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ABSTRACT 
In this investigation, we study how application performance is 
affected when jobs are permitted to share compute nodes. A series 
of application kernels consisting of a diverse set of benchmark 
calculations were run in both exclusive and node-sharing modes on 
the Center for Computational Research’s high-performance 
computing (HPC) cluster. Very little increase in runtime was 
observed due to job contention among application kernel jobs run 
on shared nodes.  The small differences in runtime were 
quantitatively modeled in order to characterize the resource 
contention and attempt to determine the circumstances under which 
it would or would not be important.  A machine learning regression 
model applied to the runtime data successfully fitted the small 
differences between the exclusive and shared node runtime data; it 
also provided insight into the contention for node resources that 
occurs when jobs are allowed to share nodes. Analysis of a 
representative job mix shows that runtime of shared jobs is affected 
primarily by the memory subsystem, in particular by the reduction 
in the effective cache size due to sharing; this leads to higher 
utilization of DRAM. Insights such as these are crucial when 
formulating policies proposing node sharing as a mechanism for 
improving HPC utilization. 

Categories and Subject Descriptors 
C.4 [Performance of Systems]:  Design studies, Fault 
tolerance, Measurement techniques, Modeling techniques, 
Performance attributes, Reliability, availability, and serviceability. 

General Terms 
Management, Measurement, Documentation, Performance, 
Design, Reliability, Verification. 

Keywords 
XDMoD, TACC_Stats, node sharing, performance co-pilot, 
SUPReMM, HPC 

 

 

1. INTRODUCTION 
Large supercomputers typically execute jobs in exclusive mode, in 
which entire nodes are assigned exclusively to a given job, and no 
other jobs can access those nodes while that job is running. 
However, there are numerous cases in which a job cannot 
efficiently use all of the cores available on a node. Such situations 
are typical of serial applications, poorly scalable parallel software, 
or small problem sizes. This problem is exacerbated as core counts 
increase. Additionally, many HPC jobs are embarrassingly parallel 
tasks such as parameter sweeps, in which many small jobs run 
concurrently with varying input data.  Accordingly, when such jobs 
are run in exclusive mode, cores can go unused, and the 
supercomputer may be underutilized. 

Large supercomputing facilities often favor large parallel jobs to 
advance applied computational sciences and perform large-scale, 
previously unreachable simulations. Consider that out of all 
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Figure 1. Number of core hours and number of jobs analyzed 
by node count on (A) Comet supercomputer at the San Diego 
Supercomputer Center (SDSC) and (B) the 12 cores per node 
sub-cluster at The Center for Computational Research, 
University at Buffalo (CCR). Jobs that use less than the entire 
node are analyzed by the number of cores used on that node. 
In 2015, node shared jobs comprised 80% of all jobs or 5.7% 
of all used core hours at CCR. 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2949550.2949553&domain=pdf&date_stamp=2016-07-17


2 

 

XSEDE resources, only one, Comet at SDSC, allowed node sharing 
as of early 2016; see Figure 1 A. However, academic HPC centers 
typically serve a diverse mix of disciplines with greatly varying 
computational needs that include serial and small parallel jobs. 
Node sharing is already a common practice at such centers, as 
shown in Figure 1 B.  With the current trend for nodes to comprise 
increasingly larger numbers of cores, node sharing may ultimately 
be routinely implemented on the majority of HPC systems.  

The increase in overall job throughput attained from node sharing 
can be significant, since it packs together jobs which do not fully 
occupy all cores on the node. Even when some nodes are shared by 
multiple jobs, and other nodes are fully occupied by single jobs, 
node sharing has been shown to increase throughput and energy 
efficiency in HPC clusters by 10-20% [1–4].  From a practical point 
of view, node sharing can increase the overall system throughput, 
especially when the job mix includes a substantial percentage of 
jobs that use fewer than the total number of cores per node. 
However, many users and resource providers may avoid node 
sharing, since it is unclear how much node sharing effects 
individual job performance.  

Modern computers are designed to handle multi-processor loads 
and typically consist of multiple CPUs, each of which comprises 
multiple cores.  For the present paper, we will consider a CPU to 
be the integrated unit encompassing a set of cores with their 
associated memory and caches.  Each core has its own compute and 
cache units; while main memory (and for some CPU models, the 
last level cache memory) is shared between all the cores, current 
multi-channel memory is also designed to handle multi-processed 
loads. In fact, single-core processes cannot saturate the whole 
memory bandwidth. For example, on Intel Xeon processors, a 
single core is only able to obtain 15 to 25 percent of peak CPU 
bandwidth measured by the STREAM benchmark [5]. Other 
system resources, such as network and file systems, are already 
shared among all processes. However, the network is not critical 
for single-node jobs, and file systems are often used only sparingly 
since a large portion of HPC applications are compute or memory 
bound. There is an obvious advantage to sharing nodes, from both 
a scheduling and a resource efficiency perspective, as long as it can 
be demonstrated that the consequences of increased job contention 
are acceptable. 

In a previous paper [6] we presented a statistical analysis based on 
TACC_Stats metrics, in which we compared the Center for 
Computational Research’s (CCR) production HPC cluster (Rush), 
where node sharing is permitted, with TACC’s Stampede and 
Lonestar4, which do not share nodes.  Very little detectable job 
contention for system resources was seen, based on the similar 
distributions of various metrics (memory usage, cache usage, cache 
read miss rates, file write rates, IB network usage and core usage) 
between shared-node and exclusive-node jobs on Rush. We 
concluded that the adverse consequences of node sharing were few.  
However, the paper did not make a detailed study of the effect of 
node sharing on the execution time of shared and exclusively run 
jobs. This is an important consideration, since user allocations are 
impacted by execution time. 

In the current paper, we take the node sharing analysis further, by 
actively running application kernels [7] in both shared and 
exclusive modes, then quantitatively comparing the results.  In 
addition, we apply a machine learning model to the data in order to 
identify possible causes of runtime discrepancies and predict node-
sharing related performance. The rest of the paper briefly discusses 
related work and concludes with a summary and a discussion of the 
benefits and consequences of node sharing. 

2. ANALYSIS METHODS 
This section provides an overview of the HPC cluster on which the 
study was performed, and describes the experimental setup; the 
problem sizes tested; the XDMoD Application Kernel and 
SUPREMM modules; the data collection methods; and defines the 
metrics used in the study. 

The study was performed on CCR's x86_64 Linux cluster, Rush, 
which is a heterogeneous system containing 8, 12, 16 and 32 core 
nodes. For consistency, we performed calculations using only 12- 
core nodes. The 12-core sub-cluster consists of 368 Dell C6100 
servers, each with two Intel “Westmere” Xeon six-core 2.40GHz 
(E5645) processors and 48GB of memory. Intel Turbo Boost 
Technology was off. All nodes in the sub-cluster are interconnected 
with QDR QLogic InfiniBand and gigabit Ethernet. The cluster has 
two shared file systems, a 3PB IBM GPFS high-performance 
parallel file system for the global shared parallel scratch space (the 
target of all I/O based application kernels), and Isilon network-
attached storage arrays for general network file system access. 
Slurm was used as the cluster resource manager; it allows execution 
of jobs in both exclusive and shared modes. In shared mode, no 
manual control of node sharing is possible; also, Slurm constrains 
jobs to their assigned cores (cgroups) and limits memory usage. The 
default NUMA policy allows allocation on both NUMA nodes. The 
operating system was not rebooted or otherwise reset between jobs. 

To study the effect of node sharing on application performance, 
several applications and benchmarks with the same input 
parameters were executed repeatedly in shared mode, in which 
multiple jobs can run on a single node, and in exclusive mode, in 
which a single job is constrained to run on a given node. Two job 
sizes were tested. The first job size uses one core out of a total of 
12 cores on the node. This is the smallest possible job size, and the 
most common job size among node-sharing jobs at our facility; see 
Figure 1B. Single-core jobs have the greater node resource sharing, 
including L3 cache, memory controller, file systems and network. 
The second job size uses a single CPU (six cores) out of the two 
CPUs on the node. This test enables us to study the sharing effect 
that occurs when one job is encapsulated on a single CPU and the 
number of shared node resources is thus reduced. In exclusive 
mode, all jobs were executed on a single six-core CPU. In shared 
mode, the job’s cores were assigned by the scheduler, and the 
distribution among CPUs was not known a priori. 

Application execution and output parsing was performed using the 
XDMoD Application Kernel performance monitoring module [7]. 
This module performs repetitive automatic execution of 
customized “application kernels” on an HPC system to 
continuously monitor its performance and reliability (quality of 
service). An application kernel is a combination of an application 
with a selected set of input parameters.  These parameters are 
chosen so that the application will consume modest resources 
(execution time) on the HPC system, while providing quality of 
service information. A number of different application kernels are 
routinely run on XSEDE’s resources, and at our facility, to track 
quality of service (QoS) [7].  In this article we use the following set 
of application kernels: NWChem [8], GAMESS [9], NAMD [10], 
Enzo [11], Graph500 [12], HPCC [13] and IOR [14].  Detailed 
descriptions of these application kernels are given in reference [7]. 
Briefly, HPCC is a general benchmark application for several 
computational schemes; NWChem is a general molecular 
calculation application; GAMESS is a molecular electronic 
structure calculation application; NAMD is a molecular dynamics 
application; IOR is a parallel files benchmark; and Enzo is an 
adaptive mesh astrophysics application. 
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The performance measurements were obtained from the 
Application Kernel performance monitoring module and the 
XDMoD SUPReMM performance monitoring module. The 
Application Kernel module records information from the 
applications themselves, such as the application execution time 
(wall time) and the FLOP/s rate for subroutines within the 
application (e.g. FLOP/s of matrix multiplication in HPCC). The 
SUPReMM module records information from the operating system 
and hardware on the compute nodes, and does not require additional 
process instrumentation. The data from the SUPReMM module 
includes application identification for all jobs, process performance 
measurements, operating system resource utilization, and hardware 
counters. Individual performance metrics were collected by 
running Performance Co-Pilot (PCP) [15] on the compute nodes. 
The wall time figures employed in this study measure only the 
application execution time, and do not include the time taken by 
preparatory steps such as copying input files or the scheduler’s 
prolog and epilog processing. Both the Application Kernel and 
SUPReMM modules are currently available for installation within 
Open XDMoD (http://xdmod.sourceforge.net/) [16]. 

Not all cores in a node are necessarily assigned to a job while a test 
job is running there. Therefore, we define two metrics to quantify 
the amount of sharing that occurs during test job execution  (a test 
job is a job we submit). The first, called the scheduler-based 
sharing metric, takes into account whether jobs were assigned 
cores on the shared node, but does not consider their activity.  For 
example, if all of the cores on the node were assigned to jobs for 
the entire duration of the test job, then the scheduler-based metric 
is one.  However, if the node ran only the test job then the metric is 
zero.  Note that we are submitting the jobs as a user and have no 

control over how Slurm schedules them. The scheduler-based 
sharing metric only looks at whether or not jobs were assigned to 
the node during the execution of the test job, and does not consider 
their actual activity or resource usage.  

We define a second metric, the user-process-based sharing 
metric, to account for the actual core activity of the jobs that are 
running alongside the test job.  This metric is defined as the total 
core time used by all jobs excluding the test job, divided by the total 
core time possible for the non-test jobs.  For example, if every other 
job scheduled to run with the test job had no core activity, the user-
process-based sharing metric would be zero, while the scheduler-
based metric could lie anywhere between zero and one. In both 
metrics, zero corresponds to execution of the test job without any 
node sharing, and one corresponds to complete sharing when all 
cores of the node are occupied the entire time the test job is running.  

To summarize the metrics: The scheduler-based sharing metric 
provides a simple measure of core occupancy by jobs, while 
ignoring the actual resource usage of the jobs. Such a metric is 
convenient for estimation of shared-node effects under typical 
loads. The user-process-based sharing metric includes the actual 
core usage for the other jobs on the node, and can be useful for 
regression analysis of node sharing effects. In the ideal case, all jobs 
on the resource have 100% core usage then the scheduler-based and 
user-process-based metrics are identical.  

3. DATA AND OUTLIERS 
Data from more than five thousand Application Kernel test jobs 
were analyzed. 56% of the test jobs were executed in exclusive 
mode and 44% in shared mode. 13% of the test jobs were shared 
entirely with other jobs of the same test user, 18% were shared 
exclusively with other users’ jobs and 12% were shared 
simultaneously with other users’ jobs and test users’ jobs. The 
various test jobs shared the node with a wide range of applications 
from different scientific fields executed by other users (Table 1).  
Some of these applications were identified as a general purpose 
programming language, since application detection is based simply 
on the executed binary name. Sharing metrics show good coverage, 
ranging from low levels of node sharing to high levels of sharing, 
in which the whole node was occupied during test job execution 
(Figure 2).  

A number of outliers were removed from the analysis. These 
outliers show substantially longer runtimes, regardless of whether 
they are shared or exclusive jobs, and therefore have no utility in 
the present analysis. They fall into three classes: A) In 2.0% of all 
jobs, longer runtimes were caused by a known issue with the IPMI 
driver in the Linux kernel. Namely, a kernel thread trespassing on 
the cores where test jobs were running resulted in excessive core 
usage. This issue was subsequently resolved by a kernel update. B) 
In 0.7% of all jobs, processes belonging to other jobs ran on cores 
assigned to test jobs. In this case, the rogue processes escape from 
the cpuset and memory cgroups assigned by Slurm, which can 
happen with applications that use task startup methods that do not 
interoperate well with Slurm. Even if Slurm failed to constrain 
users’ processes, the operating system can distribute process among 
available cores. Therefore, it is not surprising that most of these 
jobs’ wall times remain within a few percent of the mean wall time 
for exclusive jobs. Only a few cases exceeded 10% of this figure; 
these jobs were removed from further analysis.  C) Another 1.0% 
of jobs had wall times exceeding three standard deviations from the 
mean, and were removed from this analysis. The causes of the 
excessive wall times for these jobs have not been determined; 
however, it is assumed that these jobs have the same issues 
described above, but the causes were not identified by PCP. 

Table 1. List of the top 10 applications executed simultaneously
with application kernels by other users  

Application  Frequency  Description 

ORCA  625  Quantum Chemistry 

perl  146  n/a 

java  123  n/a 

CHARMM  115  Molecular Dynamics 

python  56  n/a 

Titan2D  32  Geophysics 

VASP  25  Quantum Chemistry 

LAMMPS  18  Molecular Dynamics 

GROMACS  13  Molecular Dynamics 

GraSPI  11  Bioinformatics 
 

 
Figure 2. Node sharing metric distribution. Exclusive jobs are 
not included in this distribution. 
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4. SINGLE-CORE JOBS 
We consider the difference between running the application kernels 
in exclusive mode versus on a single core within a node. As 
expected, all computationally intensive application kernels 
executed in exclusive mode ran faster than those executed in shared 
mode. On average, the wall time difference for GAMESS, 
NWChem, NAMD and HPCC is within several percent, reaching a 
maximum of 2.6% for NWChem (Table 2). In the case of jobs with 
a user-process-based sharing metric higher than 75% the highest 
average wall time difference for computationally intensive 
application kernels was 4.6% for NWChem. The wall time 
distributions of these application kernels are very similar (see 
Figure 3.A). They are positively skewed (long tail on the right side, 
that is, to longer runtimes); the distribution width is wider for 
shared jobs; the peak of exclusive jobs is located to the left of the 
shared jobs peak; and the minimal wall time is nearly identical 
between exclusive and shared modes. These distributions are 
positively skewed due to the application kernels having a minimal 
time to run and a long tail that is caused by various interferences 
that increases the runtime of the node-sharing jobs. 

The dependence of wall time on the sharing metric for NAMD is 
shown in Figure 4. GAMESS, NWChem and HPCC exhibit a 
similar dependency. A regression analysis shows that these 
applications have very low p-value (<< 0.001) and a low R-squared 
value (Pearson regression correlation coefficient squared, ranging 
from 0.3 to 0.6). This implies that there is a statistically significant 
dependence on the shared metric (both scheduler and user-process 
variants). However, the large variance shows that though the 
regression captures the general trend, there are other unexplained 
sources contributing to the wall time variation.  Graph500 also 
exhibits a strong dependence on the sharing metric (p-value << 
0.001). However, it has a higher variance, due to differences in 
memory distribution between NUMA nodes.  

Graph500 wall time distributions differ from the previously 
mentioned distributions in having two distinct peaks in exclusive 
mode (Figure 3.B). Graph500 has moderate memory usage (~5.5 
GB), and further analysis showed that the first peak is associated 
with most of the memory being allocated on the nearest NUMA 
node, while the second peak is comprised of jobs that have a 
significant portion of the memory being allocated on the furthest 
NUMA node. The mean wall time of the second peak is 16% larger 
than that of the first peak. It is interesting to note that the used nodes 
have 24 GB on each NUMA node; theoretically Graph500 kernels 
should always allocate their memory on the closest NUMA device. 
However, it does not happen (by default at least, since like most 
end users we make no special attempt to force near memory 
allocation using, say, numactl), probably due to a previously 
allocated I/O cache. In shared mode, each of these two peaks widen, 
and they merge together. Graph500 also exhibits a strong 
dependency on the sharing metric (p-value << 0.001). However, it 
has a higher variance, due to differences in memory distribution 
between the NUMA nodes. The Graph500 results demonstrate that 
it is important to pay attention to NUMA even for single-core jobs 
with modest memory consumption, in order to achieve the highest 
possible performance. 

The file-system benchmarking application kernel, IOR, has a nearly 
identical distribution for the exclusive and shared modes; see 
Figure 3 C. IOR mainly performs file system read and write 
operations. Since the file system is the slowest component of the 
system, IOR should be not affected much by sharing of other 
resources. It is likely due to this sparse I/O pattern and very small 

 
Figure 3. Wall time distribution of GAMESS (A), Graph500 
(B) and IOR (C) single-core jobs. The distributions of 
NWChem, NAMD and HPCC are qualitatively similar to that 
of GAMESS. 

 

 

 
Figure 4. Regression of wall time against the node sharing 
metrics of the NAMD application kernel executed on a single 
core (A) and six cores (B). 
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wall time of the IOR (~40 s) kernel that we were not able to detect 
significant wall time differences. 

 

5. SIX-CORE JOBS 
We consider the difference between running the application kernels 
in exclusive mode versus running them on six cores within a node. 
First, we will consider only jobs for which processes were assigned 
to the same CPU. In this case, computationally intensive 
application kernels behave very similarly to single-core ones, but 
with even smaller differences between wall times for exclusive and 
shared jobs. Even for jobs with a user-process-sharing metric 
greater than 75%, the average difference between shared and 
exclusive jobs only reaches 1.3% for Graph500. This is not 
surprising, since for jobs run this way, the application kernels have 
fewer shared resources, and all CPU caches and the memory 
controllers are dedicated to these jobs. However, the memory is not 
completely isolated because we do not enforce a strict NUMA 
allocation policy; the processes of other jobs may still access 
memory attached to the CPU of the test job. 

If we include jobs where the cores are distributed between the two 
CPUs, the average numbers remain similar. We note the surprising 

result that some of the shared jobs are faster than the fastest 
exclusive jobs. When the jobs’ processes are divided between the 
two CPUs, one can get concurrent utilization of both memory 
controllers. We did not perform simulations with equal processes 
distributed between CPUs in exclusive mode, but the estimates 
show that the difference between such jobs and shared jobs is 
within one percent for NAMD and ENZO, and up to 6.5% for 
NWChem. This means that novice users, unaware of core binding, 
can occasionally enjoy the benefits of a more optimal process 
distribution by running jobs in shared mode. 

Similar to the single-core results (with the exception of IOR) the 
wall time regression against the sharing metric shows a statistically 
significant slope but with a large variance. However, as expected, 
the slope is even smaller than in the case of single- core jobs due to 
the reduced sharing of memory resources. 

Enzo, a cosmological simulation code, differs from the other 
application kernels in having two distinct peaks in the wall time 
distribution. The performed simulation utilizes an adaptive mesh 
refinement (AMR) method for solving partial differential 
equations. AMR combined with dynamic load balancing leads to 
small differences in the calculated time series. This manifests itself 
in two separate peaks. If treated separately, each peak behaves very 

Table 2. Wall time average and standard deviation of application kernels executed on single core. 

App Kernel 

Mean Wall Time, s  Wall Time Standard Deviation, s 

ex*  sh+  sh>0.75#  ex*  sh+  sh>0.75# 

GAMESS  2078  2112 (+1.7%)  2130 (+2.5%)  2.5  27.7 (x11.1)  23.3 (x9.3) 

NWChem  533.0  546.8 (+2.6%)  559.5 (+5.0%)  3.2  18.4 (x5.8)  23.0 (x7.3) 

NAMD  1988  2005 (+0.8%)  2019 (+1.6%)  3.7  15.9 (x4.3)  13.7 (x3.7) 

Graph500  941  933 (‐0.9%)  959 (+1.8%)  84.4  67.4 (x0.8)  67.0 (x0.8) 

HPCC  1705  1726 (+1.2%)  1740 (+2.0%)  7.9  26.3 (x3.3)  25.6 (x3.2) 

IOR  41  43 (+5.6%)  45 (+10.7%)  12.8  16.9 (x1.3)  18.4 (x1.4) 

*- executed exclusively (ex); + – executed in shared mode (sh); # - processes based sharing metric is greater than or equal to  75% (sh 
> 0.75). 

 

Table 3. Wall time average and standard deviation of application kernels executed on six cores. 

App Kernel 

Mean Wall Time, s  Wall Time Standard Deviation, s 

Same CPU  Any CPU  Same CPU  Any CPU 

ex*  sh+  sh>0.75#  sh+  sh>0.75#  ex*  sh+  sh>0.75#  sh+  sh>0.75# 

GAMESS  361  363 (+0.5%)  363 (+0.7%)  362 (+0.3%) 363 (+0.6%) 0.7 1.8 (x2.5) 1.5 (x2.1)  2.6 (x3.6) 2.1 (x3.0)

NWChem  97.8  98.9 (+1.1%)  98.9 (+1.1%)  98.6 (+0.8%) 98.7 (+0.9%) 0.5 1.0 (x2.2) 0.9 (x1.8)  1.6 (x3.3) 1.3 (x2.8)

NAMD  373  375 (+0.4%)  375 (+0.5%)  375 (+0.4%) 375 (+0.6%) 0.5 1.9 (x3.9) 1.3 (x2.6)  2.0 (x4.1) 1.6 (x3.2)

Graph500  481  485 (+0.9%)  487 (+1.3%)  482 (+0.3%) 487 (+1.3%) 11.4 9.9 (x0.9) 6.8 (x0.6)  13.0 (x1.1) 9.5 (x0.8)

HPCC  364  366 (+0.7%)  366 (+0.8%)  364 (+0.1%) 365 (+0.5%) 4.0 4.7 (x1.2) 4.8 (x1.2)  7.4 (x1.8) 6.3 (x1.6)

IOR  257  257 (+0.3%)  256 (‐0.4%)  258 (+0.5%) 258 (+0.5%) 17.0 20.2 (x1.2) 15.7 (x0.9)  20.1 (x1.2) 18.5 (x1.1)

ENZO  6059 6060 (+0.0%)  6090 (+0.5%) 6050 (‐0.2%) 6076 (+0.3%) 405.6 408.0 (x1.0) 411.9 (x1.0)  406.5 (x1.0) 420.1 (x1.0)

ENZO, 
first peak  5699 5726 (+0.5%)  5753 (+0.9%) 5722 (+0.4%) 5739 (+0.7%) 135.0 136.9 (x1.0) 152.2 (x1.1)  137.7 (x1.0) 157.4 (x1.2)

ENZO 
Second peak  6453 6497 (+0.7%)  6523 (+1.1%) 6490 (+0.6%) 6528 (+1.2%) 162.8 149.4 (x0.9) 143.0 (x0.9)  148.4 (x0.9) 142.9 (x0.9)

*- executed exclusively (ex); + – executed in shared mode (sh); # - processes based sharing metric is greater than or equal to  75% (sh 
> 0.75). 
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similar to NAMD and other computationally intensive application 
kernels. 

For IOR, the file system benchmark, six-core jobs behave in a 
similar fashion to the single-core jobs in the sense that there is no 
statistically significant difference between exclusive and shared 
jobs. 

6. MACHINE LEARNING MODEL 
For further analysis of node sharing effects, we developed a 
machine learning model that employed data from the single-core 
jobs of the application kernels for NWChem, GAMESS, NAMD 
and HPCC. Single-core jobs were selected because they suffer the 
most from node sharing. IOR was excluded due to its file system 
specialization, and Graph500 was excluded due to strong 
dependence on NUMA.  We only considered hardware 
performance metrics that characterize performance of shared 
resources, particularly last level caches (LLCs), main memory 
controllers, network interfaces and file systems. The data were all 
collected by PCP running on the compute nodes and processed 
using the SUPReMM software. The metrics included in the model 
are listed in  

Many metrics are strongly correlated; to simplify the analysis we 
excluded these correlated metrics. For example, LLC misses 
correlate with LOCAL_DRAM and REMOTE_DRAM metrics, 
since reading from the dynamic random-access memory (DRAM) 
occurs if the data sought was not found in any cache. The LLC miss 
metric is available on a per-CPU basis, while LOCAL_DRAM and 
REMOTE_DRAM metrics are reported per core. The latter allows 
a more clear separation between our test job and other jobs executed 
on the same host. Because of this, we used LOCAL_DRAM and 
REMOTE_DRAM metrics in our analysis, and omitted other LLC 
metrics. By convention, the cores, CPUs and NUMA hosts were 
relabeled in such a way that index 0 always corresponds to the 
device on which the application kernel was executed. Therefore, 

core0 of CPU0 always corresponds to the core where the 
application kernel was running, cores 1-5 correspond to other cores 
on the same CPU (i.e. CPU0) and cores 6-11 correspond to CPU1. 

Correlation matrixes for NAMD and the other application kernels 
for both exclusive and shared modes of execution were constructed. 
For the shared mode there is not much correlation observed 
between the metrics. The highest correlations for the shared mode 
are seen when various cores read from local DRAM. The local LLC 
and DRAM sharing of the same CPU cores results in a decrease in 
the LLC size available to each core. This leads to an increase in 
local DRAM usage, and thus a longer execution time. Interestingly, 
local DRAM utilization by cores on the other CPU also strongly 
correlates with the wall time of the test jobs. Some of the shared 
jobs run by other users were multi-core, so it is possible that several 
cores on our test job CPU and the other CPU on the same node are 
from the same job and performance of these cores are strongly 
correlated. Another possibility is that during a read from local 
DRAM, the CPU needs to check the possible presence of read data 
on the other CPU, which might affect the performance of the other 
CPU. Metrics for network and parallel file system show a very 
weak correlation with the other metrics, which is explained since 
the application kernels only use the parallel file system and the 
network briefly, for reading input and for standard output.  The 
other application kernels in this analysis exhibit very similar 
behavior. 

In order to gain further insight into the factors that influence the 
runtime difference between the shared and exclusive application 
kernels, we constructed a random forest (rF) machine learning 
regression model [17] using the attributes described in Table 4.  The 
size of training and testing jobs were 738 and 187 jobs respectively. 
The root mean square deviation (RMSD) between observed and 
model calculated data were 0.005 and 0.011 for training and testing 
data respectively. This is a statistically significant improvement for 
the testing data over the null model, which assumes that the shared 
mode jobs run as fast as exclusive mode jobs. The RMSDs for the 
null model were 0.031 for both training and testing data. The paired 
t-test of the observed and model calculations has p-value of 0.84 
indicating that the observed and model data cannot be statistically 
distinguished. Finally, Figure 6 shows the relative importance of 
the attributes in the rF model. First in importance is the application 
kernel type. This is not surprising, since each application kernel is 
characterized by different resource utilization patterns, and we have 
previously shown that such patterns can be used to identify 
applications [18]. For successful modeling, it is crucial to have 
different application kernel resource usage patterns. The three next 
most important variables are the local DRAM utilization by test job 
core and adjacent cores, followed by other CPU local DRAM 
utilization. As mentioned in the correlation analysis, this reflects 
the fact that the available CPU0 LLCs are reduced per job, which 
leads to higher DRAM utilization. The next most important 
variable is remote DRAM utilization by the test job core. With 
default non-strict NUMA policies, the system sometimes fails to 
allocate space on the local DRAM and needs to use remote DRAM. 
Operations with a remote DRAM are slower than with local 
DRAM, resulting in a longer run-time. MEM_NUMA0 measures 
the maximal memory utilization of test job local DRAM, it is very 
similar to LOCAL_DRAM _core* but less direct as it does not 
specify how often the data was used. In summary, contentions on 
LLC and DRAM are the most important contributors affecting 
shared job performance. The importance of variables in the model 
can help to determine the job mix leading to the most contention in 
a shared node system, as will be explored in the discussion below. 

 
Figure 5. Wall time distribution of GAMESS (A), ENZO (B) 
and IOR (C) single-core jobs. The distributions of NWChem, 
NAMD, Graph500 and HPCC are qualitatively similar to that 
of GAMESS. 
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7. RELATED WORK 
The advantages of node sharing were discussed in references [1–4] 
where quantitative advantages were given dependent on the job mix 
in the context of developing a fair pricing algorithm for shared node 
jobs.  Some issues on node sharing that apply to disk cache and 
memory bandwidth have also been discussed [19, 20].  Our 
XSEDE14 paper [6] described a general statistical analysis of node 
sharing. 

8. DISCUSSION/SUMMARY and FUTURE 
WORK 
The present analysis has examined the consequences of jobs 
sharing nodes in an HPC  environment. Overall, the data show little 
difference between shared and exclusive test jobs run on CCR’s 
Rush production cluster, suggesting that job interference is not a 
significant issue. This is similar to the conclusion reached in our 
previous paper [6]. While this analysis was limited to CCR’s 
production cluster, we expect that many academic HPC centers see 
a similar mix of jobs, and therefore that the job throughput benefits 
of node sharing will greatly outweigh the minor impact on 
execution times shown here. 

The current study goes considerably further than our prior study by 
providing a quantitative analysis of the runtime effects of node 
sharing due to job contention. Correlation analysis and machine 
learning regression models enumerate the critical attributes that 
contribute to this contention. The main factor affecting the runtime 
of shared jobs is the reduced effective cache size available to jobs, 
which leads to their higher utilization of DRAM.  Concurrencies on 

other shared resources, such as network and file systems, have a 
smaller influence. An analysis of the job mix studied indicates that 
this is likely to be representative of the general case.  We also found 
that the proper usage of NUMA control should be beneficial for 
serial jobs with moderate memory requirements (that is, jobs that 
fit entirely on local DRAM with sufficient margin), because the 
system occasionally allocates memory on remote DRAM for such 
jobs. 

We introduced a scheduler-based sharing metric that quantifies the 
amount of sharing that occurs for a given job. We demonstrated that 
this metric correlates with job runtime and that the correlation can 
be improved by using a metric that includes information about 
resource usage, in this case, core usage. Incorporating core usage 
improved the model, even though the individual job processes are 
constrained to different cores by cgroups. This raises the question 
as to how this model could be improved further. Since the machine 
learning model established that the memory subsystem contention 
was a major factor affecting the wall time, future models will likely 
include memory bandwidth.  

Node sharing offers clear benefits for HPC centers in increased 
throughput and more efficient resource usage. There are benefits to 
the center user as well, since a slight increase in job runtime can be 

Table 4. Metrics utilized for machine learning model. 

Metric Name Description 

App kernel Application kernel name 

wall time Execution duration 

LOCAL_DRAM 
_core0 

Average rate of local DRAM load 
instruction retiring on core0. Local DRAM 
is the memory directly attached to the CPU.

LOCAL_DRAM 
_coresi-j 

Average rate of local DRAM load 
instruction retiring on i to j cores 

REMOTE_DRAM 
_core0 

Average rate of remote DRAM load 
instruction retiring on core0. Remote 
DRAM is the memory attached to the other 
CPU on the compute node. 

REMOTE_DRAM 
_coresi-j 

Average rate of remote DRAM load 
instruction retiring on i to j cores 

MEM_NUMAi Maximal memory utilization on NUMA host 
i 

IB Average combined receiving and 
transmitting bandwidth through the 
InfiniBand interface during application 
execution 

ETH Average combined receiving and 
transmitting bandwidth through Ethernet 
interface during application execution 

GPFS Average GPFS combined reads and writes 
bandwidth 

HDD Average local hard drive combined reads 
and writes bandwidth 

 

 
Figure 6. Variable importance in the rF model.  The attributes 
are listed on the y-axis in descending order of model 
importance.  The x-axis indicates quantitatively how crucial 
each attribute is in the model, that is how the model 
performance would be deteriorated if the attribute were 
omitted from the model.  The left plot indicates how much the 
mean square error of the model would increase and the right 
plot is proportional to how much the residual sum of squares 
would change if the attribute was omitted from the model. 
 

Figure 7. CPU utilization (CPU User Percent) of single-node 
jobs executed in exclusive mode for first three months of 2016 
for all XSEDE resources with performance metrics support.  
Most of the single-node jobs run on XSEDE have a CPU User 
fraction of < 10 percent. 
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compensated by a reduction in queue waiting time. However, the 
slight increase in runtime due to node sharing causes a very slight 
negative impact on user allocation. Our analysis and modeling is 
the first step to developing quantitative factors by which user 
allocations may be protected from sharing- related costs. 

What is the potential impact of node sharing for XSEDE? The only 
XSEDE resource currently allowing node-sharing is Comet, but we 
propose that an expansion of node-sharing would be beneficial. To 
illustrate, Figure 7 7 shows CPU utilization as measured by CPU 
User fraction for single-node jobs on XSEDE. While the plotted 
data represents all XSEDE resources, it is not surprisingly 
comprised primarily of Stampede jobs. The figure suggests that 
most single-node jobs run on XSEDE have a CPU User fraction of 
less than ten percent, indicating that only a fraction of the available 
cores are being used. The practical implication for XSEDE is that 
enabling node sharing in the form of a serial queue would improve 
the throughput and resource utilization, shorten the wait time for 
single-node jobs, and potentially improve the overall throughput. 

We are now working to implement an automated underperforming 
job discovery tool as a part of the XDMoD project [16]. Inefficient 
jobs such as those discussed with high system process activities, 
and processes escaped from cgroups, can be flagged by this tool, so 
that user support can be alerted about performance concerns. 
Furthermore, using this tool, user support personnel can study the 
previous performance of users’ jobs and where appropriate 
recommend running in shared mode. Such approaches would 
improve HPC resource utilization, shortening the queues for some 
users, and making more efficient use of the available resources. In 
our future work, we will attempt to quantify this effect using our 
data and queue prediction tools. 
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