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ABSTRACT

This study introduces a new analysis scheme to analyze trace
data and visualize students’ self-regulated learning strategies in a
mastery-based online learning modules platform. The pedagogi-
cal design of the platform resulted in fewer event types and less
variability in student trace data. The current analysis scheme over-
comes those challenges by conducting three levels of clustering
analysis. On the event level, mixture-model fitting is employed
to distinguish between abnormally short and normal assessment
attempts and study events. On the module level, trace level clus-
tering is performed with three different methods for generating
distance metrics between traces, with the best performing output
used in the next step. On the sequence level, trace level clustering
is performed on top of module-level clusters to reveal students’
change of learning strategy over time. We demonstrated that dis-
tance metrics generated based on learning theory produced better
clustering results than pure data-driven or hybrid methods. The
analysis showed that most students started the semester with pro-
ductive learning strategies, but a significant fraction shifted to a
multitude of less productive strategies in response to increasing
content difficulty and stress. The observations could prompt in-
structors to rethink conventional course structure and implement
interventions to improve self-regulation at optimal times.
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1 INTRODUCTION

Studying students’ self-regulated learning (SRL) behavior in online
learning environments through analysis of trace data has become
one of the focuses of learning analytics research, especially since
the COVID pandemic forced educators around the world to abruptly
switch to online learning. SRL identifies students as playing active
roles in their learning by engaging in planning, monitoring, and
reflection strategies during learning [22, 25], which is imperative
for online learning as students are less reliant on instructors for
in-the-moment assistance and are required to engage in more inde-
pendent, structured, and regimented learning to keep up with class
activities and content mastery. A number of recent studies have em-
ployed multiple data mining techniques such as sequence pattern
analysis, process mining, and hierarchical clustering to identify, vi-
sualize and compare students’ SRL strategies from trace data [5, 14],
with the latest example being the Trace-SRL framework developed
by Saint et. al. [18]. The Trace-SRL framework first maps event
sequences onto micro-SRL processes based on an SRL model [26],
then identifies SRL strategies by conducting two levels of sequence
clustering on SRL action traces, and finally creates process models
of SRL learning strategies for different groups of students.

The data set analyzed in Saint et. al. contains a rich variety of
events from attempting problems to accessing the scheduling page
or the dashboard. The online learning environment also provided
students with a relatively high level of freedom to access different
course contents in their preferred order. Under those conditions,
different micro-level SRL actions will likely result in distinct event
sequences, which allowed researchers to create a "dictionary" that
uniquely maps event sequences onto SRL actions. The relatively
high variability in event sequences also enables the dissimilarity
between different traces to be calculated based on transition rates
and state frequencies observed in the data set, which is the default
option provided in mainstream trace clustering tools [7].

However, online learning systems or online learning data sets are
oftentimes more restrictive, meaning that they provide fewer event
types and less variability in event sequences. This could happen
for several reasons, first, certain restrictions could be beneficial for
learning from a pedagogical standpoint. For example, in a mastery-
based learning system designed based on the principles of deliberate
practice [4], students would be required to complete a sequence
of tasks in a pre-determined order. From a "preparation for future
learning" perspective [20], requiring students to attempt a problem
first could improve the level of learning from subsequent study of
the instructional materials. Second, online homework or intelligent
tutoring systems are often integrated into an online course hosted
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on a separate learning management system such as Canvas. In
those cases, data from the sub-system may only contain a subset
of events such as attempts and page access, whereas other types
of events such as checking the dashboard are stored in a different
data set that may not be available to the researcher.

For those more restrictive date sets, direct application of existing
analysis schemes faces two prominent challenges. First, it will be
challenging to reliably identify one-to-one correspondence between
event sequences and microscopic SRL strategies. This is because,
on one hand, students adopting different learning strategies may
end up producing similar or even identical event sequences due
to restrictions imposed by the system. On the other hand, each
event or event sequence may be reflective of more than one SRL
actions. For example, if a student accessed the learning material
after a failed problem-solving attempt, the decision could indicate
that the student reflected on the previous attempt, but may also
be part of the students’ initial plan to learn the skills needed to
solve the problem or a combination of both. Second, sequence
clustering based entirely on the frequencies of events in the data
set could be insufficient in identifying key differences in students’
learning strategies in a restricted online system. For example, a
student who first attempted to solve a problem and then guessed on
subsequent attempts likely had different strategies than those who
started guessing on attempt one. Yet there is no guarantee that the
frequency differences contained in the data itself will be sufficient
to separate those two states, especially since the variability in trace
sequences in a restricted system is markedly smaller. Both of those
challenges are present in the analysis of all types of online learning
trace data sets but are more prominent in limited data sets from
restrictive systems.

Therefore, in this study we will try to answer the following
questions: can we adopt and modify similar strategies and algo-
rithms such as those used in the Trace-SRL framework to analyze
students’ learning data from a restrictive learning system? To what
extent can this approach still provide valuable insight into students’
self-regulation strategies, learning behaviors, as well as goals and
motivations, without the need for directly mapping event sequences
onto unique SRL actions?

Below, we will first briefly introduce the design of the mastery-
based online learning modules (OLM) system being analyzed in the
current study. We then outline our attempt to develop an analysis
scheme suitable for trace data produced from the OLM system, by
employing three different clustering algorithms on three consecu-
tive levels of data granularity.

1.1 Design of OLM and OLM Sequences

Designed based on principles of mastery-learning [2] and deliber-
ate practice [20], an OLM combines assessment, instruction, and
practice into a single online learning unit. Each OLM is focused on
explaining one or two basic concepts, or developing the skills to
solve one kind of problem, designed to be completed in 5 to 30 min-
utes. Each individual OLM consists of an assessment component
(AC) which tests students’ content mastery in 1-2 questions, and an
instructional component (IC) with instructional text and practice
problems on the topic (see Figure 1). Upon accessing a module,
students are shown the learning objectives of the current module
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and are required to make an initial attempt on the AC before being
allowed to access the IC. Students can make additional attempts
on the AC at any time after the first attempt and are not required
to access the IC. This design is motivated by both the "mastery-
learning” format that allows students who are already familiar with
the content to proceed quickly to the next assignment and by the
concept of "preparation for future learning" intending to improve
students’ learning from the IC by exposing them to the questions
first. It also allows researchers to more easily measure knowledge
transfer between subsequent modules [21].
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Figure 1: Schematic illustration of OLM design, adapted
from [3]

A number of OLM modules form an OLM sequence on a more
general topic (e.g., conservation of mechanical energy) and students
are required to pass the AC or use up all attempts before moving
onto the next OLM in that sequence. A typical OLM sequence
consists of 5-12 modules and are assigned as self-study homework
for students to complete over a period of one to two weeks.

1.2 Analysis of OLM Trace Data via Multi-Level
Clustering

The current analysis scheme involves three consecutive clustering
operations performed on the trace data from the OLM system at
the event level, module level, and sequence level.

1.2.1 Level I: Clustering of Individual Events. Prior research on
OLMs has shown that students’ use of learning strategies may not
be reflected by the order of events, but rather by the quality of
events [3, 8]. More specifically, an abnormally short assessment
attempt is likely the result of random guessing or answer copy-
ing and may be indicative of the student adopting a performance-
avoidance goal. Therefore, the main goal of the event level cluster-
ing is to distinguish between abnormally short guessing attempts
and longer problem-solving attempts. This is achieved by fitting
the log-duration distribution with finite mixture modeling (FMM)
[16], which can be seen as clustering based on a single continuous
variable (event duration). The same technique is also applied to
identify and exclude very short study events which likely originated
from a student clicking through the instructional contents without
meaningfully interacting with them.

1.2.2  Level lI: Clustering Interaction Traces on Individual Modules.
To identify the main strategies that students adopt when interact-
ing with individual OLM modules, we partition students’ event
traces on a single module into multiple "module-level clusters", or
m-clusters, using hierarchical agglomerative clustering. We will
test and compare three different techniques for determining the
dissimilarity between different traces:
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(1) A purely data-based strategy using optimal matching dis-
tance similar to the method used in [12, 18], and relying
solely on frequencies observe from the data.

(2) A hybrid strategy with which part of the dissimilarity calcu-
lation is informed by the design of the platform.

(3) A purely theory-based strategy that determines the dissimi-
larity based on a set of features that are deemed to be impor-
tant in the context of an OLM, informed by an SRL frame-
work adapted for restrictive learning systems.

For each resulting m-cluster, a process map is generated via
exploratory process mining using the package bupaR [10] with the
top 60% of most frequent traces, as an intuitive visual representation
of the main characteristics of each interaction strategy.

1.2.3  Level llI: Clustering of Interaction Traces on OLM Sequences.
As a result of module-level clustering, students’ use of learning
strategies for each OLM sequence can be captured as a trace of
m-cluster memberships. We can then partition those traces into
sequence-level clusters, or s-clusters, to capture the main strategies
employed by each student to interact with the entire OLM sequence.
In Trace-SRL, student-level clustering is based on the frequency of
adopting different strategies using the Euclidean distance. In the
current analysis, the s-clusters are identified based on the optimal
matching distance between traces calculated using the TraMineR
package [7]. Using the optimal matching distance preserves the
temporal information in trace data, which will enable us to investi-
gate when students change their interaction strategies in response
to different factors such as content difficulty.

Due to the computational complexity of this analysis scheme,
the current study will analyze trace data collected from three rep-
resentative OLM sequences selected from the beginning, middle,
and end of the semester, to answer the following three research
questions:

RQ1: Which of the three clustering strategies (Data, Hybrid, The-
ory) will produce the most well organized and interpretable
m-clusters?

RQ2: What are the main strategies that students adopted to inter-
act with OLMs, and how are those strategies related to their
assessment performance?

RQ3: How do students’ choice of strategies change over time, and
how can we interpret their use of strategy in the framework
of SRL?

2 METHODS

2.1 OLM Design and Implementation

The OLM modules are created and hosted on the Obojobo learning
objects platform, an open-source online learning platform devel-
oped by the Center for Distributed Learning at the University of
Central Florida. In the current iteration, the assessment component
of each OLM contains 1-2 multiple choice problems and permits
a maximum of 5 attempts. The first 3 attempts are sets of isomor-
phic problems assessing the same content knowledge with different

4th 5th attempts, students
znd

surface features or numbers. On the and

are presented with the same problems in the 1%t and attempts
respectively and are awarded 90% of credit. The instructional com-

ponent of each module contains a variety of learning resources

199

LAK22, March 21-25, 2022, Online, USA

including text, figures, videos, and practice problems. Each OLM
sequence contains 3-12 OLMs, which students must complete in
the order given, with completion defined as either passing the as-
sessment or using up all 5 attempts. Readers can access example
OLMs at https://canvas.instructure.com/courses/1726856.

2.2 Instructional Conditions and Data
Collection

Data used in this study was collected from a calculus-based univer-
sity introductory physics course taught in the Fall 2020 semester. A
total of 251 students were initially enrolled in the class, of which
67 were females, and 98 were historically underrepresented minori-
ties. The course was taught asynchronously using pre-recorded
lecture videos as the main method for content delivery as a result
of the COVID pandemic. Students and instructors interacted via
messages, posts, and short video conferences via Microsoft Teams
(for more information on the course design, see https://www.aaas-
iuse.org/resource/course-design/). Students were required to take
a total of 7 quizzes during the semester, with each quiz lasting 20
minutes and proctored by a teaching assistant.

A total of 70 OLMs consisting of 9 sequences were assigned
as the only form of online homework. Each OLM sequence was
assigned for students to complete over 1-2 weeks, with all OLMs in
a sequence due on the same day. The OLM modules accounted for
24% of course credit, with no additional homework assignments.
Students could earn extra credits by completing some OLMs earlier
than the due date, as explained in more detail in [6].

2.3 Collection and Analysis of Student Log
Data

Students’ click-stream log data collected from the Obojobo platform
is first processed into attempt events and study events. An attempt
event starts when the student enters the assessment page of the
module, and ends when the student clicks the submit bottom on
the assessment page. During this period the student is unable to
navigate to any other pages in the current module or to other
modules. The duration of the attempt event is the time between
those two clicks minus the duration of 1) when the browser window
is either closed or minimized, or when another window is in focus
and 2) any non-active duration beyond 10 minutes. An attempt
event is labeled as "pass” only if the student correctly answers all
questions in the assessment, and "fail" otherwise.

A study event starts when the student clicks on any page in the
instructional component of the module, and ends when the student
clicks on the last record before a new attempt event is initiated,
or the last record for the student on the module. In other words,
a study event includes all the interaction with the instructional
component between two attempt events. The duration of the study
event is calculated as the sum of all the time spent interacting with
each instructional page, minus the duration of inactive periods as
explained above.

For the current study, we selected event data from Sequence
1: Motion in 1 Dimension, Sequence 6: Mechanical Energy, and
Sequence 9: Angular Momentum. The three sequences consist of a
total of 26 modules, and the resulting data set contains a total of
5960 traces. In addition, all records after the first passing attempt or
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after the last attempt were truncated for simplicity of analysis, since
there were significantly fewer records after passing or using up all
attempts, and most of those events took place before an exam [3].
The topics of the three sequences are sufficiently different so that
the learning outcome of earlier sequences should not significantly
impact the learning behavior of later sequences.

2.4 Clustering Level I: Categorization of Events

At level I, abnormally short attempts on the AC of a given OLM are
distinguished from normal AC attempts, by fitting the log duration
distribution of all attempts on a single module using FMM. FMM is
a model-based clustering algorithm that divides a population into
subgroups according to one or more observable characteristics, by
fitting the distribution of characteristics with a finite mixture of nor-
mal or skewed probability distributions. When two or more distinct
problem-solving behaviors are present, the log attempt duration
distribution can be fitted with the sum of two or more distributions,
with the shortest distribution corresponding to abnormally short
attempts. In the current study, we fit the log-duration of each assess-
ment attempt using either normal or skewed distribution models
using the R package mixsmsn [16], following the fitting procedure
described in detail in a previous study [3]. In the case when a single
component distributed is the best fit for the duration, then the cutoff
is set as either 2 standard deviations below the mean duration, or
15 seconds, whichever is longer. This is because a previous clinical
study indicated that attempts under 15s are likely to arise from
complete random guessing [9].

We also conducted mixture-model fitting of the combined log
duration of all study events from all modules in the data set, to
determine the cutoff time between normal study events and very
short study events that are likely the result of students clicking
through the instructional pages. Study events that are shorter than
the cutoff are excluded from the data set since those events are
more likely the result of accidental or unintentional clicks rather
than a deliberate decision to engage with the material.

2.5 Level II: Module-Level Trace Clustering

As a result of Level I clustering, each students’ interaction with
a given OLM is represented by a trace of either normal or short
attempt events and study events that are longer than the minimal
duration. Each attempt is treated as a separate event and labeled as
"Attempt_N" with N being the attempt number. Short attempts are
labeled as "Attempt_N_S" to distinguish them from normal attempts.
For example, a trace of {Attempt_1_S, Study, Attempt_2, Attempt_3}
indicates that the student took 3 attempts on the OLM, with the
first attempt being a short attempt, and took a study session (longer
than the minimum cutoff) between attempts 1 and 2.

Hierarchical agglomerative clustering using Ward’s method is
performed via the R package cluster [13] on traces from all three
selected OLM sequences, with each trace treated as a data entry.
We investigate and compare three different kinds of strategies for
calculating the distance between two traces: purely data-driven
strategies, hybrid strategies, and purely theory-based strategies,
explain in detail below. The resulting module-level clusters, or m-
clusters, reflect different learning strategies that students adopt to
interact with individual OLMs.
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2.5.1 Data-Driven Trace Distances. The distance metric used for
data-driven strategy is the Levenshtein distance, defined as the
minimum number of operations needed to transform a given string
a into another b via single letter operations (insertion, deletion,
and substitution). The matrices generated by the cost generation
methods determine the relative weight of substitution between
letters in the alphabetl, while the indel costs refer to the relative
weight of insertion/deletion of letters in the alphabet.

There exists three cost generation methods native to the TraMineR
package; the INDEL, TRATE, and FUTURE methods which utilize
only information observed from the data. The INDEL method gen-
erates the cost matrix by calculating the relative frequency of each
state, the TRATE method by transition rates between adjacent states
in a given trace, and the FUTURE method by the Chi-Square dis-
tance for the state probability vectors. A more detailed description
of the methods can be found in the documentation of the TraMineR
package [7]. All three methods are being tested for the current
analysis, and the one that generates the most well-formed clusters
(explained in more detail below) is selected as the result of the pure
data-driven strategy.

2.5.2  Hybrid Trace Distance. The local structure in the TRATE
most closely matches the theorized actions associated with SRL
behaviors out of the three data-based methods. As such it requires
the least modification of the dissimilarity inputs to better match
and subsequently separate such predicted behaviors. To do this, we
constructed a vector of the insertion/deletion costs of the alphabet
with the following constraints in mind:

(1) Study events after Attempts 1, 2, and 3 are significantly
different from study events after Attempts 4 and 5.

(2) Brief Attempts are significantly different from Normal At-
tempts.

(3) The first Brief Attempt is significantly different from the first
Normal Attempt.

2.5.3 Theory-Based Trace Distance. For each OLM, students are
presented with two tasks: a required task to solve the problem
in the assessment component, and an optional task to study the
learning material. Therefore, students will need to make two types
of decisions:

(1) Whether to seriously engage in problem solving on a given
attempt (resulting in a normal length attempt) or to make a
guess (usually resulting in a short attempt).

(2) Whether to engage with the study material if the first attempt
fails.

Using the three macro-level self-regulatory phases presented
in Zimmerman’s model of SRL [24], we propose six features that
capture students’ interactions with the OLMs and their associated
SRL processes, based partly on two earlier studies [3, 23]:

(1) Total Number of Assessment Attempts (nA): This reflects
the quality of performance on both the problem-solving
task and the studying task. In general, passing on fewer at-
tempts reflects either high incoming knowledge or successful
learning, or both.

Here, alphabet refers to the available range of letters in the state space.
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(2) Number of Attempts before Study? (nY): When or whether
to access learning materials can be influenced by either plan-
ning or reflection. While accessing the learning materials
after the first mandatory attempt is more likely the result
of planning, accessing after multiple failed attempts is more
likely the result of reflecting on previous attempt perfor-
mance.

(3) Fraction of Short Attempts Among All Attempts (fS): Since
most short attempts likely originate from either guessing or
copying behaviors, a high fraction of short attempts could
indicate low prior knowledge, low self-efficacy, low effort,
or limited execution strategies like time management.

(4) Is the First Attempt Short (1S): The first attempt is of par-
ticular significance as it reflects students’ planning of the
time and effort to spend on the mandatory first attempt. A
short first attempt can be a sign that the student is trying to
conserve time and effort on the task by guessing. It could
also be influenced by the student’s reflection on experience
in the previous modules and their perceived self-efficacy
within the course. A student with lower confidence, or is
aware of their low prior knowledge, will be more likely to
make a short first attempt to access the learning materials.

(5) Is the Last Attempt Short (IS): The last attempt is also of
particular significance since it is the passing attempt in all
event traces, except for those with five failed attempts. A
short final passing attempt signifies lower performance on
both learning and problem-solving tasks, and probably lower
levels of reflection on learning.

(6) Did the Student Abort the Module (Ab): This feature repre-
sents a small number of (22 out of 5960) event traces that
ended on a failed attempt that is not attempt 5 from the rest
of the event traces. Those traces exist either because the
student aborted the module, or because of corrupted data
logs.

It is worth noting that the number of times a student accessed the
instructional materials is not included as a feature. This is because,
in 90% of cases, students interact with all the learning materials
at once and in most other cases, one study event is significantly
longer than the others. It is also much less clear whether a higher
degree of access reflects higher or lower quality of learning.

Since features 1, 2, and 3 are numeric while features 4, 5, and 6
are binary, the distance metric between two event traces is com-
puted using the Gower dissimilarity coefficient. We tested multiple
sets of feature weights for calculating the Gower coefficient. The
best cluster structure, as explained below, was produced when the
weights for nA and IS are set to 0.5 and all other weights set to 1.0,
which emphasizes the forethought phase.

2.5.4 Determining the optimal number of m-clusters. Since agglom-
erative clustering produces a tree structure of all possible numbers
of clusters, we choose to determine the optimum number of m-
clusters based on the average silhouette value of each cluster. A

2If a student never accessed the instructional materials, this feature has a value of
5, which is equivalent to having studied after the 5th attempt. Since event logs after
the passing attempt of 5th attempt are excluded from the current data set, a value of
5 always represents a no-study trace. The choice of coding amplifies the decision of
whether to access the study materials when interacting with the OLMs.
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silhouette is a measure of the ratio of intra- and inter-cluster vari-
ability which is described in [17]. The term "average silhouette"
refers to the average silhouette value for every point in the clus-
tering algorithm. Theoretically, the optimal number of clusters is
chosen to maximize the average silhouette, as it indicates that the
variability within clusters is very small compared to the variability
between clusters, thus being well defined.

However, in practice, the current data set of 5960 traces contains
only 53 unique traces. As a result, the average silhouette will always
reach the global maximum at or near 53 clusters. Several clustering
strategies resulted in local maxima of average silhouette in under 10
clusters, indicating a relatively well-defined cluster structure with
a small number of clusters. In those cases, the number of m-clusters
is chosen using the local maximum average silhouette.

2.5.5  Visualizing m-Cluster Structure using Process Maps. The main
characteristic of each m-cluster is visualized by creating process
maps (PMs) using the R package processmapR [11] for event traces
in each cluster. A "PASS" event is appended to the end of the trace if
the last attempt is a passing attempt. Otherwise, the sequence ends
with the last attempt. The top 60% of most frequent event traces in
each m-cluster are included in the map to reduce "spaghetti effects"
caused by rare traces.

2.6 Level III: Sequence-Level Trace Clustering

Following module-level clustering, a student’s event trace inter-
acting with each OLM is classified as belonging to one of several
m-clusters. Thus, the student’s interaction with an OLM sequence
of n modules can be captured by a sequence-level trace of n ele-
ments in the form of {m1, my, ..., mp }, with each element m; being
a number representing the m-cluster that the student’s event trace
on module i belongs to.

We again perform hierarchical agglomerative trace clustering
on the sequence-level traces for each of the three OLM sequences
separately using the Ward method. The distance between two traces
is calculated using the optimal matching distance via the TRATE
method, as it takes into account the local ordering of states. Since
each student contributes one trace per sequence to the data set,
the s-clusters are a reflection of the strategy adopted by individual
students.

The number of s-clusters for each sequence is determined by the
maximal average silhouette value between 2 and 10 clusters. In the
case that the maximum average silhouette is 2 clusters, but a local
maximum exists for a higher number of clusters, then the higher
number of clusters is selected in order to better elicit relatively rare
but distinct interaction strategies.

2.7 Correlation With Assessment Outcomes

To explore the correlation between identified s-clusters and stu-
dents’ performance on assessment, we divided the students into
three tertiles of near equal size along quiz score performance (High,
Medium, and Low) following the practice in [12]. Quiz scores were
chosen over exam scores since quizzes were being proctored and
exams were not during the Fall 2020 semester. We then compared
the frequency distribution of s-cluster membership between the
three cohorts using Fisher’s exact test. When a significant difference
was observed for a given sequence, we then performed post hoc
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analysis via pairwise Fisher exact tests for every s-cluster between
every two performance cohorts, using the Benjamini, Hochberg,
and Yekutieli ("fdr") method [1] for p-value adjustment.

3 RESULTS

3.0.1 Event Level Clustering. Of the 26 module assessments in-
cluded in this data set, the attempt duration distribution of 8 as-
sessments were fitted with 1 component FMMs, and the rest are all
fitted with 2 or more components FMMs. For 4 assessments, the
short versus normal cutoffs as determined by FMM modeling were
less than 15s and were thus adjusted to 15s. Twenty-one modules
had short versus normal cutoffs between 15 and 120s, and 2 modules
had cutoffs beyond 120s. Assessments involving numerical calcu-
lation problems had longer cutoffs compared to those involving
conceptual questions.

3.1 Module-Level Trace Clustering

3.1.1 Comparison of Different Clustering Methods. The silhouette
plot for each of the three methods (data-based, hybrid, and theory-
driven) is shown in Figure 2. The theory-based method outper-
formed the other two methods with a local maximum average
silhouette of over 0.8 at 7 clusters. The purely data-driven method
had a local maximum of 0.7 at three clusters, while the average
silhouette of the hybrid method did not reach a local maximum in
under 10 clusters.

0.8
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Figure 2: Plots of the Average Silhouettes for each distance
generation method for m-Clusters

For all the clusters identified by either the pure data or the hybrid
methods, the corresponding process maps (PMs) show that traces
both with and without a study event are grouped into the same
cluster, as shown in the example PM in Figure 3. Furthermore, the
pure data method also cannot distinguish between normal and
short assessment attempts. Since both methods failed to distinguish
features important for interpreting students’ SRL strategies, we
chose to only show one example PM for each method

The PMs for the m-clusters generated by the theory-based method
are shown in figure 4, labeled using the shorthand notation ex-
plained in the figure caption. The PMs can be divided into two
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groups based on the "lengths" of the PMs: Traces in PMs 1, 2, 4,
and 7 all reach the PASS state within 3 attempts. PMs 3, 5, and 6 all
contain traces that pass on either the 4™ or 5™ attempt, or did not
reach the pass state after the 5th attempt.

In PMs 1, 2, 4, and 7, the majority of cases passed the module on
the 15 or 2 attempt, with a smaller fraction (< 20%) passing on
the 314 attempt. As shown in the PMs, most traces in m-cluster 1 (A)
passed the module without studying the learning material whereas
those in m-cluster 2 (AYAn) passed the module in a few attempts
after studying. m-cluster 7 (SYAn) is similar to m-cluster 2, except
that the initial attempt is a short one. The passing attempts in all
three PMs are all normal attempts. All of the traces in m-cluster 4
(S), on the other hand, passed the module on short attempts with
no study event, and at least 60% of the traces passed on only one
short attempt, as shown in the PM. It is likely that the traces in
m-cluster 4 (S) originated from the student either making a lucky
guess or obtaining the answer from another source.

A significant common feature of PMs 3, 5, and 6 is that all the
passing attempts are short attempts. M-cluster 3 (Sn) started with
a normal attempt, followed by multiple short attempts without a
study event in most traces. In m-clusters 5 (AYSn) and 6 (SYSn), a
study event followed either a normal or a short first attempt. In
those three clusters, it is likely that students are guessing on the
assessments after either having taken the first attempt (3) or after
studying the instructional materials (5, 6).

Since the theory-driven distance metric produced m-clusters
with both better structure and better interpretability, we chose to
use those results in Level III clustering analysis.

3.2 Sequence-Level Clusters

A total of 5, 4, and 6 s-clusters are identified for sequences 1, 6,
and 9 respectively according to the average silhouette scores. In
figure 5, we visualize the characteristics of each identified s-cluster
by plotting the distribution of m-clusters for each OLM in the
sequence using stacked bar charts. Each bar chart corresponds to
one identified s-cluster and each column corresponds to one OLM
in the given sequence. The height of the bars represents the fraction
of event traces that belong to one of the seven m-clusters. Here,
m-cluster 0 is used to indicate that the student did not interact with
the given module. Based on the frequency of observing different
m-clusters within each sequence, the s-clusters can be roughly
categorized into five types.

Type I: Initial Pass. Traces classified into s-clusters 1-1, 6-1, and
9-1, share the common feature of having predominantly m-cluster
1 (A) on all or most of the modules. S-clusters 6-1 and 9-1 also had
a smaller fraction of m-cluster 4 (S) which in the case of s-cluster
6-1 became dominant in the last 4 modules.

Type II: Pass or Study. Traces classified into s-clusters 1-2, 1-3,
1-4, 6-2, and 9-2 share the common feature of having a combination
of m-clusters 1 (A) and 2 (AYAn). S-clusters 1-2 and 1-3 are different
in that 1-2 had higher fractions of m-cluster 1 (A) on the first couple
of modules whereas the distribution in 1-3 is roughly uniform and a
bit higher in the later modules. S-cluster 1-3 is also smaller than 1-2
and 1-4. S-cluster 1-4 consists of predominantly m-cluster 2 (AYAn)
across all modules, which is also the case for s-cluster 6-2. However,
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Figure 3: Process maps generated from the (a) INDEL and (b) Hybrid cost matrix generation methods.

on the last 4 modules, of s-cluster 6-2, a significantly higher fraction
of m-clusters 5, 6, and 7 are observed.

Type III: Varied Strategies. For traces in s-clusters 6-3, 9-3, and
9-4, there isn’t a single dominant m-cluster, but m-clusters 3 (Sn),
5 (AYSn), and 7 (SYAn) are observed at a higher frequency when
compared to other s-clusters. m-clusters 5, 6, and 7 all involve both
a study event followed by one or more short attempts. A notable
difference between those three clusters is that s-cluster 6-3 has
a higher fraction of m-cluster 6 (§YSn) and 4 (S) on the last four
modules, suggesting ineffective study or giving up without studying.
S-clusters 9-3 has a higher fraction of m-cluster 7 (SYAn), which is
study and normal attempts after an initial guessing attempt on the
mandatory first attempt.

Type IV: Short Pass. Traces in s-clusters 1-5 and 9-5 consist of
predominantly, m-cluster 4 (S), short passing on the first attempt,
on all modules in the sequence, which strongly suggests some form
of answer copying or quick guessing. While s-cluster 1-5 consists
of only 2 students, s-cluster 9-5 consists of 91 students and is the
single largest cluster in sequence 9.

Type V: Incomplete. The small number of traces in s-clusters
6-4 and 9-6 do not have records on the last couple of modules in
the sequences. Note that there are also several unfinished traces in
cluster 1-3, but the missing data is predominantly concentrated on
the last couple of modules.

3.3 S-cluster membership and Assessment
Performance

Fisher tests conducted for each sequence detected significant differ-
ences in s-cluster membership among high, medium, and low quiz
score cohorts (p < 0.0001 for each sequence). For each sequence,
the distribution of s-cluster memberships among each quiz score
cohort is plotted in figure 6 whereas the result of post hoc analysis
is listed in table 1.

4 DISCUSSION

The multi-level hierarchical clustering analysis scheme produced
relatively well-organized and highly interpretable clusters at both
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s-cluster H:M H:L M:L
1-1 0.0003*** 0.037* ns
1-4 ns 0.0022** ns
6-2 ns 0.000003***  0.002**
6-3 0.0013* 0.00003*** ns
9-2 0.014* 0.0008*** ns
9-5 0.024* 0.00053*** ns

Table 1: Adjusted p-values for significant differences in s-
cluster membership between average quiz score tertiles.

the module level and the sequence level. As one of the centerpieces
of the analysis, the purely theory-based distance metric at the
module level (Level IT) outperformed both data-based and hybrid
distance metrics, by producing both better-structured clusters (as
judged by average silhouette) and more interpretable outcomes
under the framework of SRL (RQ1). A possible implication is that in
a restrictive system such as the OLMs, instructional conditions im-
posed by the system design play a major role in students’ decision-
making process, but may not be well reflected in the naturally
occurring event frequencies. Therefore a strong input of expert
knowledge is required to produce well-organized and interpretable
clusters.

Results from module-level clustering answered RQ2 by reveal-
ing three major m-clusters accounting for about 86% of all traces,
together with four smaller m-clusters. The largest m-cluster 1 (A),
passing on the initial attempt before study, could indicate that a stu-
dent entered the OLM with high prior content knowledge, possibly
from learning the content from video lectures or in previous courses.
However, it is also possible that in some cases students might have
engaged in undesirable behaviors like conducting internet searches
for problem solutions, which is indistinguishable from a normal
attempt based on duration data alone. The second-largest m-cluster
is 2 (AYAn), passing after study. Both m-clusters 1 and 2 represent
the kinds of effective self-regulatory student behaviors that the
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Figure 5: Visualization of the s-clusters of each sequence and overall cluster membership by sequence.

OLMs were designed to elicit. The majority (74.3%) of study events
in this cluster took place immediately after the first attempt, show-
ing that students either actively reflected on their problem-solving
performance, or planned their learning strategy according to the
instructor’s recommendation. The third major m-cluster is 4 (S),
pass on one brief attempt cluster, which suggests possible answer
copying and counter-productive self-regulation during learning.
These three m-clusters represent learning strategies frequently ob-
served in all three sequences, while the four minor m-clusters reflect
strategies mostly adopted by some students on specific modules
and sequences.

The outcomes of the sequence level clustering provided the most
insight into students’ SRL strategies across multiple modules and
how those strategies changed over time (RQ3). As shown in Figure
5, learning strategies employed by students changed significantly
across the three sequences. For sequences 1 and 6, the most popu-
lous s-clusters were 1-2 and 6-2, both of which contain a mixture of
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m-clusters 1 (A) and 2 (AYAn), indicating effective strategy use as
intended by the OLM design. However, by the end of the course, the
dominant s-cluster for sequence 9 is 9-4, which almost exclusively
consists of m-cluster 4 (S), indicating consistent and deliberate an-
swer copying. Strikingly, the same "copy or guess" strategy was
only adopted by 2 students in sequence 1 in s-cluster 1-5.
Students also changed their learning strategies within a single
OLM sequence. For example in sequence 6, a shift in strategy is
observed between modules 6 and 7 for all s-clusters. While the
dominant strategy for the first 5 OLMs consists of m-clusters 1 (A)
and 2 (AYAn), there was an obvious increase in m-clusters 4 (S),
5(AYSn), and 6 (SYSn) on the last 4 modules. Both m-clusters 5 and 6
are characterized by finishing on multiple short attempts following
astudy event, which could indicate that those students had difficulty
learning from the instructional materials and therefore resorted
to guessing on subsequent attempts. This shift in strategy could
be explained in part by a change in content difficulty, as OLMs
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Figure 6: S-cluster membership for each sequence and quiz score tertile cohort.

1-6 focused on introducing individual concepts, whereas M7-M10
focused on the synthesis of multiple concepts and mathematical
modeling.

Moreover, a smaller fraction of students displayed unique learn-
ing strategies towards the end of the semester when the content
became even harder. In s-cluster 9-3 for example, students consis-
tently adopted m-clusters 6 (SYSn) and 7 (SYAn). A similar trend
was also observed for the last four modules in s-clusters 6-2 and
6-3. Both m-clusters are characterized by a short first attempt, fol-
lowed by a study event, which could be interpreted as students
strategically skipping the required first attempt, likely due to a lack
of self-confidence in their ability to solve the problem. Right after
the first guessing attempt, those students followed their plan to
study the instructional materials, with the outcome being a mix of
success (7) and failure (6).

The correlation between s-cluster membership and course assess-
ment performance provides further evidence for the interpretation
of s-clusters. The three s-clusters that are more frequently observed
among the top or middle tertile, 1-1, 6-2, and 9-3, all consist of
predominantly m-clusters 1 (A) and 2 (AYAn). On the other hand,
the two s-clusters, 6-3 and 9-5, involving a significant fraction of
m-clusters 4 (S), 5 (AYSn), and 6 (SYSn), are significantly more fre-
quently observed among the bottom tertile. The one exception being
1-4, which is predominantly m-cluster 2, yet contains significantly
more low performers. Consistent with existing research on incom-
ing knowledge [19], students who do not have prior knowledge
of the content in the first week of the course generally performed
lower on assessments.

The current study makes several contributions both in terms of
analysis methodology for trace data and new insights into students’
SRL behavior in an online learning environment. Regarding analy-
sis methodology, we overcame the challenges imposed by a more
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limited and restrictive online system with three main innovations.
First, key information contained within the duration of events is
extracted using mixture modeling. Second, we used an SRL theoret-
ical framework to inform the clustering algorithm of pedagogically
important features in trace data and showed that it outperformed
more conventional data-based sequence-mining techniques. Finally,
we used sequence pattern analysis in the final stage of clustering to
reveal information on students’ change of learning strategies over
time.

Regarding the insights gained on students’ SRL behavior, the
most important takeaway from the current analysis is that the ma-
jority of students are continuously self-regulating and adjusting
their strategies from one module or one sequence to the next. We
did not find a group of students whose behavior consistently indi-
cates a lack of self-regulation. Rather, even when a student employs
counterproductive strategies such as answer copying or guessing,
it is more likely the result of a deliberate choice in response to
challenges such as increased content difficulty or fatigue towards
the end of the semester. For instructors, this observation reminds
us that rather than blaming students for lack of academic integrity
or self-discipline, it is essential to re-examine existing instructional
design. It could be beneficial to pick up the pace early on when
most students are actively engaged, and space out the more chal-
lenging content towards the end to allow for more opportunity
to overcome challenges. Moreover, it seems that the prime time
to implement interventions directed at improving students’ SRL
skills is the middle or latter half of the semester, rather than at the
beginning.

4.1 Caveats and Future Directions

From a technical standpoint, the current m-clusters reflected plan-
ning and decision-making more than learning outcomes, as the
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same m-cluster includes traces that pass on either 2 or 5 attempts.
This could be caused by the choice of feature weights for the Gower
coefficients, but also by the restriction of having a maximum of 10
clusters. In addition to conducting a more systematic search of the
clustering parameter space, future studies could explore whether
there can actually be more than 10 meaningful clusters, or that
the trace data can be clustered in more than one way. In addition,
future studies could employ process mining algorithms to discover
whether there exist less frequent processes in each m-cluster. An
exploratory analysis employing heuristic miner algorithm [15] on
80% of traces created causal nets that are highly similar to the cur-
rent process maps, but with some non-trivial differences in less
frequent paths and states.

From a pedagogical standpoint, future studies will need to investi-
gate students’ different strategies interacting with the instructional
materials and practice problems, which in the current study is sim-
plified into a single binary variable. Moreover, important insight
into students’ learning behavior can be gained by tracing how stu-
dents change strategies from one sequence to the next over the
semester, especially when combined with self-report data such as
surveys on students’ SRL strategies and goals and orientations.

Finally, a highly valuable future direction would be to combine
or integrate the current multi-level clustering analysis scheme with
other schemes such as Trace-SRL, to study students’ SRL behavior
in an open online learning environment consisting of multiple
restrictive sub-systems.
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