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Abstract—This Innovative Practice Work-in-Progress paper
presents a virtual, proactive, and collaborative learning paradigm
that can engage learners with different backgrounds and enable
effective retention and transfer of the multidisciplinary AI-
cybersecurity knowledge. While progress has been made to
better understand the trustworthiness and security of artificial
intelligence (AI) techniques, little has been done to translate this
knowledge to education and training. There is a critical need
to foster a qualified cybersecurity workforce that understands
the usefulness, limitations, and best practices of AI technologies
in the cybersecurity domain. To address this import issue, in
our proposed learning paradigm, we leverage multidisciplinary
expertise in cybersecurity, AI, and statistics to systematically
investigate two cohesive research and education goals. First, we
develop an immersive learning environment that motivates the
students to explore AI/machine learning (ML) development in
the context of real-world cybersecurity scenarios by constructing
learning models with tangible objects. Second, we design a
proactive education paradigm with the use of hackathon activities
based on game-based learning, lifelong learning, and social
constructivism. The proposed paradigm will benefit a wide range
of learners, especially underrepresented students. It will also help
the general public understand the security implications of AI. In
this paper, we describe our proposed learning paradigm and
present our current progress of this ongoing research work. In
the current stage, we focus on the first research and education
goal and have been leveraging cost-effective Minecraft platform
to develop an immersive learning environment where the learners
are able to investigate the insights of the emerging AI/ML
concepts by constructing related learning modules via interacting
with tangible AI/ML building blocks.

Index Terms—Artificial intelligence, machine learning, cyber-
security, education

I. INTRODUCTION

The phenomenal growth of AI techniques, especially ML,
impacts every aspect of human life, including autonomous
and semi-autonomous security systems that are demonstrating
impressive promises for increasing awareness, reacting in
real time, and improving the overall effectiveness [1]–[3].
According to VynZ Research, the global AI in cybersecurity
market reached USD 12 billion in 2020 and will grow to USD
30.5 billion in 2025 [4]. However, increasing evidence shows
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that AI techniques can be manipulated, evaded, and misled,
which results in new and profound security implications [5],
[6]. While prominent research progress has been made in
understanding the trust and security of AI techniques [7],
there is an education and training gap to foster the qualified
cyber-workforce that understands the usefulness, limitations,
and best practices of AI technologies in cybersecurity domain.
Recent reports also indicate that this education gap will throttle
aspirations in the advance of AI and intensify the shortage
problem in cybersecurity workforce [8]–[10].

Efforts have been made to incorporate a comprehensive
curriculum to meet the demand. However, there still remain
essential challenges for effectively educating students on the
interaction of AI and cybersecurity including: (1) due to the
emerging and growing features of AI technologies and zero-
day exploits, the integration of AI and cybersecurity tech-
nologies are rapidly and dynamically evolving; (2) students
can have very diverse knowledge background, ranging from
conventional information technology to data science, and thus
may have varied needs for inspiring skill and interaction
engagement; and (3) while significant studies have been de-
veloped in understanding AI/ML-specific threats, most of the
existing research focuses on computer vision domain and very
limited efforts have been made in the cybersecurity domain
that is complex and rife with adversaries. To address these
challenges, in this research, we aim to educate and train
a qualified cyber-workforce in this new era where security
breaches, privacy violations, and artificial intelligence have
become commonplace.

The rest of the paper is organized as follows. Section
II introduces background and related work. The proposed
learning paradigm and the current progress of our research
work are elaborated in details in Section III. The paper is
concluded in Section IV with future work highlighted.

II. BACKGROUND AND RELATED WORK

Statistical ML algorithms have been extensively used in the
field of cybersecurity, such as spam detection [11], malware
detection [12], and network intrusion detection [13]. The rise
of deep learning (DL) approaches offers a promising direction
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in discovering sophisticated and unseen attack patterns [14].
While the benefits of DL is immense, the black-box nature
of DL casts doubts in the decision making process. More
importantly, when this new intelligent component is applied to
an existing cybersecurity system, it increases the attack surface
and is subjected to additional attacks. A typical machine
learning workflow starts from data collection, followed by data
pre-processing to clean up the noises, normalize the scales
and manage the missing data. Feature selection and feature
engineering are often needed before feeding the training data
to various machine learning algorithms. Since there is no
single model fits all, inference models are evaluated on the
validation data and the best model will be selected to predict
unseen new data. When the performance deteriorates, model
update will be triggered to retrain the model. Every step of the
machine learning process is subjected to attacks, as detailed
in the next paragraph.

Recently, adversarial attacks on machine learning tech-
niques, especially the deep learning systems, received a lot
of attentions from both the AI community and the security
community [5], [15], [16]. To attack data acquisition and data
prepossessing, various attacks were proposed to mislead the
classifier using data poisoning attacks [17], [18]. Likewise,
feature selections could be reduced to impair the accuracy of
machine learning algorithms [19]. A significant portion of the
work in adversarial attacks was targeting the machine learning
algorithms themselves. Adversarial perturbations were gener-
ated in the direction of the gradient to attack the models, e.g.
FGSM [20] and JSMA [21]. Attacks could also be launched
to degrade the confidence scores of the classifiers, such as
the ZOO attack presented in [22]. Decisions could also be
confused if the attackers feed the system with adversarial
examples crafted with Generative Adversarial Network (GAN)
techniques [23]. The above descried attacks are well discussed
in the context of computer vision and natural language pro-
cessing. More studies are needed to understand how these
attacks impact the security of a system. Given that cyberse-
curity problems are often manifested in the form of binary
classifiers, attacks on AI/ML driven security system will be
even more dangerous because attacks on one model can be
easily transferred to another model in the case of binary
classifications [24].

From education perspective, new technologies are increas-
ingly adopted to innovate teaching and learning. Recent de-
velopments in visualization and virtual reality (VR) possess
great potentials in education and training [25], [26]. Various
studies have been developed to apply VR technologies to
develop immersive learning environment in different fields,
including medicine, engineering, and construction. All of them
demonstrated valuable practices of applying VR in educa-
tion [27], [28]. However, the established work mainly focused
on teaching procedural, practical knowledge, and declarative
knowledge that can be benefited from realistic surrounding
function of VR. In contrast, the AI-cybersecurity conjecture
has many abstract concepts and theories. Additionally, existing
work in VR often overlooked collaborative learning and social

connectivism, which are essential for staying current in rapidly
evolving information ecology [29].

In summary, the current research trend on AI and cyberse-
curity usually focuses on two different themes: the trustwor-
thiness of the AI systems and the application of AI in the
cybersecurity domain. While it is wise for the researchers to
have their own concentrations, it will be ill-advised to treat
AI and cybersecurity as two distinct subjects to educate the
next generation scholars. In addition, existing curriculum on
integrating AI and cybersecurity are often reactive in nature:
lectures and labs are created in response to known attacks.
A transformative approach is needed to educate the learn-
ers to become proactive thinkers and practitioners. Although
innovative technologies, have been adopted in the education
domain, it is not yet clear how complex, dynamic and abstract
disciplines can benefit from this innovative pedagogy.

III. PROPOSED PROACTIVE AND COLLABORATIVE
LEARNING PARADIGM AND CURRENT PROGRESS

The overview of our proposed virtual, proactive and col-
laborative learning paradigm, which enables the innovative
integrated cybersecurity and AI/ML curriculum, is illustrated
in Fig. 1. As shown in Fig. 1, our proposed paradigm

Virtual, Proactive, and Cooperative Learning Paradigm

Immersive learning environment for 

explainable AI/ML development in cyber 

security domain

Game-based proactive and collaborative 

learning paradigm with hackathan activities

Developing qualitative and quantitative modules for assessment and evaluation

Fig. 1. Overview of our proposed virtual, proactive and collaborative learning
paradigm.

mainly consists of two main components: (1) a cost-effective
immersive learning environment that motivates the students
to explore AI/ML development in the context of real-world
cybersecurity scenarios by constructing learning models with
tangible objects; and (2) a game-based proactive education
paradigm with the use of hackathon activities that engages
students with diverse background to collaboratively formulate
AI/ML-specific threats and develop trustworthy and robust
AI/ML solutions in cybersecurity domain.

In the current stage of research, we have been leveraging
cost-effective Minecraft platform to develop an immersive
learning environment where the learners are able to investigate
the insights of the emerging AI/ML concepts by constructing
related learning modules via interacting with tangible AI/ML
building blocks. The building blocks are developed to repre-
sent primitive units with different degrees of granularity. The
interaction between the building blocks throughout the AI/ML
workflow is also virtualized to the learners for their individual
or collaborative investigation. In our current version of the
immersive learning environment, the individual and interactive
investigation is supported and the learning modules include
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logistic regression, fully-connected neural network, convolu-
tional neural network, recurrent neural network, autoencoder,
and generative adversarial networks.

1) Logistic Regression: As illustrated in Fig. 2, in our im-
mersive learning environment that is developed by leveraging
MCPI API [30] and PythonTool Mod [31], the learners are
able to select a dataset from the multiple available datasets
and develop a logistic regression model with tangible building
blocks by customizing the hyperparameters of the building
blocks and the settings of the learning procedure via the in-
teractive text-based user interface. The selected dataset can be
visualized in our proposed learning environment. Additionally,
the critical parameters of the logistic regression model during
training and testing procedures, such as weights and bias,
are also visualized via color scale. Further, to enhance the
transparency of the training and testing procedure, the decision
boundary during the training and testing can also be visualized
in real time. By using the decision boundary visualization, the
learners are able to achieve more insights about the impact of
different parameters and hyperparameters on the performance
of the realized learning model.

Visualization of logistic regression 

model with tangible building blocks

User interface for customizing 

building blocks and ML procedure

Color scale for visualizing 

critical parameters of logistic 

regression model

Visualization of data with 

decision boundary

Fig. 2. Screenshot of immersive learning environment for developing logistic
regression model and explanations.

2) Fully-Connected Neural network (FCNN): As illustrated
in Fig. 3, while integrating the development of FCNN model
in our learning environment, we also explore another type
of user interface where the learners are able to customize
building blocks and ML procedure by setting the switches on
a control panel instead of typing any text. While enabling the

Another user interface 

for customizing 

building blocks and 

ML procedure

Visualization of 

fully-connected 

neural network 

model with tangible 

building blocks

Fig. 3. Screenshot of immersive learning environment for developing FCNN
model and explanations.

development of FCNN, we noticed that the immersive learning
platform has limitations on supporting multiple learners for
collaborative investigation and on supporting the development
of ML modules with high complexity and scalability. To
address the limitations, we explore alternative strategy to
realize immersive learning environment by leveraging flask

server, Bukkit server, and Spigot API. The two screenshots of
the immersive learning environment using this new strategy
with different angles are shown in Fig. 4. In this environment,

Visualization of FCNN via

stacked building blocks

with coarse-grained settings

(only specifying the types

of individual layers)

Visualization of FCNN with fine-grained

settings (specifying the hyperparameters

of individual layers)

Visualization of available

tangible building blocks

with different colors and

description tags

Fig. 4. Screenshots of immersive learning environment with new strategy for
developing FCNN model via two different angles.

there are tangible building blocks whose concepts are provided
via the associated colors and tags. For example, a building
block can be used for realizing a dense layer with sigmoid or
softmax activation functions. In this environment, the learners
are able to: (1) select the tangible building blocks based on
the colors and the tags associated with the available building
blocks; (2) interact with the selected tangible building blocks
with different granularities; and (3) develop the ML models
by stacking the building blocks.

3) Convolutional Neural Network (CNN): As shown in
Fig. 5, the representation of immersive learning environment
for developing CNN model is very similar to the screenshot
in Fig. 4. The main difference is that we integrate the ad-

Fig. 5. Screenshot of immersive learning environment for developing CNN
model with the outputs of visualization mechanism on the top.

ditional visualization mechanism for enhancing the learners’
experience on CNN development. The additional visualization
mechanism includes visualizing the kernel weights and feature
maps associated with the convolutional layers. Figure 6 shows
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a screenshot by zooming in the outputs of the visualization
mechanism in Fig. 5.

Fig. 6. Screenshot of the outputs of the visualization mechanism of developing
CNN for a classification task: Left: visualization of feature maps after given
epochs, and Right: visualization of kernel weights after given epochs.

4) Autoencoder: The screenshot of the immersive learning
environment for developing autoencoder model is shown in
Fig. 7. The outputs of the visualization mechanism, as shown
in Fig. 7, include the reconstructed data with different hyper-
parameters and parameters.

Fig. 7. Screenshot of immersive learning environment for developing an
autoencoder model with the outputs of visualization mechanism on the top.

5) Generative Adversarial Network (GAN): The screenshot
of the immersive learning environment for developing GAN
model is shown in Fig. 8. As shown in Fig. 8, the GAN

Fig. 8. Screenshot of immersive learning environment for developing GAN
model.

model consists of generator associated with the pink glass
block and discriminator associated with the blue glass block.
The training of GAN is realized by triggering generator and
discriminator blocks interactively. As shown in Fig. 9, the
outputs of the visualization mechanism include the generated
data with different hyperparameters and parameters.

Fig. 9. Screenshot of immersive learning environment for developing GAN
model with another angle, where the outputs of the visualization mechanism
are shown on the top.

IV. CONCLUSIONS AND FUTURE WORK

The overarching goal of our research is to address a critical
need to foster a qualified cybersecurity workforce that un-
derstands the usefulness, limitations, and best practices of AI
technologies in the cybersecurity domain. To achieve this goal,
we leverage multidisciplinary expertise in cybersecurity, AI,
and statistics to design and implement a virtual, proactive, and
collaborative learning paradigm that can engage learners with
different backgrounds and enable effective retention and trans-
fer of the multidisciplinary AI-cybersecurity knowledge. At
the current research stage, we have been leveraging Minecraft
to develop an immersive learning environment where the
learners are able to investigate the insights of the emerging
AI/ML concepts by constructing related learning modules via
interacting with tangible AI/ML building blocks.

For our future work, we will continue to work on com-
pleting the cost-effective immersive learning environment that
motivates the students to explore AI/ML development in the
context of real-world cybersecurity scenarios by constructing
learning models with tangible objects. In addition to add
more deep learning models in the learning environment, data
representing cyberattacks will be loaded to the environment
for learners to investigate and explore. We will also develop
a game-based proactive education paradigm with the use of
hackathon activities to engage students with diverse back-
ground to collaboratively formulate AI/ML-specific threats and
develop trustworthy and robust AI/ML solutions in cyberse-
curity domain.

ACKNOWLEDGMENT

This work was funded by the U.S. National Science Foun-
dation (NSF) collaborative research grant 2114974. We thank
Gihan J. Mendis who provided help with the immersive
learning environment development.

Authorized licensed use limited to: Purdue University. Downloaded on March 30,2023 at 21:28:55 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] Y. He, G. J. Mendis, and J. Wei, “Real-time detection of false data
injection attacks in smart grid: A deep learning-based intelligent mech-
anism,” IEEE Transactions on Smart Grid, vol. 8, no. 5, pp. 2505–2516,
2017.

[2] E. Tsukerman, Machine Learning for Cybersecurity Cookbook: Over 80
recipes on how to implement machine learning algorithms for building
security systems using Python. Packt Publishing; 1st edition, 2019.

[3] D. Berman, A. Buczak, J. Chavis, and C. Corbett, “A survey of deep
learning methods for cyber security,” Information, vol. 10, no. 4, pp.
1–35, 2019.

[4] V. Research. (2019) Global artificial intelligence (ai) in
cyber security market – analysis and forecast (2019-2025).
[Online]. Available: https://www.vynzresearch.com/ict-media/artificial-
intelligence-in-cyber-security-market

[5] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial machine learning
at scale,” in Proceedings of International Conference on Learning
Representations (ICLR), Toulon, France, April 2017.

[6] “Artificial intelligence and cybersecurity: Opportunities and challenges
technical workshop summary report,” A Report by Networking & Infor-
mation Technology Research and Development Subcommittee and the
Machine Learning & Artificial Intelligence Subcommittee of the National
Science & Technology Council, March 2020.

[7] N. Akhtar and A. Mian, “Threat of adversarial attacks on deep learning
in computer vision: A survey,” IEEE Access, vol. 6, pp. 14 410–14 430,
2018.

[8] “A report to the president on supporting the growth and sustainment of
the nation’s cybersecurity workforce: Building the foundation for a more
secure american future,” Transmitted by The Secretary of Commerce and
The Secretary of Homeland Security, May 2017.

[9] “Federal cybersecurity research and development strategic plan,” Pre-
pared by the Cyber Security and Information Assurance Interagency
Working Group Subcommittee on Networking & Information Technology
Research & Development Committee on Science & Technology Enter-
prise of the National Science & Technology Council, December 2019.

[10] “U.S. Department of Homeland Security Artificial Intelligence Strategy,”
December 2020.

[11] K. Tretyakov, “Machine learning techniques in spam filtering,” in Data
Mining Problem-oriented Seminar, MTAT, vol. 3, no. 177. Citeseer,
2004, pp. 60–79.
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