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ABSTRACT

When a user requests less than a full node for a job on XSEDE’s
large resources - Stampede and Lonestar4 -, that is less than 16
cores on Stampede or 12 cores on Lonestar4, they are assigned a
full node by policy. Although the actual CPU hours consumed by
these jobs is small when compared to the total CPU hours delivered
by these resources, they do represent a substantial fraction of the
total number of jobs (~18% for Stampede and ~15% for Lonestar4
between January and February 2014). Academic HPC centers,
such as the Center for Computational Research (CCR) at the
University at Buffalo, SUNY typically have a much larger
proportion of small jobs than the large XSEDE systems. For CCR’s
production cluster, Rush, the decision was made to allow the
allocation of simultaneous jobs on the same node. This greatly
increases the overall throughput but also raises questions whether
the jobs that share the same node will interfere with one another.
We present here an analysis that explores this issue using data from
Rush, Stampede and Lonestar4. Analysis of usage data indicates
little interference.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Design studies, Fault
tolerance, Measurement techniques, Modeling techniques,
Performance attributes, Reliability, availability, and serviceability.
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Management, Measurement,
Design, Reliability, Verification.

Documentation, Performance,
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1. INTRODUCTION

Node sharing, in which multiple jobs share a given compute node,
in HPC clusters has been shown to increase throughput and energy
efficiency by 10-20% [1-4]. As the number of cores per node grows
for a variety of architectures of modern HPC clusters, it becomes
more important to consider allowing small jobs to share nodes
rather than simply allocating a full node to each job regardless of
the actual requested resources. Although at the current number of
cores per node the actual CPU-hours devoted to these small jobs on
the large XSEDE HPC clusters such as Stampede and Lonestar4 is
small, there are still a large number of such jobs and the scheduling
and resource waste issues will increase as systems are brought on
line that have more cores for each node. There is an obvious
advantage to sharing nodes from both a scheduling and a resource
efficiency perspective. However, the question arises - are there
consequences that offset this advantage?. This paper presents an
analysis of node sharing on the Center for Computational
Research’s (CCR) production cluster (Rush) based on metrics from
XDMOoD/TACC_Stats. We also compare with TACC_Stats metrics
collected on Stampede and Lonestar4, which do not share nodes.

The rest of the paper includes an overview of
XDMoD/TACC_Stats, a brief description of the three HPC
clusters, XSEDE’s Stampede and Lonestar4 and CCR’s Rush, and
results from a detailed usage analysis comparing the consequences
of sharing nodes.

2. ANALYSIS TOOLS
2.1 XDMoD Framework

Here we present a brief overview of XDMoD, a more detailed
description can be found in references [5-8]. XDMoD was
originally targeted at providing the analyses required for effective
overall management of the computational resources of the XSEDE
organization, although an open source version is now available
[14]. XDMoD ingests and organizes data on computer system
performance and then maps that data into metrics required for
overall system management. The XDMoD portal provides a rich set
of features accessible through an intuitive graphical interface,
which is tailored to the role of the user. Metrics provided by
XDMoD include: number of jobs, CPUs consumed, wait time, and
wall time, with minimum, maximum and the average of these
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metrics, in addition to many others. These metrics can be broken
down by: field of science, institution, job size, job wall time, NSF
directorate, NSF user status, parent science, person, principal
investigator, and by resource. Performance and quality of service
metrics of the HPC infrastructure are also provided, along with
application code specific performance metrics (flops, 10 rates,
network metrics, etc) for all applications running on a given
resource (through TACC_Stats). Another key feature is the Usage
Explorer that allows the user to make a custom plot of any metric
or combination of metrics filtered or aggregated as desired. For
example, Figure 1, which was created using the Usage Explorer,
shows CPU hours and wait time versus job size on a local
university-based HPC resource at the Center for Computational
Research at SUNY-Buffalo.
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Figure 1 Plot of CPU hours consumed and job wait time versus job
size for the January to February 2014 time period at the University
at Buffalo Center for Computational Research.

The XDMoD tool is also designed to preemptively identify
underperforming hardware and software by deploying customized,
computationally ~ lightweight  “application  kernels”  that
continuously monitor HPC system performance and reliability
from the application users’ point of view [5-8]. The term
“application kernel” is used in this case to represent micro and
standard benchmarks that represent key performance features of
modern scientific and engineering applications, and small but
representative calculations carried out with popular open-source
high performance scientific and engineering software packages.
The term “computationally-lightweight” is used to indicate that the
application kernel runs for a short period (typically less than 10
min) on a small number of processors (fewer than 128 cores) and
therefore requires relatively modest resources for a given run
frequency (say once or twice per week). Accordingly, through
XDMoD, system managers have the ability to proactively monitor
system performance as opposed to having to rely on users to report
failures or underperforming hardware and software. The detection
of anomalous application kernel performance is being automated
through the implementation of process control techniques. In
addition, through this framework, new users can determine which
of the available systems are best suited to address their
computational needs.

In addition, metrics that focus on scientific impact, such as
publications, citations and external funding, are now being
developed and incorporated into XDMoD to help quantify the role
modern cyberinfrastructure plays in advancing research.

Taking advantage of the great similarity of XSEDE and a typical
HPC center, we have developed Open_XDMoD, the open source
version of XDMoD, which leverages the same code base.
Accordingly, as XDMoD continues to be developed,
Open_XDMoD will also benefit from this work. Both versions
share many of the same metrics and functionality (e.g., Summary,

Usage/Usage Explorer, and Report Generator) and differ mainly in
support of elements specific to XSEDE. XSEDE maintains a
centralized infrastructure (XSEDE central database) for storing job
accounting records, users, and allocations/projects while a typical
HPC center may not have this data in a centralized location.
Open_XDMoD provides its own data warehouse with support for
parsing and loading of resource manager log files and spreadsheets
containing user information including departmental affiliations. In
addition, future versions will support allocations, and integration
with local LDAP services, and application kernels for monitoring
Quality of Service.

2.2 TACC Stats

The Linux sysstat package is a comprehensive collection of
performance monitoring utilities, each of which reports resource
statistics of specific components of a system in its own format.
TACC _Stats [9] enhances sysstat/sar for the open source software
based HPC environment in many ways. It is a single executable
binary that covers all performance measurement functions of
sysstat and outputs in a unified, consistent, and self-describing
plain-text format. It is batch job aware: Performance data are tagged
with batch job id to enable offline job-by-job profile analysis. It
supports newer Linux counters and hardware devices. Its source
code [10] is also highly modular and can be easily extended to
gather new kinds of performance metrics.

Currently TACC _Stats can gather core-level CPU usage (user time,
system time, idle, etc.), socket-level memory usage (free, used,
cached, etc.), swapping/paging activities, system load and process
statistics, network and block device counters, interprocess
communications (SysV IPC), software/hardware interrupt request
(IRQ) count, filesystems usage (NFS, Lustre, Panasas),
interconnect fabric traffic, and CPU hardware performance
counters. For a complete list of the data acquired by TACC_Stats,
see the TACC_Stats web site [10].

Different CPU chips have different sets of performance counters.
Therefore the set of performance counter derived metrics available
may vary across systems. TACC_Stats utilizes CPU performance
counters as follows. At the beginning of the job, TACC_Stats is
invoked by the batch scheduler prolog to reprogram performance
counters to record a fixed set of events: On AMD Opteron, the
events are FLOPS, memory accesses, data cache fills, SMP/NUMA
traffic. On Intel Nehalem/Westmere, the events are FLOPS,
SMP/NUMA traffic, and L1 data cache hits. On Intel Sandy
Bridge, the events are SSE and AVX FLOPS, memory traffic, and
cache traffic. In order to not interfere with user's own profiling and
instrumentation activities, at periodic invocations (currently every
10 minutes), TACC_Stats only reads values from performance
registers, without reprogramming them, to avoid overriding
measurements initiated by users. In addition to the data gathered by
TACC Stats, data from the system scheduler and the job
management system are collected and coordinated with
TACC Stats data.

3. NODE-SHARING ANALYSIS

The case studies reported in this paper were carried out on the HPC
cluster Rush at CCR and the Stampede and Lonestar4
supercomputers at the Texas Advanced Computing Center
(TACC). Stampede is a Linux cluster comprising 6400 primary
compute nodes each of which has two Intel Xeon eight —core ES-
2680 2.7GHz processors and 32 GB of memory. The filesystem is
Lustre, and the interconnect is QDR InfiniBand. Lonestar4 is also
a Linux cluster with 1088 Dell PowerEdgeM610 compute nodes.



Each compute node has two Intel Xeon 5680 series 3.33GHz hexa-
core processors and 24 GB of memory. Lonestar4 has two
filesystems: Lustre and NFS and its interconnect is InfiniBand
(NFS is connected via Ethernet). CCR's x86 64 Linux cluster,
Rush, is a heterogeneous system containing 8, 12, 16 and 32 core
nodes. Specifically it consists of 372 Dell C6100 servers, each with
two Intel “Westmere” Xeon six-core 2.40GHz (E5645) processors
and 48GB of memory, 128 IBM iDataPlex dx360 M2 servers, each
of which has two Intel “Nehalem” Xeon quad-core 2.26GHz
(L5520) processors and 24GB of memory, 10 Dell servers each
with four eight-core Intel Xeon E7-4830 processors eight of which
have 256 GB of memory and two have 512 GB memory, 8 IBM
servers, each of which has four eight-core AMD Opteron 6132 HE
processors and 256 GB of memory and 128 Dell C6100 servers
containing two Intel “Westmere” Xeon quad-core 2.13GHz
(L5630) processors and 24GB of memory and 32 Dell R620 servers
with 2 Xeon 8-core E5-2660 2.26 GZ and 128GB of memory. All
are interconnected with QDR InfiniBand and gigabit Ethernet.
Rush has two global filesystems Panasas PAS8 Parallel Storage for
the global shared parallel scratch directory and Isilon 1Q36000x
Storage Arrays for general network file system access.

For TACC’s Stampede and Lonestar4, user jobs are assigned entire
nodes regardless of the number of requested cores, while for CCR’s
Rush, nodes are shared between jobs by default unless the user
requests exclusive use. Rush uses SLURM [11] as the resource
manager and has the cgroup task plugin enabled. The cgroup plugin
uses the Linux kernel cgroup subsystem to confine jobs to their
allocated cpuset and limit the memory available to them. This
prevents most jobs from using CPU and memory resources that
have been allocated to other jobs sharing the node.!

The analysis below looks at the ramifications of sharing versus not
sharing nodes. We analyzed TACC_Stats data collected during
January and February of 2014 on Rush, Stampede and Lonestar4.
In the following discussion, a job is defined as shared if at least one
other job ran on its assigned nodes while it was running. An
exclusive job had no other jobs running concurrently on its nodes.

Approximately two thirds of jobs on Rush were shared node jobs.
Of the jobs that were shared, 98% of them ran on a single node.
91% of the exclusive jobs ran on a single node and 9% ran on
multiple nodes. The most common job size on Rush is the single
core job (34%) with the majority (64%) of jobs running on one or
two cores.

3.1 Memory Usage

Probably the most severe potential problem for sharing nodes is the
competition for memory between jobs running on the same node.
Figure 2 shows a histogram of the memory per core usage on
Stampede and Lonestar4, which do not share nodes. The
TACC Stats metric displayed is the average OS memory usage
minus the slab and kernel page cache? per node divided by the
number of cores on the node. The frequency is the number of jobs

Ut is possible for jobs to escape from the cgroup restrictions by
running processes on the nodes using ssh rather than via the slurm
srun command. ssh is enabled on Rush because it required by
some of the user and commercial applications.

2 The slab cache is a cache of kernel data objects. The page cache
is a cache of physical pages. The most common data stored in the
page cache are the contents of disk blocks.

with the recorded memory usage. Recall that Stampede has 32 GB
per node or 2 GB per core and Lonestar4 has 24 GB per node or 2
GB per core. Obviously, both Stampede and Lonestar4 have more
than sufficient memory for their general job-mix. Figure 3 shows
the comparable memory usage on Rush where now the usage has
been shown for exclusive node (non-shared) jobs and shared node
jobs. The distribution of memory usage for the exclusive nodes
peaks early, well below 1 GB, with a tail out to larger memory
usage. The plot of shared node jobs shows similar distribution but
with a broader primary peak at a slightly higher memory usage.
Based on the very sensitive Kolmogorov-Smirnov test, the two
distributions are statistically significantly different. However for
Figure 3 and the other figures comparing the exclusive and shared
nodes, the standard that we will apply is only that they are
qualitatively similar not identical. Note that the plot does not
indicate that the shared jobs themselves used more memory, rather
that the nodes that ran shared jobs have a higher memory usage per
core than exclusive nodes. On shared nodes there are multiple
different jobs running different processes that are less likely to be
using the same shared libraries. By comparison, the exclusive jobs
that run multiple copies of the same process will reuse shared
objects and so have a smaller total memory footprint. Also, since
the memory usage is the average per node divided by the number
of cores per node, the exclusive jobs that run processes on a subset
of the cores will have a lower average memory value than when
multiple jobs are running.’ Figure 4 shows the average kernel page
cache usage per core for the exclusive and shared jobs. The cache
usage is slightly higher for the shared jobs compared to exclusive
jobs. On the shared nodes the different processes are more likely
to be accessing different files, which will tend to increase the page
cache utilization. Recall that the majority of nodes on Rush have 3
or 4 GB of memory per core and the large memory nodes have 8 or
16 GB of memory per core depending on the node. Even though
the shared node jobs show a higher average memory usage, the
majority of the nodes with shared jobs have a memory usage below
1GB. Given the memory capacity of the CCR HPC nodes this does
not appear to be a problem.
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3 A single-core job that uses 2GB on an 8 core machine will have
and average memory usage of 2/8 whereas two single-core jobs
each using 2GB on the same node will each show a usage of
(2+2)/8 (i.e. double) even though each job used the same amount
of memory.



Figure 2 Memory Usage on Stampede (blue) and Lonestar4 (red).
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Figure 3 Memory Usage in GB per core on Rush for the exclusive
node jobs (blue) and the shared node jobs (red).
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Figure 4 Kernel page cache usage in GB per core on Rush for the
exclusive jobs (blue) and shared jobs (red).

The plots in Figure 5 and Figure 6 show the average memory usage
per core for all active memory on the node (i.e. including the kernel
page cache and slab cache). Figure 5 shows the active memory for
exclusive and shared jobs on the Rush nodes that have 4 GB per
core. The shared node jobs show a higher overall memory usage
compared to the exclusive node jobs. The reasons for this are the
increased memory usage due to the user processes as discussed
previously and increased page cache usage. The plots in Figure 6
show the average memory usage for 3GB nodes. The shared nodes
show an increase in memory usage compared to the exclusive nodes
and there is a peak in the distribution at ~2.8 GB, near the total
memory on the node. Analysis of the raw data for the cluster of
jobs with the high memory usage shows that the high memory
usage is due to the contribution of the page cache. It is not a priori
a problem if the memory usage on the machine is near maximum
since the Linux kernel is designed to use all of the available
memory for the page cache. However it is possible that the high
cache usage is an indicator that the jobs running on the nodes are
performing lots of disk I/O and could potentially be interfering with
each other. We examine the I/O usage in Section 3.3.
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Figure 5 Total memory usage on Rush for jobs that ran on nodes
populated with 4 GB memory per core. Exclusive node jobs (blue),
shared node jobs (red).
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Figure 6 Total memory usage on Rush for jobs that ran on nodes
populated with 3 GB memory per core. Exclusive jobs left, shared
jobs right.
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The plot in Figure 7 shows the average miss rate per socket for last
level cache (LLC) reads. The data are obtained from the
UNC _LLC MISS hardware performance counter, which is
available on most of the Intel Nehalem and Intel Westmere nodes



on Rush. The rates are computed with respect to wall clock time.
The plots show that the shared nodes have a modest increase in the
miss rate, which is consistent with the observed increase in memory
usage. The number of jobs with high average cache miss rates are
low suggesting that LLC interference is not an issue for the majority
of jobs. The LLC miss rate allows us to calculate an estimate of the
upper bound of memory bandwidth, since an LLC miss results in
either a read from main memory or a read from the LLC on another
socket. The cache width on the Nehalem and Westmere
architectures is 64 bytes. An LLC read miss rate of 100 MHz means
that the main memory read rate is not greater than ~ 6 GiB/s per
socket..The maximum memory bandwidth is 32 GiB/s per socket
for the Westmere nodes and 25.6 GiB/s for the Nehalem nodes. The
bulk of the jobs have a miss rate below 50 MHz (~ 3 GiB/s per
socket). The plots therefore also indicate that very few jobs have
sustained high memory bandwidth usage.

Based on this data, and given the over-provision of memory in
Stampede and Lonestar4, see Figure 2, we speculate that allowing
node sharing for the TACC HPC clusters would not overtax the
memory capacity. There is obviously a trade-off in determining
how much memory to provide for each node and whether there is
enough memory to share nodes, as well as site and XSEDE policies
on capacity versus capability computing needs.

3.2 Exit Codes

We also looked at job failure rates as determined by exit codes on
Rush to determine if there was a systematically higher failure rate
for the shared node jobs compared to the exclusive node jobs.
Figure 8 shows the fractional distribution of jobs for the different
exit codes. The exit codes are of the form N:M where N is the error
return code from the job script and M is the signal number sent to
the job by the scheduler. An exit code of 0:0 indicates the job ran
successfully and all other codes indicate a failure. The exit code
0:1 corresponds to jobs that were killed by the scheduler with an
interrupt signal: either as a result of a timeout or a cancel command
by the job owner.

It is slightly surprising that the overall failure rate is lower for the
shared node jobs, however, some of the exclusive node “failures”
may be simply time-outs for long jobs. Failure code 1:0 which is
an unknown failed job that generally happens quickly (24% of these
jobs exit within the first five minutes) is actually lower for the
shared node jobs. For the jobs that exit with code 0:1, most of these
are timeouts with the job durations clustered around 0.5 hour, 1
hour and 72 hours. The 1 hour and 72 hours values correspond to
the time limits on the debug and general compute partitions on
Rush. There are twice as many exclusive jobs that timeout after 3
days than shared jobs. It is not unexpected that the exclusive node
jobs have a higher 0:1 failure code rate since these are
predominantly the long jobs that have timed out and the exclusive
jobs have a much higher overall average value of cpu-hours. The
other, rarer exit codes generally show a similar rate for exclusive
node and shared node jobs. There certainly does not seem to be any
systematic trend for the shared node jobs to show a higher failure
rate. Note that jobs can still fail even if a success code is returned
to the scheduler. For example if the underlying software does not
propagate the error. These cases are not captured in this analysis.
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Figure 8 Exit codes on Rush for the exclusive node jobs (blue) and
the shared node jobs (red).

3.3 1I/0 Usage

We examined the relative I/O usage of the exclusive and the shared
node jobs including reads and writes to the Panasas file system on
Rush. Figure 9 shows the average write rate per node in bytes/s for
exclusive and shared jobs. 42% of the jobs on Rush did not use the
Panasas file system so the frequency of these zero I/O usage jobs
has been truncated on the plot to show the detail of the jobs that did
perform I/O. The theoretical maximum write bandwidth per node
for the file system is approximately 100 MiB/s. Although the
shared nodes show substantially greater /O activity, the majority
of the jobs have an average write rate below 2 MiB/s. This average
rate is low enough that it should not cause any difficulty for the
shared jobs.
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Figure 9 Average data rate in byte/s for writes to the Panasas file
system on Rush for the exclusive node jobs (blue) and the shared
node jobs (red). Note: The y-axis has been truncated; the 0 bytes/s
bin has a frequency of ~49000 and ~40000 for exclusive and shared
Jjobs respectively.

3.4 Network Usage

Finally, we examined the InfiniBand (IB) network usage of the
exclusive and the shared node jobs including network receive and
transmit of data and packets. For reference, the IB usage on



Stampede is given in Figure 10. The plot shows the average write
rate per node in bytes/s and the logio of the data are plotted due to
the large range of data rates. The majority of jobs have average IB
write rates between 10* and 10° bytes/s per node. Figure 11 shows
the average IB write rate for all jobs on Rush. The peaks at ~1.70
and ~1.87 (corresponding to ~50 and ~74 bytes/s) are caused by
background traffic on the IB bus, rather than job-specific data
usage. This shows that the majority of jobs on Rush do not use the
1B fabric and is consistent with the observation that, in terms of the
total number of jobs (as opposed to total CPU time) most of the
jobs on Rush are short duration one or two core jobs. In terms of
total CPU time delivered however, jobs requiring 64-128 cores are
the most prominent. Figure 12 shows the average IB write rates per
node for jobs on Rush for the exclusive and shared jobs. The IB
usage distribution is similar for the shared and exclusive node jobs.
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Figure 10 Average InfiniBand write rate per node in bytes/s for jobs
on Stampede. The x-axis is a log base 10 scale.
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on Rush. The x-axis is a log base 10 scale.
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3.5 CPU Usage

While each job on Rush is confined to the allocated CPU(s)
regardless of whether or not it is shared, it is interesting to look at
the CPU usage on shared and unshared nodes and compare the Rush
distributions with the TACC XSEDE clusters. Figure 13 shows the
cpu_user fraction for Stampede and Lonestar4. The cpu_user
fraction is the ratio of the cpu time spent in user mode to wall clock
time averaged over all cores that the job was allocated. Both plots
in Figure 13 show that most jobs are relatively efficient with greater
than 0.9 cpu_user fractions. There are a group of jobs at the left
hand side of the distribution that are relatively inefficient. For
Stampede small spikes at 0.5 0.25 and 0.0625 are produced by 8-
way, 4-way and 1-way jobs respectively on the 16-core nodes. 18%
of the jobs requested a single node and had less than 50% average
CPU usage. For Lonestar4 small peaks at 0.67, 0.16 are 8-way and
4-way jobs; the very large peak at 0.083 is from 1-way jobs which
are apparently much more prevelant on Lonestar4 than on
Stampede. 15% of Lonestar4 jobs used a single node and had less
than 50% average CPU usage.
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Figure 13 CPU Usage on Stampede (blue) and Lonestar4 (red).

The CPU usage on Rush is shown in Figure 14 for both the
exclusive and shared node jobs. Also shown are the cpu_idle and
cpu_system fractions which are the average ratio of cpu time to wall
time for which the cpu was idle and processing in kernel mode
respectively. The average cpu usage is computed over all cores on



the nodes that a job ran on. This means that, for the shared node
jobs, the cpu usage statistic for a job includes the contributions for
all jobs that run concurrently on the same nodes. This leads to the
complicated distribution for the plots for the shared jobs. The
distribution is also complicated because Rush is a heterogeneous
node cluster with 8, 12, 16 and 32 core nodes. The cpu user
distribution for the exclusive jobs shows a peak near 1 and a
secondary peak near 0.75. There are also several peaks on the left
hand side of the plot notably peaks at 0.08 and 1.2, these correspond
to 1-way jobs on 12 core nodes and 1-way jobs on 8 core nodes
respectively. The peak in the user cpu near 0.75 and peak in
cpu_system near 0.25 corresponds to a single user that ran a large
number of similar jobs that had high total cpu usage, but had a much
higher system to user cpu ratio than a typical job. When these jobs
are removed from the analysis, the distribution looks much more
like those in Figure 13. That is a peak near ~1 cpu user, and
another smaller group of jobs near 0 with small secondary peaks
corresponding to jobs using only a fraction of the cores.
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Figure 14 CPU usage on Rush for the exclusive node jobs (bottom)
and the shared node jobs (top).

4. RELATED WORK

The advantages of allowing for shared nodes was discussed in
reference [1-4] where quantitative advantages were given
dependent on the job mix in the context of developing a fair pricing
algorithm for shared node jobs. Some issues on node sharing that
apply to disk cache and memory bandwidth have also been
discussed [12-13].

S. DISCUSSION & FUTURE WORK

The present analysis has examined the consequences of sharing
nodes on the CCR job mixture. Overall the data show little
difference between the shared and exclusive jobs, suggesting that,
for the job mix on CCR’s Rush production cluster, job interference
is not a significant issue. As newer architectures increase the
number of cores per node from the present level to hundreds, the
total number of jobs that can effectively share nodes will increase
dramatically and job sharing may go from an option to a necessity
on large supercomputers. This is likely especially relevant for
academic HPC centers, where the job mix will be very much similar
to that for CCR, with many users with modest computing
requirements in terms of number of processors per job and a smaller
pool of wusers with more demanding multi-node parallel
computations. As a secondary objective, the present work has
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8 1.0 00 02 04 06 08 1

I e
00 02 04 06 08 1

shown the value of XDMoD/TACC Stats to provide system
designers with the data that they need to design upgrades and
replacements for major HPC resources.

One of the limitations of the current analysis is that the metrics for
the shared jobs are averaged over the entire nodes, rather than
having the per-job values. For certain metrics it is not possible to
determine the per-job values because the hardware does not have
the capability to distinguish the source of the request (for example,
IB interface metrics or memory writes from the LLC). However,
for many metrics it is possible to identify the associated job. We
plan to improve the data collection and analysis utilities to extract
per-job information for shared jobs rather than only generating the
values averaged over the nodes that the job ran on. As an additional
benefit we will also be able to distinguish between jobs that shared
the same physical CPU socket and the jobs that shared a node but
ran on cores from different sockets.

Another limitation of this work is that we have only presented the
mean values of the various metrics with the mean computed over
time and data sources. We have observed that these mean values
do not differ greatly between the shared and exclusive jobs, but is
possible that the average values of the metrics are not a good
indicator for job interference, that is, the information loss in the
averaging procedure may have thrown useful fine details away. We
have the fine-grained time-dependent metrics collected by
TACC stats and we are actively researching the most effective way
of processing this large quantity of data.

We have only presented a small set of the available metrics
collected by TACC _stats. We have not yet done a detailed analysis
of the various hardware counter statistics. Previous studies have
shown that contention for the CPU caches and memory bandwidth
is a significant source of job interference. With this in mind, we
plan to look at the CPU cache miss rates, CPU stall cycles and
average FLOPs to see what, if any, differences can be observed
between shared and exclusive jobs. These data are collected on
CCR Rush, but the available hardware counters differ on the
different nodes, which complicates the analysis. The data can still
be effectively analyzed by making sure to only compare jobs that
ran on the same hardware or by comparing carefully chosen
normalized metrics for each job (such as % of available memory
bandwidth rather than absolute value).

We have presented all the jobs running on CCR Rush in the same
plots, however, not all jobs have the same performance
characteristics and different categories of jobs likely interact with
each other in different ways. We collect information about the
running processes for each job so we are able to determine the
applications being run. With this information we should be able
compare different applications and see how they interact with each
other if they share nodes. This information could be used to feed
into scheduler algorithm design.

The metrics presented here do not provide information about how
the job wall clock time is impacted by sharing. One way of
estimating this is to run multiple identical jobs on both shared
exclusive nodes and compare the duration. The existing
"application kernels" could be used for this purpose. The
applications kernels were designed to monitor the system
performance and so are configured to run exclusively by default,
however, the configuration could be modified to run more
frequently and to allow node sharing for select runs.



Although many of the analyses presented in this paper were an ad
hoc processing of TACC_ Stats data, ultimately we are just
completing the process of validating and ingesting this
TACC Stats data into the XDMoD data warehouse. In the near
future, this analytical capability will be available to the data center
director or users automatically through the XDMoD framework.
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