
FlexType: Flexible Text Input with a Small Set of Input Gestures
Dylan Gaines

Michigan Technological University

Houghton, Michigan, United States

dcgaines@mtu.edu

Mackenzie Baker

Michigan Technological University

Houghton, Michigan, United States

mmbaker1@mtu.edu

Keith Vertanen

Michigan Technological University

Houghton, Michigan, United States

vertanen@mtu.edu

ABSTRACT
In many situations, it may be impractical or impossible to enter text

by selecting precise locations on a physical or touchscreen keyboard.

We present an ambiguous keyboard with four character groups that

has potential applications for eyes-free text entry, as well as text en-

try using a single switch or a brain-computer interface. We develop

a procedure for optimizing these character groupings based on a dis-

ambiguation algorithm that leverages a long-span language model.

We produce both alphabetically-constrained and unconstrained

character groups in an offline optimization experiment and com-

pare them in a longitudinal user study. Our results did not show a

significant difference between the constrained and unconstrained

character groups after four hours of practice. As expected, partici-

pants had significantly more errors with the unconstrained groups

in the first session, suggesting a higher barrier to learning the

technique. We therefore recommend the alphabetically-constrained

character groups, where participants were able to achieve an av-

erage entry rate of 12.0 words per minute with a 2.03% character

error rate using a single hand and with no visual feedback.

CCS CONCEPTS
• Human-centered computing → Accessibility technologies;
Empirical studies in ubiquitous and mobile computing; Text
input; Auditory feedback; Empirical studies in HCI .

KEYWORDS
text entry, accessibility, human-computer interaction, mobile key-

board

ACM Reference Format:
Dylan Gaines, Mackenzie Baker, and Keith Vertanen. 2023. FlexType: Flex-

ible Text Input with a Small Set of Input Gestures. In 28th International
Conference on Intelligent User Interfaces (IUI ’23), March 27–31, 2023, Sydney,
NSW, Australia. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/

3581641.3584077

1 INTRODUCTION
In today’s society, a large portion of mobile text entry takes place

on touchscreen devices, whether it’s a smartphone, tablet, or smart-

watch. Users tap on a virtual keyboard that is shown on the screen

and the exact location of each tap is recorded and used to produce

text. However, there are times where precise touch locations are

This work is licensed under a Creative Commons

Attribution-NonCommercial-ShareAlike International 4.0 License.

IUI ’23, March 27–31, 2023, Sydney, NSW, Australia
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0106-1/23/03.

https://doi.org/10.1145/3581641.3584077

unavailable or impractical. If the user has a visual impairment, they

may not be able to see a virtual keyboard well enough (or at all) to

provide precise input. This would impede their ability to enter text

on both touchscreen devices and Augmented and Virtual Reality

devices that lack the haptic feedback of a physical keyboard.

Neurodegenerative diseases such as amyotrophic lateral sclero-

sis (ALS) can cause motor impairments that often progress with

time. When symptoms first begin, users may have difficulty moving

their finger to a precise location, but may be able to select larger

targets. As the diseases progress, users may lose the ability to speak

altogether and rely on Alternative and Augmentative Communi-

cation (AAC) systems to communicate with other people. These

AAC systems can take many forms, such as dwell-based eye-gaze

typing [15] or row-column scanning [20].

All of these situations could be aided by using an ambiguous

keyboard with a small number of character groups. Ambiguous

keyboards map multiple characters to a single input gesture and

use either a secondary gesture or a statistical process known as

disambiguation to determine which letter out of a group the user

intended to select. Disambiguation can be performed on every input

gesture individually or on a full word or sentence. While there is

theoretically no maximum length of text that can be disambiguated

at once, the longer the text, the more possible combinations of

characters there are to consider.

Each character group in an ambiguous keyboard can be mapped

to a distinct gesture. For example, the Tap123 interface designed

by Gaines [11] divided a Qwerty keyboard into six ambiguous

groups. The number of fingers the user tapped with (between one

and three) represented the row of the keyboard, and the left or

right side of the screen the user tapped represented the side of the

keyboard on which their intended character lies. In this work, by

reducing the number of groups from six to four, we can remove

all location dependency and allow users to tap a touchscreen with

between one and four fingers on a single hand, as opposed to the

bi-manual method used by Tap123. Since reducing the number of

groups increases the number of characters in each group, there are

more possible words to consider during the disambiguation process.

While past studies have optimized ambiguous keyboards using

simple word or character frequencies within a text corpus, they

have not considered the impact of recognition using a long-span

language model. Our paper makes three primary contributions:

(1) The design of FlexType, a four group ambiguous keyboard

with no location dependency and many possible applications

in accessible text input.

(2) A new ambiguous keyboard optimization procedure that

incorporates a long-span language model in the process. To

our knowledge, we are the first to consider a language-model-

aware optimization procedure.

584

https://doi.org/10.1145/3581641.3584077
https://doi.org/10.1145/3581641.3584077
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3581641.3584077
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3581641.3584077&domain=pdf&date_stamp=2023-03-27

IUI ’23, March 27–31, 2023, Sydney, NSW, Australia Gaines et al.

(3) A longitudinal user study comparing performance over time

on two optimized character groups: one constrained to al-

phabetical order and one not constrained to alphabetical

order.

While FlexType has many possible applications in accessible text

input, in this work we focus on investigating its performance as an

eyes-free text input method on a mobile device.

2 RELATEDWORK
2.1 Accessibility
Some existing eyes-free text entry solutions rely on indicating

Braille mappings to enter characters [2, 21, 23, 25, 28]. While Perk-

input [2] users achieved 17.6 words per minute with one hand, it

required both knowledge of the Braille character set and the ability

to target specific areas of a touchscreen. For people with a motor

impairment in addition to a visual impairment, this may not be

feasible.

Other eyes-free interfaces allow for exploration of a keyboard

using audio feedback and a secondary touch event to confirm selec-

tion [5, 17]. This technique is also used by modern Android and iOS

mobile operating systems to enable eyes-free text entry. Another

approach by Tinwala and MacKenzie [29] performs recognition on

drawn characters. Performing multiple touch events per character

can be quite slow, with Bonner et al. [5] finding entry rates of only

1.32 words per minute with their method.

A common text entry interface for people with severe motor im-

pairments is row-column scanning [20, 30]. Row-column scanning

interfaces cyclically highlight groups of characters (rows), allowing

the highlighted group to be selected in some way (e.g. by pushing a

button, twitching a muscle, or blinking an eye). The interface then

highlights each character in the selected row in turn (columns),

allowing the user to select their desired character.

An alternative single-switch input interface is Nomon [4, 7].

Nomon displays multiple character and word options, each with

its own rotating clock. A user makes a selection by repeatedly

activating their switch when the clock for their desired target is

at noon. The target is selected after a variable number of switch

activations that depends on the likelihood of the target and how

precisely the user triggers their switch.

Instead of activating a switch, some people with severe motor

impairments may instead use an eye-gaze interface [15, 24, 27]. In a

typical dwell-based eye keyboard, a user looks at their intended key

for a specified amount of time (typically a second or so) and this

triggers the key. If a person can neither reliably trigger a switch or

control their eye gaze, they may need to resort to a brain-computer

interface (BCI) system to decipher brain signals into text [10, 13, 14].

2.2 Ambiguous Keyboards
Ambiguous keyboards have been utilized to enter text on small form

factor devices such as smartwatches thatmay lack the screen size for

each character to have its own key. The Optimal-T9 keyboard [26]

used 9 keys on a smartwatch keyboard. The T18 keyboard [8]

extended this to combine ambiguous and non-ambiguous keys into

an interface with 18 keys. Users typed with the T18 keyboard at

15.7 words per minute. TipText [34] allowed users to input text

to a wearable device by using their thumb to type on an invisible

ambiguous keyboard on the tip of their index finger. Users wrote

with TipText at about 13.3 words per minute.

Ambiguous keyboards have previously been used as AAC aids

for single-switch users. Mackenzie and Felzer [22] created a Scan-

ning Ambiguous Keyboard (SAK) with three character groups. In

a scanning keyboard, the system highlights one key at a time in a

cyclic pattern. To enter text, users activate their switch when the

key they wish to select is highlighted. In the case of the SAK, there

were three keys each containing a character group and a fourth

containing the space character. After selecting the space key, the

SAK would scan through the list of matching words in order of

decreasing frequency in a text corpus.

In HiFinger [16], the authors instrumented a user’s hand with

pressure sensors to detect finger-to-thumb touch gestures for text

input in virtual or augmented reality. The authors divided the al-

phabet and the ten numeric digits into six ambiguous groups of six

characters each. Users selected their target character’s group with

their first gesture (out of six possibilities), and then performed a

second gesture to select the specific character out of that group.

2.3 Optimization
There has been a considerable amount of past research on optimiz-

ing keyboard layouts for a variety of metrics such as finger travel

distance, keystroke efficiency, familiarity, and tap clarity. Lesher

et al. [19] showed that evaluating every possible set of character

groupings is computationally infeasible, but proposed an algorithm

that efficiently finds locally optimized groupings for an ambiguous

keyboard. We describe this algorithm in detail here since we modify

it later in this work. The first step in their algorithm is to compute

a confusability matrix for a corpus of English text. They do this by

stepping through the corpus one character at a time and creating

a list of the most likely characters to come next based on a char-

acter prediction algorithm. They keep track of how frequently an

incorrect character is predicted as more likely than the actual next

character in the text. The authors define the mutual confusability

of two characters 𝛼 and 𝛽 as

𝑀 (𝛼, 𝛽) = 𝐶 (𝛼, 𝛽) +𝐶 (𝛽, 𝛼), (1)

where 𝐶 (𝛼, 𝛽) is the number of times 𝛼 was mistaken for 𝛽 , and

𝐶 (𝛽, 𝛼) is the reverse. Further, for any number of characters placed

in a single ambiguous group, the total mutual confusability is the

sum of the mutual confusabilities between each pair of characters.

After computing the confusability matrix, Lesher et al. [19] run

their n-opt algorithm. The algorithm starts with a valid arrange-

ment of characters into groupings. On each pass, it checks every

possible tuple of n characters to see if shuffling the characters re-

sults in a better overall arrangement according to whatever metric

is being optimized (in this case, the confusability of the groupings).

For example, a two-opt pass would check every pair of characters

(‘AB’, ‘AC’, ..., ‘YZ’) and a three-opt pass would check every triple

(‘ABC’, ‘ABD’, ..., ‘XYZ’) in alphabetical order. If any swaps are

made during the course of a single pass, the pass repeats once it has

finished, checking all tuples again. The algorithm continues until a

pass completes with no swaps. The n-opt algorithm requires facto-

rially increasing computations for higher values of n; the highest
pass completed by Lesher et al. was five-opt [19]. Since the n-opt

585

FlexType: Flexible Text Input with a Small Set of Input Gestures IUI ’23, March 27–31, 2023, Sydney, NSW, Australia

algorithm only finds local optima, the authors start with many

initial arrangements and run the two-opt algorithm on each. They

take the result with the best performance and further improve it

via the five-opt algorithm.

Gong and Tarasewich [12] compared an ambiguous layout that

was constrained to be in strict alphabetical order with a layout

that was unconstrained and freely optimized. Both layouts were

optimized to minimize the number of keystrokes required on aver-

age to enter a character. While they were able to fully enumerate

the possible constrained layouts, they used a genetic algorithm to

optimize the unconstrained layouts. The authors found that the

more familiar constrained layout aided users’ ability to learn the

interface.

Other authors found similar results when comparing freely op-

timized non-ambiguous keyboards to ones with familiarity con-

straints. For example, Bi et al. [3] performed a study with a Qwerty

keyboard, a Quasi-Qwerty keyboard, and a freely optimized key-

board. The Quasi-Qwerty and freely optimized keyboards were

designed to minimize the travel distance for a user’s finger, thereby

increasing the entry rate. However, the Quasi-Qwerty layout had

the constraint that letters could not move more than one row and

one column from their initial Qwerty position. The authors found

that while the Quasi-Qwerty layout had better movement efficiency

than the standard Qwerty layout, it was not as efficient as the freely

optimized layout. However, during user trials, the authors found

that users took the longest to locate the initial letter of a word on the

freely optimized keyboard, followed by the Quasi-Qwerty layout,

and finally the standard Qwerty layout. The authors concluded that

the Quasi-Qwerty layout was effective at obtaining an increased

movement efficiency while not adding too much time to the initial

visual search. While through practice users would improve with

the freely optimized layout, using a more familiar layout reduced

the amount of practice needed.

Instead of simply enforcing a strict Qwerty restriction on their

non-ambiguous keyboard layout, Dunlop and Levine [9] chose to

optimize their keyboard layout on three different parameters:

• Finger Travel Distance — The distance between each pair

of letters, multiplied by the number of times those letters

were adjacent in the language corpus, summed over each

pair of letters in a given layout. While this metric is relevant

to many on-screen optimization problems and is common in

related work, it does not apply to an ambiguous keyboard

such as ours that is location-independent.

• Tap Ambiguity — Calculated to reduce the number of adja-

cent characters in a layout that could frequently be swapped

with each other to create valid words (e.g. I and O can be

swapped between the words ‘for’ and ‘fir’). We describe this

in detail here since we build upon this parameter in this

work. They first created a table of these commonly inter-

changed letters, which they referred to as bad bigrams, or

“badgrams”. After counting the frequency of badgrams in

same-length words in a text corpus, they converted each to

a probability by dividing by the total number of badgram

occurrences. The authors defined their tap clarity metric for

a given keyboard layout as

𝑀𝑡𝑎𝑝_𝑐𝑙𝑎𝑟𝑖𝑡𝑦 = 1 −
∑︁

∀𝑖, 𝑗∈𝛼

{
𝑝𝑖 𝑗 if 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝑖 𝑗

0 else

, (2)

where 𝑝𝑖 𝑗 is the badgram probability for letters 𝑖 and 𝑗 in the

symbol set 𝛼 and 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝑖 𝑗 is true if 𝑖 and 𝑗 are adjacent

in the layout.

• Familiarity —The similarity of a given layout to the Qw-

erty layout calculated by summing the squared distances

between each key’s position and its Qwerty position and

then normalizing the results to the range between 0 and 1.

This allowed for potentially high-scoring layouts that had

most of their letters near their Qwerty positions.

Qin et al. [26] also used multiple parameters to perform opti-

mization, but they did so in two dimensions and with an ambiguous

keyboard. They defined their clarity metric for a given word as the

frequency of that word in the corpus divided by the total frequency

of identical tap sequences given an ambiguous layout. They then de-

fined the clarity of a layout as the sum over all words of the product

of word frequency and word clarity. The second metric used in this

work was a typing speed metric based on the relative location of

frequent character combinations. As with the previous paper, this

is not relevant to interfaces such as FlexType that remove location

dependency. In their interface, Qin et al. enforced a strict adherence

to the Qwerty ordering of characters and split each row into three

ambiguous groups, creating a total of nine groups.

Lee et al. [18] optimized five- and ten-key ambiguous keyboards

for speed, accuracy, comfort, and confusability using Pareto front

optimization. Their text entry method used fingernail-mounted

sensors to track intra-hand touches and mapped each finger to a

subset of characters. The five-key keyboards utilized a single hand,

while the ten-key keyboards used both hands. Their confusability

metric was based on confusability matrices derived from a text

corpus, similar to Lesher et al. [19].

We have discussed here many different text entry methods that

relate to FlexType with respect to their ambiguity, accessibility, or

optimization. For easier comparison between FlexType and past

work, we have classified the key features of previous text input

methods in Table 1.

3 OFFLINE OPTIMIZATION EXPERIMENT
While past work has optimized ambiguous keyboard groups in var-

ious ways, none factored in the use of a long-span language model

(i.e., a language model that conditions its prediction on several pre-

vious words). The optimization performed by Lesher et al. [19] only

predicted the next character to be entered, and did not consider the

likelihood of each word as a whole. The word-level clarity metric

used by Qin et al. [26] used only the frequency of each word in

a text corpus, and did not take into consideration the context in

which each word was used. With our optimization procedure, we

aim to leverage long-span language modeling to determine likely

disambiguation errors given the frequencies of words and contexts

in which they are commonly used in a corpus of representative text.

We then create optimized character groups by separating characters

that are commonly confused in that corpus.

586

IUI ’23, March 27–31, 2023, Sydney, NSW, Australia Gaines et al.

Name Ambiguity Disambiguation Basis Platform Accessibility Optimization Criteria

Method

FlexType T4 Language model Alphabetical Smartphone Eyes-free Clarity

Tap123 [11] T6 Language model QWERTY Smartphone Eyes-free None

Perkinput [2] None N/A Braille Smartphone, tablet Eyes-free None

Optimal-T9 [26] T9 Language model QWERTY Smartwatch None Clarity, speed

T18 [8] T18 Word frequency QWERTY Smartwatch None Clarity

TipText [34] T6 Language model QWERTY Smartwatch Eyes-free Clarity, tap accuracy

RC Scan [30] None N/A Letter freq. Desktop Single switch Letter frequency

SAK [22] T3 Word frequency Alphabetical Desktop Single switch Scans per character

HiFinger [16] T6 Second action Alphabetical Virtual env. None None

Alpha Constrained [12] T8 Word frequency Alphabetical Pocket PC None Keystrokes

FingerText [18] T5, T10 Language model QWERTY HMD None Speed, accuracy, comfort, clarity

Quasi-Qwerty [3] None N/A QWERTY Smartphone None Finger travel distance

Table 1: The key features of FlexType and related text entry interfaces. The ‘T’ notation in the Ambiguity column refers to the
number of character groups used by the interface.

We optimize sets that each have four groups of characters. On

a touchscreen, this enables users to tap with between one and

four fingers on a single hand to designate each group. In virtual

or augmented reality, this would allow users to make a thumb-to-

finger gesture as done by Bowman et al. [6] and by Jiang et al. [16].

Having four groups of characters enables us to assign one group to

each of the four fingers that the thumb could touch on a single hand.

This allows the user to utilize proprioception to execute the four

distinct input actions with no visual feedback. This motion could

be detected using wearable gloves [6], finger-mounted pressure

sensors [16], or surface electromyography via electrodes on the

forearm [1]. A four-group set could also be used in a scanning

keyboard for single switch users. While the Scanning Ambiguous

Keyboard developed by MacKenzie et al. [22] had three groups

of letters, adding another group as well as long-span language

modeling could improve disambiguation performance and reduce

the need to select from a set of matching hypotheses after each

word. The SAK also assumed that users were able to receive visual

feedback to make their selections.

3.1 Procedure
We developed our optimization procedure by combining some of

the ideas used for optimization in past work [9, 19], and factoring in

a long-span language model. Since the use case we investigate here

is eyes-free text input on mobile devices, we performed our analysis

on a corpus of text written on mobile devices. This particular corpus

was gathered and released by Vertanen and Kristensson [32] and

consists of forum posts made by users on a mobile device.

3.1.1 Corpus Analysis. To perform this analysis, we adapted the

ideas of Lesher et al. [19]. While they iterated through the corpus

one character at a time, predicting the most likely next character,

we iterated through the first 100,000 phrases in the training set

one word at a time. We used software based on the VelociTap

decoder [33] with a 12-gram character model and a 4-gram word

model to predict the most likely next word given the preceding

words in the phrase.

We queried the decoder for the top 100 predictions for each word,

given the context of the previous words in the phrase, storing each

word deemed more likely than the true word. We restricted the

decoder’s search to words that matched the length of the actual

word in the phrase since the disambiguation process would have

that same restriction. We used these mispredicted words to build

a character-level confusion matrix for the corresponding letters

between the incorrect and correct words. For example, if ‘hello’ was

predicted before the true word ‘world’, the matrix entries for the

character pairs ‘hw’, ‘eo’, ‘lr’, and ‘od’ would be incremented.

3.1.2 Performance Metrics. During the optimization process, we

need a way to compare one set of ambiguous groups to another

to determine the better of the two. We investigate two different

metrics to evaluate the potential performance of a given set.

The first metric is badgram clarity. Using the confusion ma-

trix we generated during our corpus analysis, similar to Lesher et

al. [19], we calculated the mutual confusability between each pair

of characters. We divided each of these by the total sum, as done

by Dunlop and Levine [9], to obtain badgram probabilities 𝑝𝑖 𝑗 :

𝑝𝑖 𝑗 =
𝐶 (𝑖, 𝑗) +𝐶 (𝑗, 𝑖)∑

∀𝑖, 𝑗 |𝑖≠𝑗 𝐶 (𝑖, 𝑗) +𝐶 (𝑗, 𝑖)
, (3)

where 𝐶 (𝑖, 𝑗) is the number of times character 𝑖 was mistaken

for character 𝑗 in the corpus analysis (element 𝑖, 𝑗 in the confusion

matrix). We adapted Dunlop and Levine’s tap clarity formula to

define our badgram clarity metric as:

𝐶𝑙𝑎𝑟𝑖𝑡𝑦𝑏𝑎𝑑𝑔𝑟𝑎𝑚 = 1 −
∑︁

∀𝑖, 𝑗 |𝑖≠𝑗

{
𝑝𝑖 𝑗 if 𝑠𝑎𝑚𝑒𝐺𝑟𝑜𝑢𝑝 (𝑖, 𝑗)
0 else

, (4)

where 𝑠𝑎𝑚𝑒𝐺𝑟𝑜𝑢𝑝 (𝑖, 𝑗) is true if 𝑖 and 𝑗 are in the same ambigu-

ous group.

The second metric we investigate is word error rate (WER) clarity.
To calculate WER clarity, we utilize the mobile test set from the

corpus released by Vertanen and Kristensson [32]. We first define

the groups that we are evaluating as an ambiguous keyboard in the

VelociTap decoder [33], specifying which characters are in each

group. We then iterate through each word in the first 250 phrases

587

FlexType: Flexible Text Input with a Small Set of Input Gestures IUI ’23, March 27–31, 2023, Sydney, NSW, Australia

in the test set. We simulate the taps that would be needed to type

each word given the current set of groups. We then use the decoder

to find the probability of each word that fits the ambiguous group

sequence given the words in the phrase to the left of the current

word. We look at the most probable word returned by the decoder,

and determine if it predicted the true word correctly. We aggregate

all of the predictions to define WER clarity as:

𝐶𝑙𝑎𝑟𝑖𝑡𝑦𝑊𝐸𝑅 = 1 −
∑

∀𝑤𝑜𝑟𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 (𝑤𝑜𝑟𝑑)
𝑛𝑤𝑜𝑟𝑑𝑠

, (5)

where 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 (𝑤𝑜𝑟𝑑) returns 1 if the decoder’s predictionmatches

the true word and 0 otherwise, and where 𝑛𝑤𝑜𝑟𝑑𝑠 is the total num-

ber of words in the first 250 phrases of the mobile test set.

Badgram clarity is a simpler metric but may not as accurately

model the disambiguation errors a user will face when using a

set of groups in practice (i.e., when disambiguation is guided by

a language model that conditions on a user’s previously written

text). However, since WER clarity requires us to iterate through

a test phrase set to make predictions, it becomes computationally

expensive to calculate for a large number of character groups.

To determine how similar the two metrics are, we randomly

generated 1,000 sets of groups. We calculated both clarity metrics

on each set and fit a linear regression model to the data. The results

can be seen in Figure 1. The sets produced results that were near the

line 𝐶𝑙𝑎𝑟𝑖𝑡𝑦𝑏𝑎𝑑𝑔𝑟𝑎𝑚 = 𝐶𝑙𝑎𝑟𝑖𝑡𝑦𝑊𝐸𝑅 with relatively high correlation

(𝑟 = 0.9019). From this, we can conclude that badgram clarity is

a good, and computationally cheaper, estimate of a set’s expected

performance in a text entry system leveraging long-span language

models for disambiguation.

0.4 0.5 0.6 0.7 0.8 0.9
WER Clarity

0.4

0.5

0.6

0.7

0.8

0.9

Ba
dg

ra
m

 C
la

rit
y

y = x
Linear Regression, y = 1.06x - 0.05 , r=0.9019
Set of Groupings

Figure 1: Comparison of the badgram and WER clarity met-
rics on 1000 random sets of groups. The dashed line repre-
sents 𝐶𝑙𝑎𝑟𝑖𝑡𝑦𝑏𝑎𝑑𝑔𝑟𝑎𝑚 = 𝐶𝑙𝑎𝑟𝑖𝑡𝑦𝑊𝐸𝑅 . The solid red line repre-
sents the best fit linear regression.

3.1.3 Unconstrained Optimization. We began by optimizing sets

freely, without any familiarity constraints. The goal was to deter-

mine the upper bound of performance that can be achieved, even if

it takes additional training time for users. Since, as Lesher et al. [19]

showed, an exhaustive search is computationally infeasible, we

used a similar n-opt approach. In their work, when they examined

the possible swaps between a set of characters, they only mentioned

directly swapping the characters. However, since it could be the

case that not all groups have an equal number of characters, we

added some additional comparisons. For example, let Group A con-

tain 𝛼 (among other characters) and let Group B contain 𝛽 (among

other characters). For a two-opt pass, we checked the set where

we simply swapped 𝛼 and 𝛽 as Lesher et al. did. However, we also

checked the sets where both 𝛼 and 𝛽 were in the same group, either

both in Group A or both in Group B.

To implement this, we first generated the set of all n-tuples in
our set of characters (where 𝑛 is the 𝑛 in n-opt). For each tuple, we

generated all possible permutations (e.g. for tuple (𝑎𝑏), we generated

(𝑎𝑏, 𝑏𝑎)). For each permutation, we examined all possible partitions

into 𝑘 groups (allowing empty groups), where 𝑘 was the number

of groups that contained any character in the permutation for the

current groupings (e.g. if 𝑎 and 𝑏 were each in a separate group,

𝑘 = 2). An example of all partitions generated on the permutation

(𝑎𝑏) is (|𝑎𝑏, 𝑎 |𝑏, 𝑎𝑏 |), where the vertical bar represents the boundary
between groups. Note that there are 𝑘−1 dividers to create 𝑘 groups.

To increase efficiency, we tracked each partition created for each

given tuple, and did not add duplicates to the final list of groupings.

For example, if we generated partitions on the permutation (𝑏𝑎)

after already doing (𝑎𝑏), we would generate (|𝑏𝑎, 𝑏 |𝑎, 𝑏𝑎 |). The
first and last partitions are identical to the first and last partitions

already generated from the permutation (𝑎𝑏), since ordering within

each group does not matter (i.e. (|𝑎𝑏) is equivalent to (|𝑏𝑎)). In this

situation only the middle partition, (𝑏 |𝑎) would be added to our

final list.

3.1.4 Badgram Clarity. We first optimized using badgram clarity.

Similar to Lesher et al. [19], we ran our version of the two-opt

algorithm on 50,000 random initial sets. We then ran our version

of the five-opt algorithm on the best result from two-opt.

3.1.5 WER Clarity. As we discussed previously, the WER clarity

metric is computationally expensive and requires iteration through

the test phrases to check each set of groups. This, combined with the

factorial growth of the n-opt algorithm prevented us from running

a large number of initial sets and from running anything larger

than two-opt. Using WER clarity, we ran 50 random initial sets

through our two-opt algorithm.

3.1.6 Constrained Optimization. While the Tap123 interface [11]

was based on a Qwerty keyboard layout, as we move towards a

more flexible input technique that may not depend on location,

Qwerty-based groupings will likely have less of a positive impact

on performance. Instead, wewill focus on alphabet-based groupings.

While Gong and Tarasewich [12] implemented a strict alphabetical

constraint, we investigated allowing a small number of characters

to shift outside of alphabetical order.

Constraining the sets in this way drastically reduces the number

of possibilities, which allowed us to fully enumerate and compare

all of them. We first laid out the alphabet from A-Z with apostrophe

on the end. We then used a similar partition function to that which

we used on our unconstrained sets, but this time we did not allow

588

IUI ’23, March 27–31, 2023, Sydney, NSW, Australia Gaines et al.

Constraint Opt. metric Badgram clarity WER clarity

None Badgram 0.8191 0.8209

None WER 0.7990 0.8542

Alphabetical Badgram 0.8030 0.7872

Table 2: Both clarity scores for the top unconstrained and
constrained sets. The unconstrained setswere optimizedwith
respect to two differentmetrics and both results are reported.

any groups to be empty, as moving a letter from a group where

it is alone will never increase performance. This left us with 26

possible divider locations (our 27 character alphabet size minus 1,

since the divider cannot be located on either end). For a set with

four groups, there are 2,600 possible partitions (3 dividers over 26

positions =
(
26

3

)
).

For each partition, we selected every combination of 𝑠 characters,

where 𝑠 was the maximum number of characters allowed to move

from their group. We tested values of 𝑠 from 0 to 4, inclusive. We

then compared every possible way to shuffle the 𝑠 characters in each

combination.While our shuffles in the n-opt algorithm only allowed

characters to move to groups occupied by another member of the

tuple being considered, here characters could move to any group.

Due to the factorial growth of the number of possible combinations,

we were only able to complete this optimization using the badgram

clarity metric.

3.2 Results
3.2.1 Unconstrained. We computed both clarity scores for our best

unconstrained sets. The results are shown in the upper portion

of Table 2. When optimizing for badgram clarity, the best score

we were able to achieve was 0.8191. There were 208 of the 50,000

initial sets of groups that when run through our two-opt algorithm

produced final sets that matched this exact clarity. While the order

of the groups and the order of the characters within each group

varied between these, alphabetizing each group and set of groups

showed that these sets were all identical. This set was:

(𝑎, ℎ, 𝑘, 𝑛, 𝑠, 𝑥), (𝑏, 𝑒, 𝑓 , 𝑔, 𝑗,𝑚, 𝑞,𝑢), (𝑐, 𝑑, 𝑜, 𝑡, 𝑣, 𝑧,′), (𝑖, 𝑙, 𝑝, 𝑟,𝑤,𝑦)
When we ran this set through the five-opt algorithm, there were

no swaps made in the entire pass. This set also achieved a WER

clarity score of 0.8209.

Optimizing with WER clarity, we had hoped to see multiple of

the 50 random initial sets converge to the same optima as we had

with the badgram clarity metric, but this was not the case; the best

clarity was only achieved by a single set. We were able to achieve a

peak WER clarity of 0.8542 with the following groups:

(𝑎, 𝑑, 𝑓 , ℎ, 𝑘, 𝑞,𝑦,′), (𝑏, 𝑐, 𝑒, 𝑖, 𝑗, 𝑛, 𝑥), (𝑔, 𝑙, 𝑜, 𝑠, 𝑣,𝑤), (𝑚, 𝑝, 𝑟, 𝑡, 𝑢, 𝑧)
This set had a badgram clarity score of 0.7990, which was surpris-

ingly far from its WER clarity score given the correlation shown in

Figure 1.

It was interesting to note that in both of these sets the vowels

were separated as much as possible. With only four groups, it was

impossible to separate all of the vowels, but 𝑒 and 𝑢 belonged to

the same group in both sets, as well as 𝑖 and 𝑦.

3.2.2 Constrained. Optimizing our constrained sets of groups for

badgram clarity without allowing any characters to stray from

alphabetical order yielded a badgram clarity score of 0.8030. The

set that produced this was:

(𝑎, 𝑏, 𝑐, 𝑑, 𝑒), (𝑓 , 𝑔, ℎ, 𝑖, 𝑗, 𝑘, 𝑙,𝑚), (𝑛, 𝑜, 𝑝, 𝑞, 𝑟), (𝑠, 𝑡, 𝑢, 𝑣,𝑤, 𝑥,𝑦, 𝑧,′)
As seen in Table 2, this set of groups also had aWER clarity rating

of 0.7872. As expected, both of these clarity ratings were lower

than the top ratings achieved by unconstrained sets. As with the

unconstrained sets, the vowels were separated as much as possible,

with 𝑎 and 𝑒 in the first group, and 𝑢 and 𝑦 in the fourth group.

When we allowed characters to stray from alphabetical order,

we saw only marginal gains in the clarity metrics (1.02% for the first

character out of order, and about 0.25% for each character after that),

which we determined would not be worth the additional cognitive

overhead for users.

4 USER STUDY
Based on our results in our offline experiments, we opted to use

the set with no swaps as our constrained groups in our user study.

For our unconstrained groups, we chose the set optimized using

the WER clarity metric since it is more representative of likely

disambiguation accuracy when writing sequences of words with

a recognizer that utilizes a long-span language model. We tested

the constrained and unconstrained groups in a longitudinal user

study.While past work has shown that users perform better initially

on familiar layouts, we wanted to evaluate how long this benefit

would persist. We also wanted to evaluate the extent to which

the differences in the WER clarity metric would impact real user

performance.

4.1 FlexType System Description
We used a OnePlus 5T smartphone for the user study. To enter

text, users tapped with between one and four fingers to designate

one of four character groups. The characters in each group differed

between the two experimental conditions. In our Constrained

condition we used the following set of groups:

(𝑎, 𝑏, 𝑐, 𝑑, 𝑒), (𝑓 , 𝑔, ℎ, 𝑖, 𝑗, 𝑘, 𝑙,𝑚), (𝑛, 𝑜, 𝑝, 𝑞, 𝑟), (𝑠, 𝑡, 𝑢, 𝑣,𝑤, 𝑥,𝑦, 𝑧,′)
For our Unconstrained condition, we used the set of groups

that was optimized on the WER clarity metric:

(𝑎, 𝑑, 𝑓 , ℎ, 𝑘, 𝑞,𝑦,′), (𝑏, 𝑐, 𝑒, 𝑖, 𝑗, 𝑛, 𝑥), (𝑔, 𝑙, 𝑜, 𝑠, 𝑣,𝑤), (𝑚, 𝑝, 𝑟, 𝑡, 𝑢, 𝑧)
The FlexType interface occupied the entire 68mm × 137mm

screen and the phone displayed solely a solid black background. No

visual feedback was provided during text entry to simulate eyes-

free text entry. During the input of a word, the following gestures

were available:

• Tap with 1–4 fingers — Select a character from the corre-

sponding group. After each tap, the device would read all

characters in the selected group via text-to-speech.

• Swipe left with one finger — Backspace a single character.

• Swipe left with two fingers — Backspace all characters in

the current word.

• Swipe right with one finger — Indicate that the current word

is finished and trigger disambiguation.

Disambiguation was performed by software based on the Veloc-

iTap decoder [33]. We used a 12-gram character language model

589

FlexType: Flexible Text Input with a Small Set of Input Gestures IUI ’23, March 27–31, 2023, Sydney, NSW, Australia

“f, g, h, I, j, l, k, m” “a, b, c, d, e” “n, o, p, q, r” “her” “man”

Figure 2: An example input sequence for the word ‘man’. From left to right, the user enters each character by tapping with
two fingers, one finger, and then three fingers. The letters corresponding to a group are read out after each tap. The user then
swipes to the right and the word ‘her’ is recognized as most likely and read out. The user then swipes up to change ‘her’ to the
second most likely word, ‘man’.

and a 4-gram word language model with a 100K vocabulary. The

decoder produced the six most likely words (referred to as the n-

best list) that matched a user’s exact tap sequence. The most likely

result was read via text-to-speech and placed into the text entry

area, which was invisible to the user. Immediately following disam-

biguation, the following gestures were available, in addition to the

gestures listed previously:

• Swipe up with one finger — Iterates forward in the n-best list,

reading the next most likely word and replacing the current

word in the text entry area.

• Swipe down with one finger — Iterates backwards in the n-

best list, reading the previous word in the list and replacing

the current word in the text entry area.

• Swipe down with two fingers — Signals that there is no more

text to enter and advances to the next text entry task.

An example input sequence for the word ‘man’ can be seen in

Figure 2.

4.2 Procedure
Since our aim was to compare the learning curves of participants

on two different sets of character groups, we opted for a between-

subjects design to avoid order effects and the risk of participants

confusing the two sets. We had a total of sixteen participants, eight

in each condition.

Each participant completed a total of eight sessions. Each session

lasted approximately one hour and participants received US$10 per

session as compensation. No participant completed more than one

session on a single day, and participants had no more than two days

between sessions. Within each session, participants took a short

break approximately every ten minutes to reduce fatigue.

In each session, participants transcribed text using the experi-

mental interface on a smartphone device. Each prompt was both

displayed on the screen and read via text-to-speech. Once the user

selected the ‘Start’ button, the FlexType interface opened, block-

ing the entire display. The prompts that the participants received

varied based on the session they were completing. We created a

progression designed to introduce them to the input technique as

follows:

• Session 1 - Participants received single-letter prompts. The

goal of this session was to teach the participants the group-

ings. Participants did not perform disambiguation.

• Session 2 - Participants received single-word prompts with

full alphabet coverage. This was designed to continue teach-

ing them the groupings while familiarizing them with the

disambiguation interaction. These prompts were pruned to

remove any words that did not appear as the first result

in the decoder’s n-best recognition results (assuming the

participant made no mistake while entering the word).

• Session 3 - Participants received phrase prompts that were

pruned to contain no more than four words, each no longer

than six characters.

• Sessions 4–8 - Phrases were only restricted to be no longer

than six words to aide participants in remembering them

correctly.

All phrases were drawn from the Enron mobile data set [31].

After finishing each transcription, participants swiped down

with two fingers to complete the input. The participant was shown

a summary screen with the reference text, their entered text, and

their entry and error rates before they advanced to the next prompt.

4.3 Results
We recruited twenty participants for our between-subjects study via

convenience sampling. Four participants withdrew from the study

prior to completion for a total of sixteen complete participants. The

590

IUI ’23, March 27–31, 2023, Sydney, NSW, Australia Gaines et al.

1 2 3 4 5 6 7 8
Session Number

5

10

15

20

En
try

 R
at

e,
 W

or
ds

 p
er

 M
in

ut
e

Entry Rate
Constrained
Unconstrained

Figure 3: Entry rates of each participant throughout the study.
Session 1 entry rates are not plotted since participants only
entered single letters in this session.

incomplete participants’ data was excluded from analysis. Partici-

pants in the Constrained condition were 19–22 years old (mean

20.75). One identified as male and seven identified as females. Par-

ticipants in the Unconstrained condition were 20–45 years old

(mean 23.88). Six identified as males and two as female. All partici-

pants were students or staff at a university and rated the statement

“I consider myself a fluent speaker of English” a 7 on a 7-point Likert

scale where 7 was strongly agree.

Our independent variable was the groupings of characters. As

our dependent variables, we measured different metrics of user per-

formance and behavior. Since the beginning sessions were designed

to train the users on the interface, the main results summarized in

Table 3 represent the average of the final four sessions. We excluded

from analysis 105 tasks (out of 16,383) across the entire study in

which technical issues impacted either participants’ ability to com-

plete the task or the data logging for that particular task. No more

than 6 tasks were excluded from any one session, and no more than

19 tasks from any one participant.

First, we measured participants’ entry rate in words per minute

(WPM), where a word is assumed to be five characters, including a

space. Since participants only entered single characters in the first

session, we cannot calculate an entry rate. As shown in Figure 3,

participants’ entry rates increased through the sessions but may

have started to plateau towards the end. Participants in the Con-

strained condition were able to achieve an average of 12.0 words

per minute across their final four sessions, while participants in

the Unconstrained condition averaged 13.5 words per minute.

An independent means t-test showed that this difference was not

significant. Details can be found in Table 3.

The next metric we measured was error rate. We report character

error rate (CER) as the number of insertions, deletions, and substi-

tutions required to transform the input text to the reference text,

divided by the length of the reference text. As shown in Figure 4,

participants’ error rates varied throughout their sessions with most

participants having a CER of less than 5% in most sessions. Across

the final four sessions, participants in the Constrained condition

1 2 3 4 5 6 7 8
Session Number

0

1

2

3

4

5

6

7

Pe
rc

en
t C

ha
ra

ct
er

 E
rro

r R
at

e

Error Rate
Constrained
Unconstrained

Figure 4: Character error rates of each participant throughout
the study.

1 2 3 4 5 6 7 8
Session Number

0.0

0.2

0.4

0.6

0.8

1.0
Ba

ck
sp

ac
es

 p
er

 F
in

al
 O

ut
pu

t C
ha

ra
ct

er

Backspaces per Final Output Character
Constrained
Unconstrained

Figure 5: Backspaces per final output character for each par-
ticipant during the user study.

averaged 2.03% character error rate while participants in the Un-

constrained condition averaged 1.81%. As with entry rate, this

difference was not significant. Details can be found in Table 3.

As a metric of corrected taps, we measured backspaces per char-

acter (BPC), which is the total number of characters backspaced

divided by the final number of output characters. This metric takes

into account the total characters deleted by both single character

(one-finger) and word-at-a-time (two-finger) backspaces. As shown

in Figure 5, the BPC was quite high in the first session at 0.162

and 0.714 in the Constrained and Unconstrained conditions,

respectively. The BPC dropped in the second and third sessions and

remained relatively constant for the remainder of the study. As ex-

pected from prior work on familiarity constraints, the participants

in the Unconstrained condition had a significantly higher BPC

in the first session (𝑡 (14) = −4.66, 𝑝 < 0.001), but there were no

significant differences in any of the remaining sessions.

To analyze participant behavior following disambiguation, we

totaled the number of up and down swipes participants used to

iterate through the n-best list and normalized based on the final

591

FlexType: Flexible Text Input with a Small Set of Input Gestures IUI ’23, March 27–31, 2023, Sydney, NSW, Australia

Condition Entry rate (WPM) Error rate (% CER) Backspaces per char Swipes per word

Constrained 12.0 ± 4.4[7.4, 20.8] 2.03 ± 1.31[0.66, 4.53] 0.090 ± 0.043[0.037, 0.154] 0.318 ± 0.111[0.180, 0.468]
Unconstrained 13.5 ± 3.3[9.9, 19.8] 1.81 ± 0.91[1.01, 3.82] 0.111 ± 0.037[0.069, 0.174] 0.288 ± 0.080[0.186, 0.447]
Statistical test 𝑡 (14) = −0.75, 𝑝 = 0.46 𝑡 (14) = 0.40, 𝑝 = 0.69 𝑡 (14) = −1.06, 𝑝 = 0.31 𝑡 (14) = 0.61, 𝑝 = 0.55

Table 3: The main results from sessions 5 through 8 of the user study. Results are reported in the format𝑚𝑒𝑎𝑛 ± 𝑠𝑑 [𝑚𝑖𝑛,𝑚𝑎𝑥].
The statistical tests reported are independent means t-tests.

1 2 3 4 5 6 7 8
Session Number

0.0

0.2

0.4

0.6

0.8

1.0

Up
 a

nd
 D

ow
n

Sw
ip

es
 p

er
 W

or
d

Iterations Through N-Best List per Final Input Word
Constrained
Unconstrained

Figure 6: Total number of explorations through the n-best
list per final input word for each participant. Sessions 1 and
2 did not use the n-best list and are not plotted.

number of words that were input. We measured this from session

3 on since the n-best list was not used in the first two sessions.

As shown in Figure 6, participants’ total swipes per word in each

session was relatively stable and hovered around 0.2–0.5 swipes per

word. In sessions 5–8, participants using the Unconstrained lay-

out iterated through the n-best list slightly less at 0.288 swipes per

word compared to 0.318 for the Constrained participants, though

this difference was not significant (Table 3). We conducted further

analysis measuring the number of swipes following words that

were entered with the correct tap sequence. Since the goal of this

was to evaluate the disambiguation algorithm, we eliminated cases

where there was an error in a previously entered word, since this

would impact the disambiguation results. This metric was nearly

identical between the two conditions, with an average of 0.169

swipes per properly entered word in the Constrained condition

and 0.168 swipes in the Unconstrained condition. This was not

significantly different (𝑡 (14) = 0.03, 𝑝 = 0.97).

Finally, we analyzed each word entered with the proper tap

sequence and context to determine the distribution of the target

word in the n-best list. The proportion of words, averaged among

all participants in each condition, found at or before each position

(e.g. position 2 includes words found in either position 1 or position

2) can be seen in Figure 7. As we expected from our optimization

experiment, this proportion was higher for the Unconstrained

condition for position 1 (the top disambiguation result). It was

interesting to note that it was very similar for the remainder of

1 2 3 4 5 6
Position in N-Best List

0.87
0.88
0.89
0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

Cu
m

ul
at

iv
e

Pr
op

or
tio

n
of

 In
te

nd
ed

 W
or

ds

Distribution of N-Best List

Constrained
Unconstrained

Figure 7: The cumulative proportion of intended words lo-
cated at or before each position in the n-best list.

the positions. The full distribution is reported in Table 4. Using

this distribution, we calculated the expected number of swipes

per correct word for each condition. We found this to be 0.172 for

the Constrained condition and 0.152 for the Unconstrained

condition. Although it was a small difference, it is interesting to

note that participants in the Constrained condition did swipe less

than we would have expected given the words that they entered.

One possible explanation for this is that participants may have

immediately backspaced a word without exploring the n-best list if

they thought that they made an error. Another possible explanation

is that participants may have not bothered exploring the n-best

list after typing a word that they had previously encountered and

learned was not in it. A reason that users in the Unconstrained

condition swiped more than expected may have been that they

explored the n-best list too quickly and needed to go backwards in

the list to get to their intended word.

5 DISCUSSION
The goal of this work was to optimize both constrained and uncon-

strained ambiguous groups and then to compare user performance

between the two. As we expected to find, participants struggled

with the unconstrained groups more in the beginning as evidenced

by the significantly higher backspaces per character metric in their

first session. However, Figure 5 shows that from session 2 on, all

of the participants had quite similar backspace rates. This suggests

that the benefit of the familiarity of the constrained groups may

be reduced after the first hour of practice. While after the final

592

IUI ’23, March 27–31, 2023, Sydney, NSW, Australia Gaines et al.

Condition Position 1 Position 2 Position 3 Position 4 Position 5 Position 6 Not in n-best

Constrained 89.14% 7.63% 1.84% 0.40% 0.20% 0.11% 0.67%

Unconstrained 91.05% 6.20% 1.32% 0.16% 0.52% 0.12% 0.63%

Table 4: The distribution of intended word positions in the n-best list when they were entered with the correct tap sequence
and context.

session one participant in the Unconstrained condition stated,

“Some letters like t and x were hard for my brain to remember”,

another commented, “At first it was just a matter of memorization

and then it was totally natural.” The latter comment shows that

some participants were more open to learning the Unconstrained

groups than others.

The theoretical benefit of a particular ambiguous set having a

higher WER clarity metric is that during entry, participants will

need to navigate through the n-best list less often. As we showed

in Table 4, the Unconstrained set did have a slightly higher pro-

portion of words that did not require exploration of the n-best list.

Interestingly, participants in both conditions explored the n-best

list similar amounts, with participants in the Unconstrained con-

dition using it slightly less. While again this difference was not

significant, it does seem to align with the slight difference shown

in the optimization metrics.

A limitation of our interface was that the n-best list was restricted

to a maximum of six words. If a user’s intended word was not in

the decoder’s vocabulary, or simply less likely than other words

with an identical tap sequence given the context, users were unable

to enter that word correctly. As shown in Table 4, this occurred

in about 0.81% of words across both conditions where the user

entered the proper tap sequence with the correct prior text. To

remedy this issue, we could add a mode where users designate the

exact desired character from their selected group in some way (e.g.,

by long pressing with the correct number of fingers and releasing

when their desired letter from the corresponding group is read).

While this will slow entry, it would provide a means for accurate

entry of words that that are hard for the decoder to predict, such

as proper names.

While FlexType could be implemented using a variety of sensors,

we used a touchscreen in our user study. This led to some ergonomic

issues, with one participant remarking that “The four finger tap

was always a little bit of a stretch. I tended to need to shift my

hand position to make the gesture.” Three other participants also

mentioned tapping with four fingers when asked about interactions

that felt unnatural or were hard to learn. For future studies involving

a touchscreen, it may be useful to explore a different gesture for

selecting the fourth group, or to optimize a set of three groups of

characters. Gestures that do not require a touchscreen could include

finger-to-thumb touches, detected by either pressure sensors [16]

or gloves with conductive fabric [6].

Due to the longitudinal nature of the user study, we were un-

able to run all of the participants at one time. Because of this, the

participants were assigned to alternating conditions in the order

that they were recruited. By chance, this led to an imbalance of

male and female participants between the groups. While this could

create a potential confound, we do not have reason to believe there

is a performance difference driven by gender identity.

Across both sets of groupings, participants averaged 12.8 words

per minute and 1.92% character error rate using single-handed text

entry without visual feedback. It can be difficult to make direct

comparisons between studies due to differences in experimental

procedure and the amount of practice participants have with each

interface. That being said, these performance metrics are similar

to those of other eyes-free text entry methods (e.g., Graffiti: 10.0

WPM [29], Perkinput: 17.6 WPM with one hand [2], and TipText:

13.3 WPM [34]). Future work could conduct an experiment that

directly compares FlexType to a commonly available eyes-free text

entry method (e.g., the braille input method now available on iOS).

6 CONCLUSION
Through a series of optimization experiments, we designed two

ambiguous keyboards consisting of four groups of characters. Our

character grouping optimization procedure took into account, for

the first time, the impact of a recognition algorithm capable of

utilizing prior words to predict the most likely word based on am-

biguous input. In a multi-session user study, we found that our

unconstrained groupings, while they had a slightly better clarity

metric, did not perform meaningfully better than alphabetically-

constrained groupings. We conclude that since the unconstrained

groups did not produce a noticeable benefit in our long-term evalu-

ation, it is not worth the higher barrier to entry that they create.

For example, users of the unconstrained grouping backspaced over

four times more often in their first hour of use. With both sets of

groups, participants had performance similar to other eyes-free text

entry methods. In open feedback following the final session, one

participant in the Constrained condition remarked, “I wouldn’t be

opposed to using this as a keyboard option onmy own phone, it was

fun to use.” This sentiment highlights the potential for widespread

adoption of this technique in situations where visual feedback is

not available or motor gestures are limited.

ACKNOWLEDGMENTS
This work was supported by NSF IIS-1909248 and by an NSF Grad-

uate Research Fellowship (2034833).

REFERENCES
[1] Ali H. Al-Timemy, Guido Bugmann, Javier Escudero, and Nicholas Outram. 2013.

Classification of Finger Movements for the Dexterous Hand Prosthesis Con-

trol With Surface Electromyography. IEEE Journal of Biomedical and Health
Informatics 17, 3 (2013), 608–618. https://doi.org/10.1109/JBHI.2013.2249590

[2] Shiri Azenkot, Jacob O. Wobbrock, Sanjana Prasain, and Richard E. Ladner. 2012.

Input Finger Detection for Nonvisual Touch Screen Text Entry in Perkinput.

In Proceedings of Graphics Interface 2012 (Toronto, Ontario, Canada) (GI ’12).
Canadian Information Processing Society, CAN, 121–129.

593

https://doi.org/10.1109/JBHI.2013.2249590

FlexType: Flexible Text Input with a Small Set of Input Gestures IUI ’23, March 27–31, 2023, Sydney, NSW, Australia

[3] Xiaojun Bi, Barton A. Smith, and Shumin Zhai. 2010. Quasi-Qwerty Soft Keyboard

Optimization. In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems (Atlanta, Georgia, USA) (CHI ’10). Association for Computing Ma-

chinery, New York, NY, USA, 283–286. https://doi.org/10.1145/1753326.1753367

[4] Nicholas Ryan Bonaker, Emli-Mari Nel, Keith Vertanen, and Tamara Broderick.

2022. A Performance Evaluation of Nomon: A Flexible Interface for Noisy Single-

Switch Users. In CHI Conference on Human Factors in Computing Systems (New
Orleans, LA, USA) (CHI ’22). Association for Computing Machinery, New York,

NY, USA, Article 495, 17 pages. https://doi.org/10.1145/3491102.3517738

[5] Matthew N. Bonner, Jeremy T. Brudvik, Gregory D. Abowd, and W. Keith Ed-

wards. 2010. No-Look Notes: Accessible Eyes-Free Multi-touch Text Entry.

In Pervasive Computing, Patrik Floréen, Antonio Krüger, and Mirjana Spaso-

jevic (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 409–426. https:

//doi.org/10.1007/978-3-642-12654-3_24

[6] D. A Bowman, C. A Wingrave, J. M Campbell, V. Q Ly, and C. J Rhoton. 2002.

Novel Uses of Pinch Gloves™ for Virtual Environment Interaction Techniques.

Virtual reality : the journal of the Virtual Reality Society 6, 3 (2002), 122–129.

https://doi.org/10.1007/s100550200013

[7] Tamara Broderick and David J. C. MacKay. 2009. Fast and Flexible Selection with

a Single Switch. PLoS ONE 4, 10 (2009). https://doi.org/10.1371/journal.pone.

0007481

[8] Mattia De Rosa, Vittorio Fuccella, Gennaro Costagliola, Giuseppe Adinolfi, Gio-

vanni Ciampi, Antonio Corsuto, and Donato Di Sapia. 2020. T18: an ambiguous

keyboard layout for smartwatches. In 2020 IEEE International Conference on
Human-Machine Systems (ICHMS). 1–4. https://doi.org/10.1109/ICHMS49158.

2020.9209483

[9] Mark Dunlop and John Levine. 2012. Multidimensional Pareto Optimization of

Touchscreen Keyboards for Speed, Familiarity and Improved Spell Checking. In

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Austin, Texas, USA) (CHI ’12). Association for Computing Machinery, New York,

NY, USA, 2669–2678. https://doi.org/10.1145/2207676.2208659

[10] L.A. Farwell and E. Donchin. 1988. Talking off the top of your head: toward a

mental prosthesis utilizing event-related brain potentials. Electroencephalography
and clinical neurophysiology 70, 6 (1988), 510–523. https://doi.org/10.1016/0013-

4694(88)90149-6

[11] Dylan Gaines. 2018. Exploring an Ambiguous Technique for Eyes-Free Mobile

Text Entry. In Proceedings of the 20th International ACM SIGACCESS Conference
on Computers and Accessibility (Galway, Ireland) (ASSETS ’18). Association for

Computing Machinery, New York, NY, USA, 471–473. https://doi.org/10.1145/

3234695.3240991

[12] Jun Gong and Peter Tarasewich. 2005. Alphabetically Constrained Keypad De-

signs for Text Entry on Mobile Devices. In Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems (Portland, Oregon, USA) (CHI
’05). Association for Computing Machinery, New York, NY, USA, 211–220.

https://doi.org/10.1145/1054972.1055002

[13] Cuntai Guan, M. Thulasidas, and Jiankang Wu. 2004. High performance P300

speller for brain-computer interface. In IEEE International Workshop on Biomedi-
cal Circuits and Systems, 2004. IEEE, S3/5/INV–S3/13. https://doi.org/10.1109/

BIOCAS.2004.1454155

[14] Matt Higger, Fernando Quivira, Murat Akcakaya, Mohammad Moghadamfalahi,

Hooman Nezamfar, Mujdat Cetin, and Deniz Erdogmus. 2017. Recursive Bayesian

Coding for BCIs. IEEE Transactions on Neural Systems and Rehabilitation Engi-
neering 25, 6 (2017), 704–714. https://doi.org/10.1109/TNSRE.2016.2590959

[15] Howell Owen Istance, Christian Spinner, and Peter AlanHowarth. 1996. Providing

motor impaired users with access to standard Graphical User Interface (GUI)

software via eye-based interaction. In Proceedings of the 1st european conference
on disability, virtual reality and associated technologies (ECDVRAT’96).

[16] Haiyan Jiang, DongdongWeng, Zhenliang Zhang, and Feng Chen. 2019. HiFinger:

One-Handed Text Entry Technique for Virtual Environments Based on Touches

between Fingers. Sensors (Basel, Switzerland) 19, 14 (2019), 3063–3086. https:

//doi.org/10.3390/s19143063

[17] Shaun K. Kane, Jeffrey P. Bigham, and Jacob O. Wobbrock. 2008. Slide Rule:

Making Mobile Touch Screens Accessible to Blind People Using Multi-Touch

Interaction Techniques. In Proceedings of the 10th International ACM SIGACCESS
Conference on Computers and Accessibility (Halifax, Nova Scotia, Canada) (Assets
’08). Association for Computing Machinery, New York, NY, USA, 73–80. https:

//doi.org/10.1145/1414471.1414487

[18] DoYoung Lee, Jiwan Kim, and Ian Oakley. 2021. FingerText: Exploring and

Optimizing Performance for Wearable, Mobile and One-Handed Typing. In Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing Systems
(Yokohama, Japan) (CHI ’21). Association for Computing Machinery, New York,

NY, USA, Article 283, 15 pages. https://doi.org/10.1145/3411764.3445106

[19] Gregory W. Lesher, Bryan J. Moulton, and D. Jeffery Higginbotham. 1998. Op-

timal character arrangements for ambiguous keyboards. IEEE Transactions on
Rehabilitation Engineering 6, 4 (1998), 415–423. https://doi.org/10.1109/86.736156

[20] Yun-Lung Lin, Ting-Fang Wu, Ming-Chung Chen, Yao-Ming Yeh, and Hwa-

Pey Wang. 2008. Designing a Scanning On-Screen Keyboard for People with

Severe Motor Disabilities. In Computers Helping People with Special Needs, Klaus
Miesenberger, Joachim Klaus, Wolfgang Zagler, and Arthur Karshmer (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 1184–1187. https://doi.org/10.

1007/978-3-540-70540-6_178

[21] Mateus M Luna, Hugo AD Nascimento, Aaron Quigley, and Fabrizzio Soares.

2022. Text entry for the Blind on Smartwatches: A study of Braille code input

methods for a novel device. Universal Access in the Information Society (2022),

1–19. https://doi.org/10.1007/s10209-022-00870-2

[22] I. Scott Mackenzie and Torsten Felzer. 2010. SAK: Scanning Ambiguous Keyboard

for Efficient One-Key Text Entry. ACM Trans. Comput.-Hum. Interact. 17, 3, Article
11 (jul 2010), 39 pages. https://doi.org/10.1145/1806923.1806925

[23] Sergio Mascetti, Cristian Bernareggi, and Matteo Belotti. 2012. TypeInBraille:

Quick Eyes-Free Typing on Smartphones. In Computers Helping People with
Special Needs, Klaus Miesenberger, Arthur Karshmer, Petr Penaz, and Wolfgang

Zagler (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 615–622. https:

//doi.org/10.1007/978-3-642-31534-3_90

[24] Katsumi Minakata, John Paulin Hansen, I. Scott MacKenzie, Per Bækgaard, and

Vijay Rajanna. 2019. Pointing by Gaze, Head, and Foot in a Head-Mounted Display.

In Proceedings of the 11th ACM Symposium on Eye Tracking Research &Applications
(Denver, Colorado) (ETRA ’19). Association for Computing Machinery, New York,

NY, USA, Article 69, 9 pages. https://doi.org/10.1145/3317956.3318150

[25] Joao Oliveira, Tiago Guerreiro, Hugo Nicolau, Joaquim Jorge, and Daniel

Gonçalves. 2011. BrailleType: Unleashing Braille over Touch Screen Mobile

Phones. In Proceedings of the 13th IFIP TC 13 International Conference on Human-
Computer Interaction - Volume Part I (Lisbon, Portugal) (INTERACT’11). Springer-
Verlag, Berlin, Heidelberg, 100–107. https://doi.org/10.1007/978-3-642-23774-

4_10

[26] Ryan Qin, Suwen Zhu, Yu-Hao Lin, Yu-Jung Ko, and Xiaojun Bi. 2018. Optimal-T9:

An Optimized T9-like Keyboard for Small Touchscreen Devices. In Proceedings of
the 2018 ACM International Conference on Interactive Surfaces and Spaces (Tokyo,
Japan) (ISS ’18). Association for Computing Machinery, New York, NY, USA,

137–146. https://doi.org/10.1145/3279778.3279786

[27] Sayan Sarcar, Prateek Panwar, and Tuhin Chakraborty. 2013. EyeK: An Efficient

Dwell-Free Eye Gaze-Based Text Entry System. In Proceedings of the 11th Asia
Pacific Conference on Computer Human Interaction (Bangalore, India) (APCHI ’13).
Association for Computing Machinery, New York, NY, USA, 215–220. https:

//doi.org/10.1145/2525194.2525288

[28] Caleb Southern, James Clawson, Brian Frey, Gregory Abowd, and Mario Romero.

2012. An Evaluation of BrailleTouch: Mobile Touchscreen Text Entry for the

Visually Impaired. In Proceedings of the 14th International Conference on Human-
Computer Interaction with Mobile Devices and Services (San Francisco, California,

USA) (MobileHCI ’12). Association for Computing Machinery, New York, NY,

USA, 317–326. https://doi.org/10.1145/2371574.2371623

[29] Hussain Tinwala and I. Scott MacKenzie. 2010. Eyes-Free Text Entry with Error

Correction on Touchscreen Mobile Devices. In Proceedings of the 6th Nordic
Conference on Human-Computer Interaction: Extending Boundaries (Reykjavik,
Iceland) (NordiCHI ’10). Association for Computing Machinery, New York, NY,

USA, 511–520. https://doi.org/10.1145/1868914.1868972

[30] Horabail S. Venkatagiri. 1999. Efficient keyboard layouts for sequential ac-

cess in augmentative and alternative communication: AAC. Augmentative
and Alternative Communication 15, 2 (06 1999), 126. https://doi.org/10.1080/

07434619912331278625 Copyright - Copyright Decker Periodicals, Inc. Jun 1999;

Last updated - 2022-11-16; CODEN - AAACEC.

[31] Keith Vertanen and Per Ola Kristensson. 2011. A Versatile Dataset for Text Entry

Evaluations Based on Genuine Mobile Emails. In Proceedings of the 13th Interna-
tional Conference on Human Computer Interaction with Mobile Devices and Services
(Stockholm, Sweden) (MobileHCI ’11). Association for Computing Machinery,

New York, NY, USA, 295–298. https://doi.org/10.1145/2037373.2037418

[32] Keith Vertanen and Per Ola Kristensson. 2021. Mining, Analyzing, and Modeling

Text Written on Mobile Devices. Natural Language Engineering 27 (2021), 1–33.

https://doi.org/10.1017/S1351324919000548

[33] Keith Vertanen, Haythem Memmi, Justin Emge, Shyam Reyal, and Per Ola Kris-

tensson. 2015. VelociTap: investigating fast mobile text entry using sentence-

based decoding of touchscreen keyboard input. In CHI ’15: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (Seoul, Korea). As-
sociation for Computing Machinery, New York, NY, USA, 659–668. https:

//doi.org/10.1145/2702123.2702135

[34] Zheer Xu, Pui Chung Wong, Jun Gong, Te-Yen Wu, Aditya Shekhar Nittala,

Xiaojun Bi, Jürgen Steimle, Hongbo Fu, Kening Zhu, and Xing-Dong Yang. 2019.

TipText: Eyes-Free Text Entry on a Fingertip Keyboard. In Proceedings of the 32nd
Annual ACM Symposium on User Interface Software and Technology (New Orleans,

LA, USA) (UIST ’19). Association for Computing Machinery, New York, NY, USA,

883–899. https://doi.org/10.1145/3332165.3347865

594

https://doi.org/10.1145/1753326.1753367
https://doi.org/10.1145/3491102.3517738
https://doi.org/10.1007/978-3-642-12654-3_24
https://doi.org/10.1007/978-3-642-12654-3_24
https://doi.org/10.1007/s100550200013
https://doi.org/10.1371/journal.pone.0007481
https://doi.org/10.1371/journal.pone.0007481
https://doi.org/10.1109/ICHMS49158.2020.9209483
https://doi.org/10.1109/ICHMS49158.2020.9209483
https://doi.org/10.1145/2207676.2208659
https://doi.org/10.1016/0013-4694(88)90149-6
https://doi.org/10.1016/0013-4694(88)90149-6
https://doi.org/10.1145/3234695.3240991
https://doi.org/10.1145/3234695.3240991
https://doi.org/10.1145/1054972.1055002
https://doi.org/10.1109/BIOCAS.2004.1454155
https://doi.org/10.1109/BIOCAS.2004.1454155
https://doi.org/10.1109/TNSRE.2016.2590959
https://doi.org/10.3390/s19143063
https://doi.org/10.3390/s19143063
https://doi.org/10.1145/1414471.1414487
https://doi.org/10.1145/1414471.1414487
https://doi.org/10.1145/3411764.3445106
https://doi.org/10.1109/86.736156
https://doi.org/10.1007/978-3-540-70540-6_178
https://doi.org/10.1007/978-3-540-70540-6_178
https://doi.org/10.1007/s10209-022-00870-2
https://doi.org/10.1145/1806923.1806925
https://doi.org/10.1007/978-3-642-31534-3_90
https://doi.org/10.1007/978-3-642-31534-3_90
https://doi.org/10.1145/3317956.3318150
https://doi.org/10.1007/978-3-642-23774-4_10
https://doi.org/10.1007/978-3-642-23774-4_10
https://doi.org/10.1145/3279778.3279786
https://doi.org/10.1145/2525194.2525288
https://doi.org/10.1145/2525194.2525288
https://doi.org/10.1145/2371574.2371623
https://doi.org/10.1145/1868914.1868972
https://doi.org/10.1080/07434619912331278625
https://doi.org/10.1080/07434619912331278625
https://doi.org/10.1145/2037373.2037418
https://doi.org/10.1017/S1351324919000548
https://doi.org/10.1145/2702123.2702135
https://doi.org/10.1145/2702123.2702135
https://doi.org/10.1145/3332165.3347865

	Abstract
	1 Introduction
	2 Related Work
	2.1 Accessibility
	2.2 Ambiguous Keyboards
	2.3 Optimization

	3 Offline Optimization Experiment
	3.1 Procedure
	3.2 Results

	4 User Study
	4.1 FlexType System Description
	4.2 Procedure
	4.3 Results

	5 Discussion
	6 Conclusion
	Acknowledgments
	References

