Check for
Updates

FlexType: Flexible Text Input with a Small Set of Input Gestures

Dylan Gaines Mackenzie Baker Keith Vertanen
Michigan Technological University Michigan Technological University Michigan Technological University
Houghton, Michigan, United States Houghton, Michigan, United States Houghton, Michigan, United States

dcgaines@mtu.edu mmbakerl@mtu.edu vertanen@mtu.edu

ABSTRACT

In many situations, it may be impractical or impossible to enter text
by selecting precise locations on a physical or touchscreen keyboard.
We present an ambiguous keyboard with four character groups that
has potential applications for eyes-free text entry, as well as text en-
try using a single switch or a brain-computer interface. We develop
a procedure for optimizing these character groupings based on a dis-
ambiguation algorithm that leverages a long-span language model.
We produce both alphabetically-constrained and unconstrained
character groups in an offline optimization experiment and com-
pare them in a longitudinal user study. Our results did not show a
significant difference between the constrained and unconstrained
character groups after four hours of practice. As expected, partici-
pants had significantly more errors with the unconstrained groups
in the first session, suggesting a higher barrier to learning the
technique. We therefore recommend the alphabetically-constrained
character groups, where participants were able to achieve an av-
erage entry rate of 12.0 words per minute with a 2.03% character
error rate using a single hand and with no visual feedback.
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1 INTRODUCTION

In today’s society, a large portion of mobile text entry takes place
on touchscreen devices, whether it’s a smartphone, tablet, or smart-
watch. Users tap on a virtual keyboard that is shown on the screen
and the exact location of each tap is recorded and used to produce
text. However, there are times where precise touch locations are
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unavailable or impractical. If the user has a visual impairment, they
may not be able to see a virtual keyboard well enough (or at all) to
provide precise input. This would impede their ability to enter text
on both touchscreen devices and Augmented and Virtual Reality
devices that lack the haptic feedback of a physical keyboard.

Neurodegenerative diseases such as amyotrophic lateral sclero-
sis (ALS) can cause motor impairments that often progress with
time. When symptoms first begin, users may have difficulty moving
their finger to a precise location, but may be able to select larger
targets. As the diseases progress, users may lose the ability to speak
altogether and rely on Alternative and Augmentative Communi-
cation (AAC) systems to communicate with other people. These
AAC systems can take many forms, such as dwell-based eye-gaze
typing [15] or row-column scanning [20].

All of these situations could be aided by using an ambiguous
keyboard with a small number of character groups. Ambiguous
keyboards map multiple characters to a single input gesture and
use either a secondary gesture or a statistical process known as
disambiguation to determine which letter out of a group the user
intended to select. Disambiguation can be performed on every input
gesture individually or on a full word or sentence. While there is
theoretically no maximum length of text that can be disambiguated
at once, the longer the text, the more possible combinations of
characters there are to consider.

Each character group in an ambiguous keyboard can be mapped
to a distinct gesture. For example, the Tap123 interface designed
by Gaines [11] divided a Qwerty keyboard into six ambiguous
groups. The number of fingers the user tapped with (between one
and three) represented the row of the keyboard, and the left or
right side of the screen the user tapped represented the side of the
keyboard on which their intended character lies. In this work, by
reducing the number of groups from six to four, we can remove
all location dependency and allow users to tap a touchscreen with
between one and four fingers on a single hand, as opposed to the
bi-manual method used by Tap123. Since reducing the number of
groups increases the number of characters in each group, there are
more possible words to consider during the disambiguation process.
While past studies have optimized ambiguous keyboards using
simple word or character frequencies within a text corpus, they
have not considered the impact of recognition using a long-span
language model. Our paper makes three primary contributions:

(1) The design of FlexType, a four group ambiguous keyboard
with no location dependency and many possible applications
in accessible text input.

(2) A new ambiguous keyboard optimization procedure that
incorporates a long-span language model in the process. To
our knowledge, we are the first to consider a language-model-
aware optimization procedure.
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3) A longitudinal user study comparing performance over time
g y paring p
on two optimized character groups: one constrained to al-
phabetical order and one not constrained to alphabetical
order.

While FlexType has many possible applications in accessible text
input, in this work we focus on investigating its performance as an
eyes-free text input method on a mobile device.

2 RELATED WORK
2.1 Accessibility

Some existing eyes-free text entry solutions rely on indicating
Braille mappings to enter characters [2, 21, 23, 25, 28]. While Perk-
input [2] users achieved 17.6 words per minute with one hand, it
required both knowledge of the Braille character set and the ability
to target specific areas of a touchscreen. For people with a motor
impairment in addition to a visual impairment, this may not be
feasible.

Other eyes-free interfaces allow for exploration of a keyboard
using audio feedback and a secondary touch event to confirm selec-
tion [5, 17]. This technique is also used by modern Android and i0S
mobile operating systems to enable eyes-free text entry. Another
approach by Tinwala and MacKenzie [29] performs recognition on
drawn characters. Performing multiple touch events per character
can be quite slow, with Bonner et al. [5] finding entry rates of only
1.32 words per minute with their method.

A common text entry interface for people with severe motor im-
pairments is row-column scanning [20, 30]. Row-column scanning
interfaces cyclically highlight groups of characters (rows), allowing
the highlighted group to be selected in some way (e.g. by pushing a
button, twitching a muscle, or blinking an eye). The interface then
highlights each character in the selected row in turn (columns),
allowing the user to select their desired character.

An alternative single-switch input interface is Nomon [4, 7].
Nomon displays multiple character and word options, each with
its own rotating clock. A user makes a selection by repeatedly
activating their switch when the clock for their desired target is
at noon. The target is selected after a variable number of switch
activations that depends on the likelihood of the target and how
precisely the user triggers their switch.

Instead of activating a switch, some people with severe motor
impairments may instead use an eye-gaze interface [15, 24, 27]. Ina
typical dwell-based eye keyboard, a user looks at their intended key
for a specified amount of time (typically a second or so) and this
triggers the key. If a person can neither reliably trigger a switch or
control their eye gaze, they may need to resort to a brain-computer
interface (BCI) system to decipher brain signals into text [10, 13, 14].

2.2 Ambiguous Keyboards

Ambiguous keyboards have been utilized to enter text on small form
factor devices such as smartwatches that may lack the screen size for
each character to have its own key. The Optimal-T9 keyboard [26]
used 9 keys on a smartwatch keyboard. The T18 keyboard [38]
extended this to combine ambiguous and non-ambiguous keys into
an interface with 18 keys. Users typed with the T18 keyboard at
15.7 words per minute. TipText [34] allowed users to input text
to a wearable device by using their thumb to type on an invisible
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ambiguous keyboard on the tip of their index finger. Users wrote
with TipText at about 13.3 words per minute.

Ambiguous keyboards have previously been used as AAC aids
for single-switch users. Mackenzie and Felzer [22] created a Scan-
ning Ambiguous Keyboard (SAK) with three character groups. In
a scanning keyboard, the system highlights one key at a time in a
cyclic pattern. To enter text, users activate their switch when the
key they wish to select is highlighted. In the case of the SAK, there
were three keys each containing a character group and a fourth
containing the space character. After selecting the space key, the
SAK would scan through the list of matching words in order of
decreasing frequency in a text corpus.

In HiFinger [16], the authors instrumented a user’s hand with
pressure sensors to detect finger-to-thumb touch gestures for text
input in virtual or augmented reality. The authors divided the al-
phabet and the ten numeric digits into six ambiguous groups of six
characters each. Users selected their target character’s group with
their first gesture (out of six possibilities), and then performed a
second gesture to select the specific character out of that group.

2.3 Optimization

There has been a considerable amount of past research on optimiz-
ing keyboard layouts for a variety of metrics such as finger travel
distance, keystroke efficiency, familiarity, and tap clarity. Lesher
et al. [19] showed that evaluating every possible set of character
groupings is computationally infeasible, but proposed an algorithm
that efficiently finds locally optimized groupings for an ambiguous
keyboard. We describe this algorithm in detail here since we modify
it later in this work. The first step in their algorithm is to compute
a confusability matrix for a corpus of English text. They do this by
stepping through the corpus one character at a time and creating
a list of the most likely characters to come next based on a char-
acter prediction algorithm. They keep track of how frequently an
incorrect character is predicted as more likely than the actual next
character in the text. The authors define the mutual confusability
of two characters « and f as

M(a, p) = C(a, p) + C(p, @), (1)

where C(a, ) is the number of times a was mistaken for f, and
C(p, @) is the reverse. Further, for any number of characters placed
in a single ambiguous group, the total mutual confusability is the
sum of the mutual confusabilities between each pair of characters.

After computing the confusability matrix, Lesher et al. [19] run
their n-opt algorithm. The algorithm starts with a valid arrange-
ment of characters into groupings. On each pass, it checks every
possible tuple of n characters to see if shuffling the characters re-
sults in a better overall arrangement according to whatever metric
is being optimized (in this case, the confusability of the groupings).
For example, a two-opt pass would check every pair of characters
(‘AB’, ‘AC’, ..., ‘YZ’) and a three-opt pass would check every triple
(‘ABC’, ‘ABD’, ..., ‘’XYZ’) in alphabetical order. If any swaps are
made during the course of a single pass, the pass repeats once it has
finished, checking all tuples again. The algorithm continues until a
pass completes with no swaps. The n-opt algorithm requires facto-
rially increasing computations for higher values of n; the highest
pass completed by Lesher et al. was five-opt [19]. Since the n-opt
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algorithm only finds local optima, the authors start with many
initial arrangements and run the two-opt algorithm on each. They
take the result with the best performance and further improve it
via the five-opt algorithm.

Gong and Tarasewich [12] compared an ambiguous layout that
was constrained to be in strict alphabetical order with a layout
that was unconstrained and freely optimized. Both layouts were
optimized to minimize the number of keystrokes required on aver-
age to enter a character. While they were able to fully enumerate
the possible constrained layouts, they used a genetic algorithm to
optimize the unconstrained layouts. The authors found that the
more familiar constrained layout aided users’ ability to learn the
interface.

Other authors found similar results when comparing freely op-
timized non-ambiguous keyboards to ones with familiarity con-
straints. For example, Bi et al. [3] performed a study with a Qwerty
keyboard, a Quasi-Qwerty keyboard, and a freely optimized key-
board. The Quasi-Qwerty and freely optimized keyboards were
designed to minimize the travel distance for a user’s finger, thereby
increasing the entry rate. However, the Quasi-Qwerty layout had
the constraint that letters could not move more than one row and
one column from their initial Qwerty position. The authors found
that while the Quasi-Qwerty layout had better movement efficiency
than the standard Qwerty layout, it was not as efficient as the freely
optimized layout. However, during user trials, the authors found
that users took the longest to locate the initial letter of a word on the
freely optimized keyboard, followed by the Quasi-Qwerty layout,
and finally the standard Qwerty layout. The authors concluded that
the Quasi-Qwerty layout was effective at obtaining an increased
movement efficiency while not adding too much time to the initial
visual search. While through practice users would improve with
the freely optimized layout, using a more familiar layout reduced
the amount of practice needed.

Instead of simply enforcing a strict Qwerty restriction on their
non-ambiguous keyboard layout, Dunlop and Levine [9] chose to
optimize their keyboard layout on three different parameters:

¢ Finger Travel Distance — The distance between each pair
of letters, multiplied by the number of times those letters
were adjacent in the language corpus, summed over each
pair of letters in a given layout. While this metric is relevant
to many on-screen optimization problems and is common in
related work, it does not apply to an ambiguous keyboard
such as ours that is location-independent.

Tap Ambiguity — Calculated to reduce the number of adja-
cent characters in a layout that could frequently be swapped
with each other to create valid words (e.g. I and O can be
swapped between the words ‘for’ and ‘fir’). We describe this
in detail here since we build upon this parameter in this
work. They first created a table of these commonly inter-
changed letters, which they referred to as bad bigrams, or
“badgrams”. After counting the frequency of badgrams in
same-length words in a text corpus, they converted each to
a probability by dividing by the total number of badgram
occurrences. The authors defined their tap clarity metric for
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Pij
0

where p;; is the badgram probability for letters i and j in the
symbol set & and neighbors;; is true if i and j are adjacent
in the layout.

o Familiarity —The similarity of a given layout to the Qw-
erty layout calculated by summing the squared distances
between each key’s position and its Qwerty position and
then normalizing the results to the range between 0 and 1.
This allowed for potentially high-scoring layouts that had
most of their letters near their Qwerty positions.

a given keyboard layout as

if neighbors;;

Mtapfclarity =1- Z > 2

Vijea else

Qin et al. [26] also used multiple parameters to perform opti-
mization, but they did so in two dimensions and with an ambiguous
keyboard. They defined their clarity metric for a given word as the
frequency of that word in the corpus divided by the total frequency
of identical tap sequences given an ambiguous layout. They then de-
fined the clarity of a layout as the sum over all words of the product
of word frequency and word clarity. The second metric used in this
work was a typing speed metric based on the relative location of
frequent character combinations. As with the previous paper, this
is not relevant to interfaces such as FlexType that remove location
dependency. In their interface, Qin et al. enforced a strict adherence
to the Qwerty ordering of characters and split each row into three
ambiguous groups, creating a total of nine groups.

Lee et al. [18] optimized five- and ten-key ambiguous keyboards
for speed, accuracy, comfort, and confusability using Pareto front
optimization. Their text entry method used fingernail-mounted
sensors to track intra-hand touches and mapped each finger to a
subset of characters. The five-key keyboards utilized a single hand,
while the ten-key keyboards used both hands. Their confusability
metric was based on confusability matrices derived from a text
corpus, similar to Lesher et al. [19].

We have discussed here many different text entry methods that
relate to FlexType with respect to their ambiguity, accessibility, or
optimization. For easier comparison between FlexType and past
work, we have classified the key features of previous text input
methods in Table 1.

3 OFFLINE OPTIMIZATION EXPERIMENT

While past work has optimized ambiguous keyboard groups in var-
ious ways, none factored in the use of a long-span language model
(i.e., a language model that conditions its prediction on several pre-
vious words). The optimization performed by Lesher et al. [19] only
predicted the next character to be entered, and did not consider the
likelihood of each word as a whole. The word-level clarity metric
used by Qin et al. [26] used only the frequency of each word in
a text corpus, and did not take into consideration the context in
which each word was used. With our optimization procedure, we
aim to leverage long-span language modeling to determine likely
disambiguation errors given the frequencies of words and contexts
in which they are commonly used in a corpus of representative text.
We then create optimized character groups by separating characters
that are commonly confused in that corpus.
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Name Ambiguity = Disambiguation Basis Platform  Accessibility Optimization Criteria
Method
FlexType T4 Language model Alphabetical Smartphone Eyes-free Clarity
Tap123 [11] T6 Language model QWERTY Smartphone Eyes-free None
Perkinput [2] None N/A Braille ~Smartphone, tablet Eyes-free None
Optimal-T9 [26] T9 Language model QWERTY Smartwatch None Clarity, speed
T18 [8] T18  Word frequency QWERTY Smartwatch None Clarity
TipText [34] T6 Language model QWERTY Smartwatch Eyes-free Clarity, tap accuracy
RC Scan [30] None N/A  Letter freq. Desktop  Single switch Letter frequency
SAK [22] T3 Word frequency  Alphabetical Desktop  Single switch Scans per character
HiFinger [16] T6 Second action  Alphabetical Virtual env. None None
Alpha Constrained [12] T8 Word frequency  Alphabetical Pocket PC None Keystrokes
FingerText [18] T5, T10 Language model QWERTY HMD None Speed, accuracy, comfort, clarity
Quasi-Qwerty [3] None N/A QWERTY Smartphone None Finger travel distance

Table 1: The key features of FlexType and related text entry interfaces. The ‘T’ notation in the Ambiguity column refers to the

number of character groups used by the interface.

We optimize sets that each have four groups of characters. On
a touchscreen, this enables users to tap with between one and
four fingers on a single hand to designate each group. In virtual
or augmented reality, this would allow users to make a thumb-to-
finger gesture as done by Bowman et al. [6] and by Jiang et al. [16].
Having four groups of characters enables us to assign one group to
each of the four fingers that the thumb could touch on a single hand.
This allows the user to utilize proprioception to execute the four
distinct input actions with no visual feedback. This motion could
be detected using wearable gloves [6], finger-mounted pressure
sensors [16], or surface electromyography via electrodes on the
forearm [1]. A four-group set could also be used in a scanning
keyboard for single switch users. While the Scanning Ambiguous
Keyboard developed by MacKenzie et al. [22] had three groups
of letters, adding another group as well as long-span language
modeling could improve disambiguation performance and reduce
the need to select from a set of matching hypotheses after each
word. The SAK also assumed that users were able to receive visual
feedback to make their selections.

3.1 Procedure

We developed our optimization procedure by combining some of
the ideas used for optimization in past work [9, 19], and factoring in
a long-span language model. Since the use case we investigate here
is eyes-free text input on mobile devices, we performed our analysis
on a corpus of text written on mobile devices. This particular corpus
was gathered and released by Vertanen and Kristensson [32] and
consists of forum posts made by users on a mobile device.

3.1.1  Corpus Analysis. To perform this analysis, we adapted the
ideas of Lesher et al. [19]. While they iterated through the corpus
one character at a time, predicting the most likely next character,
we iterated through the first 100,000 phrases in the training set
one word at a time. We used software based on the VelociTap
decoder [33] with a 12-gram character model and a 4-gram word
model to predict the most likely next word given the preceding
words in the phrase.
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We queried the decoder for the top 100 predictions for each word,
given the context of the previous words in the phrase, storing each
word deemed more likely than the true word. We restricted the
decoder’s search to words that matched the length of the actual
word in the phrase since the disambiguation process would have
that same restriction. We used these mispredicted words to build
a character-level confusion matrix for the corresponding letters
between the incorrect and correct words. For example, if ‘hello’ was
predicted before the true word ‘world’, the matrix entries for the
character pairs ‘hw’, ‘e0’, ‘Ir’, and ‘od” would be incremented.

3.1.2  Performance Metrics. During the optimization process, we
need a way to compare one set of ambiguous groups to another
to determine the better of the two. We investigate two different
metrics to evaluate the potential performance of a given set.

The first metric is badgram clarity. Using the confusion ma-
trix we generated during our corpus analysis, similar to Lesher et
al. [19], we calculated the mutual confusability between each pair
of characters. We divided each of these by the total sum, as done
by Dunlop and Levine [9], to obtain badgram probabilities p;:

__ Cp+CG) "
i jlizj C(L ) +C(j, i)’
where C(i, j) is the number of times character i was mistaken
for character j in the corpus analysis (element i, j in the confusion
matrix). We adapted Dunlop and Levine’s tap clarity formula to
define our badgram clarity metric as:

Pij

pij if sameGroup(i, j)

o _C)

Claritybadgram =1- Z {
— else
Vi,jli#j

where sameGroup(i, j) is true if i and j are in the same ambigu-
ous group.

The second metric we investigate is word error rate (WER) clarity.
To calculate WER clarity, we utilize the mobile test set from the
corpus released by Vertanen and Kristensson [32]. We first define
the groups that we are evaluating as an ambiguous keyboard in the
VelociTap decoder [33], specifying which characters are in each
group. We then iterate through each word in the first 250 phrases
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in the test set. We simulate the taps that would be needed to type
each word given the current set of groups. We then use the decoder
to find the probability of each word that fits the ambiguous group
sequence given the words in the phrase to the left of the current
word. We look at the most probable word returned by the decoder,
and determine if it predicted the true word correctly. We aggregate
all of the predictions to define WER clarity as:

correct(word
ClarityWER -1 ZVword ( ) ) (5)
Nwords
where correct(word) returns 1 if the decoder’s prediction matches

the true word and 0 otherwise, and where n,,,,.45 is the total num-
ber of words in the first 250 phrases of the mobile test set.

Badgram clarity is a simpler metric but may not as accurately
model the disambiguation errors a user will face when using a
set of groups in practice (i.e., when disambiguation is guided by
a language model that conditions on a user’s previously written
text). However, since WER clarity requires us to iterate through
a test phrase set to make predictions, it becomes computationally
expensive to calculate for a large number of character groups.

To determine how similar the two metrics are, we randomly
generated 1,000 sets of groups. We calculated both clarity metrics
on each set and fit a linear regression model to the data. The results
can be seen in Figure 1. The sets produced results that were near the
line Claritypaqgram = Clarityw g with relatively high correlation
(r = 0.9019). From this, we can conclude that badgram clarity is
a good, and computationally cheaper, estimate of a set’s expected
performance in a text entry system leveraging long-span language
models for disambiguation.

099 e y=x
—— Linear Regression, y = 1.06x - 0.05, r=0.9019
Set of Groupings

0.8

I
N
)

g
o
)

Badgram Clarity

0.54

0.4 4

T T T
0.4 0.5 0.6 0.7 0.8 0.9
WER Clarity

Figure 1: Comparison of the badgram and WER clarity met-
rics on 1000 random sets of groups. The dashed line repre-
sents Claritypadgram = Claritywggr. The solid red line repre-
sents the best fit linear regression.

3.1.3  Unconstrained Optimization. We began by optimizing sets
freely, without any familiarity constraints. The goal was to deter-
mine the upper bound of performance that can be achieved, even if
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it takes additional training time for users. Since, as Lesher et al. [19]
showed, an exhaustive search is computationally infeasible, we
used a similar n-opt approach. In their work, when they examined
the possible swaps between a set of characters, they only mentioned
directly swapping the characters. However, since it could be the
case that not all groups have an equal number of characters, we
added some additional comparisons. For example, let Group A con-
tain « (among other characters) and let Group B contain f (among
other characters). For a two-opt pass, we checked the set where
we simply swapped « and f as Lesher et al. did. However, we also
checked the sets where both « and  were in the same group, either
both in Group A or both in Group B.

To implement this, we first generated the set of all n-tuples in
our set of characters (where n is the n in n-opt). For each tuple, we
generated all possible permutations (e.g. for tuple (ab), we generated
(ab, ba)). For each permutation, we examined all possible partitions
into k groups (allowing empty groups), where k was the number
of groups that contained any character in the permutation for the
current groupings (e.g. if a and b were each in a separate group,
k = 2). An example of all partitions generated on the permutation
(ab) is (|ab, a|b, ab|), where the vertical bar represents the boundary
between groups. Note that there are k—1 dividers to create k groups.

To increase efficiency, we tracked each partition created for each
given tuple, and did not add duplicates to the final list of groupings.
For example, if we generated partitions on the permutation (ba)
after already doing (ab), we would generate (|ba, b|a, bal). The
first and last partitions are identical to the first and last partitions
already generated from the permutation (ab), since ordering within
each group does not matter (i.e. (|ab) is equivalent to (|ba)). In this
situation only the middle partition, (b|a) would be added to our
final list.

3.1.4 Badgram Clarity. We first optimized using badgram clarity.
Similar to Lesher et al. [19], we ran our version of the two-opt
algorithm on 50,000 random initial sets. We then ran our version
of the five-opt algorithm on the best result from two-opt.

3.1.5 WER Clarity. As we discussed previously, the WER clarity
metric is computationally expensive and requires iteration through
the test phrases to check each set of groups. This, combined with the
factorial growth of the n-opt algorithm prevented us from running
a large number of initial sets and from running anything larger
than two-opt. Using WER clarity, we ran 50 random initial sets
through our two-opt algorithm.

3.1.6  Constrained Optimization. While the Tap123 interface [11]
was based on a Qwerty keyboard layout, as we move towards a
more flexible input technique that may not depend on location,
Qwerty-based groupings will likely have less of a positive impact
on performance. Instead, we will focus on alphabet-based groupings.
While Gong and Tarasewich [12] implemented a strict alphabetical
constraint, we investigated allowing a small number of characters
to shift outside of alphabetical order.

Constraining the sets in this way drastically reduces the number
of possibilities, which allowed us to fully enumerate and compare
all of them. We first laid out the alphabet from A-Z with apostrophe
on the end. We then used a similar partition function to that which
we used on our unconstrained sets, but this time we did not allow



1U1 °23, March 27-31, 2023, Sydney, NSW, Australia

Constraint Opt. metric Badgram clarity ~WER clarity
None Badgram 0.8191 0.8209
None WER 0.7990 0.8542
Alphabetical Badgram 0.8030 0.7872

Table 2: Both clarity scores for the top unconstrained and
constrained sets. The unconstrained sets were optimized with
respect to two different metrics and both results are reported.

any groups to be empty, as moving a letter from a group where
it is alone will never increase performance. This left us with 26
possible divider locations (our 27 character alphabet size minus 1,
since the divider cannot be located on either end). For a set with
four groups, there are 2,600 possible partitions (3 dividers over 26
positions = (236)).

For each partition, we selected every combination of s characters,
where s was the maximum number of characters allowed to move
from their group. We tested values of s from 0 to 4, inclusive. We
then compared every possible way to shuffle the s characters in each
combination. While our shuffles in the n-opt algorithm only allowed
characters to move to groups occupied by another member of the
tuple being considered, here characters could move to any group.
Due to the factorial growth of the number of possible combinations,
we were only able to complete this optimization using the badgram
clarity metric.

3.2 Results

3.2.1  Unconstrained. We computed both clarity scores for our best
unconstrained sets. The results are shown in the upper portion
of Table 2. When optimizing for badgram clarity, the best score
we were able to achieve was 0.8191. There were 208 of the 50,000
initial sets of groups that when run through our two-opt algorithm
produced final sets that matched this exact clarity. While the order
of the groups and the order of the characters within each group
varied between these, alphabetizing each group and set of groups
showed that these sets were all identical. This set was:

(a,h, k,n,s,x), (b,e f,g, j,m,qu), (c,d,o,t,0,2), (i,L, p,r,w,y)
When we ran this set through the five-opt algorithm, there were
no swaps made in the entire pass. This set also achieved a WER
clarity score of 0.8209.

Optimizing with WER clarity, we had hoped to see multiple of
the 50 random initial sets converge to the same optima as we had
with the badgram clarity metric, but this was not the case; the best
clarity was only achieved by a single set. We were able to achieve a
peak WER clarity of 0.8542 with the following groups:

(a.d, f.hk,qy' ), (boeei jnx),(glo0s0w),(mprtuz)

This set had a badgram clarity score of 0.7990, which was surpris-
ingly far from its WER clarity score given the correlation shown in
Figure 1.

It was interesting to note that in both of these sets the vowels
were separated as much as possible. With only four groups, it was
impossible to separate all of the vowels, but e and u belonged to
the same group in both sets, as well as i and y.
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3.22 Constrained. Optimizing our constrained sets of groups for
badgram clarity without allowing any characters to stray from
alphabetical order yielded a badgram clarity score of 0.8030. The
set that produced this was:
(a,b,c,d,e), (.9, h i, j k1,m),(no,p,qr),(stuo,wxyz)

As seen in Table 2, this set of groups also had a WER clarity rating
of 0.7872. As expected, both of these clarity ratings were lower
than the top ratings achieved by unconstrained sets. As with the
unconstrained sets, the vowels were separated as much as possible,
with a and e in the first group, and u and y in the fourth group.

When we allowed characters to stray from alphabetical order,
we saw only marginal gains in the clarity metrics (1.02% for the first
character out of order, and about 0.25% for each character after that),
which we determined would not be worth the additional cognitive
overhead for users.

4 USER STUDY

Based on our results in our offline experiments, we opted to use
the set with no swaps as our constrained groups in our user study.
For our unconstrained groups, we chose the set optimized using
the WER clarity metric since it is more representative of likely
disambiguation accuracy when writing sequences of words with
a recognizer that utilizes a long-span language model. We tested
the constrained and unconstrained groups in a longitudinal user
study. While past work has shown that users perform better initially
on familiar layouts, we wanted to evaluate how long this benefit
would persist. We also wanted to evaluate the extent to which
the differences in the WER clarity metric would impact real user
performance.

4.1 FlexType System Description

We used a OnePlus 5T smartphone for the user study. To enter
text, users tapped with between one and four fingers to designate
one of four character groups. The characters in each group differed
between the two experimental conditions. In our CONSTRAINED
condition we used the following set of groups:

(a,b,c,d,e), (f, g, h i, j k1,m),(no,p,qr),(stuov,wxyz)
For our UNCONSTRAINED condition, we used the set of groups
that was optimized on the WER clarity metric:
(a,d, f,hk,qy ), (bcei,jnx),(g105s0w),(mp,rtuz)
The FlexType interface occupied the entire 68 mm X 137 mm
screen and the phone displayed solely a solid black background. No
visual feedback was provided during text entry to simulate eyes-
free text entry. During the input of a word, the following gestures
were available:

e Tap with 1-4 fingers — Select a character from the corre-
sponding group. After each tap, the device would read all
characters in the selected group via text-to-speech.

o Swipe left with one finger — Backspace a single character.

o Swipe left with two fingers — Backspace all characters in
the current word.

e Swipe right with one finger — Indicate that the current word
is finished and trigger disambiguation.

Disambiguation was performed by software based on the Veloc-
iTap decoder [33]. We used a 12-gram character language model
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“,8,h, 1,1,k m”

“n,0,p,q,r"

E—

‘ “her” | ‘ “man” |
l

Figure 2: An example input sequence for the word ‘man’. From left to right, the user enters each character by tapping with
two fingers, one finger, and then three fingers. The letters corresponding to a group are read out after each tap. The user then
swipes to the right and the word ‘her’ is recognized as most likely and read out. The user then swipes up to change ‘her’ to the

second most likely word, ‘man’.

and a 4-gram word language model with a 100K vocabulary. The
decoder produced the six most likely words (referred to as the n-
best list) that matched a user’s exact tap sequence. The most likely
result was read via text-to-speech and placed into the text entry
area, which was invisible to the user. Inmediately following disam-
biguation, the following gestures were available, in addition to the
gestures listed previously:

e Swipe up with one finger — Iterates forward in the n-best list,
reading the next most likely word and replacing the current
word in the text entry area.

e Swipe down with one finger — Iterates backwards in the n-
best list, reading the previous word in the list and replacing
the current word in the text entry area.

o Swipe down with two fingers — Signals that there is no more
text to enter and advances to the next text entry task.

An example input sequence for the word ‘man’ can be seen in
Figure 2.

4.2 Procedure

Since our aim was to compare the learning curves of participants
on two different sets of character groups, we opted for a between-
subjects design to avoid order effects and the risk of participants
confusing the two sets. We had a total of sixteen participants, eight
in each condition.

Each participant completed a total of eight sessions. Each session
lasted approximately one hour and participants received US$10 per
session as compensation. No participant completed more than one
session on a single day, and participants had no more than two days
between sessions. Within each session, participants took a short
break approximately every ten minutes to reduce fatigue.

In each session, participants transcribed text using the experi-
mental interface on a smartphone device. Each prompt was both
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displayed on the screen and read via text-to-speech. Once the user
selected the ‘Start’ button, the FlexType interface opened, block-
ing the entire display. The prompts that the participants received
varied based on the session they were completing. We created a
progression designed to introduce them to the input technique as
follows:

e Session 1 - Participants received single-letter prompts. The
goal of this session was to teach the participants the group-
ings. Participants did not perform disambiguation.

e Session 2 - Participants received single-word prompts with
full alphabet coverage. This was designed to continue teach-
ing them the groupings while familiarizing them with the
disambiguation interaction. These prompts were pruned to
remove any words that did not appear as the first result
in the decoder’s n-best recognition results (assuming the
participant made no mistake while entering the word).

e Session 3 - Participants received phrase prompts that were
pruned to contain no more than four words, each no longer
than six characters.

e Sessions 4-8 - Phrases were only restricted to be no longer
than six words to aide participants in remembering them
correctly.

All phrases were drawn from the Enron mobile data set [31].
After finishing each transcription, participants swiped down
with two fingers to complete the input. The participant was shown
a summary screen with the reference text, their entered text, and
their entry and error rates before they advanced to the next prompt.

4.3 Results

We recruited twenty participants for our between-subjects study via
convenience sampling. Four participants withdrew from the study
prior to completion for a total of sixteen complete participants. The
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Figure 3: Entry rates of each participant throughout the study.
Session 1 entry rates are not plotted since participants only
entered single letters in this session.

incomplete participants’ data was excluded from analysis. Partici-
pants in the CONSTRAINED condition were 19-22 years old (mean
20.75). One identified as male and seven identified as females. Par-
ticipants in the UNCONSTRAINED condition were 20-45 years old
(mean 23.88). Six identified as males and two as female. All partici-
pants were students or staff at a university and rated the statement
“I consider myself a fluent speaker of English” a 7 on a 7-point Likert
scale where 7 was strongly agree.

Our independent variable was the groupings of characters. As
our dependent variables, we measured different metrics of user per-
formance and behavior. Since the beginning sessions were designed
to train the users on the interface, the main results summarized in
Table 3 represent the average of the final four sessions. We excluded
from analysis 105 tasks (out of 16,383) across the entire study in
which technical issues impacted either participants’ ability to com-
plete the task or the data logging for that particular task. No more
than 6 tasks were excluded from any one session, and no more than
19 tasks from any one participant.

First, we measured participants’ entry rate in words per minute
(WPM), where a word is assumed to be five characters, including a
space. Since participants only entered single characters in the first
session, we cannot calculate an entry rate. As shown in Figure 3,
participants’ entry rates increased through the sessions but may
have started to plateau towards the end. Participants in the Con-
STRAINED condition were able to achieve an average of 12.0 words
per minute across their final four sessions, while participants in
the UNCONSTRAINED condition averaged 13.5 words per minute.
An independent means t-test showed that this difference was not
significant. Details can be found in Table 3.

The next metric we measured was error rate. We report character
error rate (CER) as the number of insertions, deletions, and substi-
tutions required to transform the input text to the reference text,
divided by the length of the reference text. As shown in Figure 4,
participants’ error rates varied throughout their sessions with most
participants having a CER of less than 5% in most sessions. Across
the final four sessions, participants in the CONSTRAINED condition
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Figure 4: Character error rates of each participant throughout
the study.

Backspaces per Final Output Character

—» Constrained
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Backspaces per Final Output Character

Session Number

Figure 5: Backspaces per final output character for each par-
ticipant during the user study.

averaged 2.03% character error rate while participants in the Un-
CONSTRAINED condition averaged 1.81%. As with entry rate, this
difference was not significant. Details can be found in Table 3.

As a metric of corrected taps, we measured backspaces per char-
acter (BPC), which is the total number of characters backspaced
divided by the final number of output characters. This metric takes
into account the total characters deleted by both single character
(one-finger) and word-at-a-time (two-finger) backspaces. As shown
in Figure 5, the BPC was quite high in the first session at 0.162
and 0.714 in the CONSTRAINED and UNCONSTRAINED conditions,
respectively. The BPC dropped in the second and third sessions and
remained relatively constant for the remainder of the study. As ex-
pected from prior work on familiarity constraints, the participants
in the UNCONSTRAINED condition had a significantly higher BPC
in the first session (t(14) = —4.66,p < 0.001), but there were no
significant differences in any of the remaining sessions.

To analyze participant behavior following disambiguation, we
totaled the number of up and down swipes participants used to
iterate through the n-best list and normalized based on the final
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Condition Entry rate (WPM) Error rate (% CER) Backspaces per char Swipes per word
CONSTRAINED 12.0 + 4.4[7.4,20.8] 2.03 + 1.31[0.66, 4.53] 0.090 + 0.043[0.037, 0.154] 0.318 £ 0.111[0.180, 0.468]
UNCONSTRAINED ~ 13.5+3.3[9.9,19.8]  1.81+0.91[1.01,3.82]  0.111+0.037[0.069,0.174]  0.288 = 0.080[0.186, 0.447]

Statistical test t(14) = —0.75,p = 0.46

t(14) = 0.40, p = 0.69

t(14) = —1.06,p = 0.31 t(14) = 0.61, p = 0.55

Table 3: The main results from sessions 5 through 8 of the user study. Results are reported in the format mean +

The statistical tests reported are independent means t-tests.
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Figure 6: Total number of explorations through the n-best
list per final input word for each participant. Sessions 1 and
2 did not use the n-best list and are not plotted.

number of words that were input. We measured this from session
3 on since the n-best list was not used in the first two sessions.
As shown in Figure 6, participants’ total swipes per word in each
session was relatively stable and hovered around 0.2-0.5 swipes per
word. In sessions 5-8, participants using the UNCONSTRAINED lay-
out iterated through the n-best list slightly less at 0.288 swipes per
word compared to 0.318 for the CONSTRAINED participants, though
this difference was not significant (Table 3). We conducted further
analysis measuring the number of swipes following words that
were entered with the correct tap sequence. Since the goal of this
was to evaluate the disambiguation algorithm, we eliminated cases
where there was an error in a previously entered word, since this
would impact the disambiguation results. This metric was nearly
identical between the two conditions, with an average of 0.169
swipes per properly entered word in the CONSTRAINED condition
and 0.168 swipes in the UNCONSTRAINED condition. This was not
significantly different (¢(14) = 0.03, p = 0.97).

Finally, we analyzed each word entered with the proper tap
sequence and context to determine the distribution of the target
word in the n-best list. The proportion of words, averaged among
all participants in each condition, found at or before each position
(e.g. position 2 includes words found in either position 1 or position
2) can be seen in Figure 7. As we expected from our optimization
experiment, this proportion was higher for the UNCONSTRAINED
condition for position 1 (the top disambiguation result). It was
interesting to note that it was very similar for the remainder of
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Figure 7: The cumulative proportion of intended words lo-
cated at or before each position in the n-best list.

the positions. The full distribution is reported in Table 4. Using
this distribution, we calculated the expected number of swipes
per correct word for each condition. We found this to be 0.172 for
the CoNSTRAINED condition and 0.152 for the UNCONSTRAINED
condition. Although it was a small difference, it is interesting to
note that participants in the CONSTRAINED condition did swipe less
than we would have expected given the words that they entered.
One possible explanation for this is that participants may have
immediately backspaced a word without exploring the n-best list if
they thought that they made an error. Another possible explanation
is that participants may have not bothered exploring the n-best
list after typing a word that they had previously encountered and
learned was not in it. A reason that users in the UNCONSTRAINED
condition swiped more than expected may have been that they
explored the n-best list too quickly and needed to go backwards in
the list to get to their intended word.

5 DISCUSSION

The goal of this work was to optimize both constrained and uncon-
strained ambiguous groups and then to compare user performance
between the two. As we expected to find, participants struggled
with the unconstrained groups more in the beginning as evidenced
by the significantly higher backspaces per character metric in their
first session. However, Figure 5 shows that from session 2 on, all
of the participants had quite similar backspace rates. This suggests
that the benefit of the familiarity of the constrained groups may
be reduced after the first hour of practice. While after the final



1U1 °23, March 27-31, 2023, Sydney, NSW, Australia

Gaines et al.

Condition Position 1 Position 2 Position3 Position4 Position5 Position 6 Not in n-best
CONSTRAINED 89.14% 7.63% 1.84% 0.40% 0.20% 0.11% 0.67%
UNCONSTRAINED 91.05% 6.20% 1.32% 0.16% 0.52% 0.12% 0.63%

Table 4: The distribution of intended word positions in the n-best list when they were entered with the correct tap sequence

and context.

session one participant in the UNCONSTRAINED condition stated,
“Some letters like t and x were hard for my brain to remember”,
another commented, “At first it was just a matter of memorization
and then it was totally natural” The latter comment shows that
some participants were more open to learning the UNCONSTRAINED
groups than others.

The theoretical benefit of a particular ambiguous set having a
higher WER clarity metric is that during entry, participants will
need to navigate through the n-best list less often. As we showed
in Table 4, the UNCONSTRAINED set did have a slightly higher pro-
portion of words that did not require exploration of the n-best list.
Interestingly, participants in both conditions explored the n-best
list similar amounts, with participants in the UNCONSTRAINED con-
dition using it slightly less. While again this difference was not
significant, it does seem to align with the slight difference shown
in the optimization metrics.

A limitation of our interface was that the n-best list was restricted
to a maximum of six words. If a user’s intended word was not in
the decoder’s vocabulary, or simply less likely than other words
with an identical tap sequence given the context, users were unable
to enter that word correctly. As shown in Table 4, this occurred
in about 0.81% of words across both conditions where the user
entered the proper tap sequence with the correct prior text. To
remedy this issue, we could add a mode where users designate the
exact desired character from their selected group in some way (e.g.,
by long pressing with the correct number of fingers and releasing
when their desired letter from the corresponding group is read).
While this will slow entry, it would provide a means for accurate
entry of words that that are hard for the decoder to predict, such
as proper names.

While FlexType could be implemented using a variety of sensors,
we used a touchscreen in our user study. This led to some ergonomic
issues, with one participant remarking that “The four finger tap
was always a little bit of a stretch. I tended to need to shift my
hand position to make the gesture” Three other participants also
mentioned tapping with four fingers when asked about interactions
that felt unnatural or were hard to learn. For future studies involving
a touchscreen, it may be useful to explore a different gesture for
selecting the fourth group, or to optimize a set of three groups of
characters. Gestures that do not require a touchscreen could include
finger-to-thumb touches, detected by either pressure sensors [16]
or gloves with conductive fabric [6].

Due to the longitudinal nature of the user study, we were un-
able to run all of the participants at one time. Because of this, the
participants were assigned to alternating conditions in the order
that they were recruited. By chance, this led to an imbalance of
male and female participants between the groups. While this could
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create a potential confound, we do not have reason to believe there
is a performance difference driven by gender identity.

Across both sets of groupings, participants averaged 12.8 words
per minute and 1.92% character error rate using single-handed text
entry without visual feedback. It can be difficult to make direct
comparisons between studies due to differences in experimental
procedure and the amount of practice participants have with each
interface. That being said, these performance metrics are similar
to those of other eyes-free text entry methods (e.g., Graffiti: 10.0
WPM [29], Perkinput: 17.6 WPM with one hand [2], and TipText:
13.3 WPM [34]). Future work could conduct an experiment that
directly compares FlexType to a commonly available eyes-free text
entry method (e.g., the braille input method now available on iOS).

6 CONCLUSION

Through a series of optimization experiments, we designed two
ambiguous keyboards consisting of four groups of characters. Our
character grouping optimization procedure took into account, for
the first time, the impact of a recognition algorithm capable of
utilizing prior words to predict the most likely word based on am-
biguous input. In a multi-session user study, we found that our
unconstrained groupings, while they had a slightly better clarity
metric, did not perform meaningfully better than alphabetically-
constrained groupings. We conclude that since the unconstrained
groups did not produce a noticeable benefit in our long-term evalu-
ation, it is not worth the higher barrier to entry that they create.
For example, users of the unconstrained grouping backspaced over
four times more often in their first hour of use. With both sets of
groups, participants had performance similar to other eyes-free text
entry methods. In open feedback following the final session, one
participant in the CONSTRAINED condition remarked, “I wouldn’t be
opposed to using this as a keyboard option on my own phone, it was
fun to use” This sentiment highlights the potential for widespread
adoption of this technique in situations where visual feedback is
not available or motor gestures are limited.
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