
Automatically Mining Program Build Information via
Signature Matching

[Extended Abstract]

Charng-da Lu, Matthew D. Jones, Thomas R. Furlani
Center for Computational Research

SUNY at Buffalo
Buffalo, NY 14203

{charngda,jonesm,furlani}@ccr.buffalo.edu

ABSTRACT
Program build information, such as compilers and libraries
used, is vitally important in an auditing and benchmark-
ing framework for HPC systems. We have developed a tool
to automatically extract this information using signature-
based detection, a common strategy employed by anti-virus
software to search for known patterns of data within the
program binaries. We formulate the patterns from various
”features” embedded in the program binaries, and the ex-
periment shows that our tool can successfully identify many
different compilers, libraries, and their versions.

Categories and Subject Descriptors
K.6.4 [Management of Computing and Information
Systems]: System Management—Management audit ; D.3.4
[Programming Languages]: Processors—Compilers, code
generation

General Terms
Management

Keywords
Technology audit, program provenance, static binary analy-
sis, ClamAV

1. INTRODUCTION
One important component in an auditing and benchmark-

ing framework for HPC systems [1] is to be able to report
the build information of program binaries. This is because
the program performance depends heavily on the compilers,
numerical libraries, and communication libraries. Moreover,
as mentioned in [2], there is an increasing interest from fund-
ing bodies such as National Science Foundation in software
and library usage on HPC systems they financed. This in-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
TeraGrid ’11, July 18-21, 2011, Salt Lake City, Utah, USA.
Copyright 2011 ACM 978-1-4503-0888-5/11/07 ...$10.00.

formation can gauge how well the HPC resources are meet-
ing their funding initiatives and scientific goals. From the
perspectives of system administrators, the program build
information can also help determine which compilers and
libraries are rarely used and hence safe to retire.

However, in most HPC systems, program build informa-
tion, if maintained at all, is recorded manually by system ad-
ministrators. Over time, the sheer number of software/library
packages of different versions, builds, and compilers of choice
can grow exponentially and become too daunting and bur-
densome to document. For example, at our local center
we have software packages built from 250 combinations of
different compilers and numerical/MPI libraries. On larger
systems such as Jaguar and Kraken at the Oak Ridge Na-
tional Laboratory, the number can be as high as 738 [2].

In this paper, we present a signature-matching approach
to automatically uncover the program build information.
This approach is akin to the common strategy employed
by anti-virus software to detect malware: search for a set
of known signatures. We exploit the following ”features” of
program binaries and create signatures out of them:

• Compiler-specific code snippets.

• Compiler-specific meta data.

• Library code snippets.

• Symbol versioning.

• Checksums.

Our approach has several advantages. First, we only need
to create, annotate, and maintain a database of signatures
gathered from compilers and libraries, and we can then run
the signature scanner over program binaries to derive their
build information. Second, unlike the anti-virus industry
where the malware code must be identified and extracted
by experts, our signature collection process is almost me-
chanical and can be performed by non-experts. Third, our
approach does not rely on symbolic information and thus
can handle stripped program binaries.

Our implementation is based on the advanced pattern
matching engine of ClamAV [3], an open-source anti-virus
package. We choose ClamAV for its open-source nature,
signature expressiveness and scanning speed.

2. PROGRAM BINARY CHARACTERISTICS
On most modern UNIX and its derivatives, the executable

binaries (both programs and libraries) are stored in a stan-
dard object file format called the Executable and Linking

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2016741.2016766&domain=pdf&date_stamp=2011-07-18

Format (ELF) [4]. An ELF file can be divided into named
”sections,” each of which serves a specific function at compile
time or runtime. There is a wealth of information embedded
in these sections and we give a brief description below.

The first example is the so-called ”processor dispatch”
code inserted (unbeknownst to the developers) by certain
x86 optimizing compilers, e.g. Intel and PGI. Its purpose
is to detect the capabilities (e.g. SSE3, SSE4.x, AVX) of
the CPU on which the program will run and re-route the
execution path to the code chunks optimized for that capa-
bility. This detection is necessary to avoid potential ”illegal
instruction” type errors.

The second example is the .comment section in ELF files.
It consists of null-terminated ASCII strings and is not loaded
into memory during execution. Almost all compilers we ex-
amined fill this section with their unique brand strings and
version numbers. Since this section is not purged by the
GNU strip utility, we can mine it to obtain the compiler
provenance.

The third example is statically-linked executables, which
contain code chunks from libraries they linked to. We can
obtain the library provenance of such executables by scan-
ning for static libraries code. For dynamically-linked exe-
cutables, the libraries can be easily identified by ldd utility
and the MD5 checksums of dynamic libraries.

The last example is a new feature introduced to ELF file
format called symbol versioning. This is a uniform self-
annotation for specifying the versions of routines in dynamic
libraries and the purpose is to allow better interoperability
and easier management of dynamic libraries of different ver-
sions. Symbol versioning is used extensively in the GNU
compiler collection (C, C++, Fortran, and OpenMP runtime
libraries), Myrinet libraries, and OpenFabrics / InfiniBand
Verbs libraries. It is possible to recognize these libraries
and their versions by simply examining their symbol version
tables.

3. IMPLEMENTATION
Our impementation is based on the open-source anti-virus

package ClamAV [3]. It comprises two tools: a signature
generator and a signature scanner. The signature gener-
ator takes ELF files and automatically outputs ClamAV-
formatted signature files. The signature scanner takes as
input the signature files and the executable binaries and
outputs all possible matches.

ClamAV has several different signature formats and our
implementation uses the Basic (plain hexadecimal strings)
and the RegEx (regular expression) formats because they
can be generated automatically. ClamAV’s pattern match-
ing algorithms are Wu-Manber and Aho-Corasick, which
can also be found in UNIX grep utility. The difference is
ClamAV’s implementation is highly optimized for seeking a
large set of signatures (tens of thousands) in a text.

4. EVALUATION
We evaluate our approach with both toy programs and

real-world HPC applications from our center. We compile
toy programs with a variety of compilers to test the effective-
ness of source compiler identification. We use the existing
HPC applications to assess both the compiler/library recog-
nition and ClamAV’s scanning performance.

We use fourteen 64-bit compilers on x86 Linux in our tests
with toy programs, and our scanner is able to identify all but

one (Clang) compilers. Since the output shows all possible
matches, we found that GCC is often in the matches as well,
even though it is not the compiler used. This is because
many C compilers strive to be compatible with GCC, so they
also use GCC’s code snippets. The results also show that
we can find the versions of the compilers used, for example,
the output from a PGI-compiled code:

Matches:
(58 times, 346766 bytes) PGI Fortran Compiler 11.x
(48 times, 56833 bytes) PGI Fortran Compiler 8.x
(45 times, 118288 bytes) PGI Fortran Compiler 10.x
(42 times, 49895 bytes) PGI Fortran Compiler 7.x
(32 times, 82808 bytes) PGI Compiler Suite 11.x
(29 times, 57166 bytes) PGI Compiler Suite 7.x
....
(2 times, 200 bytes) GCC 4.4.3

Such an output is typical, since many compilers reuse a
significant amount of code across each release.

We applied the scanner to a variety of real-world HPC ap-
plications from our center and a Cray XT5: Amber Charmm,
CPMD, GAMESS, Lammps, NAMD, NWChem, and PWscf.
We gather signatures from numerical and MPI libraries which
we know have been linked statically in these application
builds. The signature database has 100K signatures (one
signature per library routine). Generating this database is
very fast: The largest library we have ever encountered is
210 MB (libmkl_core.a in Intel MKL 10.3.1) and it takes
28 seconds (78% of this time is spent in I/O) to extract its
signatures. We also apply a compression scheme so each sig-
nature is no longer than 256 bytes long. Our results show
that the scanner can correctly identify all used libraries. The
scanning time t (in seconds) can be best described by the lin-
ear regressions t = −1.11+7.23x (2.5 GHz Intel Xeon L5420
”Harpertown”) and t = −5.44 + 6.98x (2.8 GHz X5560 ”Ne-
halem” node) where x is the application code size in MB,
and the scanner’s peak memory usage is 195 MB.

5. CONCLUSIONS
Compilers and libraries provenance reporting is crucial in

an auditing and benchmarking framework for HPC systems.
In this paper we present a simple and effective way to mine
this information via signature matching. Our tests show
correct identification of compilers and libraries and excellent
scanning speed on real-world HPC applications.

Acknowledgments
This work is supported by the National Science Foundation
under award number OCI 1025159.

6. REFERENCES
[1] T. R. Furlani and et al. Performance metrics and

auditing framework using applications kernels for high
performance computer systems. In preparation.

[2] B. Hadri, M. Fahey, and N. Jones. Identifying software
usage at HPC centers with the automatic library
tracking database. In TeraGrid Conference Proceedings,
2010.

[3] T. Kojm. http://www.clamav.net.

[4] M. Wilding and D. Behman. Self-service Linux:
Mastering the art of problem determination. Prentice
Hall, 2005.

