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ABSTRACT 

When a user requests less than a full node for a job on XSEDE’s 

large resources - Stampede and Lonestar4 -, that is less than 16 

cores on Stampede or 12 cores on Lonestar4, they are assigned a 

full node by policy.  Although the actual CPU hours consumed by 

these jobs is small when compared to the total CPU hours delivered 

by these resources, they do represent a substantial fraction of the 

total number of jobs (~18% for Stampede and ~15% for Lonestar4 

between January and February 2014).  Academic HPC centers, 

such as the Center for Computational Research (CCR) at the 

University at Buffalo, SUNY typically have a much larger 

proportion of small jobs than the large XSEDE systems. For CCR’s 

production cluster, Rush, the decision was made to allow the 

allocation of simultaneous jobs on the same node.  This greatly 

increases the overall throughput but also raises questions whether 

the jobs that share the same node will interfere with one another. 

We present here an analysis that explores this issue using data from 

Rush, Stampede and Lonestar4. Analysis of usage data indicates 

little interference. 

 

Categories and Subject Descriptors 

C.4 [Performance of Systems]: Design studies, Fault 

tolerance, Measurement techniques, Modeling techniques, 

Performance attributes, Reliability, availability, and serviceability. 

General Terms 

Management, Measurement, Documentation, Performance, 

Design, Reliability, Verification. 
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1. INTRODUCTION 
Node sharing, in which multiple jobs share a given compute node, 

in HPC clusters has been shown to increase throughput and energy 

efficiency by 10-20% [1-4].  As the number of cores per node grows 

for a variety of architectures of modern HPC clusters, it becomes 

more important to consider allowing small jobs to share nodes 

rather than simply allocating a full node to each job regardless of 

the actual requested resources.  Although at the current number of 

cores per node the actual CPU-hours devoted to these small jobs on 

the large XSEDE HPC clusters such as Stampede and Lonestar4 is 

small, there are still a large number of such jobs and the scheduling 

and resource waste issues will increase as systems are brought on 

line that have more cores for each node.  There is an obvious 

advantage to sharing nodes from both a scheduling and a resource 

efficiency perspective.  However, the question arises - are there 

consequences that offset this advantage?. This paper presents an 

analysis of node sharing on the Center for Computational 

Research’s (CCR) production cluster (Rush) based on metrics from 

XDMoD/TACC_Stats. We also compare with TACC_Stats metrics 

collected on Stampede and Lonestar4, which do not share nodes. 

 

The rest of the paper includes an overview of 

XDMoD/TACC_Stats, a brief description of the three HPC 

clusters, XSEDE’s Stampede and Lonestar4 and CCR’s Rush, and 

results from a detailed usage analysis comparing the consequences 

of sharing nodes. 

 

2. ANALYSIS TOOLS 

2.1 XDMoD Framework 
Here we present a brief overview of XDMoD, a more detailed 

description can be found in references [5-8].  XDMoD was 

originally targeted at providing the analyses required for effective 

overall management of the computational resources of the XSEDE 

organization, although an open source version is now available 

[14].  XDMoD ingests and organizes data on computer system 

performance and then maps that data into metrics required for 

overall system management. The XDMoD portal provides a rich set 

of features accessible through an intuitive graphical interface, 

which is tailored to the role of the user. Metrics provided by 

XDMoD include: number of jobs, CPUs consumed, wait time, and 

wall time, with minimum, maximum and the average of these 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2616498.2616533&domain=pdf&date_stamp=2014-07-13
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metrics, in addition to many others. These metrics can be broken 

down by: field of science, institution, job size, job wall time, NSF 

directorate, NSF user status, parent science, person, principal 

investigator, and by resource.  Performance and quality of service 

metrics of the HPC infrastructure are also provided, along with 

application code specific performance metrics (flops, IO rates, 

network metrics, etc) for all applications running on a given 

resource (through TACC_Stats).  Another key feature is the Usage 

Explorer that allows the user to make a custom plot of any metric 

or combination of metrics filtered or aggregated as desired.  For 

example, Figure 1, which was created using the Usage Explorer, 

shows CPU hours and wait time versus job size on a local 

university-based HPC resource at the Center for Computational 

Research at SUNY-Buffalo.   

 
Figure 1 Plot of CPU hours consumed and job wait time versus job 

size for the January to February 2014 time period at the University 

at Buffalo Center for Computational Research.  

The XDMoD tool is also designed to preemptively identify 

underperforming hardware and software by deploying customized, 

computationally lightweight “application kernels” that 

continuously monitor HPC system performance and reliability 

from the application users’ point of view [5-8]. The term 

“application kernel” is used in this case to represent micro and 

standard benchmarks that represent key performance features of 

modern scientific and engineering applications, and small but 

representative calculations carried out with popular open-source 

high performance scientific and engineering software packages. 

The term “computationally-lightweight” is used to indicate that the 

application kernel runs for a short period (typically less than 10 

min) on a small number of processors (fewer than 128 cores) and 

therefore requires relatively modest resources for a given run 

frequency (say once or twice per week). Accordingly, through 

XDMoD, system managers have the ability to proactively monitor 

system performance as opposed to having to rely on users to report 

failures or underperforming hardware and software. The detection 

of anomalous application kernel performance is being automated 

through the implementation of process control techniques.  In 

addition, through this framework, new users can determine which 

of the available systems are best suited to address their 

computational needs.  

In addition, metrics that focus on scientific impact, such as 
publications, citations and external funding, are now being 

developed and incorporated into XDMoD to help quantify the role 

modern cyberinfrastructure plays in advancing research. 

Taking advantage of the great similarity of XSEDE and a typical 

HPC center, we have developed Open_XDMoD, the open source 

version of XDMoD, which leverages the same code base.  

Accordingly, as XDMoD continues to be developed, 

Open_XDMoD will also benefit from this work. Both versions 

share many of the same metrics and functionality (e.g., Summary, 

Usage/Usage Explorer, and Report Generator) and differ mainly in 

support of elements specific to XSEDE.  XSEDE maintains a 

centralized infrastructure (XSEDE central database) for storing job 

accounting records, users, and allocations/projects while a typical 

HPC center may not have this data in a centralized location.  

Open_XDMoD provides its own data warehouse with support for 

parsing and loading of resource manager log files and spreadsheets 

containing user information including departmental affiliations.  In 

addition, future versions will support allocations, and integration 

with local LDAP services, and application kernels for monitoring 

Quality of Service.  

2.2 TACC Stats 
The Linux sysstat package is a comprehensive collection of 

performance monitoring utilities, each of which reports resource 

statistics of specific components of a system in its own format. 

TACC_Stats [9] enhances sysstat/sar for the open source software 

based HPC environment in many ways. It is a single executable 

binary that covers all performance measurement functions of 

sysstat and outputs in a unified, consistent, and self-describing 

plain-text format. It is batch job aware: Performance data are tagged 

with batch job id to enable offline job-by-job profile analysis. It 

supports newer Linux counters and hardware devices. Its source 

code [10] is also highly modular and can be easily extended to 

gather new kinds of performance metrics. 

 

Currently TACC_Stats can gather core-level CPU usage (user time, 

system time, idle, etc.), socket-level memory usage (free, used, 

cached, etc.), swapping/paging activities, system load and process 

statistics, network and block device counters, interprocess 

communications (SysV IPC), software/hardware interrupt request 

(IRQ) count, filesystems usage (NFS, Lustre, Panasas), 

interconnect fabric traffic, and CPU hardware performance 

counters. For a complete list of the data acquired by TACC_Stats, 

see the TACC_Stats web site [10]. 

 

Different CPU chips have different sets of performance counters.  

Therefore the set of performance counter derived metrics available 

may vary across systems. TACC_Stats utilizes CPU performance 

counters as follows. At the beginning of the job, TACC_Stats is 

invoked by the batch scheduler prolog to reprogram performance 

counters to record a fixed set of events: On AMD Opteron, the 

events are FLOPS, memory accesses, data cache fills, SMP/NUMA 

traffic. On Intel Nehalem/Westmere, the events are FLOPS, 

SMP/NUMA traffic, and L1 data cache hits.  On Intel Sandy 

Bridge, the events are SSE and AVX FLOPS, memory traffic, and 

cache traffic. In order to not interfere with user's own profiling and 

instrumentation activities, at periodic invocations (currently every 

10 minutes), TACC_Stats only reads values from performance 

registers, without reprogramming them, to avoid overriding 

measurements initiated by users. In addition to the data gathered by 

TACC_Stats, data from the system scheduler and the job 

management system are collected and coordinated with 

TACC_Stats data. 

 

3. NODE-SHARING ANALYSIS 
The case studies reported in this paper were carried out on the HPC 

cluster Rush at CCR and the Stampede and Lonestar4 

supercomputers at the Texas Advanced Computing Center 

(TACC). Stampede is a Linux cluster comprising 6400 primary 

compute nodes each of which has two Intel Xeon eight –core E5-

2680 2.7GHz processors and 32 GB of memory. The filesystem is 

Lustre, and the interconnect is QDR InfiniBand. Lonestar4 is also 

a Linux cluster with 1088 Dell PowerEdgeM610 compute nodes. 
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Each compute node has two Intel Xeon 5680 series 3.33GHz hexa-

core processors and 24 GB of memory. Lonestar4 has two 

filesystems: Lustre and NFS and its interconnect is InfiniBand 

(NFS is connected via Ethernet).  CCR's x86_64 Linux cluster, 

Rush, is a heterogeneous system containing 8, 12, 16 and 32 core 

nodes. Specifically it consists of 372 Dell C6100 servers, each with 

two Intel “Westmere” Xeon six-core 2.40GHz (E5645) processors 

and 48GB of memory, 128 IBM iDataPlex dx360 M2 servers, each 

of which has two Intel “Nehalem” Xeon quad-core 2.26GHz 

(L5520) processors and 24GB of memory, 10 Dell servers each 

with four eight-core Intel Xeon E7-4830 processors eight of which 

have 256 GB of memory and two have 512 GB memory, 8 IBM 

servers, each of which has four eight-core AMD Opteron 6132 HE 

processors and 256 GB of memory and 128 Dell C6100 servers 

containing two Intel “Westmere” Xeon quad-core 2.13GHz 

(L5630) processors and 24GB of memory and 32 Dell R620 servers 

with 2 Xeon 8-core E5-2660 2.26 GZ and 128GB of memory.  All 

are interconnected with QDR InfiniBand and gigabit Ethernet. 

Rush has two global filesystems Panasas PAS8 Parallel Storage for 

the global shared parallel scratch directory and Isilon IQ36000x 

Storage Arrays for general network file system access. 

 

For TACC’s Stampede and Lonestar4, user jobs are assigned entire 

nodes regardless of the number of requested cores, while for CCR’s 

Rush, nodes are shared between jobs by default unless the user 

requests exclusive use. Rush uses SLURM [11] as the resource 

manager and has the cgroup task plugin enabled. The cgroup plugin 

uses the Linux kernel cgroup subsystem to confine jobs to their 

allocated cpuset and limit the memory available to them. This 

prevents most jobs from using CPU and memory resources that 

have been allocated to other jobs sharing the node.1 

 

The analysis below looks at the ramifications of sharing versus not 

sharing nodes. We analyzed TACC_Stats data collected during 

January and February of 2014 on Rush, Stampede and Lonestar4. 

In the following discussion, a job is defined as shared if at least one 

other job ran on its assigned nodes while it was running. An 

exclusive job had no other jobs running concurrently on its nodes. 

 

Approximately two thirds of jobs on Rush were shared node jobs. 

Of the jobs that were shared, 98% of them ran on a single node. 

91% of the exclusive jobs ran on a single node and 9% ran on 

multiple nodes. The most common job size on Rush is the single 

core job (34%) with the majority (64%) of jobs running on one or 

two cores. 

 

3.1 Memory Usage 
Probably the most severe potential problem for sharing nodes is the 

competition for memory between jobs running on the same node.  

Figure 2 shows a histogram of the memory per core usage on 

Stampede and Lonestar4, which do not share nodes.  The 

TACC_Stats metric displayed is the average OS memory usage 

minus the slab and kernel page cache2 per node divided by the 

number of cores on the node. The frequency is the number of jobs 

                                                                 

1 It is possible for jobs to escape from the cgroup restrictions by 

running processes on the nodes using ssh rather than via the slurm 

srun command.  ssh is enabled on Rush because it required by 

some of the user and commercial applications. 

2 The slab cache is a cache of kernel data objects. The page cache 

is a cache of physical pages. The most common data stored in the 

page cache are the contents of disk blocks. 

with the recorded memory usage.  Recall that Stampede has 32 GB 

per node or 2 GB per core and Lonestar4 has 24 GB per node or 2 

GB per core.  Obviously, both Stampede and Lonestar4 have more 

than sufficient memory for their general job-mix.  Figure 3 shows 

the comparable memory usage on Rush where now the usage has 

been shown for exclusive node (non-shared) jobs and shared node 

jobs.  The distribution of memory usage for the exclusive nodes 

peaks early, well below 1 GB, with a tail out to larger memory 

usage.  The plot of shared node jobs shows similar distribution but 

with a broader primary peak at a slightly higher memory usage.  

Based on the very sensitive Kolmogorov-Smirnov test, the two 

distributions are statistically significantly different.  However for 

Figure 3 and the other figures comparing the exclusive and shared 

nodes, the standard that we will apply is only that they are 

qualitatively similar not identical.  Note that the plot does not 

indicate that the shared jobs themselves used more memory, rather 

that the nodes that ran shared jobs have a higher memory usage per 

core than exclusive nodes.  On shared nodes there are multiple 

different jobs running different processes that are less likely to be 

using the same shared libraries.  By comparison, the exclusive jobs 

that run multiple copies of the same process will reuse shared 

objects and so have a smaller total memory footprint.  Also, since 

the memory usage is the average per node divided by the number 

of cores per node, the exclusive jobs that run processes on a subset 

of the cores will have a lower average memory value than when 

multiple jobs are running.3  Figure 4 shows the average kernel page 

cache usage per core for the exclusive and shared jobs.  The cache 

usage is slightly higher for the shared jobs compared to exclusive 

jobs.  On the shared nodes the different processes are more likely 

to be accessing different files, which will tend to increase the page 

cache utilization.  Recall that the majority of nodes on Rush have 3 

or 4 GB of memory per core and the large memory nodes have 8 or 

16 GB of memory per core depending on the node.  Even though 

the shared node jobs show a higher average memory usage, the 

majority of the nodes with shared jobs have a memory usage below 

1GB.  Given the memory capacity of the CCR HPC nodes this does 

not appear to be a problem. 

 

3 A single-core job that uses 2GB on an 8 core machine will have 

and average memory usage of 2/8 whereas two single-core jobs 

each using 2GB on the same node will each show a usage of 

(2+2)/8 (i.e. double) even though each job used the same amount 

of memory. 
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Figure 2 Memory Usage on Stampede (blue) and Lonestar4 (red). 

 

 

Figure 3 Memory Usage in GB per core on Rush for the exclusive 

node jobs (blue) and the shared node jobs (red). 

 

Figure 4 Kernel page cache usage in GB per core on Rush for the 

exclusive jobs (blue) and shared jobs (red). 

The plots in Figure 5 and Figure 6 show the average memory usage 

per core for all active memory on the node (i.e. including the kernel 

page cache and slab cache). Figure 5 shows the active memory for 

exclusive and shared jobs on the Rush nodes that have 4 GB per 

core.  The shared node jobs show a higher overall memory usage 

compared to the exclusive node jobs.  The reasons for this are the 

increased memory usage due to the user processes as discussed 

previously and increased page cache usage.  The plots in Figure 6 

show the average memory usage for 3GB nodes.  The shared nodes 

show an increase in memory usage compared to the exclusive nodes 

and there is a peak in the distribution at ~2.8 GB, near the total 

memory on the node.  Analysis of the raw data for the cluster of 

jobs with the high memory usage shows that the high memory 

usage is due to the contribution of the page cache.  It is not a priori 

a problem if the memory usage on the machine is near maximum 

since the Linux kernel is designed to use all of the available 

memory for the page cache.  However it is possible that the high 

cache usage is an indicator that the jobs running on the nodes are 

performing lots of disk I/O and could potentially be interfering with 

each other.  We examine the I/O usage in Section 3.3. 

 

Figure 5 Total memory usage on Rush for jobs that ran on nodes 

populated with 4 GB memory per core. Exclusive node jobs (blue), 

shared node jobs (red). 

 

 

Figure 6 Total memory usage on Rush for jobs that ran on nodes 

populated with 3 GB memory per core. Exclusive jobs left, shared 

jobs right. 

 

Figure 7 Last level cache read miss rates in MHz per socket for the 

nodes on Rush with Nehalem and Westmere chipsets. Exclusive 

node jobs (blue), shared nodes jobs (red). 

 

The plot in Figure 7 shows the average miss rate per socket for last 

level cache (LLC) reads.  The data are obtained from the 

UNC_LLC_MISS hardware performance counter, which is 

available on most of the Intel Nehalem and Intel Westmere nodes 
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on Rush.  The rates are computed with respect to wall clock time.  

The plots show that the shared nodes have a modest increase in the 

miss rate, which is consistent with the observed increase in memory 

usage.  The number of jobs with high average cache miss rates are 

low suggesting that LLC interference is not an issue for the majority 

of jobs.  The LLC miss rate allows us to calculate an estimate of the 

upper bound of memory bandwidth, since an LLC miss results in 

either a read from main memory or a read from the LLC on another 

socket. The cache width on the Nehalem and Westmere 

architectures is 64 bytes. An LLC read miss rate of 100 MHz means 

that the main memory read rate is not greater than ~ 6 GiB/s per 

socket..The maximum memory bandwidth is 32 GiB/s per socket 

for the Westmere nodes and 25.6 GiB/s for the Nehalem nodes. The 

bulk of the jobs have a miss rate below 50 MHz (~ 3 GiB/s per 

socket). The plots therefore also indicate that very few jobs have 

sustained high memory bandwidth usage. 

 

Based on this data, and given the over-provision of memory in 

Stampede and Lonestar4, see Figure 2, we speculate that allowing 

node sharing for the TACC HPC clusters would not overtax the 

memory capacity.  There is obviously a trade-off in determining 

how much memory to provide for each node and whether there is 

enough memory to share nodes, as well as site and XSEDE policies 

on capacity versus capability computing needs.   

3.2 Exit Codes 
We also looked at job failure rates as determined by exit codes on 

Rush to determine if there was a systematically higher failure rate 

for the shared node jobs compared to the exclusive node jobs.  

Figure 8 shows the fractional distribution of jobs for the different 

exit codes.  The exit codes are of the form N:M where N is the error 

return code from the job script and M is the signal number sent to 

the job by the scheduler.  An exit code of 0:0 indicates the job ran 

successfully and all other codes indicate a failure.  The exit code 

0:1 corresponds to jobs that were killed by the scheduler with an 

interrupt signal: either as a result of a timeout or a cancel command 

by the job owner. 

 

It is slightly surprising that the overall failure rate is lower for the 

shared node jobs, however, some of the exclusive node “failures” 

may be simply time-outs for long jobs.  Failure code 1:0 which is 

an unknown failed job that generally happens quickly (24% of these 

jobs exit within the first five minutes) is actually lower for the 

shared node jobs.  For the jobs that exit with code 0:1, most of these 

are timeouts with the job durations clustered around 0.5 hour, 1 

hour and 72 hours.  The 1 hour and 72 hours values correspond to 

the time limits on the debug and general compute partitions on 

Rush.  There are twice as many exclusive jobs that timeout after 3 

days than shared jobs.  It is not unexpected that the exclusive node 

jobs have a higher 0:1 failure code rate since these are 

predominantly the long jobs that have timed out and the exclusive 

jobs have a much higher overall average value of cpu-hours.  The 

other, rarer exit codes generally show a similar rate for exclusive 

node and shared node jobs.  There certainly does not seem to be any 

systematic trend for the shared node jobs to show a higher failure 

rate.  Note that jobs can still fail even if a success code is returned 

to the scheduler.  For example if the underlying software does not 

propagate the error.  These cases are not captured in this analysis. 

 
 

Figure 8 Exit codes on Rush for the exclusive node jobs (blue) and 

the shared node jobs (red). 

 

3.3 I/O Usage 
We examined the relative I/O usage of the exclusive and the shared 

node jobs including reads and writes to the Panasas file system on 

Rush.  Figure 9 shows the average write rate per node in bytes/s for 

exclusive and shared jobs. 42% of the jobs on Rush did not use the 

Panasas file system so the frequency of these zero I/O usage jobs 

has been truncated on the plot to show the detail of the jobs that did 

perform I/O. The theoretical maximum write bandwidth per node 

for the file system is approximately 100 MiB/s.  Although the 

shared nodes show substantially greater I/O activity, the majority 

of the jobs have an average write rate below 2 MiB/s. This average 

rate is low enough that it should not cause any difficulty for the 

shared jobs. 

 
Figure 9 Average data rate in byte/s for writes to the Panasas file 

system on Rush for the exclusive node jobs (blue) and the shared 

node jobs (red).  Note: The y-axis has been truncated; the 0 bytes/s 

bin has a frequency of ~49000 and ~40000 for exclusive and shared 

jobs respectively. 

 

3.4 Network Usage 
Finally, we examined the InfiniBand (IB) network usage of the 

exclusive and the shared node jobs including network receive and 

transmit of data and packets.  For reference, the IB usage on 
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Stampede is given in Figure 10.  The plot shows the average write 

rate per node in bytes/s and the log10 of the data are plotted due to 

the large range of data rates.  The majority of jobs have average IB 

write rates between 104 and 106 bytes/s per node. Figure 11 shows 

the average IB write rate for all jobs on Rush.  The peaks at ~1.70 

and ~1.87 (corresponding to ~50 and ~74 bytes/s) are caused by 

background traffic on the IB bus, rather than job-specific data 

usage.  This shows that the majority of jobs on Rush do not use the 

IB fabric and is consistent with the observation that, in terms of the 

total number of jobs (as opposed to total CPU time) most of the 

jobs on Rush are short duration one or two core jobs.  In terms of 

total CPU time delivered however, jobs requiring 64-128 cores are 

the most prominent. Figure 12 shows the average IB write rates per 

node for jobs on Rush for the exclusive and shared jobs.  The IB 

usage distribution is similar for the shared and exclusive node jobs. 

 

 
Figure 10 Average InfiniBand write rate per node in bytes/s for jobs 

on Stampede.  The x-axis is a log base 10 scale. 

  

Figure 11 Average InfiniBand write rate per node in bytes/s for jobs 

on Rush.  The x-axis is a log base 10 scale. 

 
Figure 12 Average InfiniBand write rate per node in bytes/s for 

Rush for the exclusive jobs (blue) and shared jobs (red).  Note: The 

y-axis has been truncated.  The two truncated bins for the exclusive 

jobs have counts of ~15,000 and ~30,000 and the shared jobs have 

counts of ~30,000 and ~50,000. 

3.5 CPU Usage 
While each job on Rush is confined to the allocated CPU(s) 

regardless of whether or not it is shared, it is interesting to look at 

the CPU usage on shared and unshared nodes and compare the Rush 

distributions with the TACC XSEDE clusters.  Figure 13 shows the 

cpu_user fraction for Stampede and Lonestar4.  The cpu_user 

fraction is the ratio of the cpu time spent in user mode to wall clock 

time averaged over all cores that the job was allocated.  Both plots 

in Figure 13 show that most jobs are relatively efficient with greater 

than 0.9 cpu_user fractions.  There are a group of jobs at the left 

hand side of the distribution that are relatively inefficient.  For 

Stampede small spikes at 0.5 0.25 and 0.0625 are produced by 8-

way, 4-way and 1-way jobs respectively on the 16-core nodes. 18% 

of the jobs requested a single node and had less than 50% average 

CPU usage.  For Lonestar4 small peaks at 0.67, 0.16 are 8-way and 

4-way jobs; the very large peak at 0.083 is from 1-way jobs which 

are apparently much more prevelant on Lonestar4 than on 

Stampede.  15% of Lonestar4 jobs used a single node and had less 

than 50% average CPU usage. 

 

 
Figure 13 CPU Usage on Stampede (blue) and Lonestar4 (red). 

 

The CPU usage on Rush is shown in Figure 14 for both the 

exclusive and shared node jobs.  Also shown are the cpu_idle and 

cpu_system fractions which are the average ratio of cpu time to wall 

time for which the cpu was idle and processing in kernel mode 

respectively.  The average cpu usage is computed over all cores on 
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the nodes that a job ran on.  This means that, for the shared node 

jobs, the cpu usage statistic for a job includes the contributions for 

all jobs that run concurrently on the same nodes.  This leads to the 

complicated distribution for the plots for the shared jobs.  The 

distribution is also complicated because Rush is a heterogeneous 

node cluster with 8, 12, 16 and 32 core nodes.  The cpu_user 

distribution for the exclusive jobs shows a peak near 1 and a 

secondary peak near 0.75.  There are also several peaks on the left 

hand side of the plot notably peaks at 0.08 and 1.2, these correspond 

to 1-way jobs on 12 core nodes and 1-way jobs on 8 core nodes 

respectively.  The peak in the user_cpu near 0.75 and peak in 

cpu_system near 0.25 corresponds to a single user that ran a large 

number of similar jobs that had high total cpu usage, but had a much 

higher system to user cpu ratio than a typical job.  When these jobs 

are removed from the analysis, the distribution looks much more 

like those in Figure 13.  That is a peak near ~1 cpu_user, and 

another smaller group of jobs near 0 with small secondary peaks 

corresponding to jobs using only a fraction of the cores. 

 

 
Figure 14 CPU usage on Rush for the exclusive node jobs (bottom) 

and the shared node jobs (top). 

 

4. RELATED WORK 
The advantages of allowing for shared nodes was discussed in 

reference [1-4] where quantitative advantages were given 

dependent on the job mix in the context of developing a fair pricing 

algorithm for shared node jobs.  Some issues on node sharing that 

apply to disk cache and memory bandwidth have also been 

discussed [12-13]. 

 

5. DISCUSSION & FUTURE WORK 
The present analysis has examined the consequences of sharing 

nodes on the CCR job mixture.  Overall the data show little 

difference between the shared and exclusive jobs, suggesting that, 

for the job mix on CCR’s Rush production cluster, job interference 

is not a significant issue.  As newer architectures increase the 

number of cores per node from the present level to hundreds, the 

total number of jobs that can effectively share nodes will increase 

dramatically and job sharing may go from an option to a necessity 

on large supercomputers.   This is likely especially relevant for 

academic HPC centers, where the job mix will be very much similar 

to that for CCR, with many users with modest computing 

requirements in terms of number of processors per job and a smaller 

pool of users with more demanding multi-node parallel 

computations.  As a secondary objective, the present work has 

shown the value of XDMoD/TACC_Stats to provide system 

designers with the data that they need to design upgrades and 

replacements for major HPC resources. 

 

One of the limitations of the current analysis is that the metrics for 

the shared jobs are averaged over the entire nodes, rather than 

having the per-job values.  For certain metrics it is not possible to 

determine the per-job values because the hardware does not have 

the capability to distinguish the source of the request (for example, 

IB interface metrics or memory writes from the LLC).  However, 

for many metrics it is possible to identify the associated job.  We 

plan to improve the data collection and analysis utilities to extract 

per-job information for shared jobs rather than only generating the 

values averaged over the nodes that the job ran on.  As an additional 

benefit we will also be able to distinguish between jobs that shared 

the same physical CPU socket and the jobs that shared a node but 

ran on cores from different sockets. 

 

Another limitation of this work is that we have only presented the 

mean values of the various metrics with the mean computed over 

time and data sources.  We have observed that these mean values 

do not differ greatly between the shared and exclusive jobs, but is 

possible that the average values of the metrics are not a good 

indicator for job interference, that is, the information loss in the 

averaging procedure may have thrown useful fine details away.  We 

have the fine-grained time-dependent metrics collected by 

TACC_stats and we are actively researching the most effective way 

of processing this large quantity of data. 

 

We have only presented a small set of the available metrics 

collected by TACC_stats.  We have not yet done a detailed analysis 

of the various hardware counter statistics.  Previous studies have 

shown that contention for the CPU caches and memory bandwidth 

is a significant source of job interference.  With this in mind, we 

plan to look at the CPU cache miss rates, CPU stall cycles and 

average FLOPs to see what, if any, differences can be observed 

between shared and exclusive jobs.  These data are collected on 

CCR Rush, but the available hardware counters differ on the 

different nodes, which complicates the analysis.  The data can still 

be effectively analyzed by making sure to only compare jobs that 

ran on the same hardware or by comparing carefully chosen 

normalized metrics for each job (such as % of available memory 

bandwidth rather than absolute value). 

 

We have presented all the jobs running on CCR Rush in the same 

plots, however, not all jobs have the same performance 

characteristics and different categories of jobs likely interact with 

each other in different ways.  We collect information about the 

running processes for each job so we are able to determine the 

applications being run.  With this information we should be able 

compare different applications and see how they interact with each 

other if they share nodes.  This information could be used to feed 

into scheduler algorithm design. 

 

The metrics presented here do not provide information about how 

the job wall clock time is impacted by sharing.  One way of 

estimating this is to run multiple identical jobs on both shared 

exclusive nodes and compare the duration.  The existing 

"application kernels" could be used for this purpose.  The 

applications kernels were designed to monitor the system 

performance and so are configured to run exclusively by default, 

however, the configuration could be modified to run more 

frequently and to allow node sharing for select runs.  
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Although many of the analyses presented in this paper were an ad 

hoc processing of TACC_Stats data, ultimately we are just 

completing the process of validating and ingesting this 

TACC_Stats data into the XDMoD data warehouse.  In the near 

future, this analytical capability will be available to the data center 

director or users automatically through the XDMoD framework. 
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