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ABSTRACT

Deep neural networks (DNNs) have been widely adopted in mobile
image recognition applications. Considering intellectual property
and computation resources, the image recognition model is often
deployed at the service provider end, which takes input images
from the user’s mobile device and accomplishes the recognition
task. However, from the user’s perspective, the input images could
contain sensitive information that is subject to visual privacy con-
cerns, and the user must protect the privacy while offloading them
to the service provider. To address the visual privacy issue, we
develop a protective perturbation generator at the user end, which
adds perturbations to the input images to prevent privacy leakage.
Meanwhile, the image recognition model still runs at the service
provider end to recognize the protected images without the need
of being re-trained. Our evaluations using the CIFAR-10 dataset
and 8 image recognition models demonstrate effective visual pri-
vacy protection while maintaining high recognition accuracy. Also,
the protective perturbation generator achieves premium timing
performance suitable for real-time image recognition applications.
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1 INTRODUCTION

Deep neural network (DNN)-based image recognition is an impor-
tant and popular category of mobile applications that has been
adopted in various domains. For example, eBay Image Search and
Google Lens [3, 4] can identify objects in the input images col-
lected/generated by the mobile device and provide the mobile users
with metadata of the detected objects (e.g., purchase links and
customer reviews) in real time. In healthcare systems, image recog-
nition has been adopted to assist medical diagnosis [21]. However,
the input images in such applications often contain sensitive in-
formation (e.g., human faces, license plates, and medical records),
which raises visual privacy concerns [54] when the image recog-
nition task is handled by third-party service providers due to the
considerations of intellectual property and computation resources.
In addition, the sensitive information is often subject to privacy
regulations (e.g., HIPAA [5] and GDPR [2]), which have strict re-
strictions on the presence of user data in different geographic or
administrative locations after leaving the user device. Such privacy
concerns or regulations have significantly impacted the deployment
and utilization of third-party services for the computation-intensive
DNN applications, which eventually results in downgraded appli-
cation performance and user experience (e.g., if the application
must be run locally with low-end computation resources) or so-
phisticated legal implications [10]. Therefore, it is crucial to take
privacy protection into consideration and minimize the exposure
of sensitive information in the image recognition applications.

1.1 The Visual Privacy Problem

In particular, the direct privacy issue with regard to image recog-
nition is visual privacy [31, 54, 59]. In a nutshell, visual privacy
is a psychological concern of the user (i.e., owner of the image)
that the image containing privacy-sensitive information may be
exposed to another person. Such visual privacy concern is not a
new psychological effect as the same would exist with the physical
presence of sensitive information in the pre-digital and pre-Internet
era; however, the recent advancements of cloud computing, dig-
ital and social media, as well as deep learning applications have
inevitably promoted visual privacy as a prevalent concern, espe-
cially when large volumes of sensitive images are delivered to third
parties for deep learning services. Different from many other data
privacy problems, visual privacy has two unique properties that
cause significant challenges in terms of the privacy protection:
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o No specific privacy-sensitive features. It is difficult to define or
identify the privacy sensitive features in an image that is subject
to visual privacy issues. The user is generally concerned about
the entire image being exposed, which may involve all or cer-
tain features varying by the users and significantly enlarge the
potential attack surface that requires visual privacy protection.

o No specific adversaries. As a psychological concern, there are
typically no clearly defined adversaries in an event of visual
privacy exposure; instead, the victim user is simply concerned
about the visual privacy leakage to any other person, which
significantly challenges the defense approach.

Consequently, the visual privacy problem is significantly different
and more challenging than general privacy/security issues, in that
the protection must cover all identifiable features in the image
against all individuals other than the original owner of the image.

1.2 The State-of-the-Art Solutions

Several approaches have been developed in the community to pro-
tect the privacy of sensitive images. One category of approaches
partitions the image recognition model into a sensitive component
and a non-sensitive component, which are deployed at the trusted
entity (e.g., the user end) and the untrusted entity (e.g., the service
provider end), respectively [13, 18, 48]. However, in reality, the
deep learning-based image recognition models are often propri-
etary assets with intensive computations, which are challenging to
be deployed, even partially, at the user end.

To address this limitation, another category of approaches fo-
cuses on proactive image protection. For example, homomorphic
encryption-based approaches [32, 40] encrypt the original image
to eliminate information exposure without requiring the service
provider to decrypt the protected image for the required compu-
tations. In this case, the privacy sensitive information is never
exposed to the untrusted parties for image recognition. However,
homomorphic encryption would incur high performance overhead
in both the training and inference phases, which is hardly applicable
to real-time image recognitions.

To balance between privacy protection and system efliciency,
several recent works leverage differential privacy and image blur-
ring/pixelation to conceal the sensitive features in the images [16,
38, 44, 51]. However, the effectiveness of these approaches relies
on the accurate identification of all the sensitive features in the
target image for hiding and blurring, which is technically difficult to
achieve and hardly adaptable to different applications that consider
distinct features as sensitive information.

1.3 Proposed Solution: Protective Perturbation

To address the aforementioned limitations in the state-of-the-art ap-
proaches, we develop a novel privacy protection approach for image
recognition applications using protective perturbation. Our pro-
posed protective perturbation is a proactive pixel mask being added
to the privacy-sensitive input image, which achieves two objectives:
(1) the target image is blurred to eliminate the exposure of sensitive
information (i.e., invisible to human vision); and (2) the blurred
image can still be directly adopted by the image recognition model
for the original deep learning computations with no significant
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accuracy degradation (i.e., visible to machine vision). Such protec-
tive perturbations are generated by a real-time generative neural
network model, which progressively optimizes for a loss function to
minimize the similarity between the original and perturbed images
(i.e., visibility to human vision) and maximize the accuracy of the
image recognition model (i.e., visibility to machine vision). In a
nutshell, our proposed protective perturbation approach aims to
achieve both the goals of image blurring [16, 38, 44, 51] and com-
puting on encrypted data (e.g., homomorphic encryption [32, 40])
but without being subject to their technical difficulties and limi-
tations. For example, the protective perturbation does not rely on
the identification of individual features (i.e., required in traditional
image blurring) and thus can be made universal to adapt to different
applications with distinct sensitive features. Also, the perturbed
images can be directly handled by the deep learning image recogni-
tion model, as if they were the original images, without increasing
the complexity and execution time of the computation.

To achieve the aforementioned design goals, our protective per-
turbation generator applies a generative neural network model to
add perturbations to the original input images. The loss function to
train the generative model contains three components, including
the accuracy loss of the original image recognition model (i.e., the
target model), an auxiliary model that mimics human vision and
helps perturb the original image, and the similarity loss between the
original image and the perturbed image. The successfully protected
images should maintain high prediction accuracy on the target
model (i.e., high machine vision) without retraining, low prediction
accuracy on the auxiliary model, and low similarity comparing with
the original images (i.e., low human vision). In our empirical eval-
uations on 8 target models with 7 auxiliary models and the SSIM
metric (i.e., structural similarity index measure) [52], the proposed
method can generate the protective perturbations successfully in
real-time . To summarize, we have made the following key technical
contributions in the paper:

e We propose a novel protective perturbation-based approach to
achieve privacy preserving image recognition, which outper-
forms the state-of-the-art approaches by its universality to dis-
tinct sensitive features and low complexity;

e We implement the perturbation generator using a generative
neural network model and deploy it in real systems; and

e We conduct comprehensive evaluations on the implemented per-
turbation generator using 8 popular image recognition models
to justify its effectiveness and real-time performance.

2 BACKGROUND
2.1 DNN-based Image Recognition System

Figure 1 illustrates an image recognition system targeted by this
paper, which identifies the class of an input image by leveraging
deep learning. First, the user provides the input image and sends it
to the service provider. Then, the service provider leverages a deep
learning-based image recognition model to recognize the image.
The model contains an input layer, hidden layers, and an output
layer, which is trained by a training dataset and a validation dataset
with parameter tuning. The input layer processes the input image
and sends the intermediate results to the neurons (i.e., nodes in
Figure 1) with weights (i.e., edges in Figure 1) in the hidden layers.
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After that, the output layer outputs the recognition confidence for
each class (e.g., 1% as a dog, and 91% as a car). Finally, the service
provider sends the image recognition result (i.e., the class with the
highest recognition confidence) to the user.

Hidden Layers

Output
Layer

Input
Layer

. Car 91%

() Deer 0.03%

Input Image

Deep Learning-based Image Recognition Model

\ ) N . )
User

t

Recognition Result (Class with Highest Confidence, i.e., Car)

Service Provider

Figure 1: Deep learning-based image recognition system.

2.2 Privacy Issues in Image Recognition

In such image recognition system, there exist privacy concerns
with regard to the input image that may contain sensitive infor-
mation [16, 38, 44, 51]. When the user sends the input images to
the untrustworthy service provider, the service provider may gain
access to the user’s private information even under strong security
protections. For example, even if the end-to-end system is protected
by the state-of-the-art system and network security mechanisms
(e.g., Trusted Execution Environment [1, 6] and end-to-end encryp-
tion [17]), the protected input images would still need to stay in the
clear right before or during the execution of the image recognition
model and thus exposed to the service provider. Also, even if the
sensitive information, such as human face and license plate number,
is blurred for privacy protection, the image background and user’s
outfit could still potentially disclose privacy-sensitive locality or
demographic information.

In this case, even if the service provider does not have any ma-
licious intent, the exposure of the user private information still
constitutes a breach of user privacy. In other words, the special
distinction between security and privacy requirements leads to
incompetence of the state-of-the-art security techniques to protect
user’s privacy, which creates a unique privacy problem that must
be addressed separately from all the existing security measures.
In summary, we consider that various types of information in the
input images fed into the image recognition system could cause
privacy concerns when exposed to an untrusted party. It is crucial
to clearly identify and define these potential threats to the user pri-
vacy and proactively address them to achieve a privacy preserving
image recognition system.
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2.3 Security and Privacy Threat Models

To summarize the discussions about the security and privacy of
image recognition systems, we define the following security and
privacy threat models as the target of this paper.

o Security threat model. We assume that the state-of-the-art
security measures have been deployed to secure the end-to-end
image recognition system, which includes but not limited to
trusted execution environments (e.g., TrustZone [1] and SGX [6])
on both the user-end and provider-end systems, as well as end-
to-end data encryption [17]. In addition, we assume that the
untrusted party (i.e., the service provider) does not have the
incentive or capability to breach such strong security measures
or employ other advanced security attacks (e.g., side channel
attack or reverse engineering attack) to proactively infer the
user’s private information. Such security related assumptions
are attributed to the ever increasing security awareness of the
service providers and the deployment of state-of-the-art system
and network security measures to protect the image recognition
service, most of which have been constantly discussed in the
security community.

o Privacy threat model. In spite of the strong security guarantee
(and thus weak security threats), we consider a strong privacy
threat model in this paper, which cannot be eliminated by the
state-of-the-art security protection mechanisms. In particular,
we define a privacy breach as the exposure of users’ private im-
ages to another party other than the users themselves, which are
visible and perceivable by human eyes. In this case, the user’s
privacy concern originates from the unknown and unpredictable
consequences of private information being exposed to others,
even without malicious intent or actual damages involved. Fol-
lowing this privacy threat model, the service provider in the
image recognition system, even without malicious intent and
with the strongest security protection deployed, is considered as
an "adversary" for potential privacy breaches, simply because the
image recognition tasks eventually require the service provider’s
access to the original input images in the clear.

Note that this paper assumes that the user-end system is both
secure and trustworthy (i.e., with no security and privacy concerns),
and we only consider preventing privacy leakage from the input
images when they leave the user device. Also, other security and
privacy threat models targeting information leakage at other phases,
such as when training the deep learning models or after retrieving
the image recognition results, are actively discussed in the deep
learning community and thus out of the scope for this paper.

3 PROTECTIVE PERTURBATION

3.1 System Overview

To address the privacy issues in image recognition applications,
we develop a protective perturbation generator at the user end to
proactively add human-visible but machine-invisible masks to the
input images. Such protective perturbations would help hide the
privacy-sensitive information from being exposed to adversaries
but still maintain the original functionality of the image recognition
application. Figure 2 shows the overall workflow of the proposed
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privacy-preserving image recognition system involving three par-
ties with various system components and operations: (1) at the
user end, the proposed perturbation generator processes the orig-
inal input images and injects the protective perturbations before
offloading it to the service provider for image recognition; (2) at
the service provider end, since the injected protective perturbation
is transparent to the target deep learning-based image recogni-
tion model, the image recognition computations would proceed
as normal without impacting the accuracy and speed of the infer-
ence; and (3) the adversary attempts to gain access and breach the
privacy-sensitive information in the perturbed images; however,
such efforts are expected to fail given the protective perturbations.

i & User End !
| == Original Perturbation !
i =] Images Generator i
[ _;( __________________________________________ !

Q

=S

74 f=¢

o

=]
[ """"""""""""_"""\7"""""":
Deep Learning-based i
i Image Recognition Model i
i & Service Provider End '

Figure 2: The system workflow of privacy-preserving image
recognition with the proposed perturbation generator.

In the end-to-end workflow, the perturbation generator plays a
central role in adding privacy-preserving protective perturbations,
which are expected to be non-intrusive to both the user and the
service provider of the original image recognition application, but
intrusive to the adversaries:

o The non-intrusive objective for the user and the service provider
are two-fold: (1) from the perspective of model deployment, the
protective perturbation-based approach should eliminate the
need to re-train or alter the original image recognition model in
any form, presenting an non-intrusive privacy-preserving solu-
tion that can be immediately deployed in the commodity systems
today; and (2) from the perspective of runtime execution, the pro-
tective perturbation should maintain the original accuracy of the
image recognition and, more importantly, the additional delay
incurred by the perturbation generation should not be noticeable
by the user or jeopardise the real-time requirement of the original
application.

o The intrusive objective for the adversary requires that the in-
put images obfuscated by the protective perturbations are not
perceivable to human vision, defeating the adversary’s intent to
obtain any privacy-sensitive information.

The above non-intrusive and intrusive objectives appear to be op-

posite and contradicting to each other. However, there exists a clear
distinction between the contexts of the two objectives in that the
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non-intrusive objective targets machine learning models/algorithms,
while the intrusive objective targets human vision. Even though the
goal of machine vision has always been to approach and emulate hu-
man vision, there is still a big enough gap between them, which can
be leveraged to achieve distinct effects on the two vision systems
with the same set of inputs. As an evidence, the recent develop-
ments in the Al community on adversarial attacks [12, 27, 33, 36]
could successfully generate perturbations to the input data that lead
to erroneous inference results by the machine but remain unnotice-
able by human. This clearly justifies the feasibility of leveraging the
gap between machine and human visions to achieve the distinctive
objectives and thus forms the foundation of our proposed protective
perturbation generation method, as described next.

3.2 Protective Perturbation Generation

Figure 3 shows our proposed protective perturbation generation
process. We first preprocess the original image x; (e.g., by random
cropping, random horizontal flipping, and normalization). Then, we
feed x; to a generative neural network model, namely U-Net [39],
which has been adopted for generating traditional adversarial per-
turbations [36, 37]. We define the U-Net model as U(-), and it gen-
erates the perturbation § that aims to hide image features. With
clamp(-) that clips x; + § into a valid pixel range, we have the pro-
tected image x| = clamp(x; + &) that protects user privacy. Using
only one forward propagation, U-Net avoids time-consuming it-
erations to produce outputs, which makes real-time generation

possible.
Preprocessed U-Net
S5 e Image x; u()

Original Image Perturbation §

Protected
Image x;

+
U Clamp(x; + 8)
Figure 3: The process of generating a protected image.

The major challenge in applying U-Net to our protective per-
turbation generation lies in the aforementioned intrusive and non-
intrusive objectives that are opposite to the traditional adversarial
attacks. In particular, our protective perturbation aims to maximize
the perturbation to human vision and minimize the impact to the
image recognition model, while the U-Net model for traditional
adversarial attack aims to minimize the former and maximize the
latter. To summarize, we have two objectives in the design of the
protective perturbation generator, which are consistent with the
discussions in Section 3.1:

o Non-intrusive objective - Maintain the machine vision, which can
be formulated as
Accuracy(Ftarget(xl{)) - Accumcy(Fmrgez(xz')),
assuming the original image recognition model is the target
model F;grges(-); and

o Intrusive objective - Maximize the human-perceivable perturbation,
which can be formulated as Accuracy(Fgq,,(x])) — 0, assuming
F,4,(+) mimics the adversarial recognition.
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Figure 4: The training process of the perturbation generator. After it reaches max_epochs, we select the best trained U-Net

model as the protective perturbation generator.

The following subsection elaborates on how to achieve these two
goals simultaneously and train an effective and efficient protective
perturbation generation model U(:).

Algorithm 1: Training Algorithm for the Protective Per-
turbation Generator

Input: Training dataset X = {x1, ..., X}, true labels
Y ={y1, ..., Ym}, target model Frqrget(-) and its loss
weight w¢qrget, auxiliary model Fgyx(+) and its loss
weight wqyx, weight of the similarity loss wgy, and
the maximal epochs max_epochs.
Result: Trained protective perturbation generator U(-).
Randomly initialize U(-).
for j « 1 to max_epochs do
foreach x;,y; in X, Y do
6 « Ulxi);
x| « clamp(x; + 5);
Ypred_target < Frarget(x});
Ypred_aux < Faux(x});
Loss «
Wtarget - CrOSSEntropy(ypred_target9 yi) — Waux *
CrossEntropy(Ypred_aux-Yi) + wsr - SSIM(xi, x7);
Update U(-) to minimize Loss;
end

end

3.3 Training the Perturbation Generator

Figure 4 shows the training process of our proposed protective
perturbation generator. The blue arrows show the data flow of orig-
inal images, the orange arrows indicate the data flow of protected
images, and the green arrows reveal the loss and weights updates
during the training process.

To be more specific, we first provide the original training images
to an initial U(-) to generate the initial protected images. Then, we
feed the original images and the protected images into the target
image recognition model. The target model provides the true labels
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of the original images and the predicted labels of the protected
images to the CrossEntropy loss function, which helps achieve the
aforementioned non-intrusive objective. Let a true label be y; and the
corresponding label predicted by the target model be y,req targes-
We have the loss calculation as follows:

(1)

Furthermore, we leverage two modules to achieve the aforemen-
tioned intrusive goal. First, we apply the original images and the
protected images to an auxiliary model, which is an image clas-
sification model to evaluate the classification results seen by the
adversary. The auxiliary model provides the true labels of the origi-
nal images and the predicted labels of the protected images. The
CrossEntropy loss function calculates the loss value for the auxil-
iary model, which is applied a negative sign to maximize the loss
between the two sets of the labels and achieve the aforementioned
intrusive goal. The loss function represented by the auxiliary model
is defined as:

Losstarget = CrossEntropy(Ypred_target> Yi)

@)

Then, we apply a similarity function to determine the human-
perceivable difference between the original images and the pro-
tected images to ensure that the two images are visually different
and prevent privacy exposure. We use the structural similarity in-
dex measure (SSIM) metric as our similarity function, since it is one
of the most popular metrics to evaluate the perceivable similarity
between two images for human visual perception [52]. The loss
function represented by the SSIM metric is defined as:

Losssy = SSIM(x;, x})

Lossqux = =CrossEntropy(Ypred_aux»Yi)

©)
Finally, the optimizer obtains the total loss value and updates the

weights on the U-Net model. The final loss function is formulated
as follows:

Loss = wtarget X LoSStarget + Waux X Lossqux + wsy X Losssy (4)

where wtarget, @aux, and wgy are the pre-set coefficients to control
the effect of each loss component.

Algorithm 1 shows the detailed pseudocode of the presented
model training process. The training keeps executing and updating
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U(:) until it reaches max_epochs. Finally, a successfully protected

image x| generated by U(-) aims to fulfill the following require-

ments at the same time:

(1) Ftarget(x{) = y;, where the predicted label of the target model
is the same as the true label y;;

(2) Faux(x}) # y; , where the predicted label of the auxiliary model
is different from the true label; and

(3) Minimal Losss, where the similarity level between x; and xlf
should be as low as possible.

s o

Protectre Pertubaton Demo

['CP Channel

“truck”  Inference Result

Client APP Server Program

Figure 5: Mobile system implementation.

3.4 Mobile System Implementation

Figure 5 illustrates the implementation of our protective perturba-
tion system, which consists of a mobile app running on an Android
smartphone and a server running on a workstation connected via a
TCP communication channel. The app integrates the perturbation
generator with the image recognition application, and it executes
the perturbation generator (described in Section 3.2) to perturb
the input image before offloading it to the server. After receiving
the protected input image, the server executes the target DNN
model for image recognition and returns the inference results to
the smartphone. We adopt PyTorch Mobile [8] and PyTorch [34]
in the implementation of the mobile app and the server program,
respectively.

3.5 Case Study

Figure 6 shows a case study of our proposed protective perturbation
approach. The user intends to send a set of privacy-sensitive images
(in Figure 6a) to the service provider for image recognition using
ResNet34. Without applying protective perturbation, the sensitive
images are all exposed to the service provider while completing the
image recognition task, which is a direct breach of visual privacy
as discussed in Section 2.3.

To eliminate the visual privacy issue, the user employs our pro-
posed protective perturbation mechanism to protect the input im-
ages. In this case, the user chooses ResNet18 as the auxiliary model
and trains the perturbation generator using the procedure pre-
sented in Section 3.3. Then, before offloading the images to the
service provider end, the user executes the perturbation generator
to add perturbations in the sensitive images (Figure 6b). As a result,
the same image recognition results are returned from the service
provider without any side effects (i.e., the non-intrusive objective is
achieved), but now the images are completely invisible to human

169

Mengmei Ye, Zhongze Tang, Huy Phan, Yi Xie, Bo Yuan, and Sheng Wei

(b) Perturbed Images

(a) Original Images

Figure 6: Example of original images (left) and the perturbed
version (right). In this case, the target model is ResNet34,
and the auxiliary model is ResNet18.

eyes, which eliminates the visual privacy concern. Note that the
protective perturbations blurred the entire images that may be ex-
posed to any adversary, without being specific to certain features
or adversaries, which is compliant with the unique features of the
visual privacy problem discussed in Section 1.1.

4 EXPERIMENTAL RESULTS

4.1 Implementation and Experimental Setup

4.1.1 Dataset. We train and test our protective perturbation gen-
erator based on the CIFAR-10 dataset [23], which contains 60K
32 x 32 RGB images in 10 classes, with 6K images per class. We use
the original CIFAR-10 training dataset (50K images) and split the
CIFAR-10 test dataset (10K images) into two halves as our validation
dataset and test dataset. The dataset is provided by the torchvision
library [28]. We preprocess the images in the dataset following [35].

4.1.2 Target and Auxiliary Models. We evaluate 8 neural network
models pre-trained by [35] as our target image recognition models,
which include VGG13_bn, VGG16_bn [43], ResNet18, ResNet34 [19],
DenseNet121 [20], MobileNet_v2 [42], GoogLeNet [45], and Incep-
tion_v3 [46]. The properties (i.e., name, accuracy on validation
dataset, number of parameters, and the size) of the 8 neural net-
works are listed in Table 1. For each target model, we apply the 7
other models as the auxiliary models and, therefore, we have 56
pairwise combinations of target model and auxiliary model for the
experiments. The target models are those with privacy-sensitive
inputs under protection, and they provide true labels of both the
original inputs and the protected inputs. The auxiliary models pro-
vide another way to provide true labels of the original inputs but
wrong labels of the protected inputs.

4.1.3 Training and Validation Processes. First, we define loss pa-
rameters based on Equation (4) in Section 3.3. In the loss function,
®@target> Waux, and wgy are set as 1.0, 1.0, and 0.5, respectively,
which come from the experiments. In the training process, we use
AdamW [26] as our optimizer, in which we set 0.001 as the learning
rate for the GoogLeNet (target model) and VGG13_bn (auxiliary
model) pair, and 0.005 for the rest of the target-auxiliary model
pairs; the weight decay is 0.0005 with other parameters remaining
as default. We define the batch size as 256, the maximum epoch
number as 100, the number of workers as 8, and the precision bit
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(a) Prediction Accuracy of Target Models

(b) Prediction Accuracy of Auxiliary Models

Figure 7: Prediction accuracy results of the target and auxiliary models on the protected images. The x-axis indicates the target
models; the y-axis indicates the accuracy values (%); and the legend indicates the auxiliary models and the baseline (i.e., on

the original images).

Table 1: Properties of target and auxiliary models [35]. From
left to right, the four columns are: model name, the accuracy
on the validation dataset, the number of parameters, and the
size of the pre-trained model.

Model Val. Acc. No.Params Size (MB)
VGG13_bn 94.22% 28334 M 109
VGG16_bn 94.00% 33.647 M 129

ResNet18 93.07% 11.174 M 43
ResNet34 93.34% 21.282 M 82
DenseNet121 94.06% 6.956 M 28
MobileNet_v2 93.91% 2237 M 9
GoogLeNet 92.85% 5.491 M 22
Inception_v3 93.74% 21.640 M 83

as 16. After the training process, the validation process selects the
best trained generator with the lowest loss value among all the 100
epochs. Pytorch [34] and Pytorch Lightning [15] are adopted to
train and test our proposed method.

4.14 Hardware Setup. In the training and validation processes, we
use a GPU workstation with NVIDIA RTX A6000 48GB GPU, 16-core
3.0 GHz Intel i9-10980XE CPU, and 128GB RAM. We deploy the
trained generator model on a Pixel 3 smartphone with Snapdragon
845 SoC for the effectiveness and timing evaluations. In addition, the
timing evaluations of the target models and the trained generators
are performed on the same GPU workstation, under CPU-only and
GPU-accelerated settings.
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4.2 Effectiveness Evaluation

We conduct the effectiveness evaluation for all the 56 experiments
with the test dataset. In each experiment, we evaluate the prediction
accuracy for both the target model and the auxiliary model on the
protected images generated by the trained protective perturbation
generator.

4.2.1 Evaluation Metrics. We apply the following two metrics to
evaluate the effectiveness of the protective perturbations.

o Prediction accuracy: As shown in Equation (5), the accuracy cal-
culates a matching rate of true labels and predicted labels for
the protected images. The baseline results indicate the accuracy
for the original images. The implementation of the accuracy
calculation is based on [7].

e SSIM [52]: SSIM is a widely adopted metric for the quality of
images. In this case, a lower SSIM value indicates less similarity
between an protected image and an original image and, therefore,
the lower the SSIM value is, the more difficult for human to recog-
nize (i.e., better privacy protection). Considering that a negative
SSIM value means an inverted structure of the image [53], the
SSIM values we present in the evaluations are absolute values.
The implementation of SSIM is based on [9].

2

0<i<N
Pred;=Label;

1
— X 100% (5)
N

Accuracy =

4.2.2  Evaluation Results. Figure 7(a) and 7(b) present the predic-
tion accuracy of the target models and the auxiliary models, re-
spectively. There are 56 pairwise experiments with the 8 target
models and 7 auxiliary models each. Among them, there are 38
experiments achieving high accuracy of the target models that only
reduces less than 5% compared to the baseline case, justifying the
non-intrusive objective for machine vision. For the accuracy of the
auxiliary models, the results are between 0.74% and 10.34%, which
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Figure 8: SSIM results on the protected images. The x-axis indicates the target models; the y-axis indicates the SSIM values;
and the legend indicates the auxiliary models and the case without auxiliary model (i.e., black bars).

Table 2: Target model accuracy of the protective perturba-
tion generator with and without auxiliary models.

Target Model Auxiliary Model No
Min Median Max  Auxiliary

VGG13_bn 81.36% 90.86% 92.08% 92.58%
VGG16_bn 83.42% 91.34% 91.90% 91.48%
ResNet18 83.82% 89.18% 91.66% 91.22%
ResNet34 83.76% 90.98%  91.54% 91.82%
DenseNet121  80.20% 90.26%  91.74% 92.08%
MobileNet_v2 82.58% 88.88% 91.80% 91.84%
GoogLeNet 83.74% 85.84% 91.22% 90.08%
Inception_v3  87.56% 89.62% 91.62%  91.28%

indicate that the auxiliary models fail to recognize more than 89%
of the protected images, justifying the intrusive objective for human
vision.

Furthermore, to evaluate the role of the auxiliary model in per-
turbation generation, we compare the accuracy of the target models
with and without auxiliary models to train the generators, as shown
in Table 2. In the “with auxiliary model" case, most of the target
model accuracy results are slightly lower than the “no auxiliary
model" case, as the auxiliary models are intended to strengthen
the perturbations. However, the corresponding SSIM values with
auxiliary models are significantly lower than without auxiliary
models in most target-auxiliary model pairs, as shown in Figure 8,
which indicates the effectiveness of the auxiliary model in the loss
function, i.e., to achieve the intrusive objective for human vision.

To further illustrate the significance of the auxiliary models,
we present the protected image samples in Figure 9, where (a)-(h)
show the images from the generators without (left) and with (right)
the auxiliary models. The auxiliary models at the right subset of
images are selected by the lowest SSIM values. We observe that the
right subset of images in Figure 9(a)-(h) contains significantly more
successful protective perturbations than the left subset. Specifically,
most of the right subset meets the requirements of high accuracy
on the target models, low accuracy on the auxiliary models, and
low SSIM values.
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In addition, we compare the effectiveness of different auxiliary
models. Figure 10 presents the average target model accuracy results
for each auxiliary model. We observe that VGG13_bn is the best
auxiliary model to maintain the high accuracy for the target models,
while ResNet34 compromises the target model accuracy more than
other auxiliary models. Figure 11 presents the average SSIM results
for each auxiliary model, which indicate that VGG13_bn is the best
auxiliary model to minimize the similarity between the original
images and the protected images. Also, MobileNet_v2 performs the
worst on achieving low SSIM values for the protected images.

Table 3: Timing evaluations (ms) of the target models and
their corresponding protective perturbation generators.

. . Mobile
CPU Time (ms)  GPU Time (ms)
Target Model Time (ms)
Perturb. Perturb.  Perturb.
DNN
Gen. Gen. Gen.
VGG13_bn 1.116 1.355 0.012 0.047 10.717
VGG16_bn 1.262 1.324 0.012 0.047 10.840
ResNet18 0.540 1.349 0.018 0.047 10.706
ResNet34 0.827 1.392 0.027 0.047 10.824
DenseNet121 2.769 1.385 0.077 0.047 10.519
MobileNet_v2  3.580 1.210 0.033 0.048 10.735
GoogLeNet 10.636 1.195 0.045 0.048 10.747
Inception_v3  16.288 1.168 0.064 0.047 10.801

4.3 Overhead Evaluation

4.3.1 Generator Size. Our protective perturbation generator in-
volves 7.766 M parameters, and the parameter size is only 31 MB,
which can be considered as a lightweight model compared to most
of the target models presented in Table 1. The generator is based
on U-Net, and it inherits the advantage as a fully convolutional net-
work to accept different sizes of inputs. In other words, when our
protective perturbation is applied to another dataset with larger-
size input images (e.g., 224 X 224 in ImageNet[14]), the number of
parameters and the model size would not grow with the image size,
maintaining a scalable perturbation generator.
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Figure 9: Samples of protected images generated from the test dataset. Each subfigure shows the results for one target model
in two cases of the perturbation generator: (1) without auxiliary model (left group); and (2) with a specific auxiliary model
(right group). In the description of each image group, the first line introduces the target and auxiliary model information; the
second line presents the accuracy results of the target model and the auxiliary model (if the auxiliary model exists) for the
test dataset; and the third line shows the SSIM values for the test dataset.

4.3.2  Timing Overhead. We conduct a comprehensive set of timing
evaluations for the efficiency of the proposed perturbation gen-
eration approach. The timing evaluations are carried out under
a CPU-only case, a GPU-accelerated case, and on a smartphone
(described in Section 4.1.4) for comparison. We collect the execu-
tion times of the protective perturbation generators for 8 target
models. On the workstation, for each target model, we calculate
the average running time of the 8 generators with different auxil-
iary models. On the mobile phone, we measure the running time
of one generator for each target model, with DenseNet121 as the
fixed auxiliary model. The corresponding results are shown in
the Columns 3, 5 and 6 in Table 3. In the CPU-only case, it takes
1.168 ms to 1.392 ms to generate a protected image, while in the
GPU-accelerated case, it only takes 0.047 ms to 0.048 ms. On the
smartphone, the generation of a protected image takes 10.519 ms
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to 10.840 ms. These results indicate that our proposed protective
perturbation approach has a potential to be leveraged in real-time
video streaming scenarios as well, in addition to individual image
recognition. In addition, we also evaluate the performance of all
the target models for comparison, as shown in Columns 2 and 4 in
Table 3. The generator runs faster than half of the target DNN mod-
els under test (i.e., DenseNet121, MobileNet_v2, GoogLeNet and
Inception_v3) in the CPU-only case. In the GPU-accelerated case,
the generator is faster than DenseNet121 and Inception_v3 and has
almost the same timing performance as GoogLeNet. More impor-
tantly, the results indicate that the execution time of the generator
does not increase with the the growing complexity and scale of the
target model, which demonstrates the advantage and feasibility of
deploying the proposed approach on the user’s end. Overall, the
timing evaluations reveal the following:
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Figure 10: Average target model accuracy on the protected
images with auxiliary models.
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Figure 11: Average SSIM values on the protected images with
auxiliary models.

o The protected images can be generated in real-time on CPU, GPU
and even mobile devices, which indicates that, besides image clas-
sification applications, it is also feasible to deploy our proposed
method in privacy-preserving real-time video streaming.

o The execution time of the perturbation generator is not depen-
dent on the complexity of target models, indicating the potential
of larger-scale deployment for real-world DNN models.

5 DEPLOYMENT CONSIDERATIONS

5.1 Application Scenario

Privacy protection is crucial in many real-world systems and appli-
cation scenarios, with the obvious endangerment of data leakage
and the corresponding law enforcement efforts [2, 5]. As long as
people are exchanging information with other entities, the risk of
unattended disclosure of sensitive data would exist. In this paper,
we focus on solving such critical privacy concerns in the situation
where the user must send privacy sensitive images to an untrusted
service provider for recognition or search [3, 4, 21]. A protective
perturbation generator can be deployed on the user end to add the
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perturbations to the images. A perturbed (and thus protected) im-
age is blurred completely so that the adversary cannot extract any
private information from it (i.e., invisible to human vision). More-
over, the protected image can still be fed into the original image
recognition model (i.e., the target model) without breaking its orig-
inal functionality (i.e., visible to machine vision). Such client-side
deployment is non-intrusive to the already deployed DNN models,
which does not require remodeling or termination of services at
the provider end.

5.2 Deployment Modes

While the perturbation generator is deployed on the user end, it
can be trained by either the service provider or the user, leading to
two deployment modes depending on whether the target model is
accessible to the user and the resource limitations for training at
the user end.

e Deployment Mode 1: Proprietary target model. If the target
model is a proprietary intellectual property of the the service
provider, it would not be accessible by the end user to train the
perturbation generator. However, in this scenario, it is the best
interest of the service provider to train the perturbation genera-
tor and distribute it to the user as part of the product or service.
It is because privacy protection has already become an integral
part of many products and services that interact with users’ pri-
vate data, and proactively providing such protection would lead
to wider deployment of the target service compliant with the
privacy regulations.

e Deployment Mode 2: Open-source target model. If the tar-
get model is open source and fully accessible to the user, either
the user or the service provider can train the perturbation gener-
ator. The user end training can be carried out offline before the
adoption and execution of the third-party DNN model, which
does not impact the user-end runtime performance and, in the
meantime, would provide the users with higher confidence about
the privacy protection of their data.

6 RELATED WORK

The proposed protective perturbation approach is related to and
benefits from two domains of knowledge and developments, in-
cluding privacy preserving image recognition (from the application
perspective) and adversarial attacks (from the perspective of the
key technical approach).

6.1 Privacy Preserving Image Recognition

Several solutions have been proposed in the community to protect
the privacy in image recognition, including three categories:

Model Partitioning. Several research works [13, 18, 48] have
shown that the input image and the intermediate results during the
DNN execution could contain user’s privacy-sensitive information.
To maintain the private inference, partial layers that could leak
user privacy can be deployed at the user end. However, the model
could be trained by a confidential dataset, which is considered as
a proprietary asset [11]. Under this scenario, all the layers in the
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model are required to execute at the service provider end. There-
fore, further privacy-preserving solutions are required to resolve
the challenge of protecting both the user privacy and the model
intellectual property.

Homomorphic Encryption. Another privacy protection approach
is homomorphic encryption, which is different from the traditional
encryption in that it does not require decryption to perform the
computations. By leveraging homomorphic encryption, the service
provider can perform the image recognition tasks (e.g., face recogni-
tion) on the encrypted images directly, and only the user can access
the decrypted images [32, 40]. However, these methods result in
high computational overhead, which impacts the efficiency of the
image recognition system.

Image Blurring/Pixelation. Image blurring/pixelation has been
one of the popular solutions to protect the sensitive features in the
image. For example, researchers have applied differential privacy
to pixelate the sensitive features to protect user privacy [16, 51].
Also, the works presented in [38, 44, 54, 58] blur the faces, license
plates or other sensitive features in the images/videos to avoid
privacy exposure. However, these methods only protect specific
sensitive features in the image and cannot be applied for protecting
the images containing a variety of arbitrary sensitive features in the
user’s mind. Furthermore, noise-based training approaches have
been proposed [50], which adopts a generative model to inject noise
to the training dataset in order to generate a perturbation-resilient
DNN model. While this approach can be effective in achieving
the goal of visual privacy protection, it requires a full-fledged re-
training of the target DNN model, which is infeasible for the large
volumes of proprietary DNN models already commercially deployed
today. Our proposed protective perturbation approach also belongs
to this category of visual privacy protection using image blurring.
However, our approach addresses the limitations of these state-
of-the-art methods by blurring all the features and eliminating
the need of re-training the target DNN model. These benefits are
achieved by the proposed perturbation generator that leverages the
distinction between human and machine visions.

6.2 Adversarial Attacks

Adversarial attacks, such as PGD [27] and C&W [12], have been
studied in the deep learning and security communities recently.
There have been two major use cases of adversarial attacks pre-
sented in the community.

Traditional Adversarial Attacks. In traditional adversarial at-
tacks, very small perturbations (i.e., almost invisible to the human
visual perception) added to the input image could significantly alter
the DNN inference results (i.e., misleading the machine vision),
since the human visual perception is different from the machine
vision [49, 56]. Such attacks have been shown to be exploitable
by adversaries to compromise the robustness and security of deep
learning applications and systems [25, 57], which have drawn a
great deal of attention in the deep learning community to develop
effective countermeasures [29, 41].
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Benign Applications of Adversarial Attacks. Inspired by the
traditional adversarial attacks, there have been a small number of re-
cent research efforts that leverage adversarial perturbations as a de-
fense mechanism to prevent potential security attacks on the user’s
image, audio, or video data [24, 47, 55]. These approaches proac-
tively add adversarial perturbation to the objects (e.g., video and
audio) under protection, which would mislead machine learning-
based threat models (e.g., face authentication attack) but maintain
the original functionality of the application intended for human
vision. Different from the existing research, our proposed protective
perturbation approach targets an opposite optimization direction,
which maximizes the perturbations to interfere with the human
vision for privacy protection but minimizes the impact to machine
vision (i.e., DNN-based image recognition). The generated pertur-
bations serve as a privacy mask to prevent the exposure of user’s
private information.

7 LIMITATIONS AND DISCUSSIONS

Although our protective perturbation generator could produce pro-
tected images with high effectiveness and efficiency, there is still
room for improvement in the current method. In this section, we
discuss the technical limitations of the proposed approach, which
inspire our future work along this research direction.

7.1 Auxiliary Model Selection

As shown in Section 4, the auxiliary models play an important role
in the protective perturbations generation. In our current work,
we have evaluated all the target-auxiliary model pairs (i.e., 7 auxil-
iary models for each target model), which shows varying accuracy
results (as shown in Figure 7). The variations indicate potential
correlations between the two models based on their similarities or
other conditions. In our future work, we plan to conduct a more
intensive study on such correlations and further research on an
automatic selection mechanism to determine the optimal auxiliary
model for a given target model.

7.2 Parameter Tuning

In our current system implementation and evaluation, we mostly
fixed the parameters for all the generators with different target and
auxiliary models. Given the distinctions between different models,
there still exists room for improvement in the performance of the
perturbation generator if the parameter tuning process is more
customized to the individual models. In the future work, we plan to
apply individually tuned parameters for each target model during
the training process to further improve the effectiveness. Such
customized tuning can also benefit from the automatic auxiliary
model selection mechanism (discussed in Section 7.1), as the scope
of tuning can be narrowed down to the selected auxiliary models.

7.3 Privacy Evaluation

In our current evaluation, we employ SSIM to calculate the similar-
ity between the protected images and the original images, since it
is one of most widely used metrics to evaluate human-perceivable
image qualities. However, we acknowledge that there have been
studies showing that the SSIM metric may not always reflect hu-
man visual perception [30]. Therefore, we plan to apply different
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similarity functions in the future experiments, such as Singular
Value Decomposition (SVD) [16, 22]. Also, we plan to conduct a
user study to further evaluate the effectiveness of the protective
perturbations as a privacy protection measure in our future work.

7.4 Evaluation Datasets

We adopt CIFAR-10 as the dataset for evaluation in the current
study, as it is a commonly used image datasets to train the image
classification models. Also, with CIFAR-10 it is relatively fast to train
and run the DNN models while providing a moderate scale of image
size (32 X 32), number of images (50K training images and 10K test
images), and number of image classes (10 classes). This facilitates
our efforts of implementations and evaluations in the proof-of-
concept phase of this study. However, we acknowledge that more
comprehensive evaluations with larger datasets are desirable for the
deployment of the proposed approach. In our future work, we plan
to further evaluate our proposed protective perturbation approach
using more datasets with a larger variety of classes and image sizes
(e.g., CIFAR-100 [23] and ImageNet [14]).

8 CONCLUSION AND FUTURE WORK

We have developed a protective perturbation generator to preserve
user privacy in deep learning-based mobile image recognition ap-
plications. The perturbation generator can effectively obfuscate
the input image to prevent privacy leakage without impacting the
prediction accuracy on the target image recognition model. We
evaluated the effectiveness and efficiency of the generator using
the CIFAR-10 dataset with 8 target models. The results indicated
that the protected images achieved high prediction accuracy on the
target models and low prediction accuracy on the auxiliary models
representing adversaries. Also, the perturbation generator achieved
premium timing performance to support real-time applications.
More importantly, the proposed privacy protection approach does
not require re-training the already deployed legacy DNN models
on the service provider end, making it immediately deployable to
benefit real-world systems and applications. The repository of the
project is at https://github.com/hwsel/ProtectivePerturbation.

In the future work, in addition to addressing the limitations
presented in Section 7, we plan to promote the proposed protective
perturbation approach to a broader range of security and privacy
sensitive applications, which may involve more advanced DNN
or computer vision computations other than classification (e.g.,
image/video analytics, optical flow, and superresolution), or more
advanced multimedia types other than 2D images (e.g., 3D point
cloud and 360-degree videos). In this extended set of DNN and
multimedia applications, visual privacy is likely to become an even
more significant concern given the more prevalent application
domains and the finer-granularity of information exposure with the
rich multimedia. Meanwhile, it would be more challenging to adapt
the protective perturbation generation to these complex scenarios.
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