

Behavioral responses of wild animals to anthropogenic change: insights from domestication

Amanda K. Beckman^{1,2} · Breann M. S. Richey^{1,3} · Gil G. Rosenthal^{1,2,4,5}

Received: 16 September 2021 / Revised: 22 June 2022 / Accepted: 24 June 2022 / Published online: 19 July 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract

With nearly all life on earth experiencing direct or indirect effects of human activity, there is an urgent need to understand how organisms do or do not adapt to human-induced environmental change. Domestication was an early crash into the Anthropocene for some species, and the response of animal populations to domestication selection gives us insights on how plastic responses and evolutionary changes interact to determine the fate of wild vertebrates responding to a human-altered world. We consider intentional breeding, managed hunting, and extermination as part of a continuum of anthropogenic agents of ecological selection and highlight shared targets of selection between domestication and human-induced selection pressures more broadly. Many of the traits that predict successful domestication also predict adaptation of wild animals to human-dominated environments. Domestic animals are also a source for feral lineages and for genetic exchange with wild populations. Shared ecological constraints and gene flow thus contribute to convergent or congruent changes across a spectrum of responses to human influence. Evaluating domestication as another source of anthropogenic selection yields insights for conservation and a promising way to understand mechanisms of behavioral adaptation.

Significance statement

In this review, we draw insights for conservation from domestication—the oldest and most intense evolutionary interaction between animals and humans. Domestication is a special case of organisms successfully responding to an abrupt shift towards human-altered environments, and success in those environments depends on the same factors that make some animals easier to domesticate than others. Domestication has the potential to simultaneously inform us how behavior and genetics contribute to the process of human adaptation in animals and provide a window into the processes required for animals to become human-adjacent. Understanding how animals adapt in our presence yields clues as to how contemporary species react to decreasing habitat and increasing contact with humans.

Keywords Bottleneck · Feralization · Plasticity · Parallel evolution · Anthropocene · Tameness

This article is a contribution to the Topical Collection Using behavioral ecology to explore adaptive responses to anthropogenic change—Guest Editors: Jan Lindström, Constantino Macías Garcia, Caitlin Gabor.

Communicated by C. Macías Garcia

Amanda K. Beckman and Breann M. S. Richey are co-first authors.

Amanda K. Beckman
akb13@tamu.edu

¹ Ecology and Evolutionary Biology Program, Texas A&M University, College Station, TX, USA

² Department of Biology, Texas A&M University, College Station, TX, USA

Introduction

Humans have altered the environment for our own benefit, or detriment, at varying levels for at least 50,000 years (Sullivan et al. 2017), including ancient farming (Diamond 2003) and megafaunal extinctions (Broughton and Weitzel

³ Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA

⁴ Centro de Investigaciones Científicas de Las Huastecas “Aguazarca”, Calnali, Hidalgo, Mexico

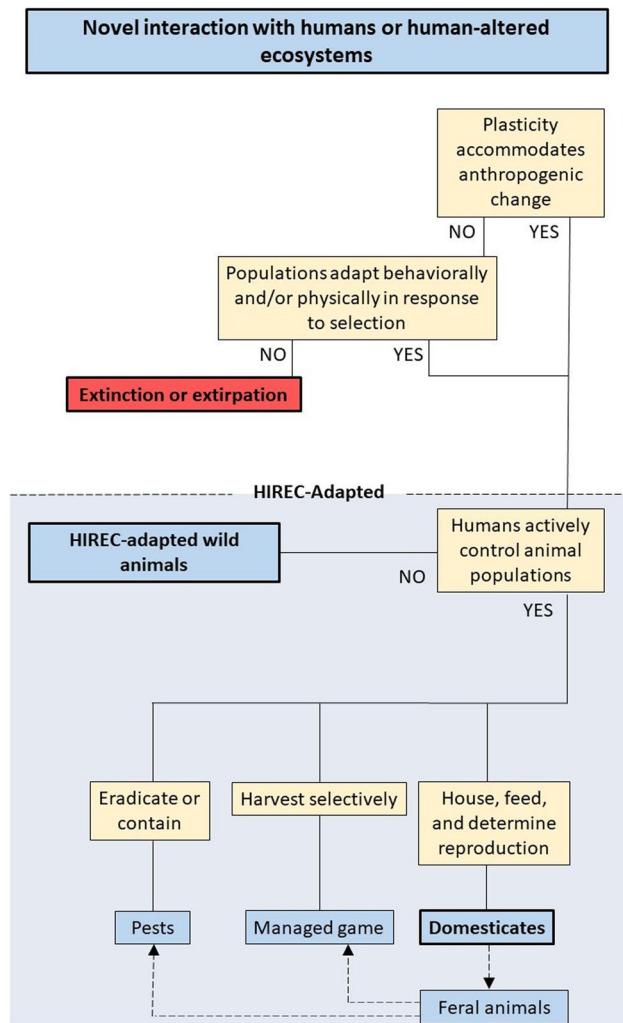
⁵ Department of Biology, University of Padua, Padua, Italy

2018; Smith et al. 2018). Modern conveniences result in light (Raap et al. 2015; Van Doren et al. 2017; Hussein et al. 2021), noise (Francis et al. 2011; Kight and Swaddle 2011; Di Franco et al. 2020), and chemical pollutants (Zala and Penn 2004; Bernanke and Köhler 2009) that can impact ecosystems far from their source. Understanding behavioral, ecological, and evolutionary responses to human-induced rapid environmental change (HIREC; Box 1) is crucial for management of species and their critical habitats (Sih 2013).

Box 1 HIREC and the Anthropocene

Scholars across subfields use several terms to describe how humans alter the environment. The acronym **HIREC**, for human-induced rapid environmental change (Sih et al. 2010), is convenient to describe anthropogenic impacts or changes that influence environmental stability, usually for the worse. HIREC is often used to describe the entirety of damage caused by anthropogenic impacts. Some of the most devastating effects of HIREC result from climate change which in turn drives environmental degradation and habitat loss (Sih et al. 2010). Similarly, the introduction of novel species and growing human populations have a trickle-down effect which negatively affects not only endemic species in areas of introduction, but can also result in habitat use change and population reorganization (Robertson et al. 2013). HIREC-adjacent activities such as agricultural growth, colonization, urbanization, and commercialization continue to result in damaged and novel niche spaces, which can negatively affect native biodiversity (Boivin et al. 2016).

The pervasiveness of HIREC has led us into a new geological epoch characterized by pollution, climate change, land use change, deforestation, and the burning of fossil fuels (Crutzen 2006): the **Anthropocene**. Human manipulation of animals in the form of domestication is a large contributor to the fundamental reorganization of ecosystems that marks the Anthropocene as a distinct era (Lewis and Maslin 2015).


Domestication constitutes a special and radical form of HIREC from an animal's point of view, with humans imposing dramatic and often intentional selection that results in striking divergence from wild populations. The empirical substrate of Darwin's theory of evolution was founded on heritable variation documented by pigeon (family *Columbidae*) breeders (Darwin 1868). We define domestic animal species as those whose reproduction and food supply are controlled by humans, resulting in distinct phenotypic, genotypic, and behavioral differences (typically traits that are useful to humans) compared to wild ancestors (Zeder 2012). This definition highlights that domestication is an evolutionary process. Approaches from archeology, anthropology, and historiography have long been used to reconstruct histories of population structure and selection pressures of domestic species (Zeder 2018). More recently, understanding the evolution of domestication has been revolutionized by advances in comparative genomics (Barrera-Redondo et al. 2020; Frantz et al. 2020). This interdisciplinary information provides an intriguing opportunity to compare a wide taxonomic breadth of species that have a shared evolutionary history of

anthropogenic selection. The behavioral and genetic consequences of domestication selection have received extensive attention. In particular, researchers have suggested that a combination of specific factors are required for species to be domesticable (Diamond 2002; Zeder 2012; Larson and Burger 2013; Larson and Fuller 2014), and that domestication selection results in the evolution of predictable suites of correlated traits and genes (Wilkins et al. 2014; Sánchez-Villagra et al. 2016; Wilkins 2020; Hou et al. 2020). Can these findings shed light on which species are most likely to persist in the face of HIREC, and how we expect these species to evolve? In this review, we focus on how contemporary approaches to understanding domestication could help us predict and manage behavioral responses to anthropogenic change more broadly.

Humans as a source of selection on behavior: domestication as a special case of adaptive evolution in the Anthropocene

From the perspective of animals under domestication, as with animals under HIREC, fitness is maximized by thriving in a human-impacted environment (Fig. 1). Successful adaptation to HIREC requires the ability to live near humans or human-altered environments. Similarly, ancient animals that initiated a commensal path to domestication were adapting to and/or exploiting humans rapidly altering the landscape. The process of domestication can shed light on how animals adapt to life under a human footprint. Zeder (2012) identified three pathways to domestication: (1) commensal relationships, (2) prey for humans, and (3) direct manipulation of breeding.

- (1) **Commensalism** was the first step in domestication of many widespread species, starting with dogs (*Canis lupus* or *C. l. familiaris*; Vilà et al. 1997). Commensal relationships were established when wild animals fed on human food waste or preyed on other animals attracted to human settlements. Over time, these species became closely tied with humans. Species that were domesticated through this pathway include cats (*Felis catus*) hunting prey near villages in western Asia (Driscoll et al. 2007), and ducks (*Anas platyrhynchos*) foraging in rice paddies in China (Zhang et al. 2018). The commensal pathway illustrates the continuum between domestication and adaptation to HIREC.
- (2) The **prey** pathway to domestication includes species that were initially hunted for food. Archeological evidence suggests that managed hunting—preferentially targeting males over reproductive females—arose in multiple hunter-gatherer societies (Zeder 2012). At the end of the Pleistocene, the large game species pre-

Fig. 1 Evolutionary fate of populations is subject to novel interactions with humans. Each species has a unique history of domestication, feralization, and gene flow. Despite this, broad characterizations can be made of the steps leading to human-adapted animals across a continuum: pests, managed game, domesticates, and HIREC-adapted wild animals. If populations fail both to produce appropriate plastic responses and adapt in response to selection, human-induced changes to the environment may lead to extinction or extirpation. Animals that survive or thrive under HIREC without human control over reproduction and feeding are considered HIREC-adapted wild animals. Despite the dichotomy shown in the figure, there is a continuum of human control over these activities ranging from loosely managed game populations and pests, through free-ranging domestics like backyard turkeys, to tightly controlled domestics like thoroughbred horses. Feral populations routinely arise from domestic ones and may subsequently face the same selection pressures as managed, pest, or wild lineages

ferred by hunters were starting to become scarcer due to a combination of climate change and hunting pressures (Broughton and Weitzel 2018), so humans transitioned to herding animals, notably cattle (wild *Bos primigenius* to domestic *B. taurus*; Helmer et al. 2005)

and goats (wild *Capra aegagrus* to domestic *C. hircus*; Daly et al. 2021).

(3) **Directed domestication** typically occurred in regions already experienced with early domestication of other species (Larson and Fuller 2014). It typically involved selection on partially domesticated animals and resulted in traits that would be detrimental to survival in the wild. Direct manipulation of animal breeding goes back at least as far as the purposeful domestication of horses (*Equus caballus*) for hunting their wild relatives, which later evolved into utilizing horses for transport, warfare, and milking (Olsen 2006). Other animals like rabbits (*Oryctolagus cuniculus domesticus*) and carp (*Cyprinus carpio*) were originally brought to Rome to be raised in leporaria and piscinae, or special enclosures used to raise and breed secondary food sources that did not require herding (Balon 1995; Larson and Fuller 2014). Rearing fish for entertainment or pets as a direct form of domestication selection became popular shortly after (Balon 1995). The popularity of this activity is shown by an account involving Lucullus, a politician in the late Roman Republic, who was accused by Cicero of neglecting politics because of his fish (Balon 1995).

Domesticability and adaptation to HIREC

Just as the vast majority of species are negatively impacted by anthropogenic change (Wagner et al. 2021), the vast majority of species fail to adapt to domestication. An influential paper by Diamond (2002) identified six criteria, all of which must be met for a species to be domesticable. Only one of these—social dominance hierarchies, exploitable by humans to control groups of animals—is not clearly pertinent to adaptation to humans more broadly. The rest of the criteria are:

- (1) *Adapts to human-provided diet:* Food is frequently a motivator for the ancestors of domestic species to make initial contact with humans (Larson and Fuller 2014). In fact, diet is so important that signatures of selection are found for genes that allowed for dogs to consume starch-rich foods, which helped facilitate the domestication process (Axelsson et al. 2013). Today, domestic and HIREC-adapted wild species both eat from novel food sources and consume novel food items in anthropogenic environments (Fig. 2).
- (2) *Fast growth rate and short birth spacing:* species that have long birth intervals prolong the domestication process. Domestic chickens (*Gallus domesticus*) exhibit extreme selection for decreased birth spacing, with some breeds laying 300 eggs a year (Bell 2002; Fig. 2).

Fig. 2 Five of Diamond's (2002) six criteria for domesticability (see the Domesticability and adaptation to HIREC section) are also useful for understanding what makes some wild species successful under HIREC. The sixth (not shown) is not relevant to discussion about wild animals and HIREC: social dominance hierarchies used to control groups. 1. *Adapts to human-provided diet* (a) Successful domesticates thrive on a wide variety of human-provided food. Cat eating a flour tortilla (photo credit: Amanda Beckman). (b) Under HIREC, many wild animals are expanding what is considered their "natural" diet to include resources provided directly or indirectly by humans. *Leptonycteris* spp. feeding at nectar feeder (photo credit: Simon Tye). 2. *Fast growth rate and short birth spacing* (a) An extreme of short birth spacing is observed in domestic poultry as evidenced by the high frequency of egg-laying outside the historic breeding season. Five chicks pictured behind metal bars. (b) Some non-cavity nesting birds are drawn to nest in human structures. Mourning dove (*Zenaida macroura*) sitting on a nest on top of a green box with a brick wall in the background (photo credit: Chris Jarvis). 3. *Not threatening to humans* (a) Secondary rounds of domestication are currently happening for several species to retain juvenile traits and be more suited for indoor life. A small breed of pig (*Sus domesticus*) standing indoors on a rug (photo credit: Vjeran Pavic). (b) Animals that humans are willing to feed in public are not considered to be dangerous or aggressive, and typically are not pest species. A grey squirrel (*Sciurus carolinensis*)

places its paw in a human's hand that contains food while looking at the person. 4. *Breeds in human-altered environments* (a) One extreme of breeding in human environments, dairy calves are quickly separated from their mother after birth in many cases. A black and white photo shows approximately five cattle per small, fenced pen, for dozens of pens. (b) While many wild birds will nest on human-created structures, getting wild birds to breed in captivity remains a major obstacle in ornithology research, though some researchers have recently had success. A fledgling dark-eyed junco (*Junco hyemalis*) with an orange band on its leg that was hatched from captive-reared parents in a research population is pictured in an enclosure made of wire mesh with branches, moss, and leaves on the ground (photo credit: Ketterson Lab & Sarah Wanamaker). 5. *Tendency not to panic in enclosures* (a) Donkeys (*Equus asinus*) and mules (*Equus asinus* × *Equus caballus*) still perform their duties as pack animals, the reason they were first domesticated, despite the changes to the landscape and infrastructure around them. A mule carrying several sacks on its back and wearing a halter crosses a bridge in front of a stone wall (photo credit: Gil Rosenthal). (b) An Italian wall lizard (*Podarcis siculus*), climbs up a brick wall that has crumbled in places to create small crevices. Many animals are drawn to anthropogenic structures because they mimic natural caverns. (photo credit: John Hutchinson)

Similarly, some wild bird species nest in novel human environments and experience higher reproductive success compared to populations in less-disturbed areas (Chace and Walsh 2006; Fig. 2).

(3) *Not threatening to humans*: animals with more amicable and human tolerant dispositions have been historically easier to tame (Belyaev 1979; Diamond 2002). For example, Brubaker and Coss (2015) showed that zebras (*E. quagga*) had longer flight distances than feral horses (*E. c. ferus*) and argued that zebras likely experienced more intense ancient hunting pressure leading to them being more wary and aggressive towards humans, which made the horse more suitable for domestication (Brubaker and Coss 2015). Disposition also influences which domestic animals become indoor pets, and which

wild animals humans will approach and feed in public (Fig. 2).

- (4) *Breeds in human-altered environments*: species on the edges of the commensal or prey route are especially likely to exhibit reluctance to breed in captivity. However, species can overcome this barrier and breed (naturally or artificially) in social and physical environments drastically different from what was experienced in the wild (Fig. 2). Passerines sing beautifully and are useful for research, and falcons (*Falco* spp.) for catching small prey, but neither have been domesticated due to poor success breeding in captivity (Zeder 2012).
- (5) *Tendency not to panic in enclosures*: Last, the well-developed fight-or-flight responses of gazelles (*Gazella* spp.) made them poor candidates for domestication

despite the fact they were a valuable food source (Zeder 2012). Many modern domestic species can tolerate unnatural situations with proper training and reinforcement, but many species moving into human-disturbed habitats do so because they mimic preferred natural areas (Fig. 2).

Some wild species are therefore more likely to adapt successfully to HIREC, including through domestication. Every population encountering a changing environment, however, will experience demographic changes and novel sources of selection that can make them both resilient and more vulnerable to a changing world. Domestication thus represents an extreme test of how species adapt to novel environments caused by humans.

Box 2 Behavioral attributes and outcomes of domestication

Tameness joins “quality” (Rosenthal 2017) and “condition” (Clancey and Byers 2014) as a widely used, sweeping, and vague term in the literature. Domestication always involves selection for “tameness,” but the term means different things in different studies. In the classic silver fox domestication study, workers explicitly selected for an attenuated flight response to humans (Belyaev 1979; Trut 1999; Trut et al. 2009), which has been propagated in the literature as “selection for tameness” (Zeder 2012; Sánchez-Villagra et al. 2016; Wilkins 2020). Reduced fear of humans is only part of the dictionary definition of tameness, which also stipulates reduced danger to humans

Animals we consider tame typically go further than not scaring or being scared by humans, exhibiting affiliative behaviors that elicit positive responses from humans. The term **anthropophily** is loosely used in the domestication literature to describe a combination of reduced fear, reduced aggression, and increased socialization with humans. Anthropophily is part of what Diamond (2002) terms **disposition** which also includes behavior towards other domestic animals. Disposition—loosely defined as being prosocial and less aggressive towards humans and other domesticates—is also a key component in tameability, with species with more tolerant dispositions being more tamable

Traits associated with domestic species like tameness and anthropophily can also be rapidly lost. During **feralization**, or when domestic species are released and established in wild conditions, the rapid increase in selection on traits associated with predation, foraging, and mate choice (Johnsson et al. 2016) results in the reduction or elimination of typical prosocial behaviors of domestic species in as little as one generation

The vernacular perception of “tame” is modulated by affiliative behaviors, morphological traits as interpreted by humans, and other habits like controlled defecation and appropriate interactions with the human-controlled environments. Furthermore, tameness clearly differs between, say, large carnivores and chickens, with the consequences of an aggressive peck far milder for the latter. A brown bear that breaks into vehicles might be defined as “tame” following definitions in the scientific literature on domestication but is clearly not tame in the vernacular sense. Just as with other all-encompassing terms, we are better off unpacking tameness into its constituents, which have distinct neurophysiological and genetic bases

Evolutionary consequences of domestication: insights for adaptation to HIREC

Just as some species respond better to domestication selection than others, domestication selection takes different forms depending on the population being domesticated; consider cattle bred for milk, meat, leather, and fighting (Signer-Hasler et al. 2017). As detailed below, long histories of domestication, feralization, and gene flow with wild neighbors contribute to a unique, often convoluted history for each domesticate. Nevertheless, available evidence suggests core features of the histories of domesticates and many HIREC-adapted lineages: (1) immediate, strong selection from initial interactions with humans, (2) population bottlenecks, and (3) selection for reduced fear and aggression (Box 2).

First, there are immediate phenotypic and fitness consequences of human contact in addition to those imposed by directed selection and breeding. Artificial environments, or human-altered environments, frequently disrupt assortative mating and mate choice (Rosenthal 2017). And initial captivity imposes strong selection on wild animals. A series of studies on hatchery salmonine fishes (family *Salmonidae*) show that captive-reared animals and their descendants often exhibit reduced fecundity compared to their wild counterparts (O’Sullivan et al. 2020). Steelhead trout (*Oncorhynchus mykiss*) lose 40% fecundity per captive generation (Araki et al. 2007) and captive-born Atlantic salmon (*Salmo salar* L.) produce only half (55%) as many offspring as wild populations (Milot et al. 2013). These effects are often transgenerational, with the offspring of captive born individuals also exhibiting lower fecundity (O’Sullivan et al. 2020). Captive offspring survival rates are also lower relative to wild-reared counterparts (Farquharson et al. 2021).

Second, strong domestication selection, along with a small number of founding individuals, invariably results in bottlenecked populations with depleted genetic variations. Reduced effective population size due to bottlenecks from domestication results in the increased probability that mildly deleterious mutations will become fixed (Cruz et al. 2008; Bosse et al. 2019; Fages et al. 2019). In dogs, these mutations can cause complex and physically debilitating genetic diseases like hip dysplasia (Sutter and Ostrander 2004).

Relative to their wild counterparts, domesticated populations thus suffer from increased genetic load—a greater number of deleterious mutations fixing due to drift and hitchhiking with selection targets (Makino et al. 2018; Kim et al. 2021). Strong selection and limited variation, in turn, decrease the efficiency by which these mutations

are purged by purifying selection (Cruz et al. 2008; Schubert et al. 2014). Surprisingly, two plant studies suggest that guided selective sweeps can actually purge deleterious variation, resulting in reduced genetic load compared to wild relatives (Kim et al. 2021; Lozano et al. 2021).

Some domestic species—and some animals adapting to HIREC—are more likely to experience histories of population bottlenecks. Larger animals domesticated through the prey pathway are expected to have severe bottlenecks (Larson and Burger 2013). Bollongino et al. (2012) speculated that the severe bottleneck associated with domestication of wild aurochs into cattle was due to the difficulties of managing and distributing a large and aggressive animal.

Animals domesticated on the direct pathway like hamsters (subfamily Cricetinae; Siegel 2012) experienced a much more recent bottleneck associated with heavy selection on breeding over a relatively short time span (Larson and Burger 2013). Genetic bottlenecks are particularly intensified by the fact that small numbers of males have traditionally been bred to multiple females (Warmuth et al. 2012). In the early domestication of large mammals, selective breeding was likely restricted to males, with wild females recurrently introduced to herds (Warmuth et al. 2012; Marshall et al. 2014; Frantz et al. 2020). Archeological evidence suggests that the earliest domestic goat herds were managed differently based on sex; a majority of females were over 2 years old, while the majority of males were harvested before they reached 2 years (Daly et al. 2021). Limiting the number of reproductive males reduces effective population size and, in mammals, the diversity of sex-chromosome haplotypes, specifically on the Y chromosome (Lau et al. 2009).

Selection and drift in domesticated populations are of a piece with adaptation to HIREC more generally. Rare, though highly visible, translocation and captive breeding programs are very similar to directed domestication in that they generate small, often closed populations that experience genetic and cultural bottlenecks (Mock et al. 2004; Snoj et al. 2006; Parker et al. 2012) and strong intentional or unintentional selection (Frankham et al. 1986; Heath et al. 2003; López et al. 2019).

In a broader array of cases, human interaction with wild animals blurs the line with the commensal and prey pathways for domestication, with human-induced selection often yielding harmful changes for populations. Animals of recreational value, like hunting or sport fishing, are often bred and harvested selectively (Fig. 1) due to specific phenotypic characteristics that make them especially desirable to hunters such as large antlers (Double Dime Whitetails 2021) or body size, in addition to preferred behaviors like reduced movement rates (Rivrud et al. 2013; Festa-Bianchet 2017; Leclerc et al. 2019). This “unnatural selection” resulting from HIREC-adjacent living and selection in managed

populations has the potential to negatively affect genetic diversity and fitness (Allendorf and Hard 2009).

The third and final thread that most domesticates and HIREC-adapted species share is “tameness,” at least in the broader sense of the term (Box 1). Relaxed selection on antipredator responses, selection from human interactions, and learned experience all favor reduced fear of humans (Agnvall et al. 2015, 2018; Sánchez-Villagra et al. 2016). Selection for tameness may typically not involve reduced fear of humans specifically, but an attenuated response to threatening stimuli more broadly in response to release from predation. For example, Providence petrels (*Pterodroma solandri*) on oceanic islands experience a reduced fear of both humans and invasive mammals because of a historic absence of natural terrestrial predators (Bester et al. 2007). Similarly, domesticated Atlantic and Japanese masu (*Oncorhynchus masou*) salmon have an increased risk of predation in the wild because of their maladaptive tendency to stay close to the surface (Reinhardt 2001; Solberg et al. 2020). Increased tameness, loosely defined, is shared across all domestic mammals (Sánchez-Villagra et al. 2016) and may be ubiquitous in animal domestication. Populations under HIREC experience relaxed selection from natural enemies and increased selection on coexistence with humans. This may often favor tameness, except for species that are actively targeted by humans as pests or prey.

Correlated evolution of traits under domestication

Tameness is only one suite of traits shared across independently domesticated species (Sánchez-Villagra et al. 2016). Across domesticated mammals, domestication results in reduced brain size (Kruska 1996), altered pigmentation (Zhang et al. 2014), and reduced fear of humans (Sato et al. 2020). Captive animals invariably undergo plastic or genetic changes without direct domestication selection, and this effect is also seen with wild animals that are closely associated with humans. For example, white-rumped munias (*Lonchura striata*) kept in captivity, without selective breeding, still developed a loss of pigmentation (Suzuki et al. 2014). Pigmentation loss was also observed in a long-term and free-living study population of house mice experiencing selection for tameness through experimental monitoring and handling (Geiger et al. 2018). Even managed game species meet several common traits of domestication: early age of maturity, group living at a high density, pigment loss, abnormal population age structure, and occasionally increased tameness (Mysterud 2010).

In a celebrated experiment, Belyaev and colleagues (Belyaev 1979; Trut 1999; Trut et al. 2009) selected captive silver foxes (*Vulpes vulpes*) for reduced flight

responses to human experimenters (“tameness,” Belyaev 1979; Box 2). Direct selection on behavior yielded morphological characteristics found in a range of domestic mammals, notably coat depigmentation and floppy ears. It is worth noting that these experiments built upon an existing selection bias: these foxes were sourced from a Canadian fur farm, where they had been selected for their fur and their ability to breed in captivity (partially through selection for reduced reactivity) for multiple generations (Lord et al. 2020).

Remarkably, when red junglefowl (*Gallus gallus*) were subject to a domestication regime, they converged on traits characteristic of domestic mammals like depigmentation and reduced brain size (Agnvall et al. 2018). Additionally, junglefowl from the reduced fear line exhibited social dominance over junglefowl selected for high fear when presented with feeding, drinking, and dust bathing access in a test arena (Agnvall et al. 2014, 2018), although it was noted this result could also be partially due to reduced neophobia in the low fear lines during testing.

There are three broad ways that this “domestication syndrome” (Hammer 1984) could arise: (1) from independent convergence towards similar suites of traits in response to similar selective pressures, (2) from parallel evolution of a small set of underlying traits, and (3) from systemic effects of genetic load and relaxed selection.

First, natural selection favors those animals best adapted to human environments and human-associated pathogens, while selection is relaxed on evading natural enemies and foraging on natural food sources. Furthermore, humans may be imposing domestication selection on the same core traits, like Diamond’s (2002) six criteria for domestication. A generally less fearful animal is likely not only less aggressive but may also be less neophobic with food, spaces, and people. Along with thriving on human-associated food and rapid population growth, each of these traits also helps respond to HIREC (Fig. 2).

Second, different species may undergo parallel genetic changes, such that shared mechanisms produce convergent phenotypes across instances of adaptation to humans (Rosenblum et al. 2014). Hou et al. (2020) identified parallel changes in chickens and six domestic mammals in sets of genes, gene families, and functional pathways associated with exploratory behavior, axon cues, and neurotransmission. Dogs and humans experienced parallel evolution for genes involved in metabolism, digestion, and neural processes while adapting to new similar environments (Wang et al. 2014). As a result, similar diseases are seen in both species due to positive selection in parallel genes. Within species, similar phenotypes across different breeds can also be tested for parallelism to see if independent founding lineages for the same phenotype share similar genetic changes. Morphological changes may also arise from parallel genetic

mechanisms, as with dwarfism in three independent breeds of chickens (Wang et al. 2017).

Efforts to identify parallel genetic effects on behavior have been mixed. Wilkins (Wilkins et al. 2014; Wilkins 2017, 2020) suggested parallel selection on genes that underlie the formation and differentiation of the neural crest resulted in phenotypic similarities between divergent taxa. Alternatively, domestication could ubiquitously select for parallel shifts in thyroid hormone metabolism that leads to a prolonged juvenile stage (Crockford 2002). VonHoldt et al. (2010, 2018) found that a gene under strong positive selection in dog domestication was associated with Williams-Beuren syndrome, which can cause some afflicted humans to be overly friendly.

Evidence for and against parallel evolution can be found even within the same taxa, like Old World camels, *Camelus bactrianus*, *C. dromedarius*, and *C. ferus* (Fitak et al. 2020). Additionally, convergence but not parallelism was found between two isolated farm-raised salmon populations (Naval-Sanchez et al. 2020). This indicates that the same early domestication pressures do not always result in the same genetic outcome, even within the same species. Furthermore, there is mixed support that domestication syndrome hypotheses have been rigorously tested enough to support one unifying mechanism ((Lord et al. 2020) but see (Zeder 2020)) or that searching for a universal domestication syndrome is important for researching convergent evolution in domestic species (Johnsson et al. 2021). Despite this, domestication syndrome research continues to yield valuable knowledge about the nature and processes responsible for domestication (Wilkins 2020; Parsons et al. 2020). New research into ancient genomics will continue to update our understanding of this controversial syndrome (Frantz et al. 2020) and undoubtedly shed light on the genetic and behavioral processes resulting in domestication.

Third, general effects of strong domestication selection, both intentional and unintentional, should be expected to both increase genetic load and relax purifying selection on many fitness-related traits. Belyaev’s (1979) notion of “destabilizing selection” disrupting developmental pathways is consistent with a contemporary understanding of the phenotypic consequences of reduced heterozygosity and increased fixation of deleterious alleles. Systemic changes in phenotype, from tameness to smaller brain size, may just be manifestations of developmental instability resulting from increased genetic load (Lacy 1997).

Learning, plasticity, and adaptive responses

The initial response to domestication or other anthropogenic disturbance involves plastic phenotypic changes (Mason et al. 2013). In fact, captivity can induce rapid

morphological changes within a few generations (e.g., canids (Siciliano-Martina et al. 2021); Japanese macaques (*Macaca fuscata*) (Kamaluddin et al. 2019); house mice (*Mus musculus*) (O’regan and Kitchener 2005; Courtney Jones et al. 2018)). The associated behavioral evolution depends on genotype-by-environment interactions (Zuk and Spencer 2020), what Marler (1991) termed the “instinct to learn.” Due to differences in their natural history and cognitive abilities, some species lend themselves to interact with humans more readily (Zeder 2018). Individual and social learning are key to living with people whether they are out to breed you or not. Reduced fear of humans (“tameness” in the narrow sense) often develops merely as a consequence of learned familiarity with humans, often with unfortunate consequences for humans and animals alike (Herrero et al. 2005). The “dispositional” challenges to domestication involve the instinct to learn; wild horses can be “broken” but zebras cannot (Brubaker and Coss 2015).

Indeed, the tempo and mode of learning are vastly important to domesticability. With the notable exception of pigeons, most domesticated birds are precocial, with extended parental care (Larson and Fuller 2014). Extended parental care is often accompanied by so-called imprinting on caregivers (e.g., Lorenz’s (1935) greylag geese (*Anser anser*)). Some species may thus more easily develop “tameness” in the broad sense of reduced fear and increased social affiliation with humans. Many of the characteristics of domestication can thus arise without genic evolution simply through humans “hacking” the ontogeny of social development.

For species under HIREC, behavioral flexibility can be a double-edged sword. On the one hand, learning makes it easier for individuals to survive in a novel environment, and to move across gradients of disturbance. On the other hand, loss of culture may be more difficult to recover from than loss of genetic diversity (Caro and Sherman 2012; Brakes et al. 2019). For example, endangered regent honeyeaters (*Anthochaera phrygia*) kept in captivity have experienced cultural loss of song variants compared to their wild counterparts (Crates et al. 2021). Cultural losses can also result in predator naïveté, with losses to predation cues after a short (50–130 years) period of carnivore (wolf and brown bear (*Ursus arctos horribilis*)) extirpation (Berger et al. 2001). In some cases, cultural losses may also carry negative downstream effects on local ecosystems, as in the case of migratory route loss due to anthropogenic interference (Caro and Sherman 2012). Bison (*Bison bison*), elephants (*Loxodonta africana*), and springbok (*Antidorcas marsupialis*) have all experienced reduced or lost migration routes as a result of agriculture and urbanization (Roche 2008; Caro and Sherman 2012).

Feralization

Domestication is far from irreversible. Many of the most successful domesticates have successfully feralized to the point that they become distinct enough from their domestic ancestors to earn different names: pigs (*Sus scrofa domesticus*) become wild boars (*S. scrofa*), horses become mustangs, and dogs become dingoes (*C. l. dingo*). Even Przewalski’s horse (*E. przewalskii*), popularly held as the closest undomesticated lineage to horses, is a feralized domesticate (Gauntz et al. 2018).

When domestic animals return into wild conditions, selection because of humans is reduced even as animals are again exposed to historic sources of selection like predators and food scarcity. An excellent case study of this is seen in feral chickens in Hawaii; genetic and behavioral analyses indicated that the feral chickens are hybrids originating from an invasion of domestic chickens into wild red junglefowl populations in Kauai (Gering et al. 2015). Additionally, distinct genetic differences are observed in the Kauai feral versus domestic chickens (Johnsson et al. 2016). Furthermore, given enough time, feral animals can be considered truly “wild” again; dingoes were introduced to Australia approximately 5000 years ago, but are designated as native animals and are managed under conservation plans in some areas (Stephens et al 2015). It is not surprising that feral animals thrive in human-disturbed areas. Feral populations constitute a problematic component of HIREC for many natural systems and are often targeted as pests (Hone 1995; Reddiex et al. 2006; Ruscoe et al. 2021). The Providence petrels discussed above, “tame” before ever encountering humans, are easy prey for decidedly untame feral hogs recently descended from domestic pigs.

The apparent ease of feralization stands in contrast with the low success rate of reintroduction of captive-bred wild species (Armstrong and Seddon 2008). In particular, deficiencies in culturally transmitted skills, such as hunting, foraging, and avoiding predators, can be fatal if not taught before reintroduction (Reading et al. 2013). Strategies like supplemental feeding after reintroduction (Ferrer et al. 2017) can also have unintended effects like compromising migratory behavior (Murray et al. 2016). The cultural and genetic profile of successful ferals may lead to useful insights for conservation efforts centered on reestablishing wild populations from captivity. Despite genetic and cultural bottlenecks, and in the face of learned and evolved behaviors and other phenotypes maladaptive for survival in the wild, domestication need not be a dead end for animal lineages (Gering et al. 2019). This observation may be a gem of hope for some wild species pushed to the brink in the Anthropocene.

Gene flow, domestication, and conservation: domestic and human-adapted species

So far, we have discussed domestication and feralization in terms of their utility as models to make predictions and anticipate challenges in conservation. Domesticated animals do mate with their wild relatives, to the evolutionary benefit and detriment of one or both populations (Berthouly et al. 2009; Guarino and Lobell 2011; Frantz et al. 2015; Bolstad et al. 2017). In some cases, humans have actively managed introgression with wild populations to strengthen specific desired traits or to maintain levels of genetic diversity (Murray et al. 2010; Warmuth et al. 2012; Shackelford et al. 2013). Genetic and archeological evidence supports cross-continental gene flow between domestic and wild dromedary populations, a process that contributed to their multiple domestication centers and widespread dispersal (Almathen et al. 2016).

The consequences for wild taxa of mating with domesticates are often negative. Domestic escapees, despite having lower fitness in the wild, contribute a migrational load on wild populations and wild-domesticate pairings have the potential to decrease population fitness (Tufto 2017). Domestic escapees have also been shown to alter the age and size at maturation of Atlantic salmon with concerns of introgression contributing to the reduced fitness of wild populations (Skaala et al. 2006; Bolstad et al. 2017). By contrast, gene flow with wild populations has served as an opportunity for genetic rescue in some domestic species (the mouflon (*Ovis orientalis musimon*) and domestic sheep (*O. aries*; Loi et al. 2001); the black-footed ferret (*Mustela nigripes*) and the domestic ferret (*M. putorius furo*; Sandler et al. 2021)). Hybridization with domesticates may sometimes be favored by selection, but the consequences for conservation may be complex (Allendorf and Hard 2009; Todesco et al. 2016).

Human-adapted wild populations are more likely to exist near domesticates, and therefore may serve as a conduit for the gene flow of domesticated genes into wild populations. Gene flow has been documented between dingoes and introduced domestic dogs (Stephens et al. 2015), and between European wildcats (*Felis silvestris*) and domestic cats (Oliveira et al. 2008) in urban areas where their ranges overlap. These patterns highlight the need for interdisciplinary approaches to species conservation and documentation in the Anthropocene; if discrete variables describing human-caused environmental alterations, genetic analyses, and ecological knowledge were not all considered, the full scope of these interspecies interactions could not be understood.

Genetic differentiation of domesticates, and human-adapted populations more broadly, operates along the

lines we should expect when populations are exposed to ecological divergence. The emergence of new domestic animal species is a special case of ecological speciation (Nosil 2012) which theory and empirical evidence suggest can operate even in the face of extensive gene flow (Heikkinen et al. 2020). Due to strong intentional and unintentional selection in human-controlled environments, domestic species have differentiated even given extensive gene flow with wild relatives (Frantz et al. 2015, 2020; Heikkinen et al. 2020).

Gene flow across human-created ecological gradients

Just as domesticates are under ecological selection and exchanging genes with wild populations, so too are HIREC-adapted wild populations (Berthouly et al. 2009; Mowry et al. 2021). These are animals whose reproduction is not directly controlled by humans, but that have evolved to enhance fitness in a novel ecological niche shaped by humans. Among the best-studied of these are so-called urban exploiters, or species whose population sizes or ranges have drastically grown in human industrial development (Blair 1996). Most of these, like early cats and ducks, are human commensals.

Many studies suggest that animals living in urban environments frequently differ in behavior compared to non-urban conspecifics (Sol et al. 2013). Urban coyotes (*Canis latrans*) display bolder and more exploratory behavior than rural coyotes (Breck et al. 2019), large carnivores decrease daytime activity to reduce time around humans (Ditchkoff et al. 2006), and 21 species of European birds have adjusted their flight initiation distance to match roadway speed limits which can decrease collisions (Legagneux and Ducatez 2013). Recent studies indicate that urban species also exhibit differences in reproductive success (Peach et al. 2008; Bailly et al. 2016) and traits used in mate choice (Candolin and Wong 2019) compared to populations in less-disturbed habitats. It is often unclear whether these traits have evolved due to ecological selection in a novel urban niche, as opposed to drift from genetic and cultural bottlenecks (Johnson and Munshi-South 2017).

Anthropogenic structures, waste, and presence have all demonstrated directional selective effects on the environment (Alberti et al. 2017). In addition to these concerns, urbanization creates chemical (Bai et al. 2017), noise (Kuehne et al. 2013), and light pollution (Cabrera-Cruz et al. 2018), decreases genetic variability (Schmidt et al. 2020), results in habitat loss and fragmentation (Scolozzi and Geneletti 2012), increases the probability of wildlife

diseases (Bradley and Altizer 2007), and creates large-scale environmental changes (Zhou et al. 2004; Argüeso et al. 2014).

The presence of anthropogenic structures frequently results in phenotypic adaptation to new opportunities or risks created from their presence. The abundance of bird feeders in the UK has favored longer bills to better exploit these easy meals; great tits (*Parus major*) homozygous for the Col4A5-C collagen gene exhibit increased bill length, and as a result increased reproductive success over heterozygous individuals (Bosse et al. 2017). These longer-billed individuals are more likely to visit bird feeders and spend more time at bird feeders than are heterozygous individuals. Similarly, the human offering of supplemental nectar for hummingbirds (*Calyptra anna*) in urban areas has resulted in a 700-km range expansion over the course of 17 years (Greig et al. 2017). In some cases, the presence of anthropogenic structures can result in phenotypic differentiation, as in *Anolis* lizards adapted to urban heat islands, with higher thermal preferences, longer legs, and a lower humidity tolerance than their arboreal counterparts (Winchell et al. 2018).

Understanding responses to HIREC, including urban adaptations, is an important step in predicting evolutionary responses to climate change and determining how to develop a sustainable and symbiotic relationship between human activities and biodiversity preservation (Johnson and Munshi-South 2017). Similarly, the study of adaptation to human-dominated landscapes provides opportunities to better understand the process of domestication. Indeed, domestic and human-adjacent wild animals display similar features including a loss or decrease of fear of humans and longer breeding seasons (Møller 2010). During the Neolithic period, humans began to sedentarize, rapidly alter the landscape, and domesticate for the first time (Driscoll et al. 2009), indicating domestication has been tied with rapid human development for thousands of years.

Including the commensal domestication pathway, animals have long taken advantage of the opportunities provided by human-altered environments (Driscoll et al. 2009). Habitat generalist, omnivorous, or granivorous birds have greater success in urban areas (Silva et al. 2016). Noise pollution has the ability to filter out species which cannot be heard over the din of the city, resulting in birds that communicate at higher frequencies being better suited for urban life (Francis et al. 2011). But birds can also shift the frequency of their song in response to urban noise (Bermúdez-Cuamatzin et al. 2011). Understanding aspects beneficial to survival in urban ecosystems could serve as an indicator of which species are most likely to be successful in an increasingly anthropogenic world. For example, behavioral plasticity and habitat matching, rather than specific life history traits, have allowed an invasive population of the Barbary ground squirrel (*Atlantoxerus getulus*) to proliferate despite

having a founding population of 2–3 individuals (van der Marel et al. 2021).

Synthesis and future directions: what does it take to live in the Anthropocene?

The principles underlying successful domestication and feralization can aid in our comprehension of why some species are thriving while some are imperiled during the Anthropocene. However, an additional and underappreciated aspect that needs to be considered when studying wild species' adaptation to the Anthropocene is the attitudes that humans have towards them.

Understanding the genetic changes in dogs, the oldest domestic animal species, is useful for calibrating the maximum end of the scale of human influence. If we understand the genetic changes that humans impose on other species during deliberate domestication, we can gain a better understanding of how wild species might try to shape their own evolutionary trajectory in the Anthropocene. For example, future studies should investigate if pests, which can often be feral or HIREC-adapted wild populations (Gering et al. 2019), that exhibit a reduced fear of humans exhibit signatures of selection in regions functionally similar to those found in hyper-social humans and dogs (vonHoldt et al. 2010, 2018). Further investigations could then tease apart the evolutionary significance of these findings by exploring whether convergence or parallel evolution resulted in observed similarities. Conserved neural systems across vertebrates, notably the social behavior network and the mesolimbic reward system (O'Connell and Hofmann 2011) represent promising candidates for parallel changes resulting from similar social and cognitive pressures arising from domestication and HIREC.

Even as we search for conserved mechanisms underlying the broader challenge of adapting to humans, it is important to recognize that domestication involves unique challenges and opportunities. Commensal species exploit anthropogenic niches, and become domestic once humans begin to encourage this by actively feeding, protecting, and breeding. These differences, particularly regarding prosocial behavior towards humans, are worth remembering as we try to draw insights from domestication selection for the fate of HIREC-adapted species. The broader point is that human attitudes towards a species have important effects on the spectrum of selective forces it has to contend with (Table 1). All domestic species are around today because the human-attributed value of the relationship outweighed the realized costs. Similarly, the evolutionary trajectory for wild animals in the Anthropocene depends on their subjective value to humans (Table 1). Rats (*Rattus* spp.), cockroaches (order Blattodea), and

squirrels (*Sciurus* spp.) all share a preference for human-dominated landscapes and the waste produced by humans. Yet squirrels are the only one that people purposely feed in public (Fig. 2). The value that people assign to a given species can determine the selective pressures that species experiences, and therefore its likelihood of survival in the Anthropocene (Table 1). In particular, it can be difficult to rally enough public support to effectively conserve and manage imperiled species unless they are charismatic (Jacobs 2009; Small 2012). For example, surveys sent to Floridian boaters showed that many individuals were aware of and supported Florida manatee (*Trichechus manatus latirostris*; graceful, reminiscent of mermaids) conservation efforts, including actions they could personally take to aid in manatee conservation (Aipanjiguly et al. 2003). However, those same individuals are likely not aware of the threatened Black Creek crayfish (*Procambarus pictus*; small, many legs, lives in mud), which shares a very limited range with the manatee, even exists let alone what can be done to conserve it.

Human interest in particular wild animal species can also lead to outcomes that favor a target species at the expense of an entire ecosystem: rabbits in Australia, starlings (*Sturnus vulgaris*) in North America, and Mozambique tilapia (*Oreochromis mossambicus*) worldwide. Public interest in non-native animals and a lack of ecological knowledge without effective community engagement can lead to cascading consequences (Deak et al. 2019). This is particularly true when considering the presence of invasive species, many of which have an advantage over native species because they are transported (and often subsequently released) in order to serve some function, whether esthetic or practical, for humans. The relationship between domestication and invasion runs deep, with the process of domestication often resulting in movement of animals into new ranges where escaped and released animals have the potential to damage local ecosystems (Lewis and Maslin, 2015). Humans are both the

problem with most invasive species, as well as the potential solution. Understanding which phenotypes and behaviors humans prefer in wild or domestic animals could help provide insight into which axes of HIREC and/or early stages of domestication species are experiencing in the Anthropocene.

Summary and conclusion

Animals evolve to exploit humans as a resource and vice versa. The dynamics of conflict and cooperation between humans and animals share many basic properties with coevolving systems more broadly, whether with domestication or adaptation to HIREC (Table 1). Human activities have the ability to influence behavior and genetic makeup of individuals in novel ways through the process of domestication. While there has been significant research on specific aspects of these changes, there are still many questions remaining about how domestication influences global biodiversity and speciation processes. Anthropogenic disturbance, specifically domestication, has been of tremendous use to science, which has surely helped science ring the alarm bells that many wild species are not keeping up with our rapidly changing world. Can science return the favor beyond ringing the alarm bells? Our modern understanding of genomics, combined with early warnings of physiological stress from environmental change (Gabor et al. 2018), can aid our conservation and biodiversity preservation goals through admixture, genetic rescue, and selective breeding programs like those used in zoos to help recover endangered populations.

The study of domestication has the potential to illuminate potential problems in conservation as these domestic and threatened species are often subject to similar limiting factors such as genetic bottlenecking (Moyers et al. 2018), introgression (Chen et al. 2018), human-mediated selection (Frantz et al. 2020). Does the fact that so few species successfully domesticate bode similarly ill for adaptation to

Table 1 Human perception of animals during the Anthropocene can result in divergent selection pressures affecting the way that animals adapt and respond to HIREC conditions. How humans view and

respond to specific species and groups affect the way that these animals respond to anthropogenic pressures

If humans...	...selection in the Anthropocene favors individuals that can...	...in HIREC-adapted...
ignore my existence	adapt to novel niches	wild populations (songbirds, wall lizards)
eat me	be tasty and grow fast	domesticated and managed populations (chickens, seabass, white-tailed deer)
hate me	avoid humans; reproduce quickly and abundantly	pests (urban rats and mice)
find me beautiful or sacred	be more beautiful	domesticated and managed populations (koi, swans)
think I could be useful	be useful	domesticated and managed populations (llamas, gambusia)
enjoy my company	be cute and prosocial	domesticated populations (bichons frises, cockatiels)
fear me	avoid humans – or be beautiful, tasty, or useful	wild and managed populations (tigers, German shepherds)

Anthropocene? Compared to the number of domesticated animals, the number of wild HIREC-adapted species is much larger; future studies using genomic tools for comparisons within HIREC-adapted species, and between HIREC-adapted and domestic species, provide an excellent opportunity to study behavioral, convergent, and parallel evolution.

Acknowledgements We would like to thank the associate editors for this collection, Dr. Caitlin Gabor, Dr. Jan Lindstrom, and Dr. Constantino Macias Garcia, for inviting us to contribute and being flexible throughout the publication process. We would also like to extend additional thanks to the photographers named in the caption of Fig. 2 that provided photos. Last, we would like to thank members of the Rosenthal lab and two anonymous reviewers for their improvements to the manuscript.

Author contribution The authors contributed equally to the conception, writing, and editing of the manuscript.

Funding GGR was supported by NSF IOS-1755327 and by a Texas A&M University (TAMU) Chancellor EDGES fellowship. TAMU's Biology Department supported AKB and TAMU's Ecology and Conservation Biology Department supported BMSR.

Data availability Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Code availability Code sharing is not applicable to this article as no code was generated during the current study.

Declarations

Conflict of interest The authors declare no competing interests.

References

Agnvall B, Ali A, Olby S, Jensen P (2014) Red Junglefowl (*Gallus gallus*) selected for low fear of humans are larger, more dominant and produce larger offspring. *Animal* 8:1498–1505

Agnvall B, Katajamaa R, Altimiras J, Jensen P (2015) Is domestication driven by reduced fear of humans? Boldness, metabolism and serotonin levels in divergently selected red junglefowl (*Gallus gallus*). *Biol Lett* 11:20150509

Agnvall B, Bélteky J, Katajamaa R, Jensen P (2018) Is evolution of domestication driven by tameness? A selective review with focus on chickens. *Appl Anim Behav Sci* 205:227–233

Aipaniguly S, Jacobson SK, Flamm R (2003) Conserving manatees: knowledge, attitudes, and intentions of boaters in Tampa Bay, Florida. *Conserv Biol* 17:1098–1105

Alberti M, Marzluff J, Hunt VM (2017) Urban driven phenotypic changes: empirical observations and theoretical implications for eco-evolutionary feedback. *Phil Trans R Soc B* 372:20160029

Allendorf FW, Hard JJ (2009) Human-induced evolution caused by unnatural selection through harvest of wild animals. *P Natl Acad Sci USA* 106(Suppl 1):9987–9994

Almathen F, Charruau P, Mohandesan E et al (2016) Ancient and modern DNA reveal dynamics of domestication and cross-continental dispersal of the dromedary. *P Natl Acad Sci USA* 113:6707–6712

Araki H, Cooper B, Blouin MS (2007) Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild. *Science* 318:100–103

Argüeso D, Evans JP, Fita L, Bormann KJ (2014) Temperature response to future urbanization and climate change. *Clim Dynam* 42:2183–2199

Armstrong DP, Seddon PJ (2008) Directions in reintroduction biology. *Trends Ecol Evol* 23:20–25

Axelsson E, Ratnakumar A, Arendt M, Maqbool K, Webster MT, Perloski M, Liberg O, Arnemo JM, Hedhammar A, Lindblad-Toh K (2013) The genomic signature of dog domestication reveals adaptation to a starch-rich diet. *Nature* 495:360–364

Bai X, McPhearson T, Cleugh H, Nagendra H, Tong X, Zhu T, Zhu Y-G (2017) Linking urbanization and the environment: conceptual and empirical advances. *Annu Rev Environ Resour* 42:215–240

Bailly J, Scheifler R, Berthe S, Clément-Demange V, Leblond M, Pasteur B, Faivre B (2016) From eggs to fledging: negative impact of urban habitat on reproduction in two tit species. *J Ornithol* 157:377–392

Balon EK (1995) Origin and domestication of the wild carp, *Cyprinus carpio*: from Roman gourmets to the swimming flowers. *Aquaculture* 129:3–48

Barrera-Redondo J, Piñero D, Eguiarte LE (2020) Genomic, transcriptomic and epigenomic tools to study the domestication of plants and animals: a field guide for beginners. *Front Genet* 11:742

Bell DB (2002) Modern breeds of chickens. In: Bell DB, Weaver WD (eds) *Commercial chicken meat and egg production*, 5th edn. Springer Science and Business Media, Boston, pp 31–40

Belyaev DK (1979) Destabilizing selection as a factor in domestication. *J Hered* 70:301–308

Berger J, Swenson JE, Persson IL (2001) Recolonizing carnivores and naïve prey: conservation lessons from Pleistocene extinctions. *Science* 291:1036–1039

Bermúdez-Cuamatzin E, Ríos-Chelén AA, Gil D, García CM (2011) Experimental evidence for real-time song frequency shift in response to urban noise in a passerine bird. *Biol Lett* 7:36–38

Bernanke J, Köhler H-R (2009) The impact of environmental chemicals on wildlife vertebrates. *Rev Environ Contam Toxicol* 198:1–47

Berthouly C, Leroy G, Van TN et al (2009) Genetic analysis of local Vietnamese chickens provides evidence of gene flow from wild to domestic populations. *BMC Genet* 10:1

Bester AJ, Priddel D, Klomp NI, Carlile N, O'Neill LE (2007) Reproductive success of the Providence Petrel *Pterodroma solandri* on Lord Howe Island, Australia. *Mar Ornithol* 35:21–28

Blair RB (1996) Land use and avian species diversity along an urban gradient. *Ecol Appl* 6:506–519

Boivin NL, Zeder MA, Fuller DQ, Crowther A, Larson G, Erlandson JM, Denham T, Petraglia MD (2016) Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. *P Natl Acad Sci USA* 113:6388–6396

Bollongino R, Burger J, Powell A, Mashkour A, Vigne J, Thomas MG (2012) Modern taurine cattle descended from small number of Near-Eastern founders. *Mol Biol Evol* 29:2101–2104

Bolstad GH, Hindar K, Robertsen G et al (2017) Gene flow from domesticated escapes alters the life history of wild Atlantic salmon. *Nat Ecol Evol* 1:124

Bosse M, Spurgin LG, Laine VN et al (2017) Recent natural selection causes adaptive evolution of an avian polygenic trait. *Science* 358:365–368

Bosse M, Megens H, Derkx MFL, de Cara AMR, Groenen MAM (2019) Deleterious alleles in the context of domestication, inbreeding, and selection. *Evol Appl* 12:6–17

Bradley CA, Altizer S (2007) Urbanization and the ecology of wildlife diseases. *Trends Ecol Evol* 22:95–102

Brakes P, Dall SRX, Aplin LM et al (2019) Animal cultures matter for conservation. *Science* 363:1032–1034

Breck SW, Poessel SA, Mahoney P, Young JK (2019) The intrepid urban coyote: a comparison of bold and exploratory behavior in coyotes from urban and rural environments. *Sci Rep* 9:2104

Broughton JM, Weitzel EM (2018) Population reconstructions for humans and megafauna suggest mixed causes for North American Pleistocene extinctions. *Nat Commun* 9:5441

Brubaker AS, Coss RG (2015) Evolutionary constraints on equid domestication: comparison of flight initiation distances of wild horses (*Equus caballus ferus*) and plains zebras (*Equus quagga*). *J Comp Psychol* 129:366–376

Cabrera-Cruz SA, Smolinsky JA, Buler JJ (2018) Light pollution is greatest within migration passage areas for nocturnally-migrating birds around the world. *Sci Rep* 8:3261

Candolin U, Wong BBM (2019) Mate choice in a polluted world: consequences for individuals, populations and communities. *Phil Trans R Soc B* 374:20180055

Caro T, Sherman PW (2012) Vanishing behaviors. *Conserv Lett* 5:159–166

Chace JF, Walsh JJ (2006) Urban effects on native avifauna: a review. *Landsc Urban Plan* 74:46–69

Chen N, Cai Y, Chen Q et al (2018) Whole-genome resequencing reveals world-wide ancestry and adaptive introgression events of domesticated cattle in East Asia. *Nat Commun* 9:2337

Clancey E, Byers JA (2014) The definition and measurement of individual condition in evolutionary studies. *Ethology* 120:845–854

Courtney Jones SK, Munn AJ, Byrne PG (2018) Effect of captivity on morphology: negligible changes in external morphology mask significant changes in internal morphology. *R Soc Open Sci* 5:172470

Crates R, Langmore N, Ranjard L, Stojanovic D, Rayner L, Ingwersen D, Heinsohn R (2021) Loss of vocal culture and fitness costs in a critically endangered songbird. *Proc R Soc B* 288:20210225

Crockford S (2002) Animal domestication and heterochronic speciation. In: Minugh-Purvis N, McNamara KJ (eds) *Human evolution through developmental change*. John Hopkins University Press, Baltimore, pp 122–153

Crutzen PJ (2006) The Anthropocene. In: Ehlers E, Krafft T (eds) *Earth system science in the Anthropocene*. Springer, Berlin, pp 13–18

Cruz F, Vilà C, Webster MT (2008) The legacy of domestication: accumulation of deleterious mutations in the dog genome. *Mol Biol Evol* 25:2331–2336

Daly KG, Mattiangeli V, Hare AJ et al (2021) Herded and hunted goat genomes from the dawn of domestication in the Zagros Mountains. *P Natl Acad Sci USA* 118:e2100901118

Darwin C (1868) *The variation of animals and plants under domestication*. John Murray, London

Deak BP, Ostendorf B, Taggart DA, Peacock DE, Bardsley DK (2019) The significance of social perceptions in implementing successful feral cat management strategies: a global review. *Animals* 9:617

Di Franco E, Pierson P, Di Iorio L et al (2020) Effects of marine noise pollution on Mediterranean fishes and invertebrates: a review. *Mar Pollut Bull* 159:111450

Diamond J (2002) Evolution, consequences and future of plant and animal domestication. *Nature* 418:700–707

Diamond J (2003) Farmers and their languages: the first expansions. *Science* 300:597–603

Ditchkoff SS, Saalfeld ST, Gibson CJ (2006) Animal behavior in urban ecosystems: modifications due to human-induced stress. *Urban Ecosyst* 9:5–12

Double Dime Whitetails (2021) Our story. Double Dime Whitetails. <https://doubledimewhitetails.com/our-story/>. Accessed 21 November 2021

Driscoll CA, Menotti-Raymond M, Roca AL et al (2007) The Near Eastern origin of cat domestication. *Science* 317:519–523

Driscoll CA, Macdonald DW, O'Brien SJ (2009) From wild animals to domestic pets, an evolutionary view of domestication. *P Natl Acad Sci USA* 106(Suppl 1):9971–9978

Fages A, Haghøj K, Khan N et al (2019) Tracking five millennia of horse management with extensive ancient genome time series. *Cell* 177:1419–1435.e31

Farquharson KA, Hogg CJ, Grueber CE (2021) Offspring survival changes over generations of captive breeding. *Nat Commun* 12:3045

Ferrer M, Morandini V, Baguena G, Newton I (2017) Reintroducing endangered raptors: a case study of supplementary feeding and removal of nestlings from wild populations. *J Appl Ecol* 55:1360–1367

Festa-Bianchet M (2017) When does selective hunting select, how can we tell, and what should we do about it? *Mamm Rev* 47:76–81

Fitak RR, Mohandesan E, Corander J et al (2020) Genomic signatures of domestication in Old World camels. *Commun Biol* 3:316

Francis CD, Ortega CP, Cruz A (2011) Noise pollution filters bird communities based on vocal frequency. *PLoS ONE* 6:e27052

Frankham R, Hemmer H, Ryder OA, Cothran EG, Soulé ME, Murray ND, Snyder M (1986) Selection in captive populations. *Zoo Biol* 5:127–138

Frantz LAF, Schraiber JG, Madsen O, Megens H, Cagan A, Bosse M, Paudel Y, Crooijmans RPMA, Larson G, Groenen MAM (2015) Evidence of long-term gene flow and selection during domestication from analyses of Eurasian wild and domestic pig genomes. *Nat Genet* 47:1141–1148

Frantz LAF, Bradley DG, Larson G, Orlando L (2020) Animal domestication in the era of ancient genomics. *Nat Rev Genet* 21:449–460

Gabor CR, Davis DR, Kim DS, Zabierek KC, Bendik NF (2018) Urbanization is associated with elevated corticosterone in Jolliyville Plateau salamanders. *Ecol Indic* 85:229–235

Gaunitz C, Fages A, Haghøj K et al (2018) Ancient genomes revisit the ancestry of domestic and Przewalski's horses. *Science* 360:111–114

Geiger M, Sánchez-Villagra MR, Lindholm AK (2018) A longitudinal study of phenotypic changes in early domestication of house mice. *R Soc Open Sci* 5:172099

Gering E, Johnsson M, Willis P, Getty T, Wright D (2015) Mixed ancestry and admixture in Kauai's feral chickens: invasion of domestic genes into ancient Red Junglefowl reservoirs. *Mol Ecol* 24:2112–2124

Gering E, Incorvaia D, Henriksen R, Conner J, Getty T, Wright D (2019) Getting back to nature: feralization in animals and plants. *Trends Ecol Evol* 34:1137–1151

Greig EI, Wood EM, Bonter DN (2017) Winter range expansion of a hummingbird is associated with urbanization and supplementary feeding. *Proc R Soc B* 284:20170256

Guarino L, Lobell DB (2011) A walk on the wild side. *Nat Clim Change* 1:374–375

Hammer K (1984) Das Domestikationssyndrom. *Kulturpflanze* 32:11–34

Heath DD, Heath JW, Bryden CA, Johnson RM, Fox CW (2003) Rapid evolution of egg size in captive salmon. *Science* 299:1738–1740

Heikkinen ME, Ruokonen M, White TA, Alexander MM, Gündüz I, Dobney KM, Aspi J, Searle JB, Pyhäjärvi T (2020) Long-term reciprocal gene flow in wild and domestic geese reveals complex domestication history. *G3* 10:3061–3070

Helmer D, Gourichon L, Monchot H, Peters J, Saña Segui M (2005) Identifying early domestic cattle from Pre-Pottery Neolithic sites on the Middle Euphrates using sexual dimorphism. In: Vigne

J-D, Peters J, Helmer D (eds) First steps of animal domestication new archaeozoological approaches. Oxbow Books, Oxford, pp 86–95

Herrero S, Smith T, DeBruyn TD, Gunther K, Matt CA (2005) Brown bear habituation to people—safety, risks, and benefits. *Wildlife Soc B* 33:362–373

Hone J (1995) Spatial and temporal aspects of vertebrate pest damage with emphasis on feral pigs. *J Appl Ecol* 32:311–319

Hou Y, Qi F, Bai X, Ren T, Shen X, Chu Q, Zhang X, Lu X (2020) Genome-wide analysis reveals molecular convergence underlying domestication in 7 bird and mammals. *BMC Genomics* 21:204

Hussein AAA, Bloem E, Fodor I, Baz E, Tadros MM, Soliman MFM, El-Shenawy NS, Koene JM (2021) Slowly seeing the light: an integrative review on ecological light pollution as a potential threat for mollusks. *Environ Sci Pollut Res Int* 28:5036–5048

Jacobs MH (2009) Why do we like or dislike animals? *Hum Dimens Wildl* 14:1–11

Johnson MTJ, Munshi-South J (2017) Evolution of life in urban environments. *Science* 358:eaam8327

Johnsson M, Gering E, Willis P, Lopez S, Van Dorp L, Hellenthal G, Henriksen R, Friberg U, Wright D (2016) Feralisation targets different genomic loci to domestication in the chicken. *Nat Commun* 7:12950

Johnsson M, Henriksen R, Wright D (2021) The neural crest cell hypothesis: no unified explanation for domestication. *Genetics* 219:iyab097

Kamaluddin SN, Tanaka M, Wakamori H, Nishimura T, Ito T (2019) Phenotypic plasticity in the mandibular morphology of Japanese macaques: captive-wild comparison. *R Soc Open Sci* 6:181382

Kight CR, Swaddle JP (2011) How and why environmental noise impacts animals: an integrative, mechanistic review. *Ecol Lett* 14:1052–1061

Kim M-S, Lozano R, Kim JH et al (2021) The patterns of deleterious mutations during the domestication of soybean. *Nat Commun* 12:97

Kruska D (1996) The effect of domestication on brain size and composition in the mink (*Mustela vison*). *J Zool* 239:645–661

Kuehne LM, Padgham BL, Olden JD (2013) The soundscapes of lakes across an urbanization gradient. *PLoS ONE* 8:e55661

Lacy RC (1997) Importance of genetic variation to the viability of mammalian populations. *J Mammal* 78:320–335

Larson G, Burger J (2013) A population genetics view of animal domestication. *Trends Genet* 29:197–205

Larson G, Fuller DQ (2014) The evolution of animal domestication. *Annu Rev Ecol Evol S* 45:115–136

Lau AN, Peng L, Goto H, Chemnick L, Ryder OA, Makova KD (2009) Horse domestication and conservation genetics of Przewalski's horse inferred from sex chromosomal and autosomal sequences. *Mol Biol Evol* 26:199–208

Leclerc M, Zedrosser A, Swenson JE, Pelletier F (2019) Hunters select for behavioral traits in a large carnivore. *Sci Rep* 9:12371

Legagneux P, Duceatz S (2013) European birds adjust their flight initiation distance to road speed limits. *Biol Lett* 9:20130417

Lewis SL, Maslin MA (2015) Defining the Anthropocene. *Nature* 519:171–180

Loi P, Ptak G, Barboni B, Fulka J Jr, Cappai P, Clinton M (2001) Genetic rescue of an endangered mammal by cross-species nuclear transfer using post-mortem somatic cells. *Nat Biotechnol* 19:962–964

López ME, Benestan L, Moore J-S et al (2019) Comparing genomic signatures of domestication in two Atlantic salmon (*Salmo salar* L.) populations with different geographical origins. *Evol Appl* 12:137–156

Lord KA, Larson G, Coppinger RP, Karlsson EK (2020) The history of farm foxes undermines the animal domestication syndrome. *Trends Ecol Evol* 35:125–136

Lorenz K (1935) Der Kumpan in der Umwelt des Vogels. *J Ornithol* 83:137–213

Lozano R, Gazave E, Dos Santos JPR et al (2021) Comparative evolutionary genetics of deleterious load in sorghum and maize. *Nat Plants* 7:17–24

Makino T, Rubin CJ, Carneiro M, Axelsson E, Andersson L, Webster MT (2018) Elevated proportions of deleterious genetic variation in domestic animals and plants. *Genome Biol Evol* 10:276–290

Marler P (1991) The instinct to learn. In: Carey S, Gelman R (eds) *The epigenesis of mind: essays on biology and cognition*. Lawrence Erlbaum Associates, Hillsdale, pp 37–66

Marshall FB, Dobney K, Denham T, Capriles JM (2014) Evaluating the roles of directed breeding and gene flow in animal domestication. *P Natl Acad Sci USA* 111:6153–6158

Mason G, Burn CC, Dallaire JA, Kroshko J, McDonald Kinkaid H, Jeschke JM (2013) Plastic animals in cages: behavioural flexibility and responses to captivity. *Anim Behav* 85:1113–1126

Milot E, Perrier C, Papillon L, Dodson JJ, Bernatchez L (2013) Reduced fitness of Atlantic salmon released in the wild after one generation of captive breeding. *Evol Appl* 6:472–485

Mock KE, Latch EK, Rhodes OE (2004) Assessing losses of genetic diversity due to translocation: long-term case histories in Merriam's turkey (*Meleagris gallopavo merriami*). *Conserv Genet* 5:631–645

Møller AP (2010) Interspecific variation in fear responses predicts urbanization in birds. *Behav Ecol* 21:365–371

Mowry CB, Wilson LA, von Holdt BM (2021) Interface of human/wildlife interactions: an example of a bold Coyote (*Canis latrans*) in Atlanta, GA, USA. *Diversity* 13:372

Moyers BT, Morrell PL, McKay JK (2018) Genetic costs of domestication and improvement. *J Hered* 109:103–116

Murray C, Huerta-Sánchez E, Casey F, Bradley DG (2010) Cattle demographic history modelled from autosomal sequence variation. *Phil Trans R Soc B* 365:2531–2539

Murray MH, Becker DJ, Hall RJ, Hernandez SM (2016) Wildlife health and supplemental feeding: a review and management recommendations. *Biol Conserv* 204:163–174

Mysterud A (2010) Still walking on the wild side? Management actions as steps towards 'semi-domestication' of hunted ungulates. *J Appl Ecol* 47:920–925

Naval-Sánchez M, McWilliam S, Evans B, Yáñez JM, Houston RD, Kijas JW (2020) Changed patterns of genomic variation following recent domestication: selection sweeps in farmed Atlantic salmon. *Front Genet* 11:264

Nosil P (2012) Ecological speciation. Oxford University Press, Oxford

O'Connell LA, Hofmann HA (2011) The vertebrate mesolimbic reward system and social behavior network: a comparative synthesis. *J Comp Neurol* 519:3599–3639

O'regan HJ, Kitchener AC (2005) The effects of captivity on the morphology of captive, domesticated and feral mammals. *Mamm Rev* 35:215–230

Oliveira R, Godinho R, Randi E, Alves PC (2008) Hybridization versus conservation: are domestic cats threatening the genetic integrity of wildcats (*Felis silvestris silvestris*) in Iberian Peninsula? *Phil Trans R Soc B* 363:2953–2961

Olsen SL (2006) Early horse domestication on the Eurasian steppe. In: Olsen SL, Zeder MA (eds) *Documenting domestication*. University of California Press, Berkeley, pp 245–269

O'Sullivan RJ, Aykanat T, Johnston SE, Rogan G, Poole R, Prodöhl PA, de Etyo E, Primmer CR, McGinnity P, Reed TE (2020) Captive-bred Atlantic salmon released into the wild have fewer offspring than wild-bred fish and decrease population productivity. *Proc R Soc B* 287:20201671

Parker KA, Anderson MJ, Jenkins PF, Brunton DH (2012) The effects of translocation-induced isolation and fragmentation on the cultural evolution of bird song. *Ecol Lett* 15:778–785

Parsons KJ, Rigg A, Conith AJ, Kitchener AC, Harris S, Zhu H (2020) Skull morphology diverges between urban and rural populations of red foxes mirroring patterns of domestication and macroevolution. *Proc R Soc B* 287:20200763

Peach WJ, Vincent KE, Fowler JA, Grice PV (2008) Reproductive success of house sparrows along an urban gradient. *Anim Conserv* 11:493–503

Raap T, Pinxten R, Eens M (2015) Light pollution disrupts sleep in free-living animals. *Sci Rep* 5:13557

Reading RP, Miller B, Shepherdson D (2013) The value of enrichment to reintroduction success. *Zoo Biol* 32:332–341

Reddiex B, Forsyth DM, McDonald-Madden E, Einoder LD, Griffioen PA, Chick RR, Robley AJ (2006) Control of pest mammals for biodiversity protection in Australia. I. Patterns of control and monitoring. *Wildlife Res* 33:691

Reinhardt UG (2001) Selection for surface feeding in farmed and sea-ranched Masu salmon juveniles. *Trans Am Fish Soc* 130:155–158

Rivrud IM, Sonkoly K, Lehoczki R, Csányi S, Storvik GO, Mysterud A (2013) Hunter selection and long-term trend (1881–2008) of red deer trophy sizes in Hungary. *J Appl Ecol* 50:168–180

Robertson BA, Rehage JS, Sih A (2013) Ecological novelty and the emergence of evolutionary traps. *Trends Ecol Evol* 28:552–560

Roche C (2008) “the fertile brain and inventive power of man”: Anthropogenic factors in the cessation of springbok treks and the disruption of the karoo ecosystem, 1865–1908. *Africa* 78:157–188

Rosenblum EB, Parent CE, Brandt EE (2014) The molecular basis of phenotypic convergence. *Annu Rev Ecol Evol S* 45:203–226

Rosenthal G (2017) Mate choice. Princeton University Press, Princeton

Ruscoe WA, Brown PR, Henry S, van de Weyer N, Robinson F, Hinds LA, Singleton GR (2021) Conservation agriculture practices have changed habitat use by rodent pests: implications for management of feral house mice. *J Pest Sci* 95:493–503

Sánchez-Villagra MR, Geiger M, Schneider RA (2016) The taming of the neural crest: a developmental perspective on the origins of morphological covariation in domesticated mammals. *R Soc Open Sci* 3:160107

Sandler RL, Moses L, Wisely SM (2021) An ethical analysis of cloning for genetic rescue: case study of the black-footed ferret. *Biol Conserv* 257:109118

Sato DX, Rafati N, Ring H et al (2020) Brain transcriptomics of wild and domestic rabbits suggests that changes in dopamine signaling and ciliary function contributed to evolution of tameness. *Genome Biol Evol* 12:1918–1928

Schmidt C, Domaratzki M, Kinnunen RP, Bowman J, Garroway CJ (2020) Continent-wide effects of urbanization on bird and mammal genetic diversity. *Proc R Soc B* 287:20192497

Schubert M, Jónsson H, Chang D et al (2014) Prehistoric genomes reveal the genetic foundation and cost of horse domestication. *P Natl Acad Sci USA* 111:E5661–E5669

Scolozzi R, Geneletti D (2012) A multi-scale qualitative approach to assess the impact of urbanization on natural habitats and their connectivity. *Environ Impact Assess* 36:9–22

Shackelford L, Marshall F, Peters J (2013) Identifying donkey domestication through changes in cross-sectional geometry of long bones. *J Archaeol Sci* 40:4170–4179

Siciliano-Martina L, Light JE, Lawing AM (2021) Changes in canid cranial morphology induced by captivity and conservation implications. *Biol Conserv* 257:109143

Siegel HI (2012) The hamster: reproduction and behavior. Springer US, Boston

Signer-Hasler H, Burren A, Neuditschko M, Frischknecht M, Garrick D, Stricker C, Gredler B, Bapst B, Flury C (2017) Population structure and genomic inbreeding in nine Swiss dairy cattle populations. *Genet Sel Evol* 49:83

Sih A (2013) Understanding variation in behavioural responses to human-induced rapid environmental change: a conceptual overview. *Anim Behav* 85:1077–1088

Sih A, Stamps J, Yang LH, McElreath R, Ramenofsky M (2010) Behavior as a key component of integrative biology in a human-altered world. *Integr Comp Biol* 50:934–944

Silva CP, Sepúlveda RD, Barbosa O (2016) Nonrandom filtering effect on birds: species and guilds response to urbanization. *Ecol Evol* 6:3711–3720

Skaala Ø, Wennewik V, Glover KA (2006) Evidence of temporal genetic change in wild Atlantic salmon, *Salmo salar* L., populations affected by farm escapees. *ICES J Mar Sci* 63:1224–1233

Small E (2012) The new Noah’s Ark: beautiful and useful species only. Part 2. *The Chosen Species Biodiversity* 13:37–53

Smith FA, Elliott Smith RE, Lyons SK, Payne JL (2018) Body size downgrading of mammals over the late Quaternary. *Science* 360:310–313

Snoj A, Razpet A, Tomljanović T, Treer T, Sušnik S (2006) Genetic composition of the Jadro softmouth trout following translocation into a new habitat. *Conserv Genet* 8:1213

Sol D, Lapiendra O, González-Lagos C (2013) Behavioural adjustments for a life in the city. *Anim Behav* 85:1101–1112

Solberg MF, Robertsen G, Sundt-Hansen LE, Hindar K, Glover KA (2020) Domestication leads to increased predation susceptibility. *Sci Rep* 10:1929

Stephens D, Wilton AN, Fleming PJS, Berry O (2015) Death by sex in an Australian icon: a continent-wide survey reveals extensive hybridization between dingoes and domestic dogs. *Mol Ecol* 24:5643–5656

Sullivan AP, Bird DW, Perry GH (2017) Human behaviour as a long-term ecological driver of non-human evolution. *Nat Ecol Evol* 1:65

Sutter NB, Ostrander EA (2004) Dog star rising: the canine genetic system. *Nat Rev Genet* 5:900–910

Suzuki K, Ikebuchi M, Bischof H-J, Okanoya K (2014) Behavioral and neural trade-offs between song complexity and stress reaction in a wild and a domesticated finch strain. *Neurosci Biobehav Rev* 46:547–556

Todesco M, Pascual MA, Owens GL et al (2016) Hybridization and extinction. *Evol Appl* 9:892–908

Trut L (1999) Early canid domestication: the farm-fox experiment. *Am Sci* 87:160–169

Trut L, Oskina I, Kharlamova A (2009) Animal evolution during domestication: the domesticated fox as a model. *BioEssays* 31:349–360

Tufto J (2017) Domestication and fitness in the wild: a multivariate view. *Evolution* 71:2262–2270

van der Marel A, Waterman JM, López-Darias M (2021) Exploring the role of life history traits and introduction effort in understanding invasion success in mammals: a case study of Barbary ground squirrels. *Oecologia* 195:327–339

Van Doren BM, Horton KG, Dokter AM, Klinck H, Elbin SB, Farnsworth A (2017) High-intensity urban light installation dramatically alters nocturnal bird migration. *P Natl Acad Sci USA* 114:11175–11180

Vilà C, Savolainen P, Maldonado JE, Amorim IR, Rice JE, Honeycutt RL, Crandall KA, Lundeberg J, Wayne RK (1997) Multiple and ancient origins of the domestic dog. *Science* 276:1687–1689

vonHoldt BM, Pollinger JP, Lohmueller KE et al (2010) Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. *Nature* 464:898–902

vonHoldt BM, Ji SS, Aardema ML, Stahler DR, Udell MAR, Sinzheimer JS (2018) Activity of genes with functions in human Williams-Beuren syndrome is impacted by mobile

element insertions in the gray wolf genome. *Genome Biol Evol* 10:1546–1553

Wagner DL, Grames EM, Forister ML, Berenbaum MR, Stopak D (2021) Insect decline in the Anthropocene: death by a thousand cuts. *P Natl Acad Sci USA* 118:e2023989118

Wang GD, Xie HB, Peng MS, Irwin D, Zhang YP (2014) Domestication genomics: evidence from animals. *Annu Rev Anim Biosci* 2:65–84

Wang MS, Otecko NO, Wang S, Wu DD, Yang MM, Xu YL, Murphy RW, Peng MS, Zhang YP (2017) An evolutionary genomic perspective on the breeding of dwarf chickens. *Mol Biol Evol* 34:3081–3088

Warmuth V, Eriksson A, Bower MA et al (2012) Reconstructing the origin and spread of horse domestication in the Eurasian steppe. *P Natl Acad Sci USA* 109:8202–8206

Wilkins AS (2017) Revisiting two hypotheses on the “domestication syndrome” in light of genomic data. *Vavilov J Genet Breed* 21:435–442

Wilkins AS (2020) A striking example of developmental bias in an evolutionary process: the “domestication syndrome.” *Evol Dev* 22:143–153

Wilkins AS, Wrangham RW, Fitch WT (2014) The “domestication syndrome” in mammals: a unified explanation based on neural crest cell behavior and genetics. *Genetics* 197:795–808

Winchell KM, Carlen EJ, Puente-Rolón AR, Revell LJ (2018) Divergent habitat use of two urban lizard species. *Ecol Evol* 8:25–35

Zala SM, Penn DJ (2004) Abnormal behaviours induced by chemical pollution: a review of the evidence and new challenges. *Anim Behav* 68:649–664

Zeder MA (2012) The domestication of animals. *J Anthropol Res* 68:161–190

Zeder MA (2018) Why evolutionary biology needs anthropology: evaluating core assumptions of the extended evolutionary synthesis. *Evol Anthropol* 27:267–284

Zeder MA (2020) Straw foxes: domestication syndrome evaluation comes up short. *Trends Ecol Evol* 35:647–649

Zhang M-Q, Xu X, Luo S-J (2014) The genetics of brown coat color and white spotting in domestic yaks (*Bos grunniens*). *Anim Genet* 45:652–659

Zhang Z, Jia Y, Almeida P et al (2018) Whole-genome resequencing reveals signatures of selection and timing of duck domestication. *Gigascience* 7:giy027

Zhou L, Dickinson RE, Tian Y, Fang J, Li Q, Kaufmann RK, Tucker CJ, Myneni RB (2004) Evidence for a significant urbanization effect on climate in China. *P Natl Acad Sci USA* 101:9540–9544

Zuk M, Spencer HG (2020) Killing the behavioral zombie: genes, evolution, and why behavior isn’t special. *Bioscience* 70:515–520

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.