
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2014; 26:2191–2209
Published online 6 March 2014 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.3245
SPECIAL ISSUE PAPER

Comprehensive, open-source resource usage measurement
and analysis for HPC systems‡,§
James C. Browne1, Robert L. DeLeon2,*,†, Abani K. Patra3, William L. Barth4,
John Hammond4, Matthew D. Jones2, Thomas R. Furlani2, Barry I. Schneider5,
Steven M. Gallo2 Amin Ghadersohi2, Ryan J. Gentner2, Jeffrey T. Palmer2,

Nikolay Simakov2, Martins Innus2, Andrew E. Bruno2, Joseph P. White2, Cynthia D.
Cornelius2, Thomas Yearke2, Kyle Marcus2, Gregor von Laszewski6 and Fugang Wang6

1Department of Computer Science, University of Texas, Austin, TX 78758, USA
2Center for Computational Research, University at Buffalo, State University of New York, 701 Ellicott Street, Buffalo, NY

14203, USA
3Mechanical and Aerospace Engineering Department, University at Buffalo, State University of New York, Amherst, NY

14260, USA
4Texas Advanced Computing Center, University of Texas, Austin, TX 78758, USA

5National Institute of Science and Technology, Gaithersburg, MD, USA
6Pervasive Technology Institute, Indiana University, 2719 East 10th Street, Bloomington, IN 47408, USA
SUMMARY

The important role high-performance computing (HPC) resources play in science and engineering research,
coupled with its high cost (capital, power and manpower), short life and oversubscription, requires us to opti-
mize its usage – an outcome that is only possible if adequate analytical data are collected and used to drive sys-
tems management at different granularities – job, application, user and system. This paper presents a method for
comprehensive job, application and system-level resource use measurement, and analysis and its implementa-
tion. The steps in the method are system-wide collection of comprehensive resource use and performance
statistics at the job and node levels in a uniform format across all resources, mapping and storage of the resultant
job-wise data to a relational database, which enables further implementation and transformation of the data to
the formats required by specific statistical and analytical algorithms. Analyses can be carried out at different
levels of granularity: job, user, application or system-wide. Measurements are based on a new lightweight
job-centric measurement tool ‘TACC_Stats’, which gathers a comprehensive set of resource use metrics on
all compute nodes and data logged by the system scheduler. The data mapping and analysis tools are an exten-
sion of the XDMoD project. The method is illustrated with analyses of resource use for the Texas Advanced
Computing Center’s Lonestar4, Ranger and Stampede supercomputers and the HPC cluster at the Center for
Computational Research. The illustrations are focused on resource use at the system, job and application levels
and reveal many interesting insights into system usage patterns and also anomalous behavior due to failure/
misuse. The method can be applied to any system that runs the TACC_Stats measurement tool and a tool to
extract job execution environment data from the system scheduler. Copyright © 2014 JohnWiley & Sons, Ltd.

Received 28 January 2014; Revised 3 February 2014; Accepted 4 February 2014

KEY WORDS: TACC_Stats; XDMoD; XSEDE; system management; performance analysis; usage
analysis; SUPReMM; HPC resource management
*Correspondence to: Robert L. DeLeon, Center for Computational Research, University at Buffalo, State University of
New York, 701 Ellicott Street, Buffalo, NY 14203, USA.
†E-mail: rldeleon@buffalo.edu
‡Categories and Subject Descriptors.
§C.4 [Performance of Systems]: Design studies, Fault tolerance, Measurement techniques, Modeling techniques, Perfor-
mance attributes, Reliability, availability and serviceability.

Copyright © 2014 John Wiley & Sons, Ltd.



2192 J. C. BROWNE ET AL.

 15320634, 2014, 13, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.3245 by G

reg D
ean - U

niversity A
t B

uffalo (Suny) , W
iley O

nline Library on [30/03/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

rea
1. INTRODUCTION

High-performance computing (HPC) systems are complicated combinations of software, processors,
memory, networks and storage systems, which evolve rapidly with technology changes. The nature
of the workload for many HPC systems is also rapidly expanding as the spectrum of disciplines
utilizing HPCs grows. For systems using open-source software stacks with Linux as the operating
system, the capabilities for measurement of resource use have been inadequate to support effective,
comprehensive system management. HPC centers and their users and managers, at least those HPC
centers with open-source software stacks, have been, to some extent, ‘flying blind’, without
comprehensive information on system, application or job behavior. Anomalous behavior is usually
identified only if there is an egregious impact on system resources and has to be manually
diagnosed and remedied with incomplete and sparse data. Many if not most HPC centers lack
knowledge of the distribution, performance and resource use characteristics of the applications
running on their systems and therefore have no way of knowing if the applications are well tuned
and matched to the resource. This is especially worrisome because most HPC systems are purchased
based on performance for a projected job mix, which may in fact be significantly different from
their actual job mix. It is also difficult for users to assess the effectiveness of their HPC resource use
from this sparse information. System managers also need reliable ways to flag low performing jobs
that can then be investigated, and performance improvements are made.

In the past, the data available for system-level analyses come from multiple sources and in disparate
formats (from Linux ‘sysstat’ and several other Linux kernel utilities and accounting and scheduler/
kernel logs). Most of these measurements are not resolved to the job level. There are also many
user-oriented performance instrumentation and profiling tools, but most require extensive system
knowledge, code changes and recompilation, and thus are not widely used. This paper describes and
illustrates application of a new and comprehensive resource management system, Systems Usage
and Performance of Resources Monitoring and Modeling (SUPReMM). SUPReMM is based on
integration of TACC_Stats [1, 2], a comprehensive monitoring and measurement system, with the
XDMoD platform [3, 4] for system data analytics.

TACC_Stats is a job-oriented and logically structured enhancement to the conventional Linux
‘sysstat’ system-wide performance monitor [5]. In addition to the information gathered by systat,
TACC_Stats records hardware performance counter values, parallel filesystem metrics and high-
speed interconnect usage, resolving the measurements by job and core. The basic component is a
collector executed on every compute node, both at the beginning and end of each job (via batch
scheduler prolog and epilog scripts) and at periodic intervals (via cron). Data collection takes place
in the background, incurs very low overhead and requires no user intervention. TACC_Stats is
open-source and is freely available for download [2]. XDMoD [3, 4] was originally targeted at
providing the analyses required for effective overall management of the computational resources of
the XSEDE organization, although an open-source version is now available. XDMoD ingests and
organizes data on computer system behavior and then maps that data into metrics required for all-
over system management. XDMoD’s capabilities for analysis and reporting are primarily limited by
the available data.

The innovations and contributions reported in this paper include the following:

• design of a monitoring system, TACC_Stats, which measures use of all of the resources of an
HPC system with resolution to the job and node level with minimal overhead;

• an open-source implementation of this monitoring system customizable to different system
configurations;

• integration of the data generated by TACC_Stats into the XDMoD analysis and reporting system
to create the SUPReMM system management tool; and

• illustration of resource use analyses by comparison of resource use across systems at job, applica-
tion, discipline and full system levels. These analyses have not heretofore been available for HPC
systems based on open-source software.

Section 2 presents a discussion of previous related work. Section 3 gives an overview of XDMoD
and detailed description of resource measurements by TACC_Stats. Section 4 shows the utility of
Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2191–2209
DOI: 10.1002/cpe

tive C
om

m
ons License



OPEN-SOURCE HPC RESOURCE MANAGEMENT AND ANALYSIS 2193

 15320634, 2014, 13, D
ow

nloaded from
 https://onlinelibrar
the SUPReMM system management tool through a series of case studies, including analyses at the
system, application and job level across three different HPC systems operated by the Texas
Advanced Computing Center and the Center for Computational Research. Examples demonstrating
its utility to enhance the performance of user jobs are also included. Section 5 discusses the use of
the analyses and future work.
y.w
iley.com

/doi/10.1002/cpe.3245 by G
reg D

ean - U
niversity A

t B
uffalo (Suny) , W

iley O
nline Library on [30/03/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-co
2. RELATED WORK

Del Vento et al. [6] adopted a similar approach to tackling inefficient HPC resource utilization. The
goal in [6] was primarily optimization of user codes and applications. The system reported here does
support identification of resource use anomalies, but it has much broader goals and capabilities,
targeting information requirements of all stakeholders. Additionally, the monitoring and analysis
system in [6] is based on proprietary systems (IBM POWER/AIX), while the system reported here
is for HPC clusters based on Linux-based open-source software. Similarly, the OVIS [7, 8]
measurement and monitoring system designed for machines from Cray incorporates a lightweight
distributed metric service to collect a variety of resource use data, which is then streamed to a
remote database for analysis. Analysis comprises largely of outlier detection and failure prediction.
Preliminary work on application usage of these data in real time is also reported.

Reference [6] reports, that once problems were identified by their monitoring software, they were, with
collaboration with users, able to improve CPU usage (e.g., correct process affinity/CPU binding) and
troubleshoot thorny issues (e.g., memory leak). Once a job or application with a pattern of inefficient
use of one or more resources has been identified by our analyses and reports, we recommend that the
user or application developer (with collaboration from consulting staff) apply one of the many
performance optimization tools available for open-source clusters: Tau [9–11], HPCToolkit [12, 13],
IPM [14], Open SpeedShop [15], Scalasca [16], VTune [17], Paradyn [18] and PerfExpert [19, 20].

The most nearly comparable open-source system to SUPReMM is the HOPSA [21] project. The
goal of HOPSA is to create an integrated system for application and system tuning. It targets
generation of performance information for both applications/job and system administrators. HOPSA
is based on an integrated tool chain beginning with the LWM2 monitoring system, which collects
data on MPI communication, I/O activity, some metrics for sequential chip-level performance and
for heterogeneous nodes with accelerator chips, data on time spent executing CUDA and traffic
between the host and device. LMW2 gathers its data through instrumentation of the application and
periodic sampling of performance counters. The data gathered by LMW2 are stored in a data base.
The HOPSA tool chain may then invoke updated versions of several performance optimization tools
including ThreadSpotter [22], Scalasca [23], Paraver [24] and Vampir Systems [25]; administrators
may directly access the database of performance data.
nditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
rea
3. RESOURCE MEASUREMENT AND ANALYSIS TOOLS

3.1. XDMoD framework

Here, we present a brief overview of XDMoD, a more detailed description can be found in References
[3, 4]. The XDMoD portal provides a rich set of features accessible through an intuitive graphical
interface, which is tailored to the role of the user. Metrics provided by XDMoD include number of
jobs, CPUs consumed, wait time and wall time, with minimum, maximum and the average of these
metrics, in addition to many others. These metrics can be broken down by field of science,
institution, job size, job wall time, National Science Foundation (NSF) directorate, NSF user status,
parent science, person, principal investigator and by resource. Performance and quality of service
metrics of the HPC infrastructure are also provided, along with application code specific
performance metrics (flops, IO rates, network metrics, etc.) for all applications running on a given
resource (through TACC_Stats).
Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2191–2209
DOI: 10.1002/cpe

tive C
om

m
ons License



2194 J. C. BROWNE ET AL.

 15320634, 2014, 13, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.3245 by G

reg D
ean - U

niversity A
t B

uffalo (Suny) , W
iley O

nline Library on [30/03/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-an
A context-sensitive drill-down capability is available for many charts allowing users to access
additional related information simply by clicking inside a plot and then selecting the desired metric
to explore. Another key feature is the Usage Explorer that allows the user to make a custom plot of
any metric or combination of metrics filtered or aggregated as desired. For example, Figure 1, which
was created using the Usage Explorer, shows CPU hours and wait time versus job size on a local
university-based HPC resource at the Center for Computational Research at SUNY-Buffalo.

The XDMoD tool is also designed to preemptively identify underperforming hardware and software
by deploying customized, computationally lightweight ‘application kernels’ that continuously monitor
HPC system performance and reliability from the application users’ point of view [3, 4]. The term
‘application kernel’ is used in this case to represent micro and standard benchmarks that represent
key performance features of modern scientific and engineering applications, and small but
representative calculations carried out with popular open-source high-performance scientific and
engineering software packages. The term ‘computationally lightweight’ is used to indicate that the
application kernel runs for a short period (typically less than 10min) on a small number of
processors (less that 128 cores) and therefore requires relatively modest resources for a given run
frequency (say once or twice per week). Accordingly, through XDMoD, system managers have the
ability to proactively monitor system performance as opposed to having to rely on users to report
failures or underperforming hardware and software. The detection of anomalous application kernel
performance is being automated through the implementation of process control techniques. In
addition, through this framework, new users can determine which of the available systems are best
suited to address their computational needs.

In addition, metrics that focus on scientific impact, such as publications, citations and external
funding, are now being developed and incorporated into XDMoD to help quantify the role modern
cyberinfrastructure plays in advancing research.

While the XDMoD framework was initially designed to meet the needs of XSEDE, much of its
functionality is applicable to HPC centers in general. Both XSEDE and other HPC centers typically
employ the concept of users, compute jobs, project groups, help desk tickets, scientific publications
and one or more HPC resources (e.g., compute cluster and storage pool). Users also fall into a
similar hierarchical organizational structure differing only in the terms used to describe nodes in the
hierarchy. On XSEDE, users are associated with one or more projects or allocations, each with their
own principal investigator. An individual project is associated with an NSF directorate and field of
science; an academic HPC center may group users by discipline unit and department; an industrial
HPC center may group users by project and department. Similarly, the job-level information collected
can include a job name, wall-clock time, start and end dates, memory utilization and other metrics.

Taking advantage of the great similarity of XSEDE and a typical HPC center, we have developed an
initial release of Open_XDMoD, the open-source version of XDMoD, which leverages the same code
base. In fact, development of the open-source version has led to the refactoring of several parts of
Figure 1. Plot of CPU hours consumed and job wait time versus job size for a 1-week period at the Univer-
sity at Buffalo Center for Computational Research.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2191–2209
DOI: 10.1002/cpe

d-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



OPEN-SOURCE HPC RESOURCE MANAGEMENT AND ANALYSIS 2195

 15320634, 2014, 13, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.3245 by G

reg D
ean
XDMoD in order to make it more flexible, easier to maintain and simpler to add new functionality in
the future. As XDMoD continues to be developed, Open_XDMoD will also benefit from this work.

Both versions share many of the same metrics and functionality (e.g., Summary, Usage/Usage
Explorer and Report Generator) and differ mainly in support of elements specific to XSEDE.
XSEDE maintains a centralized infrastructure (XSEDE central database) for storing job accounting
records, users and allocations/projects, while a typical HPC center may not have these data in a
centralized location. Open_XDMoD provides its own data warehouse with support for parsing and
loading of resource manager log files and spreadsheets containing user information including
departmental affiliations. In addition, future versions will support allocations, and integration with
local LDAP services, and application kernels for monitoring Quality of Service. Open_XDMoD will
be able to inspect the data available in its warehouse and disable the display of metrics that it is not
able to reliably generate. For example, if a center does not choose to provide a departmental or
project hierarchy for users, then metrics including these will not be displayed.
 - U
niversity A

t B
uffalo (Suny) , W

iley O
nline Library on [30/03/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
3.2. TACC_Stats

The Linux sysstat package is a comprehensive collection of performance monitoring utilities, each of
which reports resource statistics of specific components of a system in its own format. TACC_Stats
enhances sysstat/sar for the open-source software-based HPC environment in many ways. It is a
single executable binary that covers all performance measurement functions of sysstat and outputs in
a unified, consistent and self-describing plain-text format. It is batch job aware: Performance data
are tagged with batch job id to enable offline job-by-job profile analysis. It supports newer Linux
counters and hardware devices. Its source code [2] is also highly modular and can be easily
extended to gather new kinds of performance metrics.

Currently, TACC_Stats can gather core-level CPU usage (user time, system time, idle, etc), socket-
level memory usage (free, used, cached, etc), swapping/paging activities, system load and process
statistics, network and block device counters, interprocess communications (SysV IPC), software/
hardware interrupt request (IRQ) count, filesystems usage (NFS, Lustre, Panasas), interconnect
fabric traffic and CPU hardware performance counters. For a complete list of the data acquired by
TACC_Stats, see the TACC_Stats web site [2].

Different chips have different sets of performance counters. Therefore, the set of performance
counter derived metrics available may vary across systems. TACC_Stats utilizes CPU performance
counters as follows. At the beginning of the job, TACC_Stats is invoked by the batch scheduler
prolog to reprogram performance counters to record a fixed set of events. On AMD Opteron, the
events are FLOPS, memory accesses, data cache fills and SMP/Non-Uniform Memory Access
(NUMA) traffic. On Intel Nehalem/Westmere, the events are FLOPS, SMP/NUMA traffic and L1
data cache hits. On Intel Sandy Bridge, the events are SSE and AVX FLOPS, memory traffic and
cache traffic. In order to not interfere with user’s own profiling and instrumentation activities, at
periodic invocations (currently every 10min), TACC_Stats only reads values from performance
registers, without reprogramming them, to avoid overriding measurements initiated by users. In
addition to the data gathered by TACC_Stats, data from the system scheduler and the job
management system are collected and coordinated with TACC_Stats data.
ibrary for rules of use; O
A

 articles are governed by the applicable C
rea
4. CASE STUDIES

In this section, we present the results of several case studies that demonstrate SUPReMM’s (XDMoD/
TACC_Stats) utility for comprehensive HPC system management. The first case study looks at the
ability of XDMoD’s application kernels to measure quality of service and help identify
underperforming hardware and system software. The second case study demonstrates the utility of
TACC_Stats to provide detailed resource utilization metrics for all jobs across a given HPC system.
The third case study shows how SUPReMM can be used to automatically identify underperforming
applications, which can subsequently be tuned to improve performance.
Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2191–2209
DOI: 10.1002/cpe

tive C
om

m
ons License



2196 J. C. BROWNE ET AL.

 15320634, 2014, 13, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.3245 by G

reg D
ean - U

niversity A
t B

uffalo (Suny) , W
iley O

nline Library on [30/03/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

re
4.1. Optimizing HPC system operation through application kernels

The HPC center directors have system-related diagnostics, such as network bandwidth utilized,
processing loads, number of jobs run and local usage statistics available to characterize their
workloads and audit the infrastructure performance. However, this does not provide them with the
means to determine how well the computing infrastructure is operating with respect to the actual
scientific and engineering applications for which these HPC platforms are designed and operated.
Benchmarks cannot fill this gap because in reality, benchmarks are so intrusive that they are not run
very often (see, for example, Reference [26] in which the application performance suite is run on a
quarterly basis), and in most cases, only when the HPC platform is initially deployed or significantly
upgraded. In addition, benchmarks are typically run by a systems administrator on an idle system
under preferred conditions and not as a user in a normal production operation scenario and therefore
do not necessarily reflect the performance that a user will experience. Modern HPC infrastructure is
a complex combination of hardware and software environments that are continuously evolving, so it
is difficult at any one time to know if optimal performance of the infrastructure is being realized.
Indeed, as the following examples illustrate, it is more likely than not that performance is less than
optimal, resulting in diminished productivity (CPU cycles and failed jobs) on systems that are
typically oversubscribed. Accordingly, the key to a successful and robust science and engineering-
based HPC technology audit capability lies in the development of a diverse set of computationally
lightweight application kernels that will run continuously on HPC resources to monitor and measure
system performance, including critical components such as the global filesystem performance, local
processor and memory performance, and network latency and bandwidth. The application kernels
are designed to address this deficiency, and to do so from the perspective of the end-user applications.

We use the term ‘kernel’ in this case to represent micro and standard benchmarks that represent key
performance features of modern scientific and engineering applications, as well as small but
representative calculations carried out with popular open-source high-performance scientific and
engineering software packages. Details can be found in References [3, 4]. We have distilled
lightweight benchmarking kernels from widely used open-source scientific applications that are
designed to run quickly with an initially targeted wall-clock time of less than 10min. However, we
also anticipate a need for more demanding kernels in order to stress larger computing systems
subject to the needs of HPC resource providers to conduct more extensive testing. While a single
application kernel will not simultaneously test all of these aspects of machine performance, the full
suite of kernels will stress all of the important performance-limiting subsystems and components.
Crucial to the success of the application kernel testing strategy is the inclusion of historical test data
within the XDMoD system. With this capability, site administrators can easily monitor the results of
application kernel runs for troubleshooting performance issues at their site. Indeed, as the following
cases illustrate, early implementation of application kernels has already proven invaluable in identifying
underperforming and sporadically failing infrastructure that would have likely gone unnoticed, resulting
in frustrated end-users and wasted CPU cycles on machines that are already oversubscribed.

Application Kernels have already successfully detected runtime errors on popular codes that are
frequently run on XSEDE resources. For example, Figure 2 shows the execution time over the
course of 2months for an application kernel based on NWChem, a widely used quantum chemistry
program that is run daily on the large production cluster at the Center for Computational Research at
SUNY-Buffalo. While the behavior for eight cores (one node) is as expected, calculations on 16
cores (two nodes) in May showed wildly sporadic behavior, with some jobs failing out right and
others taking as much as seven times longer to run. The source of the performance degradation was
eventually traced to a software bug in the I/O stack of a commercial parallel file system, which was
subsequently fixed by the vendor, as evidenced by the normal behavior in the application kernel
after June 6. Indeed, the software patch to fix this problem is now part of the vendor’s standard
operating system release. It is important to note that this error was going on unnoticed by the
administrators and user community for some time and was only uncovered as a result of the suite of
application kernels run with results being carefully monitored.

Figure 3 shows a sudden decrease in file system performance on Lonestar4 as measured by three
different application kernels (IOR, MPI-Tile-IO and IMB). The IOR and MPI-Tile-IO both show a
Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2191–2209
DOI: 10.1002/cpe

ative C
om

m
ons License



Figure 3. Application kernel data for IMB (blue), IOR (red) and MPI-Tile-IO (black) on Lonestar4. IOR and
MPI-Tile-IO data show sudden drop of aggregate write throughput bandwidth, and the IMB data show an

increase in latency starting on July 24–25, 2012.

Figure 2. Plot of execution time of the NWChem application kernel on eight cores (blue line) and 16 cores
(red line) over a several month period. Calculations on 16 cores show wildly sporadic performance

degradation until early June when a patch to a bug in a parallel file system was installed.

OPEN-SOURCE HPC RESOURCE MANAGEMENT AND ANALYSIS 2197

 15320634, 2014, 13, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.3245 by G

reg D
ean - U

niversity A
t B

uffalo (Suny) , W
iley O

nline Library on [30/03/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

re
sudden decrease in the aggregate write throughput bandwidth, while IMB, which measures latency,
shows an equally sudden increase in latency. The degradation in performance was related to a
system-wide upgrade and was subsequently brought back to normal performance level after
notification of the degradation. Once again, without application kernels periodically surveying this
space to uncover quality of service issues, the loss in performance would has gone unnoticed.

One of the most problematic scenarios entails a single node posing a critical slowdown in which the
cumulative resources for a job (possibly running on thousands of processing elements) are practically
idled because of an unexpected load imbalance. It is very difficult for system support personnel to
preemptively catch such problems, with the result that the end-users are the ‘canaries’ that report
damaged or underperforming resources, often after investigations that are very expensive both in
terms of computational resources and personnel time. An active monitoring capability designed to
automatically detect such problems is therefore highly desirable. For example, Figure 4 shows the
results of a log file analysis of CCR’s large production cluster consisting of more than 1000 nodes.
By examining only the size of the log files generated on each node (large log file size is indicative
of errors), we were able to detect a loose cable on one node and a job scheduler error on another
node, both of which resulted in failed jobs. Without such analysis, the loose cable and job scheduler
errors would have likely gone undetected, resulting in many failed jobs, frustrated users and
underperformance of the resource. While analysis of system log files is not currently included within
the XDMoD framework, it is anticipated that future versions will implement this analysis, given its
utility in identifying faulty hardware. The Ancor [27] system uses TACC_Stats data to identify jobs
with notable resource use anomalies and then analyzes the system logs to determine if the job
developed a fault or there was a system failure as a result of the resource use anomaly. Ancor has
been demonstrated to deliver accurate analyses of the causes of many system failures.
Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2191–2209
DOI: 10.1002/cpe

ative C
om

m
ons License



Figure 4. Plot of log file analysis for each node in CCR’s production cluster. Two nodes produce very large
log files. One node was found to have a loose cable and the other a job scheduler error, both resulting in

failed jobs.

2198 J. C. BROWNE ET AL.

 15320634, 2014, 13, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.3245 by G

reg D
ean - U

niversity A
t B

uffalo (Suny) , W
iley O

nline Library on [30/03/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

rea
4.2. Measuring resource utilization from TACC_Stats data

The case studies reported in this subsection were carried out on the Ranger, Lonestar4 and Stampede
supercomputers at the Texas Advanced Computing Center (TACC). Ranger (decommissioned as of
February 2013) was a Linux cluster comprising of 3936 nodes, each of which had four 2.3 GHz
AMD Opteron quad-core processors (16 cores in total) and 32GB of memory. The filesystem was
Lustre, and the interconnect was InfiniBand. Lonestar4 is also a Linux cluster with 1088 Dell
PowerEdgeM610 compute nodes. Each compute node has two Intel Xeon 5680 series 3.33GHz
hexa-core processors and 24GB of memory. The Lonestar4 has two filesystem types: Lustre and
NFS, and its interconnect is InfiniBand (NFS is connected via Ethernet). Stampede is also a Linux
cluster comprising 6400 primary compute nodes each of which has two Intel Xeon E5-2680
2.7GHz processors and 32GB of memory. The filesystem is Lustre, and the interconnect is QDR
InfiniBand. TACC_Stats has been deployed on Ranger for 20months, Lonestar4 for 14months and
Stampede for 9months. On Ranger, for example, it generated a raw data file of 0.5MB per node per
day and collectively 60GB (uncompressed) or 20GB (compressed) for the entire cluster per month.

We analyzed TACC_Stats data collected on Ranger during June 2011 to January 2013 with a total
of 521,010 jobs and Lonestar4 data from November 2011 to January 2013 with a total of 337,011 jobs.
For Stampede, jobs from January 2013 to October 2013 were generally used. For some calculations
involving recently added metrics, data only from the period of September 19 to October 27 were
used. The jobs included in this study are those longer than the default TACC_Stats sampling
interval of 10min. We ingested both the raw TACC_Stats output files and job accounting
information into the XDMoD data warehouse (currently utilizes a MySQL database).

The following analyses will mainly utilize seven key TACC_Stats metrics and closely related
quantities: cpu_user (fraction of the CPU utilized by the job in user space), mem_used (per node
memory used), cpu_flops (floating-point operations per second produced on a job), io_scratch_write,
io_work_write (writing to the scratch and work file systems), net_ib_rx (received messages in bytes
per second on the InfiniBand network), and numa_hit (NUMA, successful access of main memory
closest to a particular CPU core by a process running on that core) and numa_miss where a process
accessed memory from main memory connected through another CPU socket/memory interface.
Based on a correlation analysis over all of the measured metrics, we have selected the smallest
independent set of metrics that describe the execution behavior of the job mix on each system. We
also define 1 – cpu_user as the approximate fraction of the CPU that is idle.

4.2.1. Resource use for all jobs across a system. The Lonstar4, Ranger and Stampede job duration
distributions are given in Figure 5. Figure 5 (as well as Figures 6–9) shows the kernel density [28]
(produced by the R statistical software environment) rather than a histogram in order to avoid
making binning choices. As evident in Figure 5, on all three systems, most jobs execute in less than
2.8 h (10,000 s) with the density of short jobs being more pronounced on Stampede. (For the present
discussion, we arbitrarily classify a job of less than 2.8 h as short.) The Lonestar4 distribution shows
a main peak of short jobs with a secondary maximum at 24 h. For Ranger, the distribution for the
first 24 h is similar, but the tail is more prominent. There is also, for Ranger, another set of jobs
Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2191–2209
DOI: 10.1002/cpe

tive C
om

m
ons License



Figure 5. Distribution of Ranger (red, left axis), Lonestar4 (blue, left axis) and Stampede (green, right axis)
jobs by wall time in hours.

Figure 6. Lonestar4 (blue), Ranger (red) and Stampede (green) job size distribution in number of nodes.

Figure 7. Distribution of user mode fraction of CPU for Ranger (red), Lonestar4 (blue) and Stampede (green).

Figure 8. Distribution of memory used minus disk_cache in Gbytes per node for Stampede (green),
Lonestar4 (blue) and Ranger (red) jobs.

OPEN-SOURCE HPC RESOURCE MANAGEMENT AND ANALYSIS 2199

 15320634, 2014, 13, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.3245 by G

reg D
ean - U

niversity A
t B

uffalo (Suny) , W
iley O

nline Library on [30/03/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

rea
running out to a final peak at 48 h. These jobs were those run from Ranger’s special ‘long’ job queue.
The 24 and 48-h jobs are commonly jobs that can restart from checkpoint data. The secondary peaks
are a result of the job queuing policy. The peak at 24 h is much smaller for Stampede than for
Ranger or LoneStar4, and there is no appreciable peak at 48 h – even though closer examination
reveals that the number of such jobs is reasonable for the short time span of data used here. The
lack of pronounced peaks for Stampede is because, while the job mix is similar, Stampede’s
Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2191–2209
DOI: 10.1002/cpe

tive C
om

m
ons License



Figure 9. Distribution of Non-Uniform Memory Access accesses of jobs on Ranger (red, left axis) and
Lonestar4 (blue, right axis).

2200 J. C. BROWNE ET AL.

 15320634, 2014, 13, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.3245 by G

reg D
ean - U

niversity A
t B

uffalo (Suny) , W
iley O

nline Library on [30/03/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

rea
scheduling policies are different from Ranger and Lonestar4, and Stampede executes many jobs a
factor of 4 or 5 faster than Ranger. Figure 6 shows the distribution of the number of nodes
employed by the jobs on Lonestar4, Ranger and Stampede. While Ranger and Lonestar4 show a
very similar distribution, jobs on Stampede have a bit of a different distribution but a similar
average value of nodes used.

Figure 7 shows that most jobs on Stampede, Lonestar4 and Ranger have a high CPU user busy
fraction. A program with a high user mode CPU fraction may or may not be using the CPU
efficiently. A low CPU user mode fraction does suggest the application’s performance may not be
efficient. Most jobs are clustered in the 0.95–1.00 fractional CPU use range. Note the clustering of
jobs on vertical lines corresponds to particular values of cpu_user. These are jobs that use only a
fraction of the cores available on the compute nodes; each peak indicates a specific number of cores
used per node. For Ranger, each node is equipped with 16 cores. The peaks appear at 0.75 (12
cores), 0.50 (eight cores), 0.25 (four cores) and 0.0625 (one core). For Lonestar4, each node is
equipped with 12 cores. The peaks appear at 0.667 (eight cores), 0.50 (six cores), 0.333 (four cores)
and 0.083 (one core). For Lonstar4, there is also a very strong cluster at 0.042 corresponding to 1/2
core. For Stampede, the only strong peaks are at 0.0625 (1 core out of the 16) and ~0.032 (1/2 core).

Memory usage varies greatly across jobs on all three systems, as shown in Figure 8. However, most
jobs use only a small fraction, ~5–15%, of the available memory (for each node) of 24GB on
Lonestar4 and 32GB on Ranger and Stampede. Given the total cost of memory for large clusters,
information such as this would be useful during the design phase of system purchase.

A NUMA efficiency can be defined as

numa_eff ¼ numa_hit= numa_hitþ numa_missð Þ:

Using this definition, we can look at the distribution of numa_eff of Lonestar4 and Ranger jobs
(Note: This metric was not available for Stampede at the time the data used for this analysis were
gathered but is now available.) The numa_efficiency for Ranger and Lonestar4 numa_eff are plotted
in Figure 9. The curve for Lonestar4 is very sharply peaked near unity indicating generally good
NUMA performance. On Ranger, most jobs are also close to 100% of chip-local memory accesses,
but the distribution is broader with a tail of less efficient jobs.

The five metrics shown in Figures 5–9 are only a few examples of the data tracked by TACC_Stats.
Similar analyses for all other resource classes are also available. These analyses can also be obtained
separately for different days of the week and different hours of the day. The availability of these
data gives a basis for systematic formulation of scheduling policies based on reliable data, which
meet policy goals without engendering resource bottlenecks.

4.2.2. CPU and memory usage by top applications. The CPU and memory use for the most
frequently used applications based on node-hours is also of considerable interest because
improvements in the resource use characteristics of these systems produces benefit for many users.
The application information is captured by the MPI job launcher ‘ibrun’ on the three TACC
systems. It records the job id, the executable binary’s full path name, the checksum of the binary
Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2191–2209
DOI: 10.1002/cpe

tive C
om

m
ons License



OPEN-SOURCE HPC RESOURCE MANAGEMENT AND ANALYSIS 2201

 15320634, 2014, 13, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.3245 by G

reg D
ean - U

niversit
and all of its dependent dynamic linked libraries. We map the executable binaries to a list of well-
known HPC applications using simple regular expression matching on their full path names. It
should be noted that for many jobs, the executable binaries are the user’s own code and cannot be
identified as known HPC applications.

The top 15 applications by node-hour for all three systems are shown in Figures 10–12. The memory
use is calculated as the memory used minus disk cache divided by available memory. In general, the
CPU user mode fraction is very high, with the memory usage fraction much lower as expected from
Figure 8 with memory use on Stampede typically higher. Very few of the largest consumers of
node-hours have low CPU use fractions.

In general, the molecular dynamic codes show high CPU user fractions while requiring only small to
moderate amounts of memory. On Lonestar4, the only widely used codes with relatively low CPU
fractional use are AEROSOFT GASP, GADGET and NWCHEM all of which use less than 0.7 of
the CPU. On Ranger, AMBER and GADGET show the lowest CPU and memory use, each using
~0.7 of the CPU and less than 1/3 of the memory. For Stampede, CACTUS, STELLARBOX and
WRF show the lowest CPU and memory use, all using less than 2/3 of the CPU and 1/3 of the memory.
Figure 10. Application’s fraction of time in CPU user mode and fraction of memory used on Lonestar4
sorted by node-hour. The right Y axis is the accumulated node-hours of the application.

Figure 11. Application’s fraction of time in CPU user mode and fraction of memory used on Ranger sorted
by node-hour. The right Y axis is the accumulated node-hours of the application.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2191–2209
DOI: 10.1002/cpe

y A
t B

uffalo (Suny) , W
iley O

nline Library on [30/03/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



Figure 12. Application’s fraction time in CPU user mode and fraction of memory used on Stampede sorted
by node-hour. The right Y axis is the accumulated node-hours of the application.

2202 J. C. BROWNE ET AL.

 15320634, 2014, 13, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.3245 by G

reg D
ean - U

niversity A
t B

uffalo (Suny) , W
iley O

nline Library on [30/03/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.co
4.2.3. Comparison of job resource use across systems. In this section, the resource use characteristics
of the machines on all jobs, long jobs and short jobs are compared across systems. We have chosen to
display four selected metrics. Figures 13–15 are bar charts comparing Lonestar4, Ranger and Stampede
for all jobs, short jobs (<2.8 h) and long jobs using four of the seven TACC_Stats metrics
(fraction_cpu_user, fraction_mem_used, scratch_write and work_write) that describe the CPU use,
network use and memory use across the three systems.

FLOPS cannot be compared directly across the systems because the counters used record different
events on different architectures (Intel vs. AMD). For all jobs, see Figure 13, the comparison shows
that memory use fraction and scratch_write traffic are significantly larger on Stampede than on the
other two systems. Scratch_write is substantially greater on all systems than work_write for all three
systems. The sharp increase in scratch_write for Stampede probably arises because (1) most users
did not change their codes when migrating to Stampede, (2) many jobs do output either at
synchronization points or periodically at fixed intervals and (3) Stampede runs many jobs four or
five times faster than Ranger or Lonestar4. Figures 14 and 15 show that the greater volume of
scratch_write I/O is even more pronounced for small jobs than for all jobs, but there is less
difference for long jobs.
Figure 13. Comparison of all jobs (jobs> 0.1 h) on Lonestar4 (blue), Ranger (red) and Stampede (green)
using key tacc_stats metrics. Fraction_cpu_user and fraction_mem_used range from 0 to 1. Scratch_write

and work_write are in MB.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2191–2209
DOI: 10.1002/cpe

m
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Figure 14. Comparison of short jobs (0.1 h< jobs< 24 h) on Lonestar4 (blue), Ranger (red) and Stampede
(green) using key tacc_stats metrics. Fraction_cpu_user and fraction_mem_used range from 0 to 1.

Scratch_write and work_write are in MB.

Figure 15. Comparison of long jobs (jobs> 24 h) on Lonestar4 (blue), Ranger (red) and Stampede (green)
using key tacc_stats metrics. Fraction_cpu_user and fraction_mem_used range from 0 to 1. Scratch_write

and work_write are in MB.

OPEN-SOURCE HPC RESOURCE MANAGEMENT AND ANALYSIS 2203

 15320634, 2014, 13, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.3245 by G

reg D
ean - U

niversity A
t B

uffalo (Suny) , W
iley O

nline Library on [30/03/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

rea
The jobs have similar user CPU fractions across all three systems and relatively little variation in
user CPU fractions across long and short jobs. Short and long jobs have similar memory use per
node but long jobs do considerable less write I/O. The substantially greater average memory per
node use on Stampede over Ranger and Lonestar4 is, in view of the similarity of other resource use
metrics, an interesting question for which we have no explanation and which merits further analysis.

4.2.4. Resource use patterns by science domain across systems. We have compared the resource use
across Lonestar4, Ranger and Stampede for jobs in different fields of science using the same four metrics
that were used for the job comparison. The field of science is based on the allocation name of each job. On
Stampede, Ranger and Lonestar4, TeraGrid/XSEDE jobs have a prefix of TG-XXX in the allocation
name, and XXX is the short code for NSF-designated field of science. Figures 16–19 show the
resource use characteristics of Physics, Chemistry, Molecular Biology and Atmospheric Science.

There are significant differences in resource use both within a discipline across machines and across
fields of science. The amount of memory used by physics codes is a factor of 4 higher on Stampede
than on Ranger. The volume of scratch write of Chemistry codes is much higher on Stampede than
on Ranger or Lonestar4, although work_write volume is more similar. Atmospheric Science usage is
Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2191–2209
DOI: 10.1002/cpe

tive C
om

m
ons License



Figure 16. Comparison of Physics usage on Ranger(red), Lonestar4(blue) and Stampede (green) using key
tacc_stats metrics. Fraction_cpu_user and fraction_mem_used range from 0 to 1. Scratch_write and

work_write are in MB.

igure 17. Comparison of Chemistry usage on Ranger(red), Lonestar4(blue) and Stampede(green) using key
cc_stats metrics. Fraction_cpu_user and fraction_mem_used range from 0 to 1. Scratch_write and

work_write are in MB.

2204 J. C. BROWNE ET AL.

 15320634, 2014, 13, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.3245 by G

reg D
ean - U

niversity A
t B

uffalo (Suny) , W
iley O

nline Library on [30/03/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-
F
ta
conditions) on W
iley O

nl
very similar to that of Chemistry. Physics has a lower scratch write across all three systems. Molecular
Biology has a considerably lower user CPU fraction on Stampede (~0.57) than on Lonestar4 or Ranger
(0.85). While user CPU fractions are in general a little lower on Stampede than the other two systems,
this magitude of difference suggests further study of the Molecular Biology codes.
ine Library for rules of use; O
A

 articles are governed by the applicable C
re
4.3. Analyzing end-user application performance

This section gives the first results from a systematic program to develop a suite of metrics and analyses
to identify jobs with performance anomalies, which suggest correctable inefficient resource use. These
metrics are computed daily for the jobs executed in the previous day, and jobs that meet the criteria for
anomalous resource use are flagged for review by the TACC User Consulting Staff. The great utility of
SUPReMM lies in its ability to not only detect these poorly performing jobs but also diagnose them to
suggest potential remedies. Not only do the users of the improved application benefit by faster
turnaround time but also all center users benefit through the recovery of wasted CPU cycles.

The first metric identifies nearly idle hosts in a parallel job. For the metric, we compute the
maximum L1 cache bandwidth and maximum floating-point operation rate at each time sample
Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2191–2209
DOI: 10.1002/cpe

ative C
om

m
ons License



Figure 18. Comparison of Molecular Biology usage on Ranger(red), Lonestar4(blue) and Stampede (green)
using key tacc_stats metrics. Fraction_cpu_user and fraction_mem_used range from 0 to 1. Scratch_write

and work_write are in MB.

Figure 19. Comparison of Atmospheric Science usage on Ranger(red), Lonestar4(blue) and Stampede
(green) using key tacc_stats metrics. Fraction_cpu_user and fraction_mem_used range from 0 to 1.

Scratch_write and work_write are in MB.

OPEN-SOURCE HPC RESOURCE MANAGEMENT AND ANALYSIS 2205

 15320634, 2014, 13, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.3245 by G

reg D
ean - U

niversity A
t B

uffalo (Suny) , W
iley O

nline Library on [30/03/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

rea
across hosts in a job. We compute the ratio of the individual rate for each host in the job to its
respective maximum. If the time average of this rate is less than 0.1% for either L1 cache rate or
floating-point operations, we flag the job for further evaluation. Using this approach on Ranger, we
identified a user with a two-node GROMACS job with an apparently idle host. Communication with
the user determined that they had incorrectly started GROMACS leading to runs with no MPI
parallelism. After being given the correct syntax, the user was able to execute GROMACS correctly
and achieve 50–60% performance improvement over their initial approach.

The second metric we have defined looks for jobs with steep, sustained drops in their apparent level
of work. Again using L1 cache bandwidth as a proxy for useful work, we fit a step function to the
performance of each host in the job and look for hosts with average performance drop greater than
99.9%. For each host, we divide the time into two intervals on either side of a chosen sample and
compute the time average in the left and right intervals, thereby fitting a step function to the data
with the jump at the chosen sample point. If for any host in a job the ratio between the left and right
fitting constants exceeds 99.9%, we flag the job for further evaluation.

Based on this performance drop metric, we automatically flagged a job on Stampede on October 12,
2013. The L1 cache performance for this job is plotted in Figure 20. It is clear from these data that the
job suffered from a large change in performance near the 22 h mark. Further investigation showed that
Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2191–2209
DOI: 10.1002/cpe

tive C
om

m
ons License



Figure 20. L1 cache performance for a job on Stampede flagged by the performance drop metric. Note the
change in performance around the 22 h mark.

2206 J. C. BROWNE ET AL.

 15320634, 2014, 13, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.3245 by G

reg D
ean - U

niversity A
t B

uffalo (Suny) , W
iley O

nline Library on [30/03/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-an
a single host also initiated a slow data transfer at this time lasting a little more than 2 h (Figure 20).
Contact with the user revealed that they were serially copying local data from each hosts’ temporary
storage area to the scratch file system on Stampede. After further consultation, the user was able to
replace this serial computation with a parallel transfer simultaneously from each host in the job,
reducing the total run time of this previously serial section remarkably from 124 to 4min, as
demonstrated by the follow up job in Figure 21.

It is also interesting to study the fractional CPU usage, in terms of cores per node, as an additional
measure of efficiency. For example, an analysis was carried out on CCR’s production cluster in which
the fractional usage of eight-core nodes was calculated based on the SUPReMM data. A histogram of
these data, shown in Figure 22, indicates that a small but distinct group of jobs are using only one of
the eight cores. From Figure 22, CCR staff identified the poorly performing jobs and then carried out a
more detailed analysis of each job’s operational characteristics to determine the cause of the high idle
CPU fraction. For those jobs for which there appeared to be no valid reason for the poor CPU
utilization (i.e., high IO bandwidth or large memory requirements), CCR staff reached out to the
users to see what if any improvements could be obtained. For a number of users, the modifications
were straightforward and easily implemented.

The poorly performing jobs tended to fall into one of two cases. The first case involved complex
computational pipelines, where incorrect resources were requested for the jobs, specifically,
requesting two nodes when the pipeline no longer contained a distributed parallel component. The
computation could not make use of the cores and memory on the second node. Serial processing
tended to dominate the pipeline, along with high memory requirements.
Figure 21. L1 cache performance for a job on Stampede flagged by the performance drop metric after the job
was fixed. Note the improvement in performance compared to Figure 20 at 22 h.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2191–2209
DOI: 10.1002/cpe

d-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Figure 22. Histogram of equivalent busy cores for CCR eight-core nodes. A value near 8 indicates an efficient
codewith the eight cores busymost of the time. The secondary peak at ~1 indicates jobs utilizing only one of the

eight available cores in a node.

OPEN-SOURCE HPC RESOURCE MANAGEMENT AND ANALYSIS 2207

 15320634, 2014, 13, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.3245 by G

reg D
ean - U

niversity A
t B

uffalo (Suny) , W
iley O

nline Library on [30/03/2023]. See the Ter
Application parallelism was at the heart of the second case. Users assumed that the application would
take advantage of multiple cores, which was not necessarily the case for specific computations. We found
that these users tended to rely on the default amount of memory, rather than specifying the actual memory
required for the computations.

In summary, the poorly performing jobs identified from Figure 22 were under requesting memory for
the computations and assuming tasking parallelism that was not necessarily present in the application or
code – resulting in wasted CPU cycles on a cluster that is significantly oversubscribed. CCR’s cluster is
not unique in this regard, and clearly, the ability for HPC center personnel to characterize the workload
on their machines to identify underperforming application codes is highly desirable.
m
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

re
5. DISCUSSION AND FUTURE WORK

The primary focus of this paper has been to demonstrate the ability of the SUPReMM resource
management system to provide detailed job and system-level information and analytics of the
workload running on multiple HPC resources. While characterizing resource utilization at the job,
application and system levels are useful in its own right; the benefit of the analyses based on which
can be generated by SUPReMM lies in the ability to tune system and application performance, to
configure systems for optimal cost/return, to plan new systems and to improve overall resource
utilization. Given the oversubscription of most if not all HPC resources, this capability is
particularly desirable. Accordingly, future work will center on a detailed investigation of some of
the application and system inefficiencies uncovered by the study carried out here.

For example, we briefly described initial efforts in contacting the owners of particularly poorly running
jobs to better understand their workflow and determine if steps can be taken to mitigate the
underperformance. In the future, these steps are likely to include a wide range of remedies, some
simple to implement and others requiring a more substantial effort. For example, given the high
operational efficiency of the molecular dynamics package NAMD relative to other widely used MD
packages (as shown in Figures 10–12), HPC centers might choose to encourage users to consider
NAMD for their simulations. Furthermore, although it is hardly surprising to learn that some
applications run considerably better on certain machine architectures, with TACC_Stats, we can easily
identify those applications and provide incentives for users to run on architectures best suited for their
application. Additionally, a very similar analysis to that shown in Figures 10–12 of CPU and memory
efficiency can be carried out for individual users, as opposed to applications, to determine which users
are using the resources efficiently and which are not. Such quantitative information can be input for a
more appropriate allocation for such users.
Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2191–2209
DOI: 10.1002/cpe

ative C
om

m
ons License



2208 J. C. BROWNE ET AL.

 15320634, 2014, 13, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.3245 by G

reg D
ean - U

niversity A
t B

uffalo
The data, especially the comparative analysis across architectures and usage classes, raise interesting
questions. For example, one could argue that given the very different demands placed on machines by
users from different fields of science (Figures 16–19), NSF, DOE and other national sources of
cyberinfrastructure should consider providing a ‘bouquet’ of machines tuned to different user groups
rather than the monolithic general purpose machines of today. Although we only briefly alluded to
the challenges of analyzing the data generated by TACC_Stats, we are assessing various technologies
(e.g., NoSQL) to quickly process, store and query massive TACC_Stats data. This is critical, as it is a
key step to developing a capability to rapidly import TACC_Stats data into XDMoD, which will
greatly expand its access to end-users, systems administrators and center directors. As a first step, we
have presently incorporated TACC_Stats data summaries from Stampede, Lonestar4 and Ranger into a
developmental version of XDMoD; future public XDMoD releases will feature a TACC_Stats data
realm, and the data will therefore be widely available.

The SUPReMM project is working with XSEDE to install the system on all XSEDE computational
resources and ultimately on other HPC systems through the open-source version of XDMoD. This will
require identification of an ‘equivalent’ set of performance counters on each architecture and extraction
of parameters from some software systems such as the scheduler and file systems used in each system.
Finally, plans are underway to streamline the installation and setup of the SUPReMM system.
 (Suny) , W
iley O

nline Library on [30/03/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

re
ACKNOWLEDGEMENTS

This work is supported by the National Science Foundation under grant number OCI 1203560 for
SUPReMM, grant number OCI 1025159 for the development of technology audit service for XSEDE,
NSF grant number 1203560, and NSF MRI-R2 grant number 0959870 for Data Intensive Supercomputing.
We also acknowledge the help of Charng-Da Lu in processing some of the data used here.

REFERENCES

1. Hammond J. TACC_stats: I/O performance monitoring for the intransigent. 2011 Workshop for Interfaces and
Architectures for Scientific Data Storage (IASDS), 2011.

2. Available from: http://github.com/TACCProjects/tacc_stats [accessed on 21 Febuary 2014].
3. Furlani TR, Jones MD, Gallo SM, Bruno AE, Lu C-D, Ghadersohi A, Gentner RJ, Patra A, DeLeon RL, von Laszewski

G,Wang F, Zimmerman A. Performance metrics and auditing framework using application kernels for high performance
computer systems. Concurrency and Computation: Practice and Experience 2013; 25(7):918. [Online]. Available from:
http://dx.doi.org/10.1002/cpe.2871 XDMoD: http://xdmod.ccr.buffalo.edu; Open XDMoD: http://xdmod.sourceforge.net/
[accessed on 21 Febuary 2014].

4. Furlani TR, Schneider BI, Jones MD, Towns T, Hart DL, Gallo SM, DeLeon RL, Lu C-D, Ghadersohi A, Gentner RJ,
Patra AK, von Laszewski G, Wang F, Palmer JT, Simakov N. Using XDMoD to facilitate XSEDE operations, planning
and analysis. Proceedings of the Conference on Extreme Science and Engineering Discovery Environment: Gateway to
Discovery (XSEDE ’13), ACM, New York, NY, USA, 2013; Article 46, 8. DOI: 10.1145/2484762.2484763

5. Available from: http://sebastien.godard.pagesperso-orange.fr [accessed on 21 Febuary 2014].
6. Del Vento D, Engel T, Ghosh S, Hart D, Kelly R, Liu S, Valent R. System-level monitoring of floating-point

performance to improve effective system utilization. International Conference for High Performance Computing,
Networking, Storage and Analysis, 2011.

7. Brandt J, Gentile A, Thompson D. Develop feedback system for intelligent dynamic resource allocation to improve
application performance. SAND2011-6301, 2011.

8. Brandt J, Debusschere B, Gentile A, Mayo J, Pebay P, Thompson D, Wong M. OVIS-2: a robust distributed
architecture for scalable RAS. 22nd IEEE International Parallel and Distributed Processing Symposium, 4th
Workshop of System Management Techniques, Processes, and Services, 2008.

9. Huck KA, Malony AD, Shende S, Morris A. Knowledge support and automation for performance analysis with
PerfExplorer 2.0. Large-Scale Programming Tools and Environments, Special Issue of Scientific Programming
2008; 16(2-3):123–134.

10. Shende S, Malony A. The Tau parallel performance system. International Journal of High Performance Computing
Applications 2006; 20(2):287–311.

11. Tau. Available from: http://www.cs.uoregon.edu/research/tau/home.php [accessed on 21 Febuary 2014].
12. Tallent NR, Mellor-Crummey JM, Adhianto L, Fagan MW, Krentel M. HPCToolkit: performance tools for scientific

computing. Journal of Physics: Conference Series 2008; 125:012088.
13. HPCToolkit. Available from: http://www.hpctoolkit.org/ [accessed on 21 Febuary 2014].
14. Djoudi L, Barthou D, Carribault P, Lemuet C, Acquaviva JT, Jalby J. Exploring application performance: a new tool

for a static/dynamic approach. The Sixth Los Alamos Comp. Science Institute Symp., 2005.
15. Open|SpeedShop. Available from: http://www.openspeedshop.org/wp/ [accessed on 21 Febuary 2014].
Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2191–2209
DOI: 10.1002/cpe

ative C
om

m
ons License

http://www.openspeedshop.org/wp/


OPEN-SOURCE HPC RESOURCE MANAGEMENT AND ANALYSIS 2209

 15320634, 2014, 13, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.3245 by G

reg D
ean - U

niversity A
t B

uffalo (Suny) , W
i

16. Geimer M, Saviankou P, Strube A, Szebenyi Z, Wolf F, Wylie BJN. Further improving the scalability of the Scalasca
toolset. Proc. of PARA 2010: State of the Art in Scientific and Parallel Computing, Part II: Minisymposium Scalable
tools for High Performance Computing, Reykjavik, Iceland, June 6–9 2010, volume 7134 of Lecture Notes in Com-
puter Science, Springer, 2012; 463–474.

17. VTune. Available from: http://software.intel.com/intel-vtune-amplifier-xe [accessed on 21 Febuary 2014].
18. Miller BP, Callaghan MD, Cargille JM, Hollingsworth JK, Irvin RB, Karavanic KL, Kunchithapadam K, Newhall T.

The Paradyn parallel performance measurement tool. IEEE Computer 1995; 28:37–46.
19. Burtscher M, Kim BD, Diamond J, McCalpin J, Koesterke L, Browne J. PerfExpert: an easy-to-use performance

diagnosis tool for HPC applications. SC2010 Int. Conference for High-Performance Computing, Networking,
Storage and Analysis, November 2010.

20. PerfExpert. Available from: http://www.tacc.utexas.edu/perfexpert/ [accessed on 21 Febuary 2014].
21. HOPSA-Holistic Performance System Analysis. Available from: http://www.vi-hps.org/projects/hopsa/overview

[accessed on 21 Febuary 2014].
22. Threadspotter. Available from: http://www.roguewave.com/products/threadspotter.aspx [accessed on 21 Febuary 2014].
23. Scalasca. Available from: http://www.scalasca.org/ [accessed on 21 Febuary 2014].
24. Paraver. Available from: http://www.bsc.es/computer-sciences/performance-tools/paraver [accessed on 21 Febuary 2014].
25. Vampir. Available from: http://www.vampir.eu/ [accessed on 21 Febuary 2014].
26. Bennett PM. Sustained systems performance monitoring at the U.S. Department of Defense High Performance

Computing Modernization Program. State of the Practice Reports, ser. SC ’11, New York, NY, USA, ACM,
2011; 3:1–3:11. [Online]. Available from: http://doi.acm.org/10.1145/2063348.2063352

27. Chuah E, Jhumka A, Narasimhamurthy S, Browne JC, Hammond J, Barth W. Linking resource usage anomalies with
system failures from Cluster Log Data. Proc. Symposium on Reliable Distributed Systems, September 2013.

28. Scott DW. Multivariate Density Estimation. Wiley: New York, 1992.
Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2191–2209
DOI: 10.1002/cpe

ley O
nline Library on [30/03/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

http://www.vampir.eu/

