Check for
Updates

Performance Optimization of the Open XDMoD Datawarehouse

Gregary M. Dean
Center for Computational Research,
University at Buffalo
Buffalo, NY, USA
gmdean@buffalo.edu

Robert L. DeLeon

Center for Computational Research,

Joshua Moraes
Center for Computational Research,
University at Buffalo
Buffalo, NY, USA
joshuamoraes@berkeley.edu

Matthew D. Jones
Center for Computational Research,

Joseph P. White
Center for Computational Research,
University at Buffalo
Buffalo, NY, USA
jpwhite4@buffalo.edu

Thomas R. Furlani
Roswell Park Comprehensive Cancer

University at Buffalo University at Buffalo Center
Buffalo, NY, USA Buffalo, NY, USA Buffalo, NY, USA
rldeleon@buffalo.edu jonesm@buffalo.edu Thomas.Furlani@roswellpark.org
ABSTRACT 1 INTRODUCTION

Open XDMoD is an open source tool to facilitate the management
of high performance computing resources. It is widely deployed at
academic, industrial, and governmental HPC centers and is used
to monitor large and small HPC and cloud systems. The core of
Open XDMoD is a MySQL based data warehouse that is designed
to support the storage of historical information for hundreds of
millions of jobs with a fast query time for the interactive web portal.
In this paper, we describe the transition that we made from the
MyISAM to the InnoDB storage engine. In addition, other improve-
ments were also made to the database queries such as reordering
and adding indices. We were able to attain substantial performance
improvements in both the query execution and in the data inges-
tion/aggregation. It is a common trend that databases tend to grow
in size and complexity throughout their lifetime; this work presents
a practical guide for the types of practices and procedures that can
be done to maintain data retrieval and ingestion performance.

CCS CONCEPTS

« General and reference — Metrics; Performance; - Hard-
ware — Platform power issues.

KEYWORDS
databases, MySQL, XDMoD

ACM Reference Format:

Gregary M. Dean, Joshua Moraes, Joseph P. White, Robert L. DeLeon,
Matthew D. Jones, and Thomas R. Furlani. 2022. Performance Optimization
of the Open XDMoD Datawarehouse. In Practice and Experience in Advanced
Research Computing (PEARC °22), July 10-14, 2022, Boston, MA, USA. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3491418.3530290

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PEARC °22, July 10-14, 2022, Boston, MA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9161-0/22/07...$15.00
https://doi.org/10.1145/3491418.3530290

Open XDMoD [3] is an open source tool for the comprehensive
management of cyber-infrastructure resources including high per-
formance computing (HPC), storage and cloud computing resources.
Its main components are a MySQL-based datawarehouse support-
ing the storage and querying of CI data and an interactive web
portal that facilitates rapid access to the data. The interactive web
portal provides a rich set of features via an intuitive graphical inter-
face that is tailored to the role of the logged in user (such as center
director, center staff, principal investigator, end user). Metrics pro-
vided by XDMoD include information about HPC resource usage,
Cloud resource usage, Storage usage and HPC job performance
data. Metrics can be broken down by many dimensions including
by user, principal investigator, resource, queue, job size and field of
science.

Open XDMoD is designed to support rapid retrieval and analysis
of large amounts of historical data. The datawarehouse architecture
is designed so that the queries run by the interactive XDMoD web
portal run as fast as possible. For example, the XDMoD instance
that is used for monitoring of XSEDE-allocated CI resources has
information about more than 200 million HPC jobs over the last 19
years and has a web portal that supports chart load times in less
than 200 ms for most charts.

Open XDMoD development has been ongoing since 2011. During
this time the development team have added new features, updated
to support new operating systems and engaged in a program of
continuous improvements. During the early stages of the program,
extensive performance testing was done to ensure the responsive-
ness of the XDMoD portal. One of the design decisions involved
the choice of MySQL database storage engine. At the time, the
MyISAM storage engine was found to have better performance than
the InnoDB storage engine for the XDMoD use case.

Since the original XDMoD datawarehouse design, the MySQL
software has undergone significant development including new
storage engines and improvements to the existing engines. A
community-developed, commercially supported fork of MySQL,
called MariaDB was also created. In recent versions of MySQL
and MariaDB, the default database storage engine changed from
MyISAM to InnoDB. The MySQL documentation [1] states that
the MyISAM storage engine performs best with read-mostly
data or with low-concurrency operations, which aligns well
with XDMoD’s requirements. However InnoDB has undergone

https://doi.org/10.1145/3491418.3530290
https://doi.org/10.1145/3491418.3530290
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3491418.3530290&domain=pdf&date_stamp=2022-07-08

PEARC °22, July 10-14, 2022, Boston, MA, USA

significant performance improvements since the original XDMoD
performance analysis and is now the default storage engine.

The purpose of this work was to determine if the InnoDB storage
table engine, with its performance improvements, would now be a
better choice for XDMoD. To measure the impact of this change,
testing was split into three parts. First, determine if any database
changes were needed to our tables before converting XDMoD tables
to the InnoDB table engine. Second, measure the performance im-
pact of converting XDMoD’s tables to InnoDB on the XDMoD web
portal. Last, test XDMoD’s data processing pipelines for any perfor-
mance impact when they operate on InnoDB tables for ingesting
and aggregating data into the XDMoD data warehouse.

2 BACKGROUND

The main database performance testing was performed using the
Open XDMoD instance at the Center for Computational Research
at the University at Buffalo (CCR). The XDMoD instance contains
data from CCR’s academic HPC cluster and CCR’s cloud service.
During this study, it was running Open XDMoD software version
9.0 and contained approximately 20 years of job accounting data
for 47 million HPC jobs from the cluster as well as data from CCR’s
OpenStack cloud instance, storage data and job performance data.
The database server uses Centos 7 operating system with MariaDB
5.5 and has disk usage of approximately 300 GB.

2.1 Open XDMoD data architecture

A high-level overview of the data flow in Open XDMoD is shown
in Figure 1. Source records (such as job accounting data or cloud
instance events) are loaded into a MySQL database via a batch
process. This process is designed to run in batch mode with no
end-user interaction and will typically write large amounts of data
and has a high I/O load on the database. The batch process has two
stages: ingestion, which loads new data into intermediate database
tables; and aggregation, where queries are run on the ingested
data and their results stored. The aggregation step ensures that the
data are stored in the database for efficient retrieval by the portal.
Each stage can consist of multiple steps, which are called actions
in XDMoD, and those actions can be combined to run in a specific
order. XDMoD calls the groupings of these actions into a specific
order a data pipeline. For example, the data pipeline for aggregation
consists of actions to aggregate data for each day, month, quarter
and year.

End users interact with the datawarehouse via the web portal.
When users request charts or data in the portal, php code running
on the webserver generates an SQL query, which is executed. The
SQL queries for charts and data are all read-only and do not modify
the database contents. Since the queries are generated and executed
in response to user input, they are designed to generate results as
quickly as possible to keep the portal responsive.

The ingestion and aggregation steps are designed to run peri-
odically and the web portal typically is unresponsive when the
aggregation step is running. The Open XDMoD instance at CCR
runs the ingestion and aggregation process daily at 4 am and it
runs for approximately 1.5 hours. This ensures that the ingestion
and aggregation does not happen during normal office hours when
CCR users are typically using the Open XDMoD portal.

Dean et al.

2.2 Differences between MyISAM to InnoDB

The first task was to determine the differences between the MyISAM
and InnoDB database engines and how they would affect XDMoD.
The main differences were InnoDB’s support of row-level locking,
foreign key relationships and transactions, and that all InnoDB
tables must also have a PRIMARY KEY. If a PRIMARY KEY is not
specified, MySQL will use the first non-NULL UNIQUE key. If a
non-NULL unique does not exist, MySQL creates a 6-byte hidden
integer.

Those differences did not present a problem with moving to
InnoDB but some MyISAM-specific functionality was found in
XDMoD’s tables that prevented conversion to InnoDB. The issue
was the column order of some of our PRIMARY KEY indexes. For
MyISAM tables, an AUTO_INCREMENT directive can be specified
on a secondary column in a multiple-column index but, this is not
supported when using InnoDB. When using this functionality, the
generated value for the AUTO_INCREMENT column is calculated
as MAX(auto_increment_column) + 1 WHERE prefix=given-prefix.
This can be useful when you want to put data into ordered groups.
Tables that use this multi-column index were changed to have a
single-column auto-incrementing ID column.

Differences also exist in how InnoDB constructs table indexes.
InnoDB uses clustered indexes which are data structures that store
data together with it’s indexes. In InnoDB, the clustered index is
usually the PRIMARY KEY for a table. Accessing a row through
the clustered index provides performance improvements since the
index search leads directly to the page that contains the row data.
MyISAM does not use clustered indexes.

After identifying the differences between MyISAM and InnoDB
and how they may affect XDMoD, the tables were converted to
InnoDB. The time to convert tables to InnoDB was considerable
for larger tables. For example, it took around 3 hours to convert
a table with 42 million rows. An increase in the amount of disk
space needed for InnoDB tables was observed too. For example,
converting the modw schema (which stores job accounting data) on
the development instance of Open XDMoD at CCR resulted in disk
space increasing 58 GB to 94 GB. How much more space InnoDB
needs is dependent on the table schema and data in the table being
converted.

2.3 XDMoD Web Portal

XDMoD Portal testing was split into two main parts. First, we
tested the XDMoD web portal to measure the performance im-
pact of changing to the InnoDB table engine with our specific data
models and access patterns. Second, we tested XDMoD’s data pro-
cessing pipelines to measure the performance impact of the table
engine conversion, and identify any changes that should be made
to the tables when using the InnoDB engine in order to improve
performance.

XDMoD'’s suite of regression tests were used to measure the
performance of XDMoD’s web portal in response to the table engine
conversion. XDMoD’s regression tests are used to ensure XDMoD
functions as expected after code changes. These regression tests
work by sending a request to the XDMoD API for each combination
of Statistic and Group By in a Realm, comparing the data returned
from the XDMoD API to the data expected. In XDMoD, Statistics

Performance Optimization of the Open XDMoD Datawarehouse

ingestion
aggregation

Data sources read & write

SQL queries

PEARC °22, July 10-14, 2022, Boston, MA, USA

read-only) .
XDMoD SQL queries } Webserver end
datawarehouse user

Figure 1: Overview of the main process interactions with the XDMoD datawarehouse. The ingestion and aggregation process is
responsible for loading data into the database. XDMoD users have read-only access to the data via queries run from a webserver.

determine the SQL columns that are selected for an autogenerated
query that is used to show data in the XDMoD Web Portal. A
Group By specifies the columns to add to the SQL Group By clause
of the autogenerated query. A Realm represents a collection of
Statistics and Group By’s for a set of data. For example, the Jobs
realm contains data about each job run on an HPC system and
contains XDMoD statistics such as the number of jobs ended and
the total number of CPU hours used and XDMoD group by’s for
the HPC resource and User among others. These regression tests
provided us with a repeatable way to measure how the conversion
to InnoDB affected XDMoD and make sure that XDMoD reported
the expected value for each Statistic and Group By. The tests also
recorded the time each test took before and after converting the
table engine to measure the performance impact of this change.

Our testing plan consisted of setting up a virtual machine with
the current version of Open XDMoD (which at the time was version
9.0), installed on it and running our regression tests with the tables
using the MyISAM engine. Once the regression tests completed,
the MyISAM tables were converted to InnoDB and the regression
tests were run again. Each time the regression tests ran, the time it
took for each test to complete was collected, along with the statistic
and group by for the test and the data was analyzed to determine
the performance impacts of converting our tables to InnoDB.

2.4 XDMoD data pipeline processing

By default, XDMoD logs the time each data processing pipeline
takes when ingesting and aggregating data into XDMoD. These
logs were used to compare the performance difference between
MyISAM and InnoDB tables for XDMoD’s data pipeline processing.

The process for comparing our data processing pipelines before
and after the table engine changes was the following: Run the
ingestion and aggregation process to ingest and aggregate data,
convert necessary tables to InnoDB, and then run the ingestion and
aggregation process again to ingest and aggregate data with tables
as InnoDB.

After completing this process, we compared data collected from
our logs for both runs to measure the performance difference. After
analyzing this data, we identified data pipelines that were per-
forming either slower than when the tables were MyISAM or data
pipelines that took a long time regardless of the table engine.

3 OPTIMIZATIONS

After converting XDMoD tables to InnoDB, analysis of our log data
allowed us to identify poorly performing data pipelines, which we
investigated and optimized to provide better performance. Four
areas were identified where better performance was potentially

achievable. Those area were: the aggregation of data, queries that
use a ‘last_timestamp* column in a where clause, queries that load
data into dimension tables, and the use of the OPTIMIZE TABLE
command on aggregate tables.

3.1 Aggregation of data

XDMoD aggregates data for a realm on four different levels of time
granularity: daily, monthly, quarterly, and yearly. This aggregation
is a mechanism to improve XDMoD performance. XDMoD uses
the term Aggregation Unit to identify these time periods. After
converting XDMoD’s tables to InnoDB, analysis of the logs for data
processing pipelines for the Jobs realm data identified two main
issues that slowed the run times of XDMoD’s data pipelines. First, a
sub-optimal table index on the Jobs realm aggregate tables. With the
tables as InnoDB, aggregation at the daily granularity level took be-
tween 25 and 40 minutes. Using the MySQL EXPLAIN EXTENDED
command we looked at the query plan MySQL was making for this
query. The aggregate query’s WHERE clause "WHERE start_day_id
<=end_day_ AND end_day_id >= start_day AND is_deleted = 0"
was identified as the culprit as to why these queries were taking
longer than expected. The source table for this query had an index
for the is_deleted column and a multi-column index consisting of
the start_day_id and end_day_id but, there was not an index that
contained all three columns. An index that contains all columns in
a where clause will speed up a query compared with one that does
not, especially as the number of rows in a table grows.

After adding a new multi-column index that contained all three
columns, is_deleted, start_day_id, and end_day_id, the data ag-
gregation pipelines were run again. While this produced some
improvements they were still not running optimally. To optimize
the query further, the columns in the new multi-column index were
re-ordered. The order of columns in an index is helpful when the
most selective columns in the index come first. The suggested order
for columns in an index is: columns in the where clause that use
the equality operator, columns in the where clause that are used in
a ‘range’ (LIKE, BETWEEN, <), all columns in the Group By clause,
matched to the order in the Group By clause, and all columns in
Order By clause, matched to the order in the Order BY clause.

When looking at XDMoD’s data access patterns, changing the
column order of the index to (is_deleted, end_day_id, start_day_id)
is the most selective and thus gives better performance. After chang-
ing the index column order, the EXPLAIN EXTENDED command
showed that this new column order would create a more efficient
query plan. When the aggregation pipelines ran again with this
change, we observed a significant reduction in the time for the
daily aggregation time period to run. While we focused on the day

PEARC °22, July 10-14, 2022, Boston, MA, USA

aggregation time period, the addition of the new multi-column
index provided performance improvements for the month, quarter,
and year aggregation time periods too.

3.2 Indexing the last_timestamp column

Queries whose WHERE clause includes the last_timestamp col-
umn is another area where we sought performance improvements.
In the XDMoD data warehouse, the last_timestamp field is de-
fined as a TIMESTAMP data type and has the ON UPDATE CUR-
RENT _TIMESTAMP directive. This directive sets the column’s
value to the current time whenever a row is inserted into the table
or any value in a row is changed. XDMoD uses this column to de-
termine what rows to select for aggregation in the data aggregation
pipelines.

After converting to InnoDB, the query responsible for choosing
the time period to aggregate took longer than expected. The EX-
PLAIN EXTENDED command showed that the query’s WHERE
clause used the last_modified column, which was not part of any
index. Adding an index that contained the last_timestamp col-
umn improved the query significantly, making it quicker than when
the tables were MyISAM. Adding this index to other tables with a
last_timestamp column showed improvements to the aggregation
of other realms, such as the Storage realm, but they were not as
significant. This is mainly because other realms do not aggregate
as many records as the Jobs realm.

One other location where the last_timestamp column is used
in a WHERE clause are two queries that run after ingesting data
into the Jobs realm. These queries update the processor count of
recently ingested jobs and the CPU Time, GPU Time, Submit Time,
and Wait Duration. The performance improvement for these queries
was significant.

3.3 Dimension table optimizations

The XDMoD data warehouse uses a star schema architecture [2]
that consists of fact and dimension tables. When ingesting data,
each HPC job is put into a fact table whose columns may reference
a dimension table. In XDMoD, these dimension tables are populated
by selecting the unique values for a column from a fact table and
inserting them into the appropriate dimension table. As the number
of rows in the fact table increase, so to does the queries completion
time when you try to select all the unique values from all of the jobs
ever ingested into an XDMoD instance. The data pipeline action
for populating the Queue dimension table worked in this manner.
Instead of selecting the Queues from all HPC jobs that XDMoD has
ingested, it is more efficient for the query to only select Queues
from HPC jobs that have not been ingested. Re-writing the SQL
query to only select jobs that have not been ingested provided a
significant performance improvement.

3.4 Use of the Optimize Table command on
aggregate tables

In MySQL, the OPTIMIZE TABLE command reorganizes the physical

storage of table data and the associated index data to reduce storage

space and improve I/O efficiency when accessing tables. The exact

changes made to a table depend on the storage engine the table uses.

XDMoD runs an OPTIMIZE TABLE command on aggregate tables

Dean et al.

at the end of the data aggregation pipelines. After converting our
tables to InnoDB, the OPTIMIZE TABLE command started taking
much longer to run than when using the MyISAM table engine.
Along with this, the .ibdata file, which stored all the InnoDB data,
began growing larger at a very rapid pace.

MySQL also has a setting called ‘innodb_file_per_table’. In
MySQL 5.5 and lower, the default for this setting is false. This
setting determines if data for any InnoDB tables are in one file,
.ibdata., or in separate files for each table. The .ibdata file does not
shrink even when deleting data from an InnoDB table, dropping
an InnoDB table, or rebuilding an InnoDB table. The OPTIMIZE
TABLE statement creates a new copy of the table specified, placing
it at the end of the .ibdata file, but does not remove the old copy
of the table in the .ibdata file. This behavior, and the fact that the
aggregate tables being optimized were many GB in size, lead to
an unsustainable increase in the file size. The larger file size and
difference in what the OPTIMIZE TABLE command does for InnoDB
tables compared to MyISAM table caused an increase in time for
the command to run that was unacceptable to us.

To mitigate the unsustainable increase in file size and re-
duce the time for the command to complete, we set the ‘inn-
odb_file_per_table setting to TRUE. The effect of this is that
OPTIMIZE TABLE will create a new identical empty table in a new
file and, then it will copy data row by row from the old table to the
new one and then delete the old file. This prevents the unsustain-
able file size growth and allows the command to complete quicker.
While it is still longer than when the tables were MyISAM, the time
it takes to run is acceptable.

4 RESULTS

To measure the results of converting XDMoD tables to InnoDB, we
used timing results from our regression tests and data from our log
files that contained the time our data processing pipelines took to
run. Our results are primarily concerned with the time impact of
our changes, that is, is the XDMoD web portal faster or slower as a
result of the conversion to the InnoDB table engine? Are the data
ingestion processes faster or slower with tables converted to the
InnoDB table engine?

4.1 XDMoD Web Portal

To measure the results of the InnoDB changes on the XDMoD web
portal, we used data gathered while running XDMoD’s regression
tests. As stated in section 2.3, the regression tests ran under two
scenarios. One with a version of XDMoD with MyISAM tables and
the other with any MyISAM tables converted to the InnoDB table
engine. In both scenarios, each test in our regression test suite
submitted a request to the XDMoD API that consisted of a Time
Period, Statistic, and Group By. When a response for this request
was received, our regression tests recorded the time between when
the request was sent and when the response was received.

First, we analyzed the overall time the test suites took to complete
under each scenario. When using the MyISAM table engine, the
test suite completed in 8014 seconds. When using the InnoDB table
engine, the tests completed in 4517 seconds. This represents a 43%
decrease in the time for the tests to complete when using the InnoDB
table engine.

Performance Optimization of the Open XDMoD Datawarehouse

We also gathered information on the number of tests that saw
their time to complete decrease and how the average amount of
time to complete a test changed. As seen in Figure 2, out of 24401
tests run in each scenario, 87% of tests saw their time to complete
decrease. The average change in the amount of time to complete
a test was -33%, meaning tests ran an average of 33% faster when
using the InnoDB table engine.

500
1a00
1200
1000

0

0
0
0
100 50 0

0

Count
& 28 8

8

By 00 0 200
Percent Change

Figure 2: Histogram distribution of percent change for indi-
vidual tests

While this was a significant result, we wanted to know how
individual tests performed between the two scenarios. In particular,
we wanted to find any trends related to the performance of specific
Time Period’s, Statistics, Group By’s, or Realms. We again looked
at the percent change but instead of the percent change of the
complete regression test suite we looked at the percent change of
each individual test.

When looking at the percent change of each tests on a scatter
chart, Figure 3, we noticed a concentration of tests that were much
slower when using the InnoDB engine. Many of them were more
than twice as slow.

Realm

® Cou
s

° Storage

200

50

00

Percent Change

50

-100
0 000 10000 15000 20000 25000

Figure 3: Scatter of percent change for individual tests color-
coded by XDMoD Realm

To try and identify any pattern within those tests, we looked at
color-coded scatter charts. We created multiple charts that were
color-coded by features of our tests, such as the Group By, Statistic,
Realm and Aggregation Unit, for example see Figure 3 and Figure 4.

PEARC 22, July 10-14, 2022, Boston, MA, USA

When color-coding the charts by each of these features, we discov-
ered that many slower tests requested the Queue Group By in the
Jobs realm.

20

ercent Change

Pe

00 a000 10000 12000 14000 16000 18000 2000 2000

Figure 4: Scatter of percent change for individual tests color-
coded by XDMoD Group By

With such a clear cluster of results, we invetigated the Queue
Group By to see if other patterns existed. When we color-coded
by the Aggregation Unit, Figure 5, we discovered that almost all
tests performing worse were requesting the Year Aggregation Unit.
These tests took almost twice as long to complete.

200

50 . g7 (ST 8l e e

-
e

“e
.

Percent Change
3
g
:
£fs
Foc
B

2

°

50

17400 17600 17800 18000 18200 18400

Figure 5: Scatter of percent change for individual tests color-
coded by XDMoD Group By

Our final analysis of the effect that switching to the InnoDB table
engine has on the XDMoD Web Portal is that it has a positive effect.
As stated earlier, the XDMoD regression tests suite completed its
tests 43% quicker when using the InnoDB table engine. A total of
83% of individual tests had their time to complete reduced, and the
average time to complete a request decreased by 33%. Table 1 lists
the mean time a test took for MyISAM compared to InnoDB and
also show how the times differed by Realm.

4.2 Data Processing Pipelines

The improvements gained from converting XDMoD’s tables to
InnoDB and related optimizations were significant for our data
processing pipelines as well. To measure the impact of this change
on our data processing pipelines, we analyzed the XDMoD logs
that contain the time to complete our data processing pipelines.
The data processing pipeline responsible for ingesting jobs data
into XDMoD saw a significant decrease in time to complete with

PEARC °22, July 10-14, 2022, Boston, MA, USA

Dean et al.

Table 1: Comparison of MyISAM and InnoDB Results

Tests

MyISAM mean time InnoDB mean Mean percent Percentage of

(sec) time (sec) change Tests Faster
All Tests 0.33 0.18 33% 87%
Jobs Realm 0.43 0.23 43% 95%
Storage Realm 0.31 0.14 43% 95%
Cloud Realm 0.065 0.063 2% 64%

the conversion to InnoDB, the addition of indexes on the appro-
priate columns, and rewriting some queries to be more efficient as
mentioned in section 3.3.

Data processing actions where we added a table index to the
‘last_timestamp‘ column saw significant improvement. Processing
steps that took around 200 seconds now take between 5 and 10
seconds, a roughly 95% time decrease.

The data processing step that ingests queues into a dimension
table decreased as well, after rewriting the query to be efficient. The
time for that processing action decreased from around 360 seconds
to 2 seconds

The aggregation of jobs data also saw a significant decrease
in its time to complete. We saw a 50% decrease in the time the
XDMoD aggregation process took to run after changes to its table
indexes. In some cases, the time decreased by up to 90% for the data
aggregation process. Table 2 lists the time it took for data pipelines
to complete.

5 DISCUSSION
5.1 Conversion to InnoDB

As stated in previous sections, the conversion to the InnoDB table
engine provided a 33% time performance improvement for the
XDMoD Web Portal. This improvement was gained solely through
the conversion to InnoDB without any other optimizations. This
performance improvement comes from InnoDB’s use of clustered
indexes on all of its tables. According to the book High Performance
MySQL [4], clustered indexes have some very important advantages:
related data is kept close together, data access is fast and queries that
use covering indexes can use the primary key values contained in
the index. In InnoDB, clustered indexes store a B-Tree index and the
row data together in the same structure. Accessing a row through
the clustered index is fast since the index search leads directly to
the page that contains the row data. If a table is large, InnoDB’s
clustered index architecture often saves a disk I/O operation when
compared to storage organizations that store row data using a
different page from the index record.

For InnoDB tables, indexes other than the clustered index are
known as secondary indexes. Each record in a secondary index con-
tains the primary key columns for the row, as well as the columns
specified for the secondary index. InnoDB uses this primary key
value to search for the row in the clustered index which makes
queries that use secondary indexes quicker as well.

The queries run for the XDMoD Web Portal make extensive
use of indexes in order to provide better performance. Since the
tables involved in the queries run for the XDMoD Web Portal al-
ready have appropriate indexes on them, no changes were needed

to take advantage of InnoDB’s clustered index’s and associated
performance gains.

5.2 Table Index Modifications

Changes to table indexes provided much of the improvement to
XDMoD’s data processing pipelines. This section includes more
in-depth information about why these index changes help. These
improvements were seen most prominently in the data ingestion
and aggregation pipelines for XDMoD’s Jobs realm.

The addition of a table index that includes the is_deleted,
end_day_id, and start_day_id fields, in that order, provided the
most significant performance impact. The order of the fields in the
index is important because of how indexes work in MySQL, and
the data access patterns of the data aggregation pipeline.

Our aggregation query contains the following WHERE clause:

WHERE start_day_id <= END_DAY_ID AND end_day_id >=
START_DAY_ID AND is_deleted = 0

In this WHERE clause, END_DAY_ID is the last day of records
included in the aggregation and START_DAY _ID is the first day of
records included in the aggregation.

A typical scenario may be where you are aggregating data for the
previous day. An index with the order of deleted_id, start_day_id,
end_day_id starts with is_deleted = 0 and then moves to the range
query searching for all jobs that start before the current day, which
is all the records in the job_tasks table, and then all records that
have an end_day_id of today or later. Comparatively, an index of
is_deleted, end_day_id, and start_day_id is much more efficient
because it uses the end_day_id part of the where clause before the
start_day_id part, which means orders of magnitude fewer rows
need to be accessed. This is seen in Table 3. It is notable is that
when using an index with the order of (start_day_id, end_day_id,
is_deleted) the query planner does not use an index.

6 CONCLUSION

In this paper we show how converting to the InnoDB database
engine can provide a significant performance impact when com-
pared to MyISAM. By switching to InnoDB, we found that queries
that read data from the XDMoD data warehouse for viewing in the
XDMoD web portal decrease in time by 43% without any other op-
timizations. For XDMoD’s data processing pipelines, switching to
InnoDB did not initially provide a significant decrease in the time to
ingest data. However, significant performance improvements was
gained by adding appropriate indexes to some tables and rewriting
queries to be more efficient.

Performance Optimization of the Open XDMoD Datawarehouse

PEARC °22, July 10-14, 2022, Boston, MA, USA

Table 2: Comparison of Data Pipeline Results

Pipeline Name Pre-index (sec) Post-index (sec) Percent Change
hpcdb-xdw-ingest-

jobs.HpcdbPostIngestJobUpdates 200 510 95%
hpcdb-xdw-ingest-jobs.queue ~360 ~2 96%
jobs-xdw-aggregate.aggregate-days ~2100 ~960 54%

Table 3: Comparison of Rows Accessed Based On Table Index

Index Columns

possible_keys key rows

start_day_id, end_day_id, is_deleted

is_deleted, start_day_id, end_day_id

is_deleted, end_day_id, start_day_id

fle_resource, aggrega- \y;; 49363043
tion_index, deleted
fk_resource, aggrega-
. . deleted 24681621
tion_index, deleted
fk_resource, aggrega-

tion_index, deleted deleted 3096

InnoDB’s use of a clustered index provides most of these perfor-
mance improvements. As opposed to MyISAM tables where index
data is held in a separate data structure, a clustered index stores
index data with row data. This architecture leads to better perfor-
mance as the index search leads directly to the page that contains
the row data. If a table is large, the clustered index architecture
often saves disk I/O operations when compared to storage organi-
zations that store row data using a different page from the index
record. Because InnoDB uses a clustered index, having appropriate
indexes for queries that run against your database is important.
Queries that do not have indexes or sub-optimal indexes may not
see as much performance improvement when using InnoDB.

Evaluating XDMoD'’s table indexes and the order of columns in
those indexes also provided information on how to improve the
performance of XDMoD’s data ingestion pipelines. The EXPLAIN
EXTENDED command helped us evaluate the appropriate indexing
strategy for our tables. As seen in section 5.2, the command showed
that changing the order of the columns in an index can help MySQL
execute a query that accesses drastically fewer rows to retrieve
its data which results in a significant reduction in run time of the
queries.

Overall, using the InnoDB table engine for has provided sig-
nificant performance gains with minimal changes to the XDMoD
data warehouse. As data from HPC systems increases in size, these
performance improvements will help XDMoD continue to provide
its service of supporting the storage and querying of CI data and
an interactive web portal that facilitates rapid access to the data for
HPC systems.

7 FUTURE WORK

During this work, we identified other areas and technologies that
may be worth investigating in the future.

e We have not yet fixed the issue with queries involving the
Queue Group By. This is something that we are planning to
address in a future release of XDMoD.

e Load testing XDMoD. When testing the read performance
of XDMoD, we tested in an ideal scenario of queries that
involved one group by, one statistic, and a two-week time
period on a server with no other traffic. A more real-world
scenario with multiple requests for a wide variety of statis-
tics, group by’s, and time ranges would be beneficial.

ACKNOWLEDGMENTS

The authors would like to thank CCR Systems Administration staff
Sam Guercio and Andrew Bruno and staff members of the XD-
MoD development team, including Jeffrey T. Palmer, Ryan Rath-
sam, Nikolay Simakov and Hannah Taylor and former members
Cynthia Cornelius, Jeanette Sperhac, Benjamin Plessinger, Rudra
Chakraborty, Steven M. Gallo, Thomas Yearke, Amin Ghadersohi
and Ryan Gentner.

This work was sponsored by the National Science Foundation
(NSF) under award ACI 1445806 for the XD Metrics Service (XMS).

REFERENCES

[1] Oracle Corporation. 2022. MySQL 5.7 Reference Manual. https://dev.mysql.com/
doc/refman/5.7/en/.

Ralph Kimball and Margy Ross. 2002. The Data Warehouse Toolkit: The Complete
Guide to Dimensional Modeling (2nd ed.). John Wiley & Sons, Inc., USA.

Jeffrey T. Palmer, Steven M. Gallo, Thomas R. Furlani, Matthew D. Jones, Robert L.
DeLeon, Joseph P. White, Nikolay Simakov, Abani K. Patra, Jeanette M. Sperhac,
Thomas Yearke, Ryan Rathsam, Martins Innus, Cynthia D. Cornelius, James C.
Browne, William L. Barth, and Richard T. Evans. 2015. Open XDMoD: A tool
for the comprehensive management of high-performance computing resources.
Computing in Science and Engineering 17, 4 (2015), 52-62. https://doi.org/10.1109/
MCSE.2015.68

B. Schwartz, P. Zaitsev, and V. Tkachenko. 2012. High Performance MySQL (3 ed.).
O’Reilly, Sebastopol.

[2

3

=

https://dev.mysql.com/doc/refman/5.7/en/
https://dev.mysql.com/doc/refman/5.7/en/
https://doi.org/10.1109/MCSE.2015.68
https://doi.org/10.1109/MCSE.2015.68

	Abstract
	1 Introduction
	2 Background
	2.1 Open XDMoD data architecture
	2.2 Differences between MyISAM to InnoDB
	2.3 XDMoD Web Portal
	2.4 XDMoD data pipeline processing

	3 Optimizations
	3.1 Aggregation of data
	3.2 Indexing the last_timestamp column
	3.3 Dimension table optimizations
	3.4 Use of the Optimize Table command on aggregate tables

	4 Results
	4.1 XDMoD Web Portal
	4.2 Data Processing Pipelines

	5 Discussion
	5.1 Conversion to InnoDB
	5.2 Table Index Modifications

	6 Conclusion
	7 Future Work
	Acknowledgments
	References

