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ABSTRACT 
The Trestles system is targeted to modest-scale and gateway 
users, and is designed to enhance users’ productivity by 
maintaining good turnaround time as well as other user-friendly 
features such as long run times and user reservations. However, 
the goal of maintaining good throughput competes with the goal 
of high system utilization. This paper analyzes one year of 
Trestles operations to characterize the empirical relationship 
between utilization and throughput, with the objectives of 
understanding their relationship, and informing allocations and 
scheduling policies to optimize their tradeoff. There is 
considerable scatter in the correlation between utilization and 
throughput, as measured by expansion factor. There are periods of 
good throughput at both low and high utilizations, while there are 
other periods when throughput degrades significantly not only at 
high utilization but even at low utilization. However, throughput 
consistently degrades above ~90% utilization. User behavior 
clearly impacts the expansion factor metrics: the great majority of 
jobs with extreme expansion factors are associated with a very 
small fraction of users who either (1) flood the queue with many 
jobs or (2) request job run times far in excess of actual run times. 
While the former is a user workflow choice, the latter clearly 
demonstrates the benefit of matching requested time to actual run 
time. Utilization and throughput metrics derived from XDMoD 
are compared for Trestles with two other XSEDE systems, Ranger 
and Kraken, with different sizes and allocation/scheduling 
policies. Both Ranger and Kraken have generally higher 
utilization and, not surprisingly, higher expansion factors than 
Trestles over the analysis period. As a result of this analysis, we 
intend to increase the target allocation fraction from the current 
70% to ~75-80%, and strongly advise users to reasonably match 
requested run times to actual run times. 

 

Categories and Subject Descriptors  
K.6.2 [Management of Computing and Information Systems]: 
Installation Management – performance and usage measurement, 
pricing and resource allocation.  

General Terms 
Management, Measurement, Performance, Design. 

Keywords  
Allocations, Expansion Factor, Utilization, Scheduling Policies.  

INTRODUCTION 
Trestles was proposed as a high-performance computing (HPC) 
system in the repertoire of NSF systems that would be specifically 
targeted to modest-scale and gateway users and operated to 
enhance the productivity of those users [1].  A key feature to 
enhance user productivity is to reduce the long queue waits typical 
of many XSEDE compute resources. High system utilization also 
contributes to researcher productivity by expanding the number of 
users on the system and/or providing more compute time per user. 
However, there is a trade-off between these two operational 
metrics, with high utilization typically increasing wait times. In 
contrast to most large-scale production HPC systems, Trestles is 
operated with its first priority being quick turnaround for its users, 
while high utilization is a secondary objective. 
This paper analyzes the last twelve months of Trestles operations 
to characterize the empirical relationship between utilization and 
throughput and to better understand how to optimize their trade-
off. For example, is there a knee of the curve between utilization 
and throughput, below which good throughput is maintained and 
above which queue wait times increase rapidly? What 
characteristics of the scheduling policies or user job submittal 
workflows  decrease or increase throughput? How can allocation 
and scheduling policies be tuned to maintain good throughput and 
optimize utilization?  Understanding these trade-offs can improve 
Trestles operational procedures and may also be applicable to 
other production HPC resources. 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
XSEDE12, July 16 - 20 2012, Chicago, IL, USA 
Copyright 2012 ACM 978-1-4503-1602-6/12/07…$15.00. 
 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2335755.2335802&domain=pdf&date_stamp=2012-07-16


ALLOCATIONS AND SCHEDULING 
POLICIES 
Previous analysis of the TeraGrid-wide job workload during 2009 
revealed that ~80% of all projects never used more than 512 cores 
over the course of a year, and that these modest-scale projects 
accounted for less than 20% of recorded use across all TeraGrid 
compute resources [1].  This historical workload profile, coupled 
with the ever-present user demand for fast turnaround of jobs, 
suggested a strategy for delivering enhanced scientific 
productivity to a large number of users by deploying a system that 
would be targeted to these modest-scale (and gateway) users and 
operated to minimize queue waits. This strategy formed the basis 
for SDSC’s proposal to NSF for the Trestles system, which was 
awarded and deployed in 2010 and entered production for 
allocated users in January 2011. Trestles is a 100-Teraflop HPC 
cluster with 324 nodes connected by an Infiniband QDR 
communications network. Each node has four 8-core AMD 
Magny-Cours processors for a total of 32 cores, 64GB DRAM, 
and 120GB node-local flash memory.  In order to target modest-
scale users, the largest job size is restricted to 1,024 cores (32 
nodes, or ~10% of the system).  To ensure that the system serves a 
large numbers of users, allocations are capped at 1.5M SU/year 
(<2% of the system); gateways may request a larger allocation 
since they serve a large number of users. In addition to being 
responsive to user requests for fast turnaround, Trestles supports 
another common user request for long-running jobs: standard 
queues allow 48-hour run times and users can request exceptions 
up to two weeks.  
The primary tool used to achieve the objective of good throughput 
on Trestles has been to make available only ~70% of the 
theoretically available cycles to users, rather than the 80+% 
typically used for many XSEDE resources. Thus, with steady-
state allocations and usage, the system utilization would be ~70% 
averaged over the course of the year. Note that the utilization will 
vary substantially relative to the target value. Furthermore, 
because Trestles is a relatively new resource, the early quarters 
were not fully allocated and consequently utilization was 
relatively low but it has since increased over time. (This trend 
facilitates this paper’s analysis of utilization and turnaround 
because there is substantial variability in utilization over the 
period studied.)  
There is not a well-controlled study that demonstrates the 
relationship between utilization and throughput – the initial 70% 
target value was an informed estimate to enhance job turnaround 
because it is lower than the typical 80-90% and the average flow 
of jobs through the system should be quicker with lower system 
utilization.  Using allocated percentage to control turnaround is a 
major tuning parameter, but adjustments are only available four 
times per year in the quarterly allocation cycle, and the timescale 
for impact of those adjustments is roughly a year since allocations 
are annual. As demonstrated below, there is substantial variability 
in utilization and throughput over any given quarter, and 
correlations are neither immediate nor transparent.  
Torque is used as the resource manager, maintaining information 
on job and node state and executing job start and deletion 
requests.  Instead of the default pbs_sched component, the 
Catalina Scheduler [8], is used as the scheduler.  Catalina 
Scheduler is a single-queue, reservations-based scheduler, much 
like Maui Scheduler [9] from Maui High Performance Computing 
Center.  "Single-queue" means that all nodes are considered as a 
single partition of compute resources, rather than as separate 
partitions. The rationale for this design is that fragmentation from 

partitioning of compute resources tends to reduce overall system 
utilization (unpublished results).  Jobs are considered as a single 
eligible set of work units.  This set is sorted into a prioritized list. 
To enhance throughput and smooth out fluctuations in job 
submissions on a finer timescale,  scheduling policies are 
used.  As mentioned above, job limits are 1K cores (or 32 nodes), 
and standard 48-hour run time.  In each scheduling iteration, only 
two jobs per user are considered for inclusion in the 
schedule.  However, there is no limit on the number of jobs per 
user that eventually go into the running state if  space is available 
on the system.  Exceptions to the 48-hour default time limit are 
made on a case-by-case basis.  While long-running jobs make it 
more difficult to schedule for fast turnaround, it was decided that 
the enhanced usability for specific users was worth this trade-off.  
A dynamic job prioritization heuristic is used to improve the 
likelihood that jobs will achieve reasonable turnaround time.  The 
scheduler prioritizes jobs with a multiple-element formula.  Two 
elements of the formula are target expansion factor and target 
queue wait time.  For each category of job, the scheduler is 
configured with a target expansion factor and a target queue wait 
time.  As jobs age in the queue and approach these targets, the 
corresponding priority elements increase in a nonlinear 
fashion.  While this does not guarantee good turnaround for all 
jobs, it tends to boost priority for jobs that approach excessive 
waiting time.  The goal of these features is to deliver a small-job-
friendly environment in which job expansion factors are low and 
utilization rates are high. 
The priority calculation consists of the following terms:  
(time in seconds, resource in nodes)  
 
𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 = 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑛𝑢𝑚𝑏𝑒𝑟  ∗ 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑊𝑒𝑖𝑔ℎ𝑡                +
          𝑙𝑜𝑐𝑎𝑙_𝑎𝑑𝑚𝑖𝑛_𝑓𝑙𝑜𝑎𝑡    ∗ 𝐿𝑜𝑐𝑎𝑙_𝐴𝑑𝑚𝑖𝑛_𝑊𝑒𝑖𝑔ℎ𝑡                  +
          𝑙𝑜𝑐𝑎𝑙_𝑢𝑠𝑒𝑟_𝑓𝑙𝑜𝑎𝑡        ∗ 𝐿𝑜𝑐𝑎𝑙_𝑈𝑠𝑒𝑟_𝑊𝑒𝑖𝑔ℎ𝑡                     +
          𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛_𝑓𝑎𝑐𝑡𝑜𝑟     ∗  𝐸𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛_𝐹𝑎𝑐𝑡𝑜𝑟_𝑊𝑒𝑖𝑔ℎ𝑡     +
          𝑞𝑢𝑒𝑢𝑒_𝑤𝑎𝑖𝑡_𝑡𝑖𝑚𝑒       ∗  𝑆𝑦𝑠𝑡𝑒𝑚_𝑄𝑢𝑒𝑢𝑒_𝑇𝑖𝑚𝑒_𝑊𝑒𝑖𝑔ℎ𝑡 +
          𝑠𝑢𝑏𝑚𝑖𝑡_𝑤𝑎𝑖𝑡_𝑡𝑖𝑚𝑒     ∗  𝑆𝑢𝑏𝑚𝑖𝑡_𝑇𝑖𝑚𝑒_𝑊𝑒𝑖𝑔ℎ𝑡                +
          𝑤𝑎𝑙𝑙_𝑐𝑙𝑜𝑐𝑘_𝑡𝑖𝑚𝑒         ∗  𝑊𝑎𝑙𝑙_𝑇𝑖𝑚𝑒_𝑊𝑒𝑖𝑔ℎ𝑡                     +
          𝑄𝑂𝑆_𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦              ∗  𝑄𝑂𝑆_𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦_𝑊𝑒𝑖𝑔ℎ𝑡                +
          𝑄𝑂𝑆_𝑡𝑎𝑟𝑔𝑒𝑡_𝑥𝑓_𝑣𝑎𝑙𝑢𝑒 ∗
                               𝑄𝑂𝑆_𝑇𝑎𝑟𝑔𝑒𝑡_𝐸𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛_𝐹𝑎𝑐𝑡𝑜𝑟_𝑊𝑒𝑖𝑔ℎ𝑡    +
          𝑄𝑂𝑆_𝑡𝑎𝑟𝑔𝑒𝑡_𝑞𝑤𝑡_𝑣𝑎𝑙𝑢𝑒 ∗
                               𝑄𝑂𝑆_𝑇𝑎𝑟𝑔𝑒𝑡_𝑄𝑢𝑒𝑢𝑒_𝑊𝑎𝑖𝑡_𝑇𝑖𝑚𝑒_𝑊𝑒𝑖𝑔ℎ𝑡  
 

resource_number number of nodes requested 

local_admin_float administrator-set value for each job 

local_user_float user-set negative value for each job 

expansion_factor (requested walltime + queue wait 
time)/requested walltime 

queue_wait_time seconds that job has been considered 
eligible by policy 

submit_wait_time seconds since job was submitted 

wall_clock_time requested duration of job 



QOS_priority base priority value for job of that 
Quality of Service 

QOS_target_xf_value expansion factor derived urgency 
term, based on job’s QOS 

QOS_target_xf_value queue wait time derived urgency 
term, based on job’s QOS 

 
Note that varying *_Weights can influence the impact of different 
job characteristics.  For example if Wall_Time_Weight is set to 0, 
then requested wallclock time will have no contribution to 
priority.  Jobs that approach a target expansion factor may 
displace higher priority jobs, as they approach that target.  The 
specific weightings and targets are tuned in response to changes in 
workload. 
Trestles is currently the only XSEDE HPC resource that allows 
users to set their own reservations to ensure access at specific 
times, or to have pre-emptive on-demand access for applications 
that are not predictable in advance and which have societal impact 
[2]. These features address specific requirements from users, but 
to date are not frequently used and do not have a significant 
impact on the usage analyses below.  

METRICS AND DEFINITIONS  
In the course of this analysis, it is apparent that defining effective 
throughput metrics is a challenge. This section defines the terms 
used in the analysis and describes some of the challenges.  
First, system utilization is the ratio of total core-hours consumed 
by all jobs in a given period over the system’s capacity measured 
in core-hours for the same period. This is a straightforward 
calculation available from system logs, and is used consistently in 
this analysis. A limitation of this metric is that it does not 
differentiate unused time due to system outages from scheduler 
inefficiencies. For example, system outages due to hardware or 
maintenance drop both utilization and throughput. To isolate just 
scheduler performance requires exclusion of any impacts of 
system outages. The counter-argument for including all time 
periods is that it better reflects the user experience of the queues. 
It is much more difficult to define a metric that effectively 
characterizes throughput. Job wait time is clearly an important 
measure, but generally we adopt the user expansion factor rather 
than wait time.  A job’s “user expansion factor” is defined as 

𝐸𝑋𝑃𝐹𝑈 =
 𝑅𝑢𝑛𝑇𝑖𝑚𝑒 + 𝑇𝑖𝑚𝑒𝐼𝑛𝑄𝑢𝑒𝑢𝑒

𝑅𝑢𝑛𝑇𝑖𝑚𝑒  

Equation 1 
A user expansion factor of 1 represents no job wait. This metric 
probably corresponds better to a user’s turnaround expectations 
than wait time, because the wait time is normalized by run time.  
One issue, particularly for a system with many long-running jobs 
like Trestles, is that each job must be put into a time slot; in this 
analysis jobs are assigned to the period when they started running, 
rather than when it was submitted to the queue or completed. 
A related metric, which substitutes requested time for run time, is  
a job’s “request time expansion factor” or  

 

𝐸𝑋𝑃𝐹𝑅𝑇 =
𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑𝑇𝑖𝑚𝑒 + 𝑇𝑖𝑚𝑒𝐼𝑛𝑄𝑢𝑒𝑢𝑒

𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑𝑇𝑖𝑚𝑒
 

Equation 2 

This metric better reflects the information available to a scheduler. 
Since run time is never longer than requested time, the request 
time expansion factors are always equal to or less than user 
expansion factors.  
Other throughput metrics are discussed in [3]. 
Another nuance in calculating utilization and throughput metrics 
is the period over which to calculate the metrics. There are valid 
arguments for both fine and coarse resolution. While some long-
period (e.g., annual) metrics are used, daily windows are more 
typical in this analysis.  
Whether throughput is measured by wait time or expansion factor, 
these metrics represent broad non-Gaussian distributions. 
Averages, especially for expansion factors, can be affected by 
extreme outliers that represent a small fraction of the total 
workload, and, as will be shown below, often reveal anomalous 
user behavior. Therefore the median is often a better 
characterization of the distribution than the average value. Since 
we wish to also examine behavior at the extremes, we have 
chosen to use a 95% threshold value, i.e., the expansion factor 
value at which 95% of jobs have a lower expansion factor. This 
metric reflects throughput for the great majority of jobs but 
excludes the extreme tail of the distribution. Note that the 95% 
threshold represents a high standard compared to the median 
(50%) value, and its values are often much higher than median 
expansion factors. 
While expansion factors are generally a better metric than wait 
times to measure user expectations, short jobs often have 
statistically higher expansion factors and can skew the results. 
One can argue that waiting ten minutes for a 1 minute job to 
complete does not have the adverse productivity impact of waiting 
10 hours for a 1 hour job to complete. Furthermore, many short 
jobs reflect job failures which dramatically skew the metrics. 
Therefore, it is reasonable to adopt a threshold to exclude very 
short jobs; we have excluded all jobs with <1 minute run times. 
Even at this level, the statistics are often skewed by shorter jobs.  
This study focuses primarily on Trestles results, with the job 
statistics collected accurately from system logs. However we also 
compare Trestles results with those from other XSEDE systems, 
specifically Ranger and Kraken. We have used the XDMoD tool 
operating on the XSEDE Central Database (XSCDB) which 
contains all job accounting data reported by XSEDE Service 
Providers for jobs from XSEDE-allocated users. While XDMoD 
and XSCDB represent a powerful analysis tool, these results must 
be qualified because the metrics are based solely on jobs reported 
to the XSCDB and do not necessarily include all jobs on the 
systems. In particular, utilization calculated by XDMoD is a lower 
limit to actual utilization, since there may be local jobs not 
submitted to XSCDB.   

ANALYSIS OF TRESTLES OPERATIONS-
UTILIZATION AND TURNAROUND 
Trestles became available as a production resource for XSEDE 
users starting in January 2011.  As is typical of most new systems, 
the first quarter’s allocated usage was low and dominated by just a 
few users, and there were a fair number of system downtimes for 
planned outages; therefore this analysis excludes the first quarter 
of operations. During the one-year period from April 2011 to  
March 2012, utilization and user expansion factors averaged 60% 
and 1.3 respectively, with considerable variability during the 
period. More recently, system usage reflects four full allocation 
cycles, and the utilization has increased significantly, often now 
exceeding 80% and with increased expansion factors.   



Figure 1 shows daily utilization and 95% threshold user expansion 
factors as a function of time for this period.  Utilization varied 
widely during most of 2011 but in recent months has climbed well 
above the 70% target value and is now often above 80% or even 
90%. Note that the period of very low utilization in May 2011 was 
caused by a planned parallel file system upgrade while the drop in 
September 2011 was caused by a county-wide power failure. 
Because of the large dynamic range, the 95% user expansion 
factor is plotted on a log scale. While the 95% user expansion 
factors are generally in single digits, the median value 
unfortunately often exceeds ten. While there are some clear causal 
relationships apparent (e.g., the expansion factor often spikes 
during system outages), Figure 1 does not demonstrate an obvious 
correlation between utilization and users expansion factors.  
 

 
Figure 1 - Trestles Daily Utilization and 95% Threshold User 
Expansion Factors for Period 4/2011 to 3/2012 
 
 
 

 
Figure 2 – Scatter Plot of Daily Utilization and 95% 
Threshold User Expansion Factors for Period 4/2011 to 3/2012 
 
The same daily metrics are shown as a scatter plot in Figure 2, 
which best illustrates the significant scatter in the correlation 
between utilization and user expansion factor. Even at quite low 
utilization, there are frequent examples of anomalously high 
expansion factors. Also, there are many days with utilization in 
the range 70-90% that still have excellent turnaround. It is only 
when utilization exceeds ~90% that one can see a consistent 

degradation of turnaround. Based on this figure, the knee of the 
curve may be as high as 85-90% utilization, but the curve is not 
well defined and has significant scatter.  
To further characterize the relationship between utilization and 
expansion factors, we determined the number of days that Trestles 
ran within specific utilization ranges, and then the number of 
those days with excellent turnaround, as measured by days when 
95% of all jobs had user expansion factors <1.5 or <2.0. These 
values, summarized in Table 1, are indeed high bars for defining 
excellent throughput – all but 5% of the jobs during those days 
waited less than 50% or 100% respectively of their run time.  
 
Utilization 
Range 

0-
40% 

40-
50% 

50-
60% 

60-
70% 

70-
80% 

80-
90% 

90-
100% 

Days 32 39 37 56 58 68 74 

Days w/ 95% 
EXPFU < 1.5 

17 22 18 18 9 8 1 

% days 95% 
EXPFU  < 1.5 

53% 56% 49% 32% 16% 12% 1% 

Days w/ 95% 
EXPFU < 2.0 

18 25 23 24 17 12 2 

% days 95% 
EXPFU  < 2.0 

56% 64% 62% 43% 29% 18% 3% 

Table 1 – Number of Days With Various Utilization Ranges, 
and the Number of Those Days with Excellent User Expansion 
Factors (95% of jobs <1.5 or <2.0 respectively) 
Table 1 shows that when utilization was <60%, Trestles had 95% 
expansion factors less than 1.5 approximately 50% of the time, 
and 95% factors less than 2.0 about 60% of the time. Both of 
these values steadily decline at higher utilizations, finally to the 
point where almost no days with >90% utilization had excellent 
turnaround. The statistics are limited and, as shown below, can be 
influenced by anomalous user behavior. But the trends are 
consistent and excellent expansion factors above 90% utilization, 
while possible, are quite unlikely.  
At the same time, the results are a reminder that low utilization 
does not guarantee fast turnaround and conversely that high 
utilization does not preclude good turnaround. For example, ~45% 
of days at utilization <40% did not have excellent turnaround, and 
~20% of the days with utilization in the 80%’s still had excellent 
turnaround.  
It is important to examine the cause of outlier jobs with very large 
expansion factors. If outliers are defined as jobs with user 
expansion factors > 100, ~90% of all Trestles’ outlier jobs over 
the year were submitted by just five of its ~200 users.  One user 
flooded the queue by submitting over 5,000 multicore jobs over 
the course of several weeks thus creating a huge backlog. The 
other four users submitted over 200 jobs each with a default 
wallclock time of 48 hours but nearly all their jobs ran in 1-2 
minutes.  These four users’ jobs unnecessarily sat in the queue 
waiting for 48-hour blocks of time when they could have been 
scheduled and quickly completed with more accurate time 
requests; between the time mismatch and queue flooding, the 
expansion factors for those users’ jobs are extremely high. 
To quantify the impact of providing a bad estimate for wallclock 
times, we plot in Figure 3 the 95% user expansion factor based 
upon run time (Equation 1) and the expansion factor based upon 
requested time (Equation 2). The use of requested time in 
calculating expansion factors reflects information available to the 
scheduler and allows us to distinguish basic issues with job 



turnaround and scheduling from more isolated user-initiated  
outliers. The dozen or so peaks in the run time expansion factor 
are attributable to the five users who had the major mismatch of  
requested and actual run times and/or flooded the queue. The 
much lower requested time expansion factors suggest that these 
outliers are major contributors to high expansion factors in our run 
time metrics. This is not to say that the actual performance of the 
system  is worse because of inaccuracies in user estimates of 
wallclock time.   It has been shown that some  workloads  with 
certain distributions of run time overestimation can actually  
benefit from those overestimates [7]; Since short jobs contribute  
disproportionately highly to the overall expansion factor, 
overestimates of running time tend to delay long jobs and create  
backfilling space in which to run shorter jobs. 
 

 
Figure 3 – Run Time and Request Time 95% Expansion 
Factors 
It is possible to further tune scheduling policies in order to favor 
expansion factor over utilization.  Two examples of this are the 
limit on queued jobs per user and the priority elements boosting 
jobs based on age-in-queue metrics.  While further analysis and 
simulation would be required to pin down a causal relationship, 
we do see that expansion factor is quite good on Trestles, while 
utilization on many days is low.  This demonstrates that scheduler 
tuning can be effective in achieving desired throughput 
performance for a large fraction of daily production workload. 
However, we observe cases where, despite the current scheduler 
tuning, expansion factor is likely to suffer.  This was often 
observed in situations where the current scheduler tuning allowed 
utilization to exceed 90%. The adverse impact of allowing veru 
high utilization can be seen in the count of days with low 
expansion factors.  The current scheduler tuning has resulted in 
worsening expansion factor for that extreme level of utilization. 
SDSC intends to keep overall allocation commitments in the 70-
80% range and will tune the scheduler to manage occasional days 
with very high utilization to minimize adverse effects on 
expansion factors.  Additional "knobs", such as a policy limit on 
amount of node-seconds of running jobs per user or per account, 
could be used to more strongly favor expansion factor over 
utilization. 

COMPARISONS TO OTHER XSEDE 
SYSTEMS  
It is interesting to compare the Trestles analysis to other XSEDE 
resources, using the XDMoD tool operating on the XSEDE 
Central Database (XSCDB). As described earlier, there are known 
caveats with this data source, particularly that system utilization 
may be underestimated. While the Trestles data in previous 
sections are derived from internal system logs, all data in this 
section, including Trestles, are drawn from XSCDB data. 
This section compares XDMoD metrics from Trestles with 
TACC’s Ranger [4] and NICS’ Kraken [5]. The systems are ~6x 
and ~11x larger than Trestles, and represent a diversity of 
allocations/scheduling policies. In contrast to Trestles, which is 
intentionally targeted to modest-scale capacity computing (e.g. 
maximum of 1K cores, ~10% of the system) and quick 
turnaround, Kraken is operated without job core count restrictions 
and with an emphasis on large-scale capability computing and 
high utilization [6]. Ranger default scheduler policies restrict 
usage to 4K cores (~6% of the system), with access to a 4K-16K 
core queue allowed after users demonstrate applications scaling, 
and larger-scale jobs (>25% of the system) more restricted and 
generally allowed only after system maintenance when the system 
is drained.  TACC’s Lonestar system was excluded from this 
comparison because only a fraction of the system is made 
available to XSEDE users and therefore XDMoD/XSCDB metrics 
are not representative of its capacity.  
Table 2 summarizes key metrics, derived via XDMoD/XSCDB, 
for these three systems over the one-year period from April 2011 
through March 2012.  All metrics are averaged over a year, so this 
comparison is at a macroscopic level.  
Reported system utilization varies significantly across the 
systems. The Trestles utilization value is relatively low during this 
period because the system was new in the allocation process and 
the system was intentionally targeted to a conservative 70% 
utilization to facilitate good throughput.  

 (Period Apr 2011-
March 2012) 

Trestles Ranger Kraken 

Number of cores 10,368 62,976 112,896 

System utilization 61.7% 76.6% 86.7% 

Median expansion 
factor 

1.2 1.3 1.5 

95% threshold user 
expansion factor 

15.4 24.5 45.1 

Average wait time 3.5 hrs 7.8 hrs 10.8 hrs 

Average run time 13.0 hrs 8.1 hrs 5.1 hrs 

Median cores/job 4 32 72 

Average cores/job 25 197 514 

Average cores/job, 
as a fraction of 
system size 

0.24% 0.31% 0.46% 



SU-weighted 
average cores/job 

202 1,223 10,875 

SU-weighted 
average cores/job, 
as a fraction of 
system size 

1.9% 1.9% 9.6% 

 
Table 2 - Comparative Metrics for XSEDE Resources with a 
Range of Allocation/Scheduling Policies 
The median expansion factors, the 95% expansion factors, and the 
average wait times are correlated with the utilization values across 
the three systems, with all measures of throughput degrading with 
higher utilization. This correlation is consistent with expectations, 
although simple metrics like averages, especially over a full year 
period, can mask many complexities.  One should not conclude 
that these three points are representative of a standard function 
between utilization and wait times/expansion factors, but only that 
they are consistent with trends.  
A key issue to consider is the extent to which the job mix, 
including job size and run time, impact utilization and turnaround 
time. For example, full-machine jobs are notorious for requiring 
that the system drain in advance of the job and forcing all jobs 
that cannot be backfilled to wait for the duration of the full-
machine job.  Special attention in a scheduler can  minimize 
adverse impacts on other jobs and in fact planned, sequential full-
machine jobs can produce very high utilization [6]. A specific 
hypothesis is whether the Trestles policy of targeting modest-scale 
jobs (maximum 1024 cores, or at most ~10% of the system) 
benefits throughput compared to systems that allow a broader 
range of job sizes, particularly much larger jobs. For example, can 
a scheduler better slot a large number of small jobs into efficient 
use of the system and better throughput? 
While Trestles does not allow any job to use more than 10% of 
the system cores, it does have a relatively generous policy on run 
time, with a default limit of 48 hours and up to 2 weeks frequently 
granted on request.  Therefore it tends to have a long average run 
time per job (13 hrs) compared to Ranger (8 hrs) or Kraken (5 
hrs). On the other hand, the median and average cores/job vary 
widely, from 4(median)/25(average) for Trestles to 32/197 for 
Ranger and 72/514 for Kraken. However, when normalized by the 
system size, the average job size is virtually identical for Trestles 
and Ranger and Kraken’s average is only ~1.5X this level.  So in 
the temporal domain, Trestles jobs are typically longer while in 
the processor domain, they are comparable to Ranger as a fraction 
of the system and only slightly smaller than Kraken. So based on 
these macroscopic statistics, the hypotheis that Trestle’s small 
jobs (as a fraction of system size) could result in more efficient 
scheduling and throughput, cannot be tested here as there is not 
significant differentiation for these metrics across the three 
systems. If anything, the dependence on utilization seems more 
predominant in the impact on throughput than details of the job 
mix. It will be interesting to see, as Trestles utilization persists in 
the range 70-90%, whether we can maintain good throughput 
relative to other XSEDE systems.  
What is perhaps the most surprising result from this XDMoD 
analysis is the low values for the median/average job size as a 
fraction of the machine. This is consistent with earlier analysis 
that showed most jobs across TeraGrid are modest-scale, even 
though large-scale jobs consume a disproportionate share of 
overall resources [1]; that analysis provided the initial rationale 

for proposing Trestles as a system for modest-scale users. It is 
clear that averaging by jobs gives equal weight to all jobs 
and  ignores the incredible dynamic range (e.g. ~108) in SUs 
consumed by various jobs. Therefore we have calculated the SU-
weighted average job size for the three systems, measured in cores 
and fraction of the system.  This weighting increases the average 
cores/job by a factor of eight for Trestles, six for Ranger and 21 
for Kraken, with the SU-weighted average job size being ~2% of 
the system size for Trestles and Ranger, and ~10% of the system 
size for Kraken. The absolute level and relative increase reflect 
the emphasis on capability computing for Kraken.  

SUMMARY 
This paper presents an analysis of the last twelve months of 
Trestles operations to characterize, understand and optimize the 
relationship between system utilization and queue wait times. As a 
new system gaining adoption, Trestles has had a wide range of 
utilization during the analysis period, providing a valuable set of 
operational data  for this analysis. It is a challenge to define 
simple metrics to characterize queue waits for users and the 
complexity of various metrics are discussed. In general, there is 
substantial scatter in the correlation between utilization and 
expansion factors, with many examples of high expansion factors 
at low utilization and low expansion factors at high utilization.  It 
is only at the highest utilization levels of greater than 90% that 
there is a clear indication of consistently degraged throughput. Job 
characteristics and individual user workflows substantially impact 
throughput metrics. For example, short-duration jobs typically 
have higher expansion factors and can severely skew averages. 
Almost all outlier expansion factors can be attributed to user 
behavior such as queue flooding or a gross mismatch between 
requested time and actual run time. There is no reason to 
discourage a user from using a queue flooding workflow, as long 
as the scheduler limits impact on other users (which Trestles 
does). However users who request significantly more time than 
actually used by their jobs often penalize themselves with longer 
wait times, and we now know to look for those situations amongst 
the outliers and advise users how to improve their throughput.  
Some comparisons of job workload, utilization and throughput are 
made with other XSEDE HPC resources (Kraken and Ranger). 
Both Kraken and Ranger have higher average utilization than 
Trestles over the analysis period and, not surprisingly, longer wait 
times and higher expansion factors than Trestles. A hypothesis 
that Trestles’ small average job size results in more efficient 
scheduling cannot be tested by this comparison because the 
average job size, as a function of total system size, is comparable 
across the three systems. 
As a result of this analysis, we plan to slightly increase allocations 
on Trestles from a conservative 70% of theoretical maximum to 
~75-80%, while continuing to monitor the queues and tune 
scheduling policies. We also will strongly encourage users to 
match requested times to expected run times (with reasonable 
buffers) to facilitate their throughput. 
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