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ABSTRACT

In this investigation, we study how application performance is
affected when jobs are permitted to share compute nodes. A series
of application kernels consisting of a diverse set of benchmark
calculations were run in both exclusive and node-sharing modes on
the Center for Computational Research’s high-performance
computing (HPC) cluster. Very little increase in runtime was
observed due to job contention among application kernel jobs run
on shared nodes. The small differences in runtime were
quantitatively modeled in order to characterize the resource
contention and attempt to determine the circumstances under which
it would or would not be important. A machine learning regression
model applied to the runtime data successfully fitted the small
differences between the exclusive and shared node runtime data; it
also provided insight into the contention for node resources that
occurs when jobs are allowed to share nodes. Analysis of a
representative job mix shows that runtime of shared jobs is affected
primarily by the memory subsystem, in particular by the reduction
in the effective cache size due to sharing; this leads to higher
utilization of DRAM. Insights such as these are crucial when
formulating policies proposing node sharing as a mechanism for
improving HPC utilization.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Design studies, Fault
tolerance, Measurement techniques, Modeling techniques,
Performance attributes, Reliability, availability, and serviceability.

General Terms
Management, Measurement, Documentation, Performance,
Design, Reliability, Verification.
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1. INTRODUCTION

Large supercomputers typically execute jobs in exclusive mode, in
which entire nodes are assigned exclusively to a given job, and no
other jobs can access those nodes while that job is running.
However, there are numerous cases in which a job cannot
efficiently use all of the cores available on a node. Such situations
are typical of serial applications, poorly scalable parallel software,
or small problem sizes. This problem is exacerbated as core counts
increase. Additionally, many HPC jobs are embarrassingly parallel
tasks such as parameter sweeps, in which many small jobs run
concurrently with varying input data. Accordingly, when such jobs
are run in exclusive mode, cores can go unused, and the
supercomputer may be underutilized.

Large supercomputing facilities often favor large parallel jobs to
advance applied computational sciences and perform large-scale,
previously unreachable simulations. Consider that out of all
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Figure 1. Number of core hours and number of jobs analyzed
by node count on (A) Comet supercomputer at the San Diego
Supercomputer Center (SDSC) and (B) the 12 cores per node
sub-cluster at The Center for Computational Research,
University at Buffalo (CCR). Jobs that use less than the entire
node are analyzed by the number of cores used on that node.
In 2015, node shared jobs comprised 80% of all jobs or 5.7%
of all used core hours at CCR.
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XSEDE resources, only one, Comet at SDSC, allowed node sharing
as of early 2016; see Figure 1 A. However, academic HPC centers
typically serve a diverse mix of disciplines with greatly varying
computational needs that include serial and small parallel jobs.
Node sharing is already a common practice at such centers, as
shown in Figure 1 B. With the current trend for nodes to comprise
increasingly larger numbers of cores, node sharing may ultimately
be routinely implemented on the majority of HPC systems.

The increase in overall job throughput attained from node sharing
can be significant, since it packs together jobs which do not fully
occupy all cores on the node. Even when some nodes are shared by
multiple jobs, and other nodes are fully occupied by single jobs,
node sharing has been shown to increase throughput and energy
efficiency in HPC clusters by 10-20% [1-4]. From a practical point
of view, node sharing can increase the overall system throughput,
especially when the job mix includes a substantial percentage of
jobs that use fewer than the total number of cores per node.
However, many users and resource providers may avoid node
sharing, since it is unclear how much node sharing effects
individual job performance.

Modern computers are designed to handle multi-processor loads
and typically consist of multiple CPUs, each of which comprises
multiple cores. For the present paper, we will consider a CPU to
be the integrated unit encompassing a set of cores with their
associated memory and caches. Each core has its own compute and
cache units; while main memory (and for some CPU models, the
last level cache memory) is shared between all the cores, current
multi-channel memory is also designed to handle multi-processed
loads. In fact, single-core processes cannot saturate the whole
memory bandwidth. For example, on Intel Xeon processors, a
single core is only able to obtain 15 to 25 percent of peak CPU
bandwidth measured by the STREAM benchmark [5]. Other
system resources, such as network and file systems, are already
shared among all processes. However, the network is not critical
for single-node jobs, and file systems are often used only sparingly
since a large portion of HPC applications are compute or memory
bound. There is an obvious advantage to sharing nodes, from both
a scheduling and a resource efficiency perspective, as long as it can
be demonstrated that the consequences of increased job contention
are acceptable.

In a previous paper [6] we presented a statistical analysis based on
TACC_Stats metrics, in which we compared the Center for
Computational Research’s (CCR) production HPC cluster (Rush),
where node sharing is permitted, with TACC’s Stampede and
Lonestar4, which do not share nodes. Very little detectable job
contention for system resources was seen, based on the similar
distributions of various metrics (memory usage, cache usage, cache
read miss rates, file write rates, IB network usage and core usage)
between shared-node and exclusive-node jobs on Rush. We
concluded that the adverse consequences of node sharing were few.
However, the paper did not make a detailed study of the effect of
node sharing on the execution time of shared and exclusively run
jobs. This is an important consideration, since user allocations are
impacted by execution time.

In the current paper, we take the node sharing analysis further, by
actively running application kernels [7] in both shared and
exclusive modes, then quantitatively comparing the results. In
addition, we apply a machine learning model to the data in order to
identify possible causes of runtime discrepancies and predict node-
sharing related performance. The rest of the paper briefly discusses
related work and concludes with a summary and a discussion of the
benefits and consequences of node sharing.

2. ANALYSIS METHODS

This section provides an overview of the HPC cluster on which the
study was performed, and describes the experimental setup; the
problem sizes tested; the XDMoD Application Kernel and
SUPREMM modules; the data collection methods; and defines the
metrics used in the study.

The study was performed on CCR's x86_64 Linux cluster, Rush,
which is a heterogeneous system containing 8, 12, 16 and 32 core
nodes. For consistency, we performed calculations using only 12-
core nodes. The 12-core sub-cluster consists of 368 Dell C6100
servers, each with two Intel “Westmere” Xeon six-core 2.40GHz
(E5645) processors and 48GB of memory. Intel Turbo Boost
Technology was off. All nodes in the sub-cluster are interconnected
with QDR QLogic InfiniBand and gigabit Ethernet. The cluster has
two shared file systems, a 3PB IBM GPFS high-performance
parallel file system for the global shared parallel scratch space (the
target of all I/O based application kernels), and Isilon network-
attached storage arrays for general network file system access.
Slurm was used as the cluster resource manager; it allows execution
of jobs in both exclusive and shared modes. In shared mode, no
manual control of node sharing is possible; also, Slurm constrains
jobs to their assigned cores (cgroups) and limits memory usage. The
default NUMA policy allows allocation on both NUMA nodes. The
operating system was not rebooted or otherwise reset between jobs.

To study the effect of node sharing on application performance,
several applications and benchmarks with the same input
parameters were executed repeatedly in shared mode, in which
multiple jobs can run on a single node, and in exclusive mode, in
which a single job is constrained to run on a given node. Two job
sizes were tested. The first job size uses one core out of a total of
12 cores on the node. This is the smallest possible job size, and the
most common job size among node-sharing jobs at our facility; see
Figure 1B. Single-core jobs have the greater node resource sharing,
including L3 cache, memory controller, file systems and network.
The second job size uses a single CPU (six cores) out of the two
CPUs on the node. This test enables us to study the sharing effect
that occurs when one job is encapsulated on a single CPU and the
number of shared node resources is thus reduced. In exclusive
mode, all jobs were executed on a single six-core CPU. In shared
mode, the job’s cores were assigned by the scheduler, and the
distribution among CPUs was not known a priori.

Application execution and output parsing was performed using the
XDMoD Application Kernel performance monitoring module [7].
This module performs repetitive automatic execution of
customized “application kernels” on an HPC system to
continuously monitor its performance and reliability (quality of
service). An application kernel is a combination of an application
with a selected set of input parameters. These parameters are
chosen so that the application will consume modest resources
(execution time) on the HPC system, while providing quality of
service information. A number of different application kernels are
routinely run on XSEDE’s resources, and at our facility, to track
quality of service (QoS) [7]. In this article we use the following set
of application kernels: NWChem [8], GAMESS [9], NAMD [10],
Enzo [11], Graph500 [12], HPCC [13] and IOR [14]. Detailed
descriptions of these application kernels are given in reference [7].
Briefly, HPCC is a general benchmark application for several
computational schemes; NWChem is a general molecular
calculation application;, GAMESS is a molecular electronic
structure calculation application; NAMD is a molecular dynamics
application; IOR is a parallel files benchmark; and Enzo is an
adaptive mesh astrophysics application.



Table 1. List of the top 10 applications executed simultaneously
with application kernels by other users

Application | Frequency | Description
ORCA 625 | Quantum Chemistry
perl 146 | n/a
java 123 | n/a
CHARMM 115 | Molecular Dynamics
python 56 | n/a
Titan2D 32 | Geophysics
VASP 25 | Quantum Chemistry
LAMMPS 18 | Molecular Dynamics
GROMACS 13 | Molecular Dynamics
GraSPI 11 | Bioinformatics
o
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Figure 2. Node sharing metric distribution. Exclusive jobs are
not included in this distribution.

The performance measurements were obtained from the
Application Kernel performance monitoring module and the
XDMoD SUPReMM performance monitoring module. The
Application Kernel module records information from the
applications themselves, such as the application execution time
(wall time) and the FLOP/s rate for subroutines within the
application (e.g. FLOP/s of matrix multiplication in HPCC). The
SUPReMM module records information from the operating system
and hardware on the compute nodes, and does not require additional
process instrumentation. The data from the SUPReMM module
includes application identification for all jobs, process performance
measurements, operating system resource utilization, and hardware
counters. Individual performance metrics were collected by
running Performance Co-Pilot (PCP) [15] on the compute nodes.
The wall time figures employed in this study measure only the
application execution time, and do not include the time taken by
preparatory steps such as copying input files or the scheduler’s
prolog and epilog processing. Both the Application Kernel and
SUPReMM modules are currently available for installation within
Open XDMoD (http://xdmod.sourceforge.net/) [16].

Not all cores in a node are necessarily assigned to a job while a test
job is running there. Therefore, we define two metrics to quantify
the amount of sharing that occurs during test job execution (a test
job is a job we submit). The first, called the scheduler-based
sharing metric, takes into account whether jobs were assigned
cores on the shared node, but does not consider their activity. For
example, if all of the cores on the node were assigned to jobs for
the entire duration of the test job, then the scheduler-based metric
is one. However, if the node ran only the test job then the metric is
zero. Note that we are submitting the jobs as a user and have no

control over how Slurm schedules them. The scheduler-based
sharing metric only looks at whether or not jobs were assigned to
the node during the execution of the test job, and does not consider
their actual activity or resource usage.

We define a second metric, the user-process-based sharing
metric, to account for the actual core activity of the jobs that are
running alongside the test job. This metric is defined as the total
core time used by all jobs excluding the test job, divided by the total
core time possible for the non-test jobs. For example, if every other
job scheduled to run with the test job had no core activity, the user-
process-based sharing metric would be zero, while the scheduler-
based metric could lie anywhere between zero and one. In both
metrics, zero corresponds to execution of the test job without any
node sharing, and one corresponds to complete sharing when all
cores of the node are occupied the entire time the test job is running.

To summarize the metrics: The scheduler-based sharing metric
provides a simple measure of core occupancy by jobs, while
ignoring the actual resource usage of the jobs. Such a metric is
convenient for estimation of shared-node effects under typical
loads. The user-process-based sharing metric includes the actual
core usage for the other jobs on the node, and can be useful for
regression analysis of node sharing effects. In the ideal case, all jobs
on the resource have 100% core usage then the scheduler-based and
user-process-based metrics are identical.

3. DATA AND OUTLIERS

Data from more than five thousand Application Kernel test jobs
were analyzed. 56% of the test jobs were executed in exclusive
mode and 44% in shared mode. 13% of the test jobs were shared
entirely with other jobs of the same test user, 18% were shared
exclusively with other users’ jobs and 12% were shared
simultaneously with other users’ jobs and test users’ jobs. The
various test jobs shared the node with a wide range of applications
from different scientific fields executed by other users (Table 1).
Some of these applications were identified as a general purpose
programming language, since application detection is based simply
on the executed binary name. Sharing metrics show good coverage,
ranging from low levels of node sharing to high levels of sharing,
in which the whole node was occupied during test job execution
(Figure 2).

A number of outliers were removed from the analysis. These
outliers show substantially longer runtimes, regardless of whether
they are shared or exclusive jobs, and therefore have no utility in
the present analysis. They fall into three classes: A) In 2.0% of all
jobs, longer runtimes were caused by a known issue with the [IPMI
driver in the Linux kernel. Namely, a kernel thread trespassing on
the cores where test jobs were running resulted in excessive core
usage. This issue was subsequently resolved by a kernel update. B)
In 0.7% of all jobs, processes belonging to other jobs ran on cores
assigned to test jobs. In this case, the rogue processes escape from
the cpuset and memory cgroups assigned by Slurm, which can
happen with applications that use task startup methods that do not
interoperate well with Slurm. Even if Slurm failed to constrain
users’ processes, the operating system can distribute process among
available cores. Therefore, it is not surprising that most of these
jobs’ wall times remain within a few percent of the mean wall time
for exclusive jobs. Only a few cases exceeded 10% of this figure;
these jobs were removed from further analysis. C) Another 1.0%
of jobs had wall times exceeding three standard deviations from the
mean, and were removed from this analysis. The causes of the
excessive wall times for these jobs have not been determined;
however, it is assumed that these jobs have the same issues
described above, but the causes were not identified by PCP.
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Figure 3. Wall time distribution of GAMESS (A), Graph500
(B) and IOR (C) single-core jobs. The distributions of
NWChem, NAMD and HPCC are qualitatively similar to that
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Figure 4. Regression of wall time against the node sharing
metrics of the NAMD application kernel executed on a single
core (A) and six cores (B).

4. SINGLE-CORE JOBS

We consider the difference between running the application kernels
in exclusive mode versus on a single core within a node. As
expected, all computationally intensive application kernels
executed in exclusive mode ran faster than those executed in shared
mode. On average, the wall time difference for GAMESS,
NWChem, NAMD and HPCC is within several percent, reaching a
maximum of 2.6% for NWChem (Table 2). In the case of jobs with
a user-process-based sharing metric higher than 75% the highest
average wall time difference for computationally intensive
application kernels was 4.6% for NWChem. The wall time
distributions of these application kernels are very similar (see
Figure 3.A). They are positively skewed (long tail on the right side,
that is, to longer runtimes); the distribution width is wider for
shared jobs; the peak of exclusive jobs is located to the left of the
shared jobs peak; and the minimal wall time is nearly identical
between exclusive and shared modes. These distributions are
positively skewed due to the application kernels having a minimal
time to run and a long tail that is caused by various interferences
that increases the runtime of the node-sharing jobs.

The dependence of wall time on the sharing metric for NAMD is
shown in Figure 4. GAMESS, NWChem and HPCC exhibit a
similar dependency. A regression analysis shows that these
applications have very low p-value (<< 0.001) and a low R-squared
value (Pearson regression correlation coefficient squared, ranging
from 0.3 to 0.6). This implies that there is a statistically significant
dependence on the shared metric (both scheduler and user-process
variants). However, the large variance shows that though the
regression captures the general trend, there are other unexplained
sources contributing to the wall time variation. GraphS00 also
exhibits a strong dependence on the sharing metric (p-value <<
0.001). However, it has a higher variance, due to differences in
memory distribution between NUMA nodes.

Graph500 wall time distributions differ from the previously
mentioned distributions in having two distinct peaks in exclusive
mode (Figure 3.B). Graph500 has moderate memory usage (~5.5
GB), and further analysis showed that the first peak is associated
with most of the memory being allocated on the nearest NUMA
node, while the second peak is comprised of jobs that have a
significant portion of the memory being allocated on the furthest
NUMA node. The mean wall time of the second peak is 16% larger
than that of the first peak. It is interesting to note that the used nodes
have 24 GB on each NUMA node; theoretically Graph500 kernels
should always allocate their memory on the closest NUMA device.
However, it does not happen (by default at least, since like most
end users we make no special attempt to force near memory
allocation using, say, numactl), probably due to a previously
allocated I/O cache. In shared mode, each of these two peaks widen,
and they merge together. Graph500 also exhibits a strong
dependency on the sharing metric (p-value << 0.001). However, it
has a higher variance, due to differences in memory distribution
between the NUMA nodes. The Graph500 results demonstrate that
it is important to pay attention to NUMA even for single-core jobs
with modest memory consumption, in order to achieve the highest
possible performance.

The file-system benchmarking application kernel, IOR, has a nearly
identical distribution for the exclusive and shared modes; see
Figure 3 C. IOR mainly performs file system read and write
operations. Since the file system is the slowest component of the
system, IOR should be not affected much by sharing of other
resources. It is likely due to this sparse I/O pattern and very small



Table 2. Wall time average and standard deviation of application kernels executed on single core.

Mean Wall Time, s Wall Time Standard Deviation, s
App Kernel ex* sh* sh>0.75" ex* sht sh>0.75#
GAMESS 2078 2112 (+1.7%) 2130 (+2.5%) 2.5 27.7 (x11.1) 23.3 (x9.3)
NWChem 533.0 | 546.8(+2.6%) | 559.5 (+5.0%) 3.2 18.4 (x5.8) 23.0 (x7.3)
NAMD 1988 | 2005 (+0.8%) 2019 (+1.6%) 3.7 15.9 (x4.3) 13.7 (x3.7)
Graph500 941 933 (-0.9%) 959 (+1.8%) | 84.4 67.4 (x0.8) 67.0 (x0.8)
HPCC 1705 1726 (+1.2%) 1740 (+2.0%) 7.9 26.3 (x3.3) 25.6 (x3.2)
IOR 41 43 (+5.6%) 45 (+10.7%) 12.8 16.9 (x1.3) 18.4 (x1.4)

*. executed exclusively (ex); * — executed in shared mode (sh); # - processes based sharing metric is greater than or equal to 75% (sh

> 0.75).

Table 3. Wall time average and standard deviation of application kernels executed on six cores.

Mean Wall Time, s Wall Time Standard Deviation, s
Same CPU Any CPU Same CPU Any CPU

App Kernel [ex* [sh* sh>0.75% sh* sh>0.75% ex* |sh* sh>0.75%  [sh* sh>0.75%
GAMESS 361| 363 (+0.5%)| 363 (+0.7%)| 362 (+0.3%)| 363 (+0.6%)| 0.7 1.8 (x2.5) 1.5 (x2.1) 2.6 (x3.6)] 2.1(x3.0)
NWChem 97.8| 98.9 (+1.1%)| 98.9 (+1.1%)| 98.6 (+0.8%)| 98.7 (+0.9%)| 0.5| 1.0(x2.2) 0.9 (x1.8) 1.6 (x3.3)] 1.3 (x2.8)
NAMD 373| 375 (+0.4%)| 375 (+0.5%)| 375 (+0.4%)| 375 (+0.6%)| 0.5 1.9 (x3.9) 1.3 (x2.6) 2.0 (x4.1)] 1.6(x3.2)
Graph500 481| 485 (+0.9%)| 487 (+1.3%)| 482 (+0.3%)| 487 (+1.3%)| 11.4] 9.9 (x0.9) 6.8 (x0.6)] 13.0(x1.1)] 9.5(x0.8)
HPCC 364| 366 (+0.7%)| 366 (+0.8%)| 364 (+0.1%)| 365 (+0.5%)| 4.0 4.7 (x1.2)] 4.8 (x1.2) 7.4 (x1.8)] 6.3 (x1.6)
IOR 257| 257 (+0.3%)| 256 (-0.4%)| 258 (+0.5%)| 258 (+0.5%)| 17.0| 20.2 (x1.2)] 15.7(x0.9)] 20.1(x1.2)| 18.5 (x1.1)
ENZO 6059|6060 (+0.0%)| 6090 (+0.5%)| 6050 (-0.2%)| 6076 (+0.3%)|405.6|408.0 (x1.0)| 411.9 (x1.0)| 406.5 (x1.0)[420.1 (x1.0)
ENZO,

first peak 5699|5726 (+0.5%)| 5753 (+0.9%)|5722 (+0.4%)| 5739 (+0.7%)|135.0{136.9 (x1.0)| 152.2 (x1.1)] 137.7 (x1.0)[157.4 (x1.2)
ENZO

Second peak | 6453|6497 (+0.7%)| 6523 (+1.1%)]6490 (+0.6%)| 6528 (+1.2%)]162.8|149.4 (x0.9)| 143.0 (x0.9)| 148.4 (x0.9)[142.9 (x0.9)

*. executed exclusively (ex); * — executed in shared mode (sh); # - processes based sharing metric is greater than or equal to 75% (sh

> 0.75).

wall time of the IOR (~40 s) kernel that we were not able to detect
significant wall time differences.

S. SIX-CORE JOBS

We consider the difference between running the application kernels
in exclusive mode versus running them on six cores within a node.
First, we will consider only jobs for which processes were assigned
to the same CPU. In this case, computationally intensive
application kernels behave very similarly to single-core ones, but
with even smaller differences between wall times for exclusive and
shared jobs. Even for jobs with a user-process-sharing metric
greater than 75%, the average difference between shared and
exclusive jobs only reaches 1.3% for Graph500. This is not
surprising, since for jobs run this way, the application kernels have
fewer shared resources, and all CPU caches and the memory
controllers are dedicated to these jobs. However, the memory is not
completely isolated because we do not enforce a strict NUMA
allocation policy; the processes of other jobs may still access
memory attached to the CPU of the test job.

If we include jobs where the cores are distributed between the two
CPUs, the average numbers remain similar. We note the surprising

result that some of the shared jobs are faster than the fastest
exclusive jobs. When the jobs’ processes are divided between the
two CPUs, one can get concurrent utilization of both memory
controllers. We did not perform simulations with equal processes
distributed between CPUs in exclusive mode, but the estimates
show that the difference between such jobs and shared jobs is
within one percent for NAMD and ENZO, and up to 6.5% for
NWChem. This means that novice users, unaware of core binding,
can occasionally enjoy the benefits of a more optimal process
distribution by running jobs in shared mode.

Similar to the single-core results (with the exception of IOR) the
wall time regression against the sharing metric shows a statistically
significant slope but with a large variance. However, as expected,
the slope is even smaller than in the case of single- core jobs due to
the reduced sharing of memory resources.

Enzo, a cosmological simulation code, differs from the other
application kernels in having two distinct peaks in the wall time
distribution. The performed simulation utilizes an adaptive mesh
refinement (AMR) method for solving partial differential
equations. AMR combined with dynamic load balancing leads to
small differences in the calculated time series. This manifests itself
in two separate peaks. If treated separately, each peak behaves very
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Figure 5. Wall time distribution of GAMESS (A), ENZO (B)
and IOR (C) single-core jobs. The distributions of NWChem,
NAMD, Graph500 and HPCC are qualitatively similar to that
of GAMESS.

similar to NAMD and other computationally intensive application
kernels.

For IOR, the file system benchmark, six-core jobs behave in a
similar fashion to the single-core jobs in the sense that there is no
statistically significant difference between exclusive and shared
jobs.

6. MACHINE LEARNING MODEL

For further analysis of node sharing effects, we developed a
machine learning model that employed data from the single-core
jobs of the application kernels for NWChem, GAMESS, NAMD
and HPCC. Single-core jobs were selected because they suffer the
most from node sharing. IOR was excluded due to its file system
specialization, and GraphS500 was excluded due to strong
dependence on NUMA. We only considered hardware
performance metrics that characterize performance of shared
resources, particularly last level caches (LLCs), main memory
controllers, network interfaces and file systems. The data were all
collected by PCP running on the compute nodes and processed
using the SUPReMM software. The metrics included in the model
are listed in

Many metrics are strongly correlated; to simplify the analysis we
excluded these correlated metrics. For example, LLC misses
correlate with LOCAL DRAM and REMOTE_DRAM metrics,
since reading from the dynamic random-access memory (DRAM)
occurs if the data sought was not found in any cache. The LLC miss
metric is available on a per-CPU basis, while LOCAL DRAM and
REMOTE_ DRAM metrics are reported per core. The latter allows
amore clear separation between our test job and other jobs executed
on the same host. Because of this, we used LOCAL _DRAM and
REMOTE_DRAM metrics in our analysis, and omitted other LLC
metrics. By convention, the cores, CPUs and NUMA hosts were
relabeled in such a way that index 0 always corresponds to the
device on which the application kernel was executed. Therefore,

core0 of CPUO always corresponds to the core where the
application kernel was running, cores 1-5 correspond to other cores
on the same CPU (i.e. CPUO) and cores 6-11 correspond to CPU1.

Correlation matrixes for NAMD and the other application kernels
for both exclusive and shared modes of execution were constructed.
For the shared mode there is not much correlation observed
between the metrics. The highest correlations for the shared mode
are seen when various cores read from local DRAM. The local LLC
and DRAM sharing of the same CPU cores results in a decrease in
the LLC size available to each core. This leads to an increase in
local DRAM usage, and thus a longer execution time. Interestingly,
local DRAM utilization by cores on the other CPU also strongly
correlates with the wall time of the test jobs. Some of the shared
jobs run by other users were multi-core, so it is possible that several
cores on our test job CPU and the other CPU on the same node are
from the same job and performance of these cores are strongly
correlated. Another possibility is that during a read from local
DRAM, the CPU needs to check the possible presence of read data
on the other CPU, which might affect the performance of the other
CPU. Metrics for network and parallel file system show a very
weak correlation with the other metrics, which is explained since
the application kernels only use the parallel file system and the
network briefly, for reading input and for standard output. The
other application kernels in this analysis exhibit very similar
behavior.

In order to gain further insight into the factors that influence the
runtime difference between the shared and exclusive application
kernels, we constructed a random forest (rF) machine learning
regression model [17] using the attributes described in Table 4. The
size of training and testing jobs were 738 and 187 jobs respectively.
The root mean square deviation (RMSD) between observed and
model calculated data were 0.005 and 0.011 for training and testing
data respectively. This is a statistically significant improvement for
the testing data over the null model, which assumes that the shared
mode jobs run as fast as exclusive mode jobs. The RMSDs for the
null model were 0.031 for both training and testing data. The paired
t-test of the observed and model calculations has p-value of 0.84
indicating that the observed and model data cannot be statistically
distinguished. Finally, Figure 6 shows the relative importance of
the attributes in the rF model. First in importance is the application
kernel type. This is not surprising, since each application kernel is
characterized by different resource utilization patterns, and we have
previously shown that such patterns can be used to identify
applications [18]. For successful modeling, it is crucial to have
different application kernel resource usage patterns. The three next
most important variables are the local DRAM utilization by test job
core and adjacent cores, followed by other CPU local DRAM
utilization. As mentioned in the correlation analysis, this reflects
the fact that the available CPUO LLCs are reduced per job, which
leads to higher DRAM utilization. The next most important
variable is remote DRAM utilization by the test job core. With
default non-strict NUMA policies, the system sometimes fails to
allocate space on the local DRAM and needs to use remote DRAM.
Operations with a remote DRAM are slower than with local
DRAM, resulting in a longer run-time. MEM_NUMAO measures
the maximal memory utilization of test job local DRAM, it is very
similar to LOCAL DRAM _core* but less direct as it does not
specify how often the data was used. In summary, contentions on
LLC and DRAM are the most important contributors affecting
shared job performance. The importance of variables in the model
can help to determine the job mix leading to the most contention in
a shared node system, as will be explored in the discussion below.



Table 4. Metrics utilized for machine learning model.

Metric Name Description

App kernel Application kernel name

wall time Execution duration

LOCAL DRAM |Average rate of local DRAM load
_core0 instruction retiring on core0. Local DRAM
is the memory directly attached to the CPU.

LOCAL DRAM |Average rate of local DRAM load
_coresi-j instruction retiring on i to j cores

REMOTE DRAM |Average rate of remote DRAM load

_core0 instruction retiring on core0. Remote
DRAM is the memory attached to the other
CPU on the compute node.

REMOTE DRAM |Average rate of remote DRAM load

_coresi-j instruction retiring on i to j cores

MEM NUMAi{ |Maximal memory utilization on NUMA host
i

1B Average  combined  receiving  and
transmitting  bandwidth  through  the
InfiniBand interface during application
execution

ETH Average  combined  receiving  and
transmitting bandwidth through Ethernet
interface during application execution

GPFS Average GPFS combined reads and writes
bandwidth

HDD Average local hard drive combined reads
and writes bandwidth

7. RELATED WORK

The advantages of node sharing were discussed in references [1-4]
where quantitative advantages were given dependent on the job mix
in the context of developing a fair pricing algorithm for shared node
jobs. Some issues on node sharing that apply to disk cache and
memory bandwidth have also been discussed [19, 20]. Our
XSEDE14 paper [6] described a general statistical analysis of node
sharing.

8. DISCUSSION/SUMMARY and FUTURE
WORK

The present analysis has examined the consequences of jobs
sharing nodes in an HPC environment. Overall, the data show little
difference between shared and exclusive test jobs run on CCR’s
Rush production cluster, suggesting that job interference is not a
significant issue. This is similar to the conclusion reached in our
previous paper [6]. While this analysis was limited to CCR’s
production cluster, we expect that many academic HPC centers see
a similar mix of jobs, and therefore that the job throughput benefits
of node sharing will greatly outweigh the minor impact on
execution times shown here.

The current study goes considerably further than our prior study by
providing a quantitative analysis of the runtime effects of node
sharing due to job contention. Correlation analysis and machine
learning regression models enumerate the critical attributes that
contribute to this contention. The main factor affecting the runtime
of shared jobs is the reduced effective cache size available to jobs,
which leads to their higher utilization of DRAM. Concurrencies on

rF variable importance
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Figure 6. Variable importance in the rF model. The attributes
are listed on the y-axis in descending order of model
importance. The x-axis indicates quantitatively how crucial
each attribute is in the model, that is how the model
performance would be deteriorated if the attribute were
omitted from the model. The left plot indicates how much the
mean square error of the model would increase and the right
plot is proportional to how much the residual sum of squares
would change if the attribute was omitted from the model.
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Figure 7. CPU utilization (CPU User Percent) of single-node
jobs executed in exclusive mode for first three months of 2016
for all XSEDE resources with performance metrics support.
Most of the single-node jobs run on XSEDE have a CPU User
fraction of < 10 percent.

other shared resources, such as network and file systems, have a
smaller influence. An analysis of the job mix studied indicates that
this is likely to be representative of the general case. We also found
that the proper usage of NUMA control should be beneficial for
serial jobs with moderate memory requirements (that is, jobs that
fit entirely on local DRAM with sufficient margin), because the
system occasionally allocates memory on remote DRAM for such
jobs.

We introduced a scheduler-based sharing metric that quantifies the
amount of sharing that occurs for a given job. We demonstrated that
this metric correlates with job runtime and that the correlation can
be improved by using a metric that includes information about
resource usage, in this case, core usage. Incorporating core usage
improved the model, even though the individual job processes are
constrained to different cores by cgroups. This raises the question
as to how this model could be improved further. Since the machine
learning model established that the memory subsystem contention
was a major factor affecting the wall time, future models will likely
include memory bandwidth.

Node sharing offers clear benefits for HPC centers in increased
throughput and more efficient resource usage. There are benefits to
the center user as well, since a slight increase in job runtime can be



compensated by a reduction in queue waiting time. However, the
slight increase in runtime due to node sharing causes a very slight
negative impact on user allocation. Our analysis and modeling is
the first step to developing quantitative factors by which user
allocations may be protected from sharing- related costs.

What is the potential impact of node sharing for XSEDE? The only
XSEDE resource currently allowing node-sharing is Comet, but we
propose that an expansion of node-sharing would be beneficial. To
illustrate, Figure 7 7 shows CPU utilization as measured by CPU
User fraction for single-node jobs on XSEDE. While the plotted
data represents all XSEDE resources, it is not surprisingly
comprised primarily of Stampede jobs. The figure suggests that
most single-node jobs run on XSEDE have a CPU User fraction of
less than ten percent, indicating that only a fraction of the available
cores are being used. The practical implication for XSEDE is that
enabling node sharing in the form of a serial queue would improve
the throughput and resource utilization, shorten the wait time for
single-node jobs, and potentially improve the overall throughput.

We are now working to implement an automated underperforming
job discovery tool as a part of the XDMoD project [16]. Inefficient
jobs such as those discussed with high system process activities,
and processes escaped from cgroups, can be flagged by this tool, so
that user support can be alerted about performance concerns.
Furthermore, using this tool, user support personnel can study the
previous performance of users’ jobs and where appropriate
recommend running in shared mode. Such approaches would
improve HPC resource utilization, shortening the queues for some
users, and making more efficient use of the available resources. In
our future work, we will attempt to quantify this effect using our
data and queue prediction tools.
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