet. Distinct from the original
lubrication model by Hooshanginejad et al. (2020), the current analysis is able to describe
the motion of the contact line and reproduce the depinning regime, by incorporating a
precursor film and disjoining pressure. However, the model incorporates a number of
major assumptions that could be improved upon in future studies. For example, we will
simulate experimentally observed oscillations of the droplet, by including the effects of
droplet inertia and fluctuations in the jet. We also plan to expand our lubrication model
to a three-dimensional system. In the splitting regime, the current simulations consistently
show the emergence of a satellite droplet, whose size depends on U0 and l. However, it is
unclear if this observation is physically valid or is related to the two-dimensional nature
of the model. Hence, the three-dimensional model and additional experiments may be
important in quantifying the generation of secondary droplets. Furthermore, we plan to
combine the experiments and theory to investigate the potential changes in the droplet
behaviour for varying wettability or by applying the jet at an angle.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.450.
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Figure 10. Relationship between the droplet half-width, l, and the input length scale, L, for A = 1 (blue line)
and A = 0.5 (red line).
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Appendix A. The relation between l and L
In order to obtain the initial droplet half-width l, we start the simulation with U0 = 0
for given L and allow the droplet to relax until it reaches a steady state. We regard this
steady-state profile as the initial droplet shape, from which we extract the initial droplet
half-width, l. The relation between l and L is shown in figure 10 for the case of A = 1 (blue
line) and A = 0.5 (red line), respectively.

Appendix B. Asymptotic analysis: critical jet speed
Consistent with the splitting criterion by Hooshanginejad et al. (2020), we define the
critical Weber number Wecr as the threshold for droplet splitting, by taking the analytical
steady-state solution h(x) for α = 0 and then setting h(x = 0) = 0:

Wecr = −A
√

2/π

C1(d0/L)K2
1

×
Bo

(
1 − e−4jk)2




ej2erf(j)

[
e−4jk(1 + 2jk) + (2jk − 1)

]
+ erf(k)

(
1 − 2e−2jk)

+ ej2
[

erf(j−k)e−2jk (
1−e−2jk(1+2jk)

)

−erf(j + k)
(
(2jk − 1) + e−2jk)

]




. (B1)

Here, for simplicity, we have defined

j ≡
√

BosC1

2
√

2

(
H
L

)
; k ≡

√
2s

C1

(
H
L

)
, (B2a,b)
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such that 2jk =
√

Bos. We note that j is a constant independent of L, whose value is
approximately equal to 0.661. On the other hand, k can be rearranged as

k ≡
√

2
C1

√
Bos√
BoH

≈ 0.756
√

Bos, (B3)

where BoH = ρdgH2/σ . Therefore, it is reasonable to assume that the limit of
√

Bos & 1
is equivalent to k & 1. Next, we expand the error functions in the limit of k & 1, so that
Wecr becomes

Wecr ≈ −A
√

2/π

C1(d0/L)K2
1

×
Bo

(
1 − e−4jk)2





ej2erf(j)
[
e−4jk(1 + 2jk) + (2jk − 1)

]

+
{

1 − e−k2

√
πk

+ h.o.t.

}
(
1 − 2e−2jk)

+ ej2





{

1 − e(j−k)2

√
πk

+ h.o.t.

}

e−2jk (
1 − e−2jk(1 + 2jk)

)

−
{

1 − e(j+k)2

√
πk

+ h.o.t.

}
(
(2jk − 1) + e−2jk)









, (B4)

where ‘h.o.t.’ denotes the higher-order terms. Then, under the limit of
√

Bos & 1 (i.e. k &
1 and 2jk & 1), Wecr reduces to

Wecr ≈ A
√

2/π

C1(d0/L)K2
1

[
Bo

ej2(1 − erf(j))
√

Bos

]
, (B5)

where ej2(1 − erf(j)) ≈ 0.542, and we set A = 1. Hence, we obtain

Wecr ≈ 1.846
√

2/π

C1d0K2
1

√
Bo

s/L
. (B6)

The relation between s and L is shown in figure 11, and s is shown to scale linearly with L
for large L. Hence, we conclude that Wecr scales with

√
Bo in the limit of large L.

Appendix C. Validation of numerical robustness
As shown in figure 12, we have run simulations of a splitting droplet with mesh sizes that
range from ,x = 1/100 (red), 1/200 (green), 1/400 (blue) and 1/800 (black). The results
clearly demonstrate that there are no discernible differences in the interfacial shapes and
the contact line locations for ,x ! 1/200. Therefore, we have chosen 200 node points
per unit length to run most of the simulations presented in our manuscript. In general,
for ,x = 1/200 and ,t = 10−6, we find that it takes around 200 minutes of CPU time to
reach the dimensionless time of t = 100.

943 A32-19

1�
��

:

  

�7
2�7

�0
 �

��
��

�	
 �/

5
��

��
��

��
��

��
�4

2:
1.

��
7�

42�
.�

�!
��

�5
��

2�
0.

�

�2

 .
�:

2�!
��

�.
::

https://doi.org/10.1017/jfm.2022.450


Z.-Y. Chen, A. Hooshanginejad, S. Kumar and S. Lee

L (mm)

s

0

1

2

3

4

5

2 4 6 8 10

Figure 11. Relation between dimensionless final droplet location s and L (blue line). The dashed black line
shows a constant slope of 0.1.
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Figure 12. (a) Droplet profile for U0 = 17 m s−1, l = 7.7 mm, α = 0, A = 0.5 at t = 6 and t = 12 with
different the mesh sizes: 1/100 (red), 1/200 (green), 1/400 (blue) and 1/800 (black) per length. (b) Contact-line
location at t = 12 is plotted with an increasing number of nodes per unit length.
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Figure 13. Numerical results of the U0 − α phase diagram for l = 4.9 mm.

Appendix D. Supplementary figures
The α − U0 phase diagram of l = 4.9 mm for a larger range of α is included in
figure 13. The phase diagram shows that the critical jet speed for droplet splitting increases
drastically as α approaches 1 and basically ‘disappears’ for α > 1. This is expected
because α " 1 means that the centre of the jet no longer directly hits the droplet and
is unable to split the droplet. On the other hand, the transitional velocity from hanging
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Figure 14. Plot of Wecr and Bo from the numerical simulations (grey area), the steady-state prediction (solid
blue line) and the steady-state model with a fixed contact line by Hooshanginejad et al. (2020) (dashed red
line).
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Figure 15. The α − We phase diagram for (a) l = 4.9 mm (or Bo = 1.97) and (b) l = 7.7 mm (or Bo = 4.07)
based on the numerical simulations.
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Figure 16. Simulation results and theoretical predictions of αcr with varying Bo at U0 = 11 m s−1, whereas
we set the vertical location of the nozzle to be: (a) H = 20 mm, (b) H = 30 mm and (c) H = 40 mm.

to depinning is shown to decrease for α < 1 and to gradually increase for α > 1. Since
the centre of the impinging jet sits outside the droplet for α > 1, it requires higher U0 to
generate sufficient asymmetry in the external pressure to depin the droplet.

We have also reproduced figures 5, 6 and 8 by replacing U0 and l with We and Bo,
respectively. The dimensionless plots are shown in figures 14, 15 and 16.
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