Check for
Updates

Analyzing Throughput and Utilization on Trestles

Richard L. Moore
San Diego Supercomputer Center
U California San Diego, M/C 0505

La Jolla, CA 92093-0505
+1 858-822-5457

rim@sdsc.edu

Adam Jundt
San Diego Supercomputer Center
U California San Diego, M/C 0505

La Jolla, CA 92093-0505
+1 858-822-6580

ajundt@sdsc.edu

Leonard K. Carson
San Diego Supercomputer Center
U California San Diego, M/C 0505

La Jolla, CA 92093-0505
+1 858-822-8311

Icarson@sdsc.edu

Kenneth Yoshimoto
San Diego Supercomputer Center
U California San Diego, M/C 0505

La Jolla, CA 92093-0505
+1 858-822-0859

kenneth@sdsc.edu

Amin Ghadersohi
Ctr for Computational Research
SUNY Buffalo

Buffalo, New York 14203
+1 716-881-8955

ag28@ccr.buffalo.edu

William S. Young
San Diego Supercomputer Center
U California San Diego, M/C 0505

La Jolla, CA 92093-0505
+1 858-534-5157

ABSTRACT

The Trestles system is targeted to modest-scale and gateway
users, and is designed to enhance users’ productivity by
maintaining good turnaround time as well as other user-friendly
features such as long run times and user reservations. However,
the goal of maintaining good throughput competes with the goal
of high system utilization. This paper analyzes one year of
Trestles operations to characterize the empirical relationship
between utilization and throughput, with the objectives of
understanding their relationship, and informing allocations and
scheduling policies to optimize their tradeoff. There is
considerable scatter in the correlation between utilization and
throughput, as measured by expansion factor. There are periods of
good throughput at both low and high utilizations, while there are
other periods when throughput degrades significantly not only at
high utilization but even at low utilization. However, throughput
consistently degrades above ~90% utilization. User behavior
clearly impacts the expansion factor metrics: the great majority of
jobs with extreme expansion factors are associated with a very
small fraction of users who either (1) flood the queue with many
jobs or (2) request job run times far in excess of actual run times.
While the former is a user workflow choice, the latter clearly
demonstrates the benefit of matching requested time to actual run
time. Utilization and throughput metrics derived from XDMoD
are compared for Trestles with two other XSEDE systems, Ranger
and Kraken, with different sizes and allocation/scheduling
policies. Both Ranger and Kraken have generally higher
utilization and, not surprisingly, higher expansion factors than
Trestles over the analysis period. As a result of this analysis, we
intend to increase the target allocation fraction from the current
70% to ~75-80%, and strongly advise users to reasonably match
requested run times to actual run times.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

XSEDE]2, July 16 - 20 2012, Chicago, IL, USA

Copyright 2012 ACM 978-1-4503-1602-6/12/07...$15.00.

wyoung@sdsc.edu

Categories and Subject Descriptors

K.6.2 [Management of Computing and Information Systems]:
Installation Management — performance and usage measurement,
pricing and resource allocation.

General Terms
Management, Measurement, Performance, Design.

Keywords

Allocations, Expansion Factor, Utilization, Scheduling Policies.

INTRODUCTION

Trestles was proposed as a high-performance computing (HPC)
system in the repertoire of NSF systems that would be specifically
targeted to modest-scale and gateway users and operated to
enhance the productivity of those users [1]. A key feature to
enhance user productivity is to reduce the long queue waits typical
of many XSEDE compute resources. High system utilization also
contributes to researcher productivity by expanding the number of
users on the system and/or providing more compute time per user.
However, there is a trade-off between these two operational
metrics, with high utilization typically increasing wait times. In
contrast to most large-scale production HPC systems, Trestles is
operated with its first priority being quick turnaround for its users,
while high utilization is a secondary objective.

This paper analyzes the last twelve months of Trestles operations
to characterize the empirical relationship between utilization and
throughput and to better understand how to optimize their trade-
off. For example, is there a knee of the curve between utilization
and throughput, below which good throughput is maintained and
above which queue wait times increase rapidly? What
characteristics of the scheduling policies or user job submittal
workflows decrease or increase throughput? How can allocation
and scheduling policies be tuned to maintain good throughput and
optimize utilization? Understanding these trade-offs can improve
Trestles operational procedures and may also be applicable to
other production HPC resources.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2335755.2335802&domain=pdf&date_stamp=2012-07-16

ALLOCATIONS AND SCHEDULING
POLICIES

Previous analysis of the TeraGrid-wide job workload during 2009
revealed that ~80% of all projects never used more than 512 cores
over the course of a year, and that these modest-scale projects
accounted for less than 20% of recorded use across all TeraGrid
compute resources [1]. This historical workload profile, coupled
with the ever-present user demand for fast turnaround of jobs,
suggested a strategy for delivering enhanced scientific
productivity to a large number of users by deploying a system that
would be targeted to these modest-scale (and gateway) users and
operated to minimize queue waits. This strategy formed the basis
for SDSC’s proposal to NSF for the Trestles system, which was
awarded and deployed in 2010 and entered production for
allocated users in January 2011. Trestles is a 100-Teraflop HPC
cluster with 324 nodes connected by an Infiniband QDR
communications network. Each node has four 8-core AMD
Magny-Cours processors for a total of 32 cores, 64GB DRAM,
and 120GB node-local flash memory. In order to target modest-
scale users, the largest job size is restricted to 1,024 cores (32
nodes, or ~10% of the system). To ensure that the system serves a
large numbers of users, allocations are capped at 1.5M SU/year
(<2% of the system); gateways may request a larger allocation
since they serve a large number of users. In addition to being
responsive to user requests for fast turnaround, Trestles supports
another common user request for long-running jobs: standard
queues allow 48-hour run times and users can request exceptions
up to two weeks.

The primary tool used to achieve the objective of good throughput
on Trestles has been to make available only ~70% of the
theoretically available cycles to users, rather than the 80+%
typically used for many XSEDE resources. Thus, with steady-
state allocations and usage, the system utilization would be ~70%
averaged over the course of the year. Note that the utilization will
vary substantially relative to the target value. Furthermore,
because Trestles is a relatively new resource, the early quarters
were not fully allocated and consequently utilization was
relatively low but it has since increased over time. (This trend
facilitates this paper’s analysis of utilization and turnaround
because there is substantial variability in utilization over the
period studied.)

There is not a well-controlled study that demonstrates the
relationship between utilization and throughput — the initial 70%
target value was an informed estimate to enhance job turnaround
because it is lower than the typical 80-90% and the average flow
of jobs through the system should be quicker with lower system
utilization. Using allocated percentage to control turnaround is a
major tuning parameter, but adjustments are only available four
times per year in the quarterly allocation cycle, and the timescale
for impact of those adjustments is roughly a year since allocations
are annual. As demonstrated below, there is substantial variability
in utilization and throughput over any given quarter, and
correlations are neither immediate nor transparent.

Torque is used as the resource manager, maintaining information
on job and node state and executing job start and deletion
requests. Instead of the default pbs_sched component, the
Catalina Scheduler [8], is used as the scheduler. Catalina
Scheduler is a single-queue, reservations-based scheduler, much
like Maui Scheduler [9] from Maui High Performance Computing
Center. "Single-queue" means that all nodes are considered as a
single partition of compute resources, rather than as separate
partitions. The rationale for this design is that fragmentation from

partitioning of compute resources tends to reduce overall system
utilization (unpublished results). Jobs are considered as a single
eligible set of work units. This set is sorted into a prioritized list.

To enhance throughput and smooth out fluctuations in job
submissions on a finer timescale, scheduling policies are
used. As mentioned above, job limits are 1K cores (or 32 nodes),
and standard 48-hour run time. In each scheduling iteration, only
two jobs per user are considered for inclusion in the
schedule. However, there is no limit on the number of jobs per
user that eventually go into the running state if space is available
on the system. Exceptions to the 48-hour default time limit are
made on a case-by-case basis. While long-running jobs make it
more difficult to schedule for fast turnaround, it was decided that
the enhanced usability for specific users was worth this trade-oft.

A dynamic job prioritization heuristic is used to improve the
likelihood that jobs will achieve reasonable turnaround time. The
scheduler prioritizes jobs with a multiple-element formula. Two
elements of the formula are target expansion factor and target
queue wait time. For each category of job, the scheduler is
configured with a target expansion factor and a target queue wait
time. As jobs age in the queue and approach these targets, the
corresponding priority elements increase in a nonlinear
fashion. While this does not guarantee good turnaround for all
jobs, it tends to boost priority for jobs that approach excessive
waiting time. The goal of these features is to deliver a small-job-
friendly environment in which job expansion factors are low and
utilization rates are high.

The priority calculation consists of the following terms:

(time in seconds, resource in nodes)

priority = resource_number * Resource_Weight +
local_admin_float * Local_Admin_Weight +
local_user_float * Local_User_Weight +
expansion_factor * Expansion_Factor_Weight +
queue_wait_time * System_Queue_Time_Weight +

submit_wait_time * Submit_Time_Weight +
wall_clock_time * Wall_Time_Weight +
QOS_priority * QOS_Priority_Weight +

QOS_target_xf _value *
QOS_Target_Expansion_Factor_Weight +

QOS_target_qwt_value *
QOS_Target_Queue_Wait_Time_Weight

resource_number number of nodes requested

local_admin_float administrator-set value for each job

local_user_float user-set negative value for each job

expansion_factor (requested walltime + queue wait
time)/requested walltime
queue_wait_time seconds that job has been considered
eligible by policy

submit_wait_time seconds since job was submitted

wall_clock time requested duration of job

base priority value for job of that
Quality of Service

QOS_priority

QOS _target xf value expansion factor derived urgency

term, based on job’s QOS
QOS _target xf value queue wait time derived urgency
term, based on job’s QOS

Note that varying * Weights can influence the impact of different
job characteristics. For example if Wall Time Weight is set to 0,
then requested wallclock time will have no contribution to
priority. Jobs that approach a target expansion factor may
displace higher priority jobs, as they approach that target. The
specific weightings and targets are tuned in response to changes in
workload.

Trestles is currently the only XSEDE HPC resource that allows
users to set their own reservations to ensure access at specific
times, or to have pre-emptive on-demand access for applications
that are not predictable in advance and which have societal impact
[2]. These features address specific requirements from users, but
to date are not frequently used and do not have a significant
impact on the usage analyses below.

METRICS AND DEFINITIONS

In the course of this analysis, it is apparent that defining effective
throughput metrics is a challenge. This section defines the terms
used in the analysis and describes some of the challenges.

First, system utilization is the ratio of total core-hours consumed
by all jobs in a given period over the system’s capacity measured
in core-hours for the same period. This is a straightforward
calculation available from system logs, and is used consistently in
this analysis. A limitation of this metric is that it does not
differentiate unused time due to system outages from scheduler
inefficiencies. For example, system outages due to hardware or
maintenance drop both utilization and throughput. To isolate just
scheduler performance requires exclusion of any impacts of
system outages. The counter-argument for including all time
periods is that it better reflects the user experience of the queues.

It is much more difficult to define a metric that effectively
characterizes throughput. Job wait time is clearly an important
measure, but generally we adopt the user expansion factor rather
than wait time. A job’s “user expansion factor” is defined as

RunTime + TimelnQueue
EXPF, =

RunTime
Equation 1

A user expansion factor of 1 represents no job wait. This metric
probably corresponds better to a user’s turnaround expectations
than wait time, because the wait time is normalized by run time.
One issue, particularly for a system with many long-running jobs
like Trestles, is that each job must be put into a time slot; in this
analysis jobs are assigned to the period when they started running,
rather than when it was submitted to the queue or completed.

A related metric, which substitutes requested time for run time, is
ajob’s “request time expansion factor” or

RequestedTime + TimeInQueue

EXPFgr =
RT RequestedTime

Equation 2

This metric better reflects the information available to a scheduler.
Since run time is never longer than requested time, the request
time expansion factors are always equal to or less than user
expansion factors.

Other throughput metrics are discussed in [3].

Another nuance in calculating utilization and throughput metrics
is the period over which to calculate the metrics. There are valid
arguments for both fine and coarse resolution. While some long-
period (e.g., annual) metrics are used, daily windows are more
typical in this analysis.

Whether throughput is measured by wait time or expansion factor,
these metrics represent broad non-Gaussian distributions.
Averages, especially for expansion factors, can be affected by
extreme outliers that represent a small fraction of the total
workload, and, as will be shown below, often reveal anomalous
user behavior. Therefore the median is often a better
characterization of the distribution than the average value. Since
we wish to also examine behavior at the extremes, we have
chosen to use a 95% threshold value, i.e., the expansion factor
value at which 95% of jobs have a lower expansion factor. This
metric reflects throughput for the great majority of jobs but
excludes the extreme tail of the distribution. Note that the 95%
threshold represents a high standard compared to the median
(50%) value, and its values are often much higher than median
expansion factors.

While expansion factors are generally a better metric than wait
times to measure user expectations, short jobs often have
statistically higher expansion factors and can skew the results.
One can argue that waiting ten minutes for a 1 minute job to
complete does not have the adverse productivity impact of waiting
10 hours for a 1 hour job to complete. Furthermore, many short
jobs reflect job failures which dramatically skew the metrics.
Therefore, it is reasonable to adopt a threshold to exclude very
short jobs; we have excluded all jobs with <1 minute run times.
Even at this level, the statistics are often skewed by shorter jobs.

This study focuses primarily on Trestles results, with the job
statistics collected accurately from system logs. However we also
compare Trestles results with those from other XSEDE systems,
specifically Ranger and Kraken. We have used the XDMoD tool
operating on the XSEDE Central Database (XSCDB) which
contains all job accounting data reported by XSEDE Service
Providers for jobs from XSEDE-allocated users. While XDMoD
and XSCDB represent a powerful analysis tool, these results must
be qualified because the metrics are based solely on jobs reported
to the XSCDB and do not necessarily include all jobs on the
systems. In particular, utilization calculated by XDMoD is a lower
limit to actual utilization, since there may be local jobs not
submitted to XSCDB.

ANALYSIS OF TRESTLES OPERATIONS-
UTILIZATION AND TURNAROUND

Trestles became available as a production resource for XSEDE
users starting in January 2011. As is typical of most new systems,
the first quarter’s allocated usage was low and dominated by just a
few users, and there were a fair number of system downtimes for
planned outages; therefore this analysis excludes the first quarter
of operations. During the one-year period from April 2011 to
March 2012, utilization and user expansion factors averaged 60%
and 1.3 respectively, with considerable variability during the
period. More recently, system usage reflects four full allocation
cycles, and the utilization has increased significantly, often now
exceeding 80% and with increased expansion factors.

Figure 1 shows daily utilization and 95% threshold user expansion
factors as a function of time for this period. Utilization varied
widely during most of 2011 but in recent months has climbed well
above the 70% target value and is now often above 80% or even
90%. Note that the period of very low utilization in May 2011 was
caused by a planned parallel file system upgrade while the drop in
September 2011 was caused by a county-wide power failure.
Because of the large dynamic range, the 95% user expansion
factor is plotted on a log scale. While the 95% user expansion
factors are generally in single digits, the median value
unfortunately often exceeds ten. While there are some clear causal
relationships apparent (e.g., the expansion factor often spikes
during system outages), Figure 1 does not demonstrate an obvious
correlation between utilization and users expansion factors.

degradation of turnaround. Based on this figure, the knee of the
curve may be as high as 85-90% utilization, but the curve is not
well defined and has significant scatter.

To further characterize the relationship between utilization and
expansion factors, we determined the number of days that Trestles
ran within specific utilization ranges, and then the number of
those days with excellent turnaround, as measured by days when
95% of all jobs had user expansion factors <1.5 or <2.0. These
values, summarized in Table 1, are indeed high bars for defining
excellent throughput — all but 5% of the jobs during those days
waited less than 50% or 100% respectively of their run time.

MU

it

("
I 1 \WM

Utilization
o
«

——Utilization

F 10 Expansion Factor

95% User Expansion Factor

RIS SRR E R I SRR S LA GO
RN Nc\'»\ \}\'\,\ \:"\'y\ KR

Date

Figure 1 - Trestles Daily Utilization and 95% Threshold User
Expansion Factors for Period 4/2011 to 3/2012

1000
.
- X3
.
b
5 .
2 . L4
© 100 =&
2
= 7 A PR ® o o,
o * * ®q
@ * * 4
3 * e st
3 * @ 4 M
fin}) g
o . . * oo * e 2%,
3 L o * R $.05%08
: @ . s) Sieg .3'9“,
] *e . * b :Q‘
* 0‘ * "':n
. * ”%Qo\:,&*
$, ¢ & f A oty
e eademAed
. LI NS " AL Q'\ *
* e O f’ $.0 *
* * ' *
14t » N ’.0“;:"6 i; A’ &03..0
0 01 02 03 04 05 06 07 08 0.9 1
Utillization

Figure 2 — Scatter Plot of Daily Utilization and 95%
Threshold User Expansion Factors for Period 4/2011 to 3/2012

The same daily metrics are shown as a scatter plot in Figure 2,
which best illustrates the significant scatter in the correlation
between utilization and user expansion factor. Even at quite low
utilization, there are frequent examples of anomalously high
expansion factors. Also, there are many days with utilization in
the range 70-90% that still have excellent turnaround. It is only
when utilization exceeds ~90% that one can see a consistent

Utilization 0- 40- 50- 60- 70- 80- 90-
Range 404 | 50% | 60% | 70% | 80% | 90% | 100%
Days 32 39 37 56 58 68 74
Days w/ 95% | 17 22 18 18 9 8 1
EXPFy< 1.5

% days 95% | 53« | 56% | 49% | 32% | 16% | 12% 1%
EXPFy <1.5

Days w/ 95% | 18 25 23 24 17 12 2
EXPFy<2.0

% days 95% | 56% | 64% | 62% | 43% | 29% | 18% | 3%
EXPFy <2.0

Table 1 — Number of Days With Various Utilization Ranges,
and the Number of Those Days with Excellent User Expansion
Factors (95% of jobs <1.5 or <2.0 respectively)

Table 1 shows that when utilization was <60%, Trestles had 95%
expansion factors less than 1.5 approximately 50% of the time,
and 95% factors less than 2.0 about 60% of the time. Both of
these values steadily decline at higher utilizations, finally to the
point where almost no days with >90% utilization had excellent
turnaround. The statistics are limited and, as shown below, can be
influenced by anomalous user behavior. But the trends are
consistent and excellent expansion factors above 90% utilization,
while possible, are quite unlikely.

At the same time, the results are a reminder that low utilization
does not guarantee fast turnaround and conversely that high
utilization does not preclude good turnaround. For example, ~45%
of days at utilization <40% did not have excellent turnaround, and
~20% of the days with utilization in the 80%’s still had excellent
turnaround.

It is important to examine the cause of outlier jobs with very large
expansion factors. If outliers are defined as jobs with user
expansion factors > 100, ~90% of all Trestles’ outlier jobs over
the year were submitted by just five of its ~200 users. One user
flooded the queue by submitting over 5,000 multicore jobs over
the course of several weeks thus creating a huge backlog. The
other four users submitted over 200 jobs each with a default
wallclock time of 48 hours but nearly all their jobs ran in 1-2
minutes. These four users’ jobs unnecessarily sat in the queue
waiting for 48-hour blocks of time when they could have been
scheduled and quickly completed with more accurate time
requests; between the time mismatch and queue flooding, the
expansion factors for those users’ jobs are extremely high.

To quantify the impact of providing a bad estimate for wallclock
times, we plot in Figure 3 the 95% user expansion factor based
upon run time (Equation 1) and the expansion factor based upon
requested time (Equation 2). The use of requested time in
calculating expansion factors reflects information available to the
scheduler and allows us to distinguish basic issues with job

turnaround and scheduling from more isolated user-initiated
outliers. The dozen or so peaks in the run time expansion factor
are attributable to the five users who had the major mismatch of
requested and actual run times and/or flooded the queue. The
much lower requested time expansion factors suggest that these
outliers are major contributors to high expansion factors in our run
time metrics. This is not to say that the actual performance of the
system is worse because of inaccuracies in user estimates of
wallclock time. It has been shown that some workloads with
certain distributions of run time overestimation can actually
benefit from those overestimates [7]; Since short jobs contribute
disproportionately highly to the overall expansion factor,
overestimates of running time tend to delay long jobs and create
backfilling space in which to run shorter jobs.

600

500

400

300

——Run Time

200 | —Request Time

95% User Expansion Factor

100 |
0 Al Lh JJ"ML 1 A .
> O o

I I S R G g e S
G R R IR R I IR RO
o %\w\ R g \9\'»\ 0\»\ 0\'»\ o ,L\\,\ %\x\

Date

Figure 3 — Run Time and Request Time 95% Expansion
Factors

It is possible to further tune scheduling policies in order to favor
expansion factor over utilization. Two examples of this are the
limit on queued jobs per user and the priority elements boosting
jobs based on age-in-queue metrics. While further analysis and
simulation would be required to pin down a causal relationship,
we do see that expansion factor is quite good on Trestles, while
utilization on many days is low. This demonstrates that scheduler
tuning can be effective in achieving desired throughput
performance for a large fraction of daily production workload.

However, we observe cases where, despite the current scheduler
tuning, expansion factor is likely to suffer. This was often
observed in situations where the current scheduler tuning allowed
utilization to exceed 90%. The adverse impact of allowing veru
high utilization can be seen in the count of days with low
expansion factors. The current scheduler tuning has resulted in
worsening expansion factor for that extreme level of utilization.

SDSC intends to keep overall allocation commitments in the 70-
80% range and will tune the scheduler to manage occasional days
with very high utilization to minimize adverse effects on
expansion factors. Additional "knobs", such as a policy limit on
amount of node-seconds of running jobs per user or per account,
could be used to more strongly favor expansion factor over
utilization.

COMPARISONS TO OTHER XSEDE
SYSTEMS

It is interesting to compare the Trestles analysis to other XSEDE
resources, using the XDMoD tool operating on the XSEDE
Central Database (XSCDB). As described earlier, there are known
caveats with this data source, particularly that system utilization
may be underestimated. While the Trestles data in previous
sections are derived from internal system logs, all data in this
section, including Trestles, are drawn from XSCDB data.

This section compares XDMoD metrics from Trestles with
TACC’s Ranger [4] and NICS’ Kraken [5]. The systems are ~6x
and ~11x larger than Trestles, and represent a diversity of
allocations/scheduling policies. In contrast to Trestles, which is
intentionally targeted to modest-scale capacity computing (e.g.
maximum of 1K cores, ~10% of the system) and quick
turnaround, Kraken is operated without job core count restrictions
and with an emphasis on large-scale capability computing and
high utilization [6]. Ranger default scheduler policies restrict
usage to 4K cores (~6% of the system), with access to a 4K-16K
core queue allowed after users demonstrate applications scaling,
and larger-scale jobs (>25% of the system) more restricted and
generally allowed only after system maintenance when the system
is drained. TACC’s Lonestar system was excluded from this
comparison because only a fraction of the system is made
available to XSEDE users and therefore XDMoD/XSCDB metrics
are not representative of its capacity.

Table 2 summarizes key metrics, derived via XDMoD/XSCDB,
for these three systems over the one-year period from April 2011
through March 2012. All metrics are averaged over a year, so this
comparison is at a macroscopic level.

Reported system utilization varies significantly across the
systems. The Trestles utilization value is relatively low during this
period because the system was new in the allocation process and
the system was intentionally targeted to a conservative 70%
utilization to facilitate good throughput.

(Period Apr 2011- Trestles Ranger Kraken
March 2012)

Number of cores 10,368 62,976 112,896
System utilization 61.7% 76.6% 86.7%
Median expansion 1.2 1.3 1.5
factor

95% threshold user 15.4 24.5 45.1
expansion factor

Average wait time 3.5hrs 7.8 hrs 10.8 hrs
Average run time 13.0 hrs 8.1 hrs 5.1 hrs
Median cores/job 4 32 72
Average cores/job 25 197 514
Average cores/job, 0.24% 0.31% 0.46%

as a fraction of
system size

SU-weighted 202 1,223 10,875
average cores/job
SU-weighted 1.9% 1.9% 9.6%

average cores/job,
as a fraction of
system size

Table 2 - Comparative Metrics for XSEDE Resources with a
Range of Allocation/Scheduling Policies

The median expansion factors, the 95% expansion factors, and the
average wait times are correlated with the utilization values across
the three systems, with all measures of throughput degrading with
higher utilization. This correlation is consistent with expectations,
although simple metrics like averages, especially over a full year
period, can mask many complexities. One should not conclude
that these three points are representative of a standard function
between utilization and wait times/expansion factors, but only that
they are consistent with trends.

A key issue to consider is the extent to which the job mix,
including job size and run time, impact utilization and turnaround
time. For example, full-machine jobs are notorious for requiring
that the system drain in advance of the job and forcing all jobs
that cannot be backfilled to wait for the duration of the full-
machine job. Special attention in a scheduler can minimize
adverse impacts on other jobs and in fact planned, sequential full-
machine jobs can produce very high utilization [6]. A specific
hypothesis is whether the Trestles policy of targeting modest-scale
jobs (maximum 1024 cores, or at most ~10% of the system)
benefits throughput compared to systems that allow a broader
range of job sizes, particularly much larger jobs. For example, can
a scheduler better slot a large number of small jobs into efficient
use of the system and better throughput?

While Trestles does not allow any job to use more than 10% of
the system cores, it does have a relatively generous policy on run
time, with a default limit of 48 hours and up to 2 weeks frequently
granted on request. Therefore it tends to have a long average run
time per job (13 hrs) compared to Ranger (8 hrs) or Kraken (5
hrs). On the other hand, the median and average cores/job vary
widely, from 4(median)/25(average) for Trestles to 32/197 for
Ranger and 72/514 for Kraken. However, when normalized by the
system size, the average job size is virtually identical for Trestles
and Ranger and Kraken’s average is only ~1.5X this level. So in
the temporal domain, Trestles jobs are typically longer while in
the processor domain, they are comparable to Ranger as a fraction
of the system and only slightly smaller than Kraken. So based on
these macroscopic statistics, the hypotheis that Trestle’s small
jobs (as a fraction of system size) could result in more efficient
scheduling and throughput, cannot be tested here as there is not
significant differentiation for these metrics across the three
systems. If anything, the dependence on utilization seems more
predominant in the impact on throughput than details of the job
mix. It will be interesting to see, as Trestles utilization persists in
the range 70-90%, whether we can maintain good throughput
relative to other XSEDE systems.

What is perhaps the most surprising result from this XDMoD
analysis is the low values for the median/average job size as a
fraction of the machine. This is consistent with earlier analysis
that showed most jobs across TeraGrid are modest-scale, even
though large-scale jobs consume a disproportionate share of
overall resources [1]; that analysis provided the initial rationale

for proposing Trestles as a system for modest-scale users. It is
clear that averaging by jobs gives equal weight to all jobs
and ignores the incredible dynamic range (e.g. ~10%) in SUs
consumed by various jobs. Therefore we have calculated the SU-
weighted average job size for the three systems, measured in cores
and fraction of the system. This weighting increases the average
cores/job by a factor of eight for Trestles, six for Ranger and 21
for Kraken, with the SU-weighted average job size being ~2% of
the system size for Trestles and Ranger, and ~10% of the system
size for Kraken. The absolute level and relative increase reflect
the emphasis on capability computing for Kraken.

SUMMARY

This paper presents an analysis of the last twelve months of
Trestles operations to characterize, understand and optimize the
relationship between system utilization and queue wait times. As a
new system gaining adoption, Trestles has had a wide range of
utilization during the analysis period, providing a valuable set of
operational data for this analysis. It is a challenge to define
simple metrics to characterize queue waits for users and the
complexity of various metrics are discussed. In general, there is
substantial scatter in the correlation between utilization and
expansion factors, with many examples of high expansion factors
at low utilization and low expansion factors at high utilization. It
is only at the highest utilization levels of greater than 90% that
there is a clear indication of consistently degraged throughput. Job
characteristics and individual user workflows substantially impact
throughput metrics. For example, short-duration jobs typically
have higher expansion factors and can severely skew averages.
Almost all outlier expansion factors can be attributed to user
behavior such as queue flooding or a gross mismatch between
requested time and actual run time. There is no reason to
discourage a user from using a queue flooding workflow, as long
as the scheduler limits impact on other users (which Trestles
does). However users who request significantly more time than
actually used by their jobs often penalize themselves with longer
wait times, and we now know to look for those situations amongst
the outliers and advise users how to improve their throughput.

Some comparisons of job workload, utilization and throughput are
made with other XSEDE HPC resources (Kraken and Ranger).
Both Kraken and Ranger have higher average utilization than
Trestles over the analysis period and, not surprisingly, longer wait
times and higher expansion factors than Trestles. A hypothesis
that Trestles’ small average job size results in more efficient
scheduling cannot be tested by this comparison because the
average job size, as a function of total system size, is comparable
across the three systems.

As a result of this analysis, we plan to slightly increase allocations
on Trestles from a conservative 70% of theoretical maximum to
~75-80%, while continuing to monitor the queues and tune
scheduling policies. We also will strongly encourage users to
match requested times to expected run times (with reasonable
buffers) to facilitate their throughput.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. OCI-0503944 at UCSD and
under Grant No. OCI-1025159 at U Buffalo. We are especially
grateful to the XDMod team at SUNY Buffalo for their
contributions in the area of XSEDE metrics and to this paper.

REFERENCES

[1] Moore, R. L., Hart, D. L., Pfeiffer, W., Tatineni, M.,
Yoshimoto, K. Young, W. S.; “Trestles: A High-Productivity
HPC System Targeted to Modest-Scale and Gateway Users,”
TeraGrid’11, July 2011, Salt Lake City, Utah, USA. ACM 978-1-
4503-0888-5/11/07.

[2] Yoshimoto, K.K., Choi, D.J. , Moore, R.L., Majumdar, A.,
Hocks, E.; “Implementations of Urgent Computing on Production
HPC Systems,” April 2012, International Conference on
Computational Science, ICCS 2012. (Accepted for publication
May 2012.)

[3] Ernemann, C.; Hamscher, V.; Yahyapour, R.; , "Benefits of
global grid computing for job scheduling," Grid Computing, 2004.
Proceedings. Fifth IEEE/ACM International Workshop on , vol.,
no., pp. 374- 379, 8 Nov. 2004

doi: 10.1109/GRID.2004.13

URL:http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1
382854 &isnumber=30134

[4] Description of TACC Ranger system,
http://www.tacc.utexas.edu/resources/hpc

[5] Description of NICS Kraken system
http://www.nics.tennessee.edu/computing-resources/kraken

[6] Samuel, T.K.; Baer, T.; Brook, R.G.; Ezell, M.; Kovatch, P.; ,
"Scheduling diverse high performance computing systems with
the goal of maximizing utilization," High Performance Computing
(HiPC), 2011 18th International Conference on , vol., no., pp.1-6,
18-21 Dec. 2011

doi: 10.1109/HiPC.2011.6152723

URL:http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6
152723 &isnumber=6152423

[7] Keleher, P. J., Zotkin, D., Perkovic, D., Attacking the
bottlenecks of backfilling schedulers, Cluster Computing,
December 2000, 3:4, p. 245-254

[8] http://www.sdsc.edu/catalina

[9] http://www.clusterresources.com/product/maui

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1382854&isnumber=30134
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1382854&isnumber=30134
http://www.tacc.utexas.edu/resources/hpc
http://www.nics.tennessee.edu/computing-resources/kraken
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6152723&isnumber=6152423
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6152723&isnumber=6152423
http://www.sdsc.edu/catalina
http://www.clusterresources.com/product/maui

	INTRODUCTION
	ALLOCATIONS AND SCHEDULING POLICIES
	METRICS AND DEFINITIONS
	ANALYSIS OF TRESTLES OPERATIONS-UTILIZATION AND TURNAROUND
	COMPARISONS TO OTHER XSEDE SYSTEMS
	SUMMARY
	ACKNOWLEDGMENTS
	REFERENCES

