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ABSTRACT

A set of benchmarks, including numerical libraries and real-world
scientific applications, were run on several modern ARM systems
(Amazon Graviton 3/2, Futjutsu A64FX, Ampere Altra, Thunder X2)
and compared to x86 systems (Intel and AMD) as well as to hybrid
Intel x86/NVIDIA GPUs systems. For benchmarking automation,
the application kernel module of XDMoD was used. XDMoD is a
comprehensive suite for HPC resource utilization and performance
monitoring. The application kernel module enables continuous
performance monitoring of HPC resources through the regular exe-
cution of user applications. It has been used on the Ookami system
(one of the first USA-based Fujitsu ARM A64FX SVE 512 systems).
The applications used for this study span a variety of computa-
tional paradigms: HPCC (several HPC benchmarks), NWChem (ab
initio chemistry), Open Foam(partial differential equation solver),
GROMACS (biomolecular simulation), AI Benchmark Alpha (AI
benchmark) and Enzo (adaptive mesh refinement). ARM perfor-
mance, while generally slower, was nonetheless shown in many
cases to be comparable to current x86 counterparts and often out-
performs previous generations of x86 CPUs. In terms of energy
efficiency, which considers both power consumption and execution
time, ARM was shown in most cases to be more energy efficient
than x86 processors. In cases where GPU performance was tested,
the GPU systems showed the fastest speed and the highest energy

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HPCASIAWORKSHOP 2023, February 27-March 2, 2023, Raffles Blvd, Singapore

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9989-0/23/02...$15.00
https://doi.org/10.1145/3581576.3581618

Eva Siegmann

Robert J. Harrison
eva.siegmann@stonybrook.edu
robert.harrison@stonybrook.edu
Institute for Advanced Computational Science, Stony
Brook University
Stony Brook, NY, USA

efficiency. Given the high core count per node, comparable perfor-
mance, and competitive pricing, current high-end ARM CPUs are
already a valid choice as a primary HPC system processor.
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1 INTRODUCTION

The ARM CPUs are well known for their usage in embedded systems
and mobile computing devices such as smartphones and tablets.
For some time ARM CPUs have also been used in niche Linux
server products like file and web servers. More recently, several
ARM CPUs have been adapted to HPC workloads and some of them
were specifically designed for scientific calculations. The former
are Ampere Altra and Amazon Graviton 2. The latter are Fujitsu
A64 and partially Amazon Graviton 3. The homogeneous, Fujitsu
A64FX based, Fugaku supercomputer was the fastest supercomputer
for almost two years (June 2020 - May2022). Many computational
centers are already experimenting with ARM-based servers and the
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Figure 1: Application usage from 2021-01 to 2022-09-30 on Ookami cluster (an ARM Fujitsu A64FX machine with SVE support,

512 bit wide)

purpose of this work is to evaluate the readiness of software and
hardware for a potential migration to the ARM platform.

Our group provides utilization monitoring for one of the first
Fujitsu A64FX machines in the USA, the Ookami cluster, which is
installed in Stony Brook University. The XD Metrics on Demand
(XDMoD) tool was used to make Figure 1 which shows the applica-
tion usage on Ookami. XDMoD is designed for the comprehensive
management of HPC systems, provides users, managers, and op-
erations staff with access to utilization data, job and system level
performance data, and quality of service data for HPC resources [6].
Originally developed to provide an independent audit capability for
the XSEDE program, XDMoD was later open-sourced and is widely
used by the university, government, and industry HPC centers [15].

The application kernel performance monitoring module of XD-
MoD [20] allows automatic performance monitoring of HPC re-
sources through the periodic execution of application kernels, which
are based on benchmarks or real-world applications implemented
with sensible input parameters. In the past, the performance moni-
toring module was used to study the effect of node-sharing policies
on the performance of individual jobs [17] and the analysis of
the effects of Meltdown-Spectre remedies on application perfor-
mance [18]. This module is used in this work to benchmark the
ARM CPUs.

2 RELATED WORK

There are a number of works assessing the compute performance
and energy efficiency of the ARM system. In 2013 Jarus and oth-
ers [9] compared the 48-processor ARM Cortex A9 system to x86
machines of that time using seven benchmarks, including High
Performace LINPACK. The authors found that the tested ARM
CPU was often among the slowest CPUs but always had good
performance per Watt. Later, Magbool and others [11] obtained
similar results using a different ARM Cortex A9; they also included
a MySQL benchmark in their study. In 2019 McIntosh-Smith [12]
and others compared the performance of Cavium ThunderX2 in
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eight scientific applications, including CP2K, GROMACS, NAMD,
NEMO, OpenFOAM and VASP. The authors found that ThunderX2
provides the same level of performance and similar energy effi-
ciency as its x86 counterpart but for a smaller unit price. The most
recent study [5] compares the performance of three ARM CPUs
(Cavium ThunderX2, Ampere Alta and Fujitsu A64FX) individually
and in combination with NVIDIA GPUs (A100 and V100) on ten
scientific applications. The study concluded the modern ARM CPU
performed on par with the modern x86 and PowerPC CPUs.

The current work extends the earlier analysis with more mod-
ern CPUs, as well as, with cloud-based ARM machines. The study
is conducted on one benchmark and five applications. Several of
these were not used in earlier studies. We also perform an energy
efficiency estimation.

3 METHODS

The tests were executed automatically using the XDMoD applica-
tion kernel remote runner (AKRR) module. The automated process
parses the application output and ingests the results into the XD-
MoD database (see [20] for more details). Later the metrics were
queried from the database and analyzed in R. An application kernel
consists of an application run with a particular set of input parame-
ters. AKRR executes each benchmark or application as an individual
batch job. So each job is simply a single individual test-run executed
on the compute resource. For statistical analysis, we need to have
multiple jobs executed on the same hardware.

3.1 Compute Systems

We have tested five ARM CPUs including Fujitsu A64FX, Amazon
Graviton 2 and 3, Ampere Altra and Cavium ThunderX2. They were
compared to two x86 AMD CPUs (Zen2-Rome and Zen3-Millan)
and five x86 Intel CPUs (one Knight Landing, two Skylake-X, and
two Icelake). In addition to that we also tested two systems with
NVIDIA GPUS (with 2xV100 GPUs and 2xA100 GPUs). Overall,
eighteen different hardware configurations were used from nine
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Table 1: Compute systems tested in this study. Used abbreviation: SBU - Stony Brook University, AWS - Amazon Web Services,
PSC - Pittsburgh Supercomputing Center, SDSC - San-Diego Supercomputing Center, TACC - Texas Advanced Computing
Center, Purdue - Purdue Univeristy, UB - University at Buffalo, KNL - Knights Landing. Neov. - Neoverse

Resource CPU Arch/Core Proc. SIMD Release Cores Freq,GHz
Name , nm Date base/turbo
ARM
SBU Ookami Fujitsu A64FX v8.2-A 7 SVE 512b ~2019 48 1.8
SBU-Ookami Cavium ThunderX2 v8.1 14 NEON 128b 2018 64 2.0-25
AWS 48cores Amazon Graviton 2 v8.2, Neov. N1 7 128b Nov-19 48 2.6
AWS 48cores Amazon Graviton 3  v8.5, Neov. V1 5 SVE 512b Nov-21 48 2.5
AWS 64cores Amazon Graviton 3  v8.5, Neov. V1 5 SVE 512b Nov-21 64 2.5
Google 48cores Ampere Altra v8.2+, Neov. N1 7 128b Mar-21 48 Up to 3.0
Azure-Altra-48 Ampere Altra v8.2+, Neov.N1 7 128b Mar-21 48 Up to 3.0
Azure-Altra-64 Ampere Altra v8.2+, Neov. N1 7 128b Mar-21 64 Up to 3.0
x86 AMD
PSC-Bridges 2 EPYC 7742 Zen2(Rome) 14 AVX2 256b Mid-19 128 2.25/3.4
SDSC-Expanse EPYC 7742 Zen2(Rome) 14 AVX2 256b Mid-19 128 2.25/34
Purdue-Anvil EPYC 7763 Zen3(Milan) 7+ AVX2256b  Mar-21 128 2.45/3.5
x86 Intel
TACC-Stampede 2 Xeon Phi 7250 KNL 14 AVX512 Q22016 68 1.4/1.6
TACC-Stampede 2 Xeon Platinum 8160 Skylake-X 14 AVX512 Q32017 48 2.1/3.7
TACC-Stampede 2 Xeon Platinum 8380 Ice Lake 10 AVX512 Q22021 80 2.3/34
UB-HPC 32core Xeon Gold 6130 Skylake-X 14 AVX512 Q32017 32 2.1/3.7
UB-HPC 56core Xeon Gold 6330 Ice Lake 10 AVX512 Q22021 56 2/3.7
x86 Intel and NVIDIA GPU
UB-HPC V100x2 Xeon Gold 6130 Skylake-X 14 AVX512 Q32017 32 2.1/3.7
UB-HPC A100x2 Xeon Gold 6330 Ice Lake 10 AVX512 Q22021 56 2/3.7

different resource providers, including cloud and traditional HPC
services. The summary of the tested systems is shown in Table 1.
All calculations were performed on a single node or single virtual
machine instance.

Due to a large number of applications and systems tested as well
as multiple ways how applications can be built (different compilers
and libraries) we didn’t test every possible combination. That is
if the combination is not present it is usually because we didn’t
attempt running it.

The Fujitsu A64FX and Cavium ThunderX2 were accessed on
the Ookami system at Stony Brook Univerity. Amazon Graviton 2/3
and Ampere Altra were accessed through cloud services as virtual
machines. Amazon Web Services was used for Graviton 2 and 3.
Google Cloud and Microsoft Azure were used for Ampere Altra but
the exact CPU model is unknown to us. CloudBank [14] was used
to access these clouds.

The reference x86 CPU systems were from UB’s Center for Com-
putational Research as well as from several centers under the NSF
funded ACCESS-CI program [1], namely Pittsburgh Supercomput-
ing Center (PSC), San-Diego Supercomputing Center (SDSC), Texas
Advanced Computing Center (TACC) and Purdue University.

3.2 Application Kernels

Below is a description of the test applications and their associated
input parameters. Building compute-intensive scientific applica-
tions to work on such diverse compute systems is a challenging
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job. To simplify and automate the process, we used Spack [7], a
package manager for supercomputers. In the past, we had spent
some time ensuring that the recipes would engage the proper flags
for optimal compilation of the test applications, and our changes
were merged with upstream Spack.

HPCC (HPC Challenge) benchmark combines multiple bench-
marks together. Here we are reporting on three of them: High Per-
formance LINPACK, Matrix-Matrix multiplication and Fast Fourier
Transform (FFT). LINPACK solves a linear system of equations
using all cores in parallel. The performance is measured in Giga
Floating point Operations Per Second (GFLOPS) and corresponds
to the performance of the application on all allocated compute re-
sources. We also report GFLOPS/Core, which are the total GFLOPS
divided by the number of cores. Matrix-matrix multiplication is cal-
culated using dgemm routine from the BLAS library; the calculation
is done on all cores in an embarrassingly parallel way. The perfor-
mance is measured in GFLOPS/core, the cumulative performance
per all allocated resources is also calculated. The FFT is calculated
in parallel by all allocated resources. The performance is reported
in GFLOPS. Similarly to LINPACK we also report GFLOPS/Core.
The original HPCC only supported FFTW2 and built-in FFTE li-
braries. We have added FFTW3 API support and our changes was
recently accepted to upstream. We also implemented a Spack recipe
for HPCC, which has been added to the main Spack repository.

There are a large number of numeric libraries which perform
linear algebra and FFT. On Fujitsu A64FX, we tested the following
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combinations OpenBlas and FFTW3 (GCC toolchain), Fujitsu Nu-
meric Library and Fujitsu FFTW3 (Fujitsu toolchain), Cray LibSci
and Cray FFTW3 (Cray toolchain) and ARM Performance library
(ARM toolchain). For other ARM machines and x86 AMD machines
we used OpenBlas and FFTW3 (OSS toolchain). For x86 Intel ma-
chines, in addition to OpenBlas and FFTW3 (OSS toolchain) we also
used Intel MKL libraries.

Extracting energy efficiency metrics from HPCC is complicated
because it combines multiple tests and setups, some of which are
serial. Nevertheless, we are able to report on mean power, and
energy efficiency the number of complete HPCC runs per kWh
(jobs/kWh).

GROMACS is a computational software for the simulation of

biomolecular systems like proteins, membranes, DNA, and RNA [16].

It calculates how the atoms move over time under a classical physics
approximation by solving Ordinary Differential Equations based
on Newton’s first law. The benchmark used is a protein embedded
into a membrane and contains 81,743 atoms [10]. As a performance
metric, we use simulated nanoseconds in a day (ns/day); a higher
number corresponds to better performance. For energy efficiency,
we use simulated nanoseconds per user kilo-Watt-hours (ns/kWh,
larger-more efficient). Here the simulated nanoseconds correspond
to useful work done and kilo-Watt-hours is the energy used. To
estimate energy used in a day we used power averaged over the
second half of the job.

The tested compute systems have significantly different compute
abilities. Consequently, the wall time for the same test can differ
widely across the systems. The test also has to run for some time
so that the machine gets into a sustained state rather than an initial
frequency boost mode. Fortunately, because of the performance
metric that we used and given that the problem complexity doesn’t
change much over time, we can use a different number of steps for
the different compute systems. We use 50,000 steps for the slower
systems, 100,000 for the medium speed systems, and 200,000 for
the GPUs. Due to the problem size we can only utilize one GPU
efficiently, thus we use only one GPU of the two available GPUs.

NWChem [2] is a ab initio computational chemistry software
package developed by Pacific Northwest National Laboratory. The
input to the benchmark runs is the Hartree-Fock energy calculation
of a single gold ion (Au+) with MP2 and Coupled Cluster corrections.
This test case has been used by us for over a decade for performance
monitoring purposes. Modern systems have outgrown it as the
run time is typically under a minute, and in the future, we intend
to switch to a larger case. For the performance metric we used
wall time (i.e. smaller-better), and for energy efficiency, we use the
number of the test calculations done per kWh energy (jobs/kWh,
larger-better).

OpenFOAM is a library and a collection of applications for
the numerical solution of Partial Differential Equations. It is of-
ten employed for computational fluid dynamics. The test case
is a calculation of incompressible airflow around a motorcycle.
It is based on one of the tests included in the OpenFOAM suite
(incompressible\simpleFoam\motorBike). We have quadrupled
the initial grid in each direction to increase resolution and prob-
lem size. The grid is further refined around the obstacle, and the
Navier—Stokes equations are solved on an unstructured grid. Sim-
ilar to NWChem for performance metrics, we used wall time (i.e.
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Figure 2: Instantaneous electric power usage on Ookami (Fu-
jitsu A64FX) and UB-HPC (Intel Xeon Gold 6330) resources
during OpenFOAM application execution. Ookami has the
same energy consumption throughout the whole job while
UB-HPC has four distinct regions with different power loads.

smaller-better) and the test calculations done per kWh energy
(jobs/kWh, larger-better).

ENZO [3] is an Adaptive Mesh Refinement (AMR) code for astro-
physics and cosmology simulation. The test case is a reionization
simulation and is based on the ReionizationRadHydro example
provided with the Enzo software. In the test, the initial grid was
increased to 128x128x128, and the size was increased to 20 Mpc/h.

Similar to NWChem and ENZO for performance metrics, we are
using wall time (i.e. smaller-better) and the test calculations done
per kWh energy (jobs/kWh, larger-better).

AI-Benchmark-Alpha [8] includes multiple machine learning
tasks utilizing deep convolutional neural networks. The bench-
mark utilizes Tensorflow for the computation. Tests includes clas-
sification, image to image mapping, image segmentation, image
inpainting, sentence sentiment analysis and text translation. The
performance is reported as an Al Score, which is split into training
and inference scores. Each score is the geometric mean of the indi-
vidual test’s score multiplied by 10,000 (in order to be integer). The
individual score is the ratio of reference time and the actual test
time. NVIDIA TITAN X Pascal was used as a reference platform.
For this metric, higher scores correspond to better performance.
The energy efficiency is calculated as Al score per W.

3.3 Energy Consumption Measurements and
Estimations

On Ookami (Fujitsu A64FX machine) the power metrics were col-
lected from the baseboard management controller (BMC) on each
chassis via the intelligent platform management interface (IPMI).
Each chassis on Ookami has six compute nodes and the BMC pro-
vides one-minute average power usage for each compute node. The
Fujitsu A64FX CPUs on Ookami have a fixed clock rate and power
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consumption is very stable, and it is the same throughout the dura-
tion of the batch job (see Figure 2). Thus for the energy efficiency,
we used maximum power drained and mean power interchangeably
since in A64FX they are the same. Some of the tests were very short
and we were not able to get power measurements (for example,
HPCCQ). In this case, we used the mean power from OpenFOAM
runs since the A64FX power usage doesn’t change much over time.

To estimate the energy consumption of Ampere Altra CPU we
used the reported mean power during the GROMACS application
execution [13] and corrected it by the thermal design power (TDP)
difference between the CPU model used in the reference calculation
and the presumed model used in the Microsoft Azure and Google
Cloud (300 W (performance in GROMACS [13]) - (210 W - 180 W)
(which is the TDP difference between the CPU models)). For other
applications, we assumed that they are as compute-intensive as
GROMACS and will have similar power demands.

The compute nodes on the academic HPC cluster at UB CCR are
instrumented with the Prometheus monitoring software [4]. The
Prometheus IPMI exporter is used to collect power consumption
data from the data center manageability interface (DCMI) interface
on the BMC of each compute node. Intel’s Icelake CPU has a variable
power consumption depending on load pattern (Figure 2).

It is important to note that our power measures and estimates
only include the energy consumption of a single compute node and
do not take into consideration the energy use of other systems such
as network switches or cooling.

3.4 Source Code

e The XDMoD and application kernel remote runner source
code is given in https://open.xdmod.org/.

e Application kernel input files can be found in https://github.
com/ubccr/akrr/tree/master/akrr/appker_repo/inputs.

o The results of the tests and analysis scripts are available at

https://github.com/nsimakov/ARM_Benchmarks_IWAHPCE _

2023.

4 RESULTS AND DISCUSSION

We will open this section by describing our experience with building
all these benchmarks and applications on ARM machines and how it
is related to traditional x86 machines. For all cloud-based instances,
we used Spack for almost all applications, anecdotally we build a few
applications manually and their performance was actually slightly
slower. For Fujitsu A64FX, roughly half of the applications were
built manually and the remainder with Spack. AI-Benchmark and
Tensorflow were installed from binaries on all platforms. On x86
systems we utilized both manual and Spack installations. Overall
the building experience on ARM was similar to that of x86 systems.

When comparing the performance, it should be kept in mind
that most platforms have a range of CPU models from the same
generation with varying cores count, frequencies, and power con-
sumption. Thus the performance of different CPU models from the
same generation can vary significantly. Therefore in ARM and x86
processors’ comparison, instead of looking at absolute speed, we are
rather interested to see how the performance of ARM processors
is related to a performance range of x86 processors. In the case of
x86 we have tested multiple generations for Intel and AMD, and
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for Intel we also tested two CPU models within each generation.
Stampede 2’s Intel system has the top CPUs for Skylake-X and
Icelake generations, while the UB-HPC system has a more balanced
performance-price compromise. In the case of AMD, Anvil has the
top CPU from the Millan generation, while Bridges 2 and Expanse
have the second-best CPU model from the Rome generation (or-
dered by core count and base frequency). Such a wide selection
gives us good grounds for sensible comparison.

HPCC benchmark utilizes linear algebra (BLAS) and FFT li-
braries, which are widely used in scientific applications and there-
fore are of particular interest. The matrix-matrix multiplication is
one of the few practical calculations capable of approaching theo-
retical FLOPS and Single Instruction Multiple (SIMD) width plays a
crucial role here. As can be seen from Table 2 (matrix multiplication,
GFLOPS/core, column) CPUs with 512 bit wide SIMD instructions
have twice the performance of CPUs with more narrow SIMD in-
structions. Overall the CPUs with 512 bit wide SIMD show the
highest performance in this test, among them ARM Fujitsu A64FX
with the 512 bit wide SVE instruction set and Intel CPUs with the
AVX512 instruction set (excepting Xeon Phi). With the exception
of older and slower ThunderX2, the other ARM CPUs show slower
performance but comparable to AMD Zen2 CPUs.

In the LINPACK test, the SIMD width plays a lesser role and a
higher core count can lead to higher overall performance. Still in per-
core performance results are very similar for matrix multiplication.
ARM Fujitsu A64FX and Intel CPUs with AVX512 show the highest
per-core performance. Overall AMD Zen3 CPU shows the highest
per node performance.

For FFT, SIMD width importance is even less important and
although the Intel CPUs still show strong per core performance
Amazon Graviton 3 shows per core performance higher than several
current and older Intel CPUs. The performance of other the ARM
CPUs are very comparable to the x86 chips.

GROMACS and other molecular dynamics simulation programs
are among the top applications used on HPC resources [19]. There-
fore the fast performance of such programs is important for ARM
adoption. The per core performance of Graviton 2 and Ampere
Altra is similar to AMD Zen2 and the larger number of cores per
node allows it to outperform some Intel Skylake-X platforms (Ta-
ble 3). The Graviton 3, per-core performance, approaches the Intel
CPUs and outperforms the older AMD Zen2. GROMACS has an
efficient GPU implementation and not surprisingly, the NVIDIA
A100 GPU shows the highest performance. It is also the most energy
efficient. The ARM Fujitsu A64FX and Ampere Altrare are more
energy efficient than the Intel chips (by 25-30%).

Graviton 3 is the fastest in the ARM camp for NWChem, it is
faster than older or smaller Intel CPUs and similar to much larger
(core-wise) AMD CPUs. The fastest system is the 80 core Intel Ice
Lake machine. Fujitsu A64FX is two times slower than that but it
has 40% fewer cores. It is also 1.3 times slower than Xeon Gold 6330
but 2.6 times more energy efficient. Here the test problem is rather
small and some caution is needed with these conclusions.

For OpenFOAM we found very similar results to NWChem.
Graviton 3 is the fastest among the ARM CPUs and very close to
the newer and the fastest x86 system Table 5. Fujitsu A64FX is 3.4
times slower than the fastest solution. Interestingly A64FX is 2.5
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Table 2: HPCC performance. On Fujitsu A64FX performance of different libraries is reported, they are identified by the note in
the System column: GCC - OpenBlas and FFTW3, Fujitsu - Fujitsu SSL II Numeric Library and Fujitsu FFTW3, Cray - Cray LibSci
and Cray FFTW3, ARM - ARM Performance library, and ICC - Intel MKL for linear algebra and FFTE for FFT. The difference in
FFT for PSC-Bridges2 and SDSC-Expanse is due to different FFTW libraries (2 vs 3). * - a calculated estimate for azure-altra-64.
** - estimate from openfoam run. N - number of runs.

) o Energy
» | Matrics Multiplication LINPACK FFT
CPU/System § GFLOPS/C GFLOPS/ Po\\;vver' JotE)Zf;er N
GFLOPS GFLOPS/Core GFLOPS ore GFLOPS Core kWh
ARM Fujitsu A64FX, SVE 512b (SBU-Ookami, GCC) 48| 11363 28.4 +0.1|] 828 +27 17.3(1  6.2+0.7 0.13]110** 560 60
ARM Fujitsu A64FX, SVE 512b (SBU-Ookami, FJ) 48[ 1978 412 +0.2| 1177 £19 24.5|] 24.4£0.9 0.51|110** 185| 60
ARM Fujitsu A64FX, SVE 512b (SBU-Ookami, ARM) 48| hes1| 344 +1.8[0 1884172 18.4f 0.3 £0.0 0.01|110** 335 60
ARM Fujitsu A64FX, SVE 512b (SBU-Ookami, Cray) 48|F] 917| '19.1 #3.7|F ] 758 +149 158/l 6.8+06 0.14|110%** 204 60
ARM Cavium ThunderX2 (SBU-Ookami) 64|l 742 | 11.6 +2.1|F] 522 +106 8.2[F 133.5+3.7 0.52 14
ARM Amazon Graviton 2, Neoverse N1 (AWS) 48[F] 816 17 +0.0(] 682 +1 14281271 +0.6 0.56 20
ARM Amazon Graviton 3, Neoverse V1, SVE 256b (AWS) 48[F1 907| 118.9+0.3[F ] 776 +10 16.2(l0 55.4 +0.5 1.15 20
ARM Amazon Graviton 3, Neoverse V1, SVE 256b (AWS) 6411158 118.1 +0.0[ 1965 +1 15.1 71 £0.7 111 20
ARM Ampere Altra, Neoverse N1 (Azure) 48|l] 816 17 +0.0[L ] 675 +17 141\ ] 26.5+0.4 0.55 11
ARM Ampere Altra, Neoverse N1 (Azure) 48|l1 826| | 17.2 +0.0[F ] 691 +18 14.4|L 1 26.8 +0.7 0.56 11
ARM Ampere Altra, Neoverse N1 (Azure) 64| | 1037 16.2 +0.0[0 | 850 +4 13.3[F [33.1+1.1 0.52|270* 314 20
x86 AMD EPYC 7742 Zen2(Rome), AVX2 (PSC-Bridges-2) 128|0°2624  120.5 +0.7|71895 + 42 14.8l050.3 £0.3 0.39 20
x86 AMD EPYC 7742 Zen2(Rome), AVX2 (SDSC Expanse) 128(73200 25 + 1.4 (0071721 + 47 13.4(00071.8 £2.0 0.56 20
x86 AMD EPYC 7763 Zen3(Milan), AVX2 (Purdue Anvil) 12873046 23.8 +1.6|l12176 + 100 17.0[00°54.7 +4.8 0.43 20
x86 Intel Xeon Phi 7250, KNL, AVX512 (TACC-Stampede 2) 6sfl 340 5103|1986 8 14500 46.5 £0.7 0.68 20
x86 Intel Xeon Plat. 8160, Skylake-X, AVX512 (TACC-Stampede 2| 48[l 2122|442 +1.7| 1158 +34 24.1|F B5.8 +1.9 0.75 20
x86 Intel Xeon Plat. 8380, Ice Lake, AVX512 (TACC-Stampede 2) | 80| 3824 47.8 +0.6|0 1713 +5 21400764 £2.0 0.96 12
x86 Intel Xeon Gold 6130, Skylake-X, AVX512 (UB-HPC) 32| 11536 48 +2.0[ 1997 +54 312|509 +1.9 1.59(345+31 74| 53
x86 Intel Xeon Gold 6330, Ice Lake, AVX512 (UB-HPC) 56|l 2761|  49.3 +1.1|F 1396 +37 24.9|F47.9 +0.7 0.86|588+64 109 12
x86 Intel Xeon Gold 6330, Ice Lake, AVX512 (UB-HPC, ICC) s6[ll 2845 50.8 +1.0[ 1399 + 13 25.0[F 1282+03 0.50(501+107 299| 12

Table 3: Gromacs performance. In tests with the GPU only one GPU was used due to the small problem size. The GCC tag in
the System column indicates compilation with the GCC compiler, Fujitsu with the Fujitsu compiler and ICC with the Intel
compiler. N is the number of performed runs.

Simulation Speed, Simulation Speed Energy Efficiency,
CPU/System Cores per Core, Power, W N
ns/day ns/kWh
ns/day/core
ARM Fujitsu A64FX, SVE 512bit (SBU-Ookami, GCC) 48| 223 0.2 0.46 111+8 8.43 +0.6 | 32
ARM Fujitsu A64FX, SVE 512bit (SBU-Ookami, Fujitsu) 48| 22.8 £0.3 0.48 1055 9.06 +0.4 | 12
ARM Cavium ThunderX2 (SBU-Ookami) 641 28.8 +4.2 0.45 14
ARM Amazon Graviton 2, Neoverse N1 (AWS) 48| 37.8 £0.1 0.79 20
ARM Amazon Graviton 3, Neoverse V1, SVE 256bit (AWS) 48] 57.0+0.4 1.19 20
ARM Amazon Graviton 3, Neoverse V1, SVE 256bit (AWS) 64| 714 +£1.0 1.12 20
ARM Ampere Altra, Neoverse N1 (Google) 48[ 39.0+1.8 0.81 11
ARM Ampere Altra, Neoverse N1 (Azure) 48| ] 41.0+2.2 0.85 11
ARM Ampere Altra, Neoverse N1 (Azure) 64| 1 56.5 + 0.6 0.88 270 * 8.71 20
x86 AMD EPYC 7742 Zen2(Rome), AVX2 (PSC Bridges-2) 128 109.6 +4.8 0.86 20
x86 AMD EPYC 7742 Zen2(Rome), AVX2 (SDSC Expanse) 128 99.8 £8.6 0.78 20
x86 AMD EPYC 7763 Zen3(Milan), AVX2 (Purdue Anvil) 128|¢ 169.9 +4.4 1.33 20
x86 Intel Xeon Plat. 8160, Skylake-X, AVX512 (TACC-Stampede 2) 48( | 70.4 £0.8 1.47 11
x86 Intel Xeon Plat. 8380, Ice Lake, AVX512 (TACC-Stampede 2) 80 133.3 £6.0 1.67 20
x86 Intel Xeon Gold 6130, Skylake-X, AVX512 (UBHPC) 32| 37.6 0.9 1.18| 379+33 417 £0.4 | 21
x86 Intel Xeon Gold 6130, Skylake-X, AVX512 (UBHPC ICC) 32| 39.3+0.9 1.23| 367 +35 4505 | 11
x86 Intel Xeon Gold 6330, Ice Lake, AVX512 (UBHPC) s5e[f | 81.7 £6.9 1.46| 633 +28 53804 | 12
x86 Intel Xeon Gold 6330, Ice Lake, AVX512 (UBHPC ICC) 56 | 103.0 £2.0 1.84| 619+17 6.94 £0.2 | 17
x86 Intel Xeon Gold 6130, NVIDIA V100x2 (UBHPC) 32[F |145.1 +2.8 435+7 1391 +0.3 | 12
x86 Intel Xeon Gold 6330, NVIDIA A100x2 (UBHPC) 56 236.5 + 10.8 707 +9 13.94 +0.8 | 11
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Table 4: NWChem performance.”” - NWChem of version 6.8, other setups uses 7.0.2. N is the number of performed runs.

Energy
Wall Clock Time, |Power, | Efficiency, Jobs

CPU/System Cores Seconds w per kWh N

ARM Fujitsu A64FX, SVE 512b (SBU-Ookami, GCC) 48[] 62.7 £0.7 | 1100 522 +6 |60

ARM Amazon Graviton 2, Neoverse N1 (AWS) 48| ] 61.1 +0.9 12

ARM Amazon Graviton 3, Neoverse V1, SVE 256b (AWS) 48|] 36.6 £0.7 11

ARM Amazon Graviton 3, Neoverse V1, SVE 256b (AWS) 64| 29.8 +0.4 20

ARM Ampere Altra, Neoverse N1 (Azure) 48] 56.5 +2.7 11

ARM Ampere Altra, Neoverse N1 (Azure) 64| ] 42.8 £0.5 | 270* 312 20

x86 AMD EPYC 7742 Zen2(Rome), AVX2 (PSC-Bridges-2) 128(f] 324 +4.4 20

x86 AMD EPYC 7742 Zen2(Rome), AVX2 (SDSC Expanse) 128][] 28.6 +7.8 20

x86 AMD EPYC 7763 Zen3(Milan), AVX2 (Purdue Anvil) 128|[ 26.7 +0.3 20

x86 Intel Xeon Phi 7250, KNL, AVX512 (TACC-Stampede 2)** GSLZQLJJ +22.1 20

x86 Intel Xeon Plat. 8160, Skylake-X, AVX512 (TACC-Stampede 2)*{  48[l| 50.3 +0.3 12

x86 Intel Xeon Plat. 8160, Skylake-X, AVX512 (TACC-Stampede 2) 48[ 31.2 £0.2 8

x86 Intel Xeon Plat. 8380, Ice Lake, AVX512 (TACC-Stampede 2) sofll 19.2 £1.2 11

x86 Intel Xeon Gold 6130, Skylake-X, AVX512 (UB-HPC) 32(0 ] 90 +1.6 |332+50 124 +25] 27

x86 Intel Xeon Gold 6330, Ice Lake, AVX512 (UB-HPC) 56| 46.9 £+0.6 |376+2 204 £3 |11

Table 5: OpenFoam performance. N is the number of performed runs.
Energy
Wall Clock Time, | Meshing Time, | Solver Time, Efficiency, Jobs

CPU/System Cores Minutes Minutes Minutes Power, W per kWh N
ARM Fujitsu A64FX, SVE 512b (SBU-Ookami, GCC) 48|l 284 +09 [ 146+09 |l 124+0.1( 110+7 193 +16| 21
ARM Fujitsu A64FX, SVE 512b (SBU-Ookami, FJ) 48[ 23.4+03 | 185+01 | 100+0.2( 111+7 241 +16| 21
ARM Amazon Graviton 2, Neoverse N1 (AWS) 48[ ] 119 +0.3 |I] 35+0.2 |0 8 +£0.1 10
ARM Amazon Graviton 3, Neoverse V1, SVE 256b (AWS) 48|l 7.1x02 |0 2220201 47+0.0 5
ARM Amazon Graviton 3, Neoverse V1, SVE 256b (AWS) 64|l | 6.8 +0.1 || 22+01 0] 44+01 20
ARM Ampere Altra, Neoverse N1 (Azure) 48[ 111 0.2 |F] 32+02 |0 176+01 10
ARM Ampere Altra, Neoverse N1 (Azure) 64| | 10904 |[] 3.2+02 |0 172+0.2 270* 20.4 20
x86 AMD EPYC 7742 Zen2(Rome), AVX2 (SDSC Expanse) 12801 95+19 [F | s56+14[F] 322%1.1 20
x86 AMD EPYC 7763 Zen3(Milan), AVX2 (Purdue Anvil) 128[F]1 66+02 [[] 31zx05[[] 29+05 19
x86 Intel Xeon Plat. 8160, Skylake-X, AVX512 (TACC-Stampede 2) 48| | 10.7 +0.4 |I] 3.7+03 [0 | 64+0.1 10
x86 Intel Xeon Plat. 8380, Ice Lake, AVX512 (TACC-Stampede 2) so[f] 6.8:03 | 26+02[F ] 37+03 20
x86 Intel Xeon Gold 6130, Skylake-X, AVX512 (UB-HPC) 32[ 1132+08 |L] 41:04|0. 177401 375£35 123 +1.0| 23
x86 Intel Xeon Gold 6330, Ice Lake, AVX512 (UB-HPC) 56|l | 8.9 +0.5 |[] 2.8 +£0.3 ||j 4.7 £0.2 | 505+ 34 13.4 +0.9| 20

times slower than the Xeon Gold 6330 but 1.8 times more energy
efficient.

Al-Benchmark-Alpha utilizes the TensorFlow library to per-
form 19 sets of the Al test. ARM Graviton 3, with BFloat16 support,
shows the highest results among all CPUs except for the Intel Ice-
lake CPUs, which implement Intel Deep Learning Boost (Table 6).
Graviton 2 and Ampere Altra perform similarly to the AMD CPUs
and the older Intel CPUs. Energy efficiency wise, Ampere Altra
and Fujitsu A64FX perform better than the Xeon Gold 6130. Not
surprisingly, NVIDIA A100 GPUs show the fastest absolute result.
It is 5.8 times faster than the fastest pure CPU solution and 5.7 times
more energy efficient.

Similar to most previous tests, the newer Graviton 3 shows the
fastest performance among ARM CPUs for the ENZO application.
However, it is three times slower than the fastest x86 solution.
The calculation was compromised by numeric instabilities during
problem-solving, requiring code compilation without optimization
for almost all systems. Most likely different versions of the compiler
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and building on different CPU architectures produce binaries with
different efficiencies. Being three times slower than the fastest x86
solution, Graviton 3 is still two times faster than the worst-case sce-
nario on the x86 platform. Ampere Altra shows similar performance
to Graviton 3, and its energy efficiency falls similarly between x86
solutions. Fujitsu A64FX shows slow performance and energy inef-
ficiency. Most likely, utilization of math-safe optimizations instead
of omitting optimization will be helpful here.

5 CONCLUSIONS

The building and compiling experience on ARM platforms is very
similar to that of traditional HPC systems. As tested by HPCC
benchmark, numerical libraries implementing linear algebra and
FFT routines support ARM CPUs well and the latter exhibit a solid
performance. ARM machines shows solid performance in Gromacs,
OpenFOAM, Tensorflow and NWChem applications. The ARM
performance is comparable to x86 counterparts, and they often
outperform previous generations of x86 CPUs (largely Amazon
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Table 6: AI Benchmark Alpha performance. N is the number of performed runs.

Power,
CPU/System Cores Al Score Inference Score | Training Score |W Al Score per W|N
ARM Fujitsu A64FX, SVE 512b (SBU-Ookami) 48| 1034 +3 | 535+2 | 499 +2 111+7 9.4 +0.6 | 20
ARM Amazon Graviton 2, Neoverse N1 (AWS) 48|l 3030+12 || 16767 |l 13556 12
ARM Amazon Graviton 3, Neoverse V1, SVE 256b (AWS) 48| 4581 12 |ll 2407 +10 |ﬂ 2174 £8 11
ARM Amazon Graviton 3, Neoverse V1, SVE 256b (AWS) 64|l 4850 +31 | 2708 +21 || 2143 +13 20
ARM Ampere Altra, Neoverse N1 (Azure) 48|l 3177 +15 || 1803 +10 || 13756 11
ARM Ampere Altra, Neoverse N1 (Azure) 64l 3214 £ 20 [[] 1977 £15 || 1238 £6 270* 11.9 20
x86 AMD EPYC 7742 Zen2(Rome), AVX2 (SDSC Expanse) 128|ll 2696 + 17 lﬂ 1761 +14 || 936 +9 11
x86 AMD EPYC 7763 Zen3(Milan), AVX2 (Purdue Anvil) 1281l 3079 +26 I 1992 +16 || 1087 +13 11
x86 Intel Xeon Plat. 8160, Skylake-X, AVX512 (TACC-Stampede 2) 48|l 3606 + 20 [l 2292 +18 || 1314 +4 11
x86 Intel Xeon Plat. 8380, Ice Lake, AVX512 (TACC-Stampede 2) 80| | 8805 +27 [l 3725 +20 [I] 5081 +14 11
x86 Intel Xeon Gold 6130, Skylake-X, AVX512 (UB-HPC) 320l 3233 £ 253||] 1941 #1665 || 1292 +88 [403+14 8+0.5]| 11
x86 Intel Xeon Gold 6330, Ice Lake, AVX512 (UB-HPC) s6|l ] 10197 +53 [0 4398 +31 |1 5799 +29 [543+33 189 +1.2 | 12
x86 Intel Xeon Gold 6130, NVIDIA V100x2 (UB-HPC) 32|F | 32628 +433 165656 +278 | 16972 +163(379+34 86,8 +8.3 | 11
x86 Intel Xeon Gold 6330, NVIDIA A100x2 (UB-HPC) 56| 59323 + 37ji 29691 +290 |_| 29631 + 152|561 + 69 107.2 +13.6/ 11
Table 7: ENZO performance.
Energy Efficiency,

CPU/System Cores| Wall Clock Time, Minutes [Power, W Jobs per kWh N

ARM Fujitsu A64FX, SVE 512b (SBU-Ookami, GCC) 43| 1157 +17.7 |112+7 4.7 0.5 10

ARM Amazon Graviton 2, Neoverse N1 (AWS) 4801 236 1.1 12

ARM Amazon Graviton 3, Neoverse V1, SVE 256b (AWS) 48| ] 17 £1.2 11

ARM Amazon Graviton 3, Neoverse V1, SVE 256b (AWS) 64|] 13.2 £0.7 20

ARM Ampere Altra, Neoverse N1 (Azure) 48[ 21 +£1.0 11

ARM Ampere Altra, Neoverse N1 (Azure) 64| ] 15.9 +0.8 270* 14 20

x86 AMD EPYC 7742 Zen2(Rome), AVX2 (PSC-Bridges-2) 128l 7.1+0.4 20

x86 AMD EPYC 7742 Zen2(Rome), AVX2 (SDSC Expanse) 128l 6.6 0.4 20

x86 AMD EPYC 7763 Zen3(Milan), AVX2 (Purdue Anvil) 128l 6.9 £0.3 20

x86 Intel Xeon Phi 7250, KNL, AVX512 (TACC-Stampede 2) 68| 14.7 £0.3 20

x86 Intel Xeon Plat. 8160, Skylake-X, AVX512 (TACC-Stampede 2 48|l 4.2 +0.1 20

x86 Intel Xeon Gold 6130, Skylake-X, AVX512 (UB-HPC) 32|l 4.8 +0.3 338 +31 37.1+39 50

x86 Intel Xeon Gold 6130, Skylake-X, AVX512 (UB-HPC) 320 25.8 £0.9 379+ 26 6.2 +0.4 11

x86 Intel Xeon Gold 6330, Ice Lake, AVX512 (UB-HPC) 56|l 15.5 +£0.6 559 + 34 6.9 +0.4 11

Graviton3). In ENZO, Amazon Graviton3 and Ampere Altra are
within the x86 systems performance. Fujitsu A64 FX and Ampere
Altra are more energy efficient in GROMACS, NWChem and Open-
FOAM than x86 CPUs. Other conclusions include that the compiler
and libraries can greatly affect the simulation speed and energy
efficiency.

From the performance, energy efficiency and software building
point of view as of now for all tested applications, modern ARM
CPUs provide a viable alternative to their x86 counterparts and
not only as a cheaper option for the GPU gateway. Intel Skylake-X
is a very robust architecture for scientific calculations, more than
five years later since the initial release, it still competes well with
modern CPUs.
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