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Abstract

Many policies in the US are determined locally, e.g., at the
county-level. Local policy regimes provide flexibility be-
tween regions, but may become less effective in the presence
of geographic spillovers, where populations circumvent local
restrictions by traveling to less restricted regions nearby. Due
to the endogenous nature of policymaking, there have been
few opportunities to reliably estimate causal spillover effects
or evaluate their impact on local policies. In this work, we
identify a novel setting and develop a suitable methodology
that allow us to make unconfounded estimates of spillover
effects of local policies. Focusing on California’s Blueprint
for a Safer Economy, we leverage how county-level mobility
restrictions were deterministically set by public COVID-19
severity statistics, enabling a regression discontinuity design
framework to estimate spillovers between counties. We esti-
mate these effects using a mobility network with billions of
timestamped edges and find significant spillover movement,
with larger effects in retail, eating places, and gyms. Contrast-
ing local and global policy regimes, our spillover estimates
suggest that county-level restrictions are only 54% as effec-
tive as statewide restrictions at reducing mobility. However,
an intermediate strategy of macro-county restrictions—where
we optimize county partitions by solving a minimum k-cut
problem on a graph weighted by our spillover estimates—
can recover over 90% of statewide mobility reductions, while
maintaining substantial flexibility between counties.

1 Introduction
Many policies in the United States—COVID-19 restric-
tions, environmental regulations, and laws controlling the
sales of e-cigarettes, firearms, and controlled substances—
are determined at the state- or county-level. Local policy
regimes provide flexibility between regions, allowing pol-
icymakers to set regulations depending on local circum-
stances (e.g., COVID-19 severity) and the preferences of
their constituents (e.g., on gun control). On the other hand,
allowing policies to be set locally often results in differing
levels of restrictiveness between neighboring regions. These
differences can lead to geographic spillovers, where popu-
lations circumvent restrictions by traveling to less restricted
regions nearby. Spillovers risk undermining the efficacy of
local policies; for example, if banned goods are imported
across state borders or if, during the pandemic, individuals

*This is the extended version of a paper accepted to AAAI’23.

in counties under lockdown continue to visit places in neigh-
boring counties. Furthermore, spillovers can affect impor-
tant downstream consequences. For example, the movement
of individuals from more restricted (and possibly more in-
fected) regions to less restricted (and possibly less infected)
regions during the pandemic could result in greater overall
spread of the virus.

However, there are few opportunities to reliably estimate
causal spillover effects. Researchers cannot run experiments
to randomly assign policies to states and counties, and causal
identification is difficult in most observational studies, due
to the presence of confounders. For example, attempting
to study the effects of COVID-19 restrictions (e.g., clos-
ing restaurants) on mobility patterns introduces potential
confounding covariates that predict both the treatment and
the outcome, such as current COVID-19 severity in the re-
gion and the population’s demographics. Prior work has
attempted to address these confounders by controlling for
them, but there could always be unobserved or unknown
confounders that bias causal estimates. Furthermore, the de-
centralized nature of policymaking that gives rise to po-
tential spillovers also often results in varying policy defini-
tions and implementations across regions. This heterogene-
ity makes it difficult to define a consistent treatment whose
effects we can measure.

In this work, we introduce a setting in which we can make
unconfounded estimates of the spillover effects of consis-
tent policies. We focus on California’s Blueprint for a Safer
Economy, a statewide policy framework that determined
weekly county-level mobility restrictions for all 58 counties
in California from August 2020 to June 2021. The Blueprint
consisted of four tiers that corresponded to policies of de-
creasing restrictiveness. At the start of each week, each
county’s tier was determined based on that county’s COVID-
19 metrics (case rate and test positivity) in the preceding
weeks. The California Blueprint presents a unique opportu-
nity for studying spillover for three reasons: (1) neighbor-
ing counties were frequently in differing tiers, enabling the
analysis of spillovers from more restricted to less restricted
counties; (2) tiers were defined in the same way across coun-
ties, yielding a consistent treatment; (3) tiers were determin-
istically assigned at the thresholds of COVID-19 metrics.
These three ingredients allow us to develop a causal infer-
ence framework based on regression discontinuity design to

ar
X

iv
:2

21
2.

06
22

4v
1 

 [c
s.C

Y
]  

12
 D

ec
 2

02
2



make unconfounded estimates of spillover effects.
To capture spillover, we focus on cross-county mobility in

a large-scale mobility network. Our network is a dynamic bi-
partite graph that represents the weekly movements of indi-
viduals from census block groups (CBGs) to specific points-
of-interest (POIs) such as restaurants and grocery stores. Our
objective is to estimate the effect of pairwise county tiers
on the number of visits from each CBG to POI. The mo-
bility network for California contains around 23,000 CBGs
and 130,000 POIs, with nearly 3 billion edges per week.
We use stochastic gradient descent, with loss-corrected neg-
ative sampling, to make estimation computationally feasible
in this large-scale setting. Studying mobility patterns at the
POI-level enables us to estimate heterogeneous treatment ef-
fects for POI categories; this ability is particularly relevant
since tier restrictions were often industry-specific.

Finally, our spillover estimates allow us to quantify the
cost of spillovers on policies across spatial scales. In the
presence of spillovers, we find that county-level restrictions
are, on average, only 54% as effective as statewide restric-
tions at reducing mobility. However, intermediate strategies
of macro-county restrictions—when counties are grouped
intelligently—can balance the trade-off between the policy
flexibility and efficacy. We show that finding the most effec-
tive county partition for a given spatial granularity is equiv-
alent to solving a minimum k-cut problem on an undirected
county graph weighted by our spillover estimates. Using this
approach, we identify macro-county restrictions that recover
over 90% of statewide mobility reductions, while maintain-
ing substantial flexibility between counties.

In summary, our contributions are as follows:

• Setting: we identify a novel setting for studying
spillovers where the same set of policies was applied with
the same thresholds to many areas;

• Methods: we develop a regression discontinuity (RD)
design framework that allows us to make unconfounded
estimates of heterogeneous spillover effects in this set-
ting, estimated over a large-scale mobility network con-
taining billions of edges;

• Analyses: we demonstrate significant spillover effects
in many POI groups and evaluate the costs of these
spillovers on policies across spatial scales.

In a complex, interconnected world with few opportunities
to reliably estimate policy effects, our work is among the
first to identify a setting where spillovers can be rigorously
estimated and to develop an appropriate methodology to es-
timate and evaluate the effects of spillovers.1

2 Related Work
Spillovers often arise from decentralized policymaking
for interconnected regions. For example, Sigman (2005)
finds that water quality is lower at stations downstream

1The code to run our experiments and regenerate figures is
available at https://github.com/snap-stanford/covid-spillovers. We
also provide our constructed Z variables (Section 4) that can be
used with RD design to estimate the effects of the California
Blueprint tiers on spillovers and other outcomes.

of states that are authorized to control their own wa-
ter programs, since they “free-ride.” Coates and Pearson-
Merkowitz (2017) show that in states with stronger gun laws,
there is an increased likelihood of gun imports from states
with weaker gun laws. Bronars and Lott (1998) show that
while a concealed handgun law led to a reduction in crime
in the state, it also led to an increase in crimes in neighboring
states, suggesting that criminals were crossing borders. Hao
and Cowan (2017) find that legalization of recreational mar-
ijuana in a state leads to an increase in marijuana-related ar-
rests in bordering states. Spillovers also arise in online con-
texts, where instead of crossing geographic borders, users
can migrate across platforms if they are banned on one plat-
form; furthermore, levels of toxicity and radicalization are
sometimes higher on the new, often less regulated platforms,
compromising the efficacy of the original content modera-
tion (Ribeiro et al. 2021; Ali et al. 2021).

In the context of COVID-19, prior research has mostly fo-
cused on the direct effects of policies on population health
or behavior, without explicitly modeling spillovers (Cher-
nozhukov, Kasahara, and Schrimpf 2021; Nguyen et al.
2020; Brauner et al. 2020). Chandrasekhar et al. (2021)
investigate disease spillovers between interconnected re-
gions in a model-based setting and Holtz et al. (2020) pro-
vide early evidence of mobility spillovers, showing that a
state’s population reduced its own mobility when neighbor-
ing states implemented shelter-in-place policies. Most re-
lated to our work is Zhao, Holtz, and Aral (2021), who use
a difference-in-difference approach to estimate the effects
of COVID-19 policies on mobility and provide evidence of
spillovers in cross-state travel. We build on this work by ad-
dressing two primary limitations of their study: first, the au-
thors note that their estimates could be confounded by un-
observed, time-varying factors; other research on spillovers
also suffers from potential confounding, using difference-
in-difference approaches (Hao and Cowan 2017; Holtz et al.
2020) or regressions (Coates and Pearson-Merkowitz 2017;
Sigman 2005; Bronars and Lott 1998). Second, in order “to
create sufficient statistical power to identify causal effects,”
the authors collapse different policy interventions into gen-
eral policy “types” (e.g., resuming dine-in and lifting gath-
ering restrictions are both counted as reopening), which vi-
olates assumptions of consistent treatment.

In contrast with prior work, we are able to identify uncon-
founded spillover estimates for a single set of policies by
applying our RD-based framework to California’s Blueprint
for a Safer Economy. Furthermore, by estimating effects on
the CBG-POI network, our model enables the analysis of
counterfactual fine-grained mobility patterns under differ-
ent pandemic policies. Understanding mobility patterns has
been essential to controlling the spread of COVID-19 (Buc-
kee et al. 2020), and many researchers rely on fine-grained
mobility data to model the effect of mobility on the spread
of the virus (Badr et al. 2020; Chinazzi et al. 2020; Kraemer
et al. 2020; Chang et al. 2020, 2021; Nouvellet et al. 2021).
Our model furthers such analyses by investigating the com-
plex effects of policy interventions on mobility, closing the
gap from policy to behavior to COVID-19 outcomes.
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Figure 1: Primary data sources. (a) Percentage of Califor-
nia counties in Blueprint tiers—purple, red, orange, and
yellow—over time (greyed-out period represents Regional
Stay-At-Home Order); (b) Tiers in the week of March 15,
2021; (c) Average weekly visits per device over time.

3 Data
California Blueprint for a Safer Economy. The
Blueprint was implemented for all 58 counties in California
from August 30, 2020 to June 15, 2021. It consisted of four
tiers: purple (“widespread”), red (“substantial”), orange
(“moderate”), and yellow (“minimal”). These tiers corre-
sponded to mobility policies of decreasing restrictiveness;
for example, in the purple tier, most non-essential indoor
businesses were closed, while in yellow, they could be
open with modifications. We use the archived data sheets
from the California Department of Public Health (CDPH),
which provide detailed documentation of every county’s
weekly tier assignment and the COVID-19 metrics used
to make those assignments.2 In Figure 1a, we visualize
the progression of counties through tiers over time; we
grey out the period from December 5, 2020 to January
25, 2021, during which most of the state was under a
Regional Stay-At-Home Order (CDPH 2020). We can
see that counties generally moved through similar tiers at
similar times, which is expected, since COVID-19 severity
was correlated across counties. However, in many weeks,
we also see substantial representation from at least two
different tiers. For example, in the week of March 15, 2021,
there were 11 counties in the purple tier, 42 in the red tier, 4
in the orange tier, and 1 in the yellow tier (Figure 1b). Many
of these differing tiers appeared between adjacent counties,
enabling the analysis of spillovers across county borders.

Mobility network. We use data from SafeGraph, a com-
pany that anonymizes and aggregates location data from mo-
bile apps. For each POI, SafeGraph provides weekly esti-
mates of where visitors are coming from, aggregated over
CBGs.3 This creates a dynamic, bipartite graph between
CBGs and POIs, where an edge weight Yijw represents the
number of visits recorded by SafeGraph from CBG ci to POI
pj in week w. SafeGraph also reports how many devices

2https://www.cdph.ca.gov/Programs/CID/DCDC/Pages/
COVID-19/CaliforniaBlueprintDataCharts.aspx

3https://docs.safegraph.com/docs/weekly-patterns

they recorded in each CBG and week. Incorporating device
counts into our model allows us to account for varying cov-
erage across CBGs and over time.

In Figure 1c, we show the average number of weekly vis-
its recorded per device over time, aggregated over the en-
tire CBG-POI network for California. We see that visits in-
creased post-Regional Stay-at-Home as Blueprint tiers de-
creased in restrictiveness. However, various latent variables
could explain this correlation, such as reduced COVID-19
severity leading to less restrictive tiers and less fear of vis-
iting places. Thus, it is necessary to develop a robust causal
framework that allows us to disentangle tier effects from
confounders, which we describe in the following section.

4 Causal framework
To capture spillovers, our objective is to estimate the effect
of pairwise tiers on cross-county mobility. The key to our
causal framework is that we can utilize RD design, which
is widely recognized as “one of the most credible non-
experimental strategies for the analysis of causal effects”
(Cattaneo, Idrobo, and Titiunik 2020). In a typical RD de-
sign, units are assigned to the treatment or control condition
according to an exogenously determined threshold of a sin-
gle continuous variable, known as the assignment variable
(or running or forcing variable). Researchers can then com-
pare the outcomes for units just below the threshold to units
just above the threshold to estimate the local causal effect
of treatment. A primary advantage of RD design is that it
achieves unconfoundedness, without needing to control for
all possible confounders. This is because the unconfound-
edness assumption is met: treatment assignment is condi-
tionally independent of potential outcomes, given covariates
(Imbens and Lemieux 2008). This assumption is clearly met
in RD design, since treatment assignment is determined by
the assignment variable, and so, conditioned on covariates,
there is no variation in treatment.

Our problem generally fits RD design, since Blueprint
tiers were assigned at the thresholds of continuous COVID-
19 metrics. We focus on the threshold between the purple
and red tiers, since they were the adjacent pair with the most
support. However, we need to extend generic RD design
in two ways: (1) to account for multiple assignment vari-
ables, since tiers were assigned based on numerous COVID-
19 metrics, (2) to account for multiple treatment conditions,
since we are considering pairwise tiers as our treatment. We
describe our approach in the following sections.

Assigning Blueprint tiers. First, let us focus on the prob-
lem of determining a single county’s tier, Tiw, from its
COVID-19 metrics. Tier assignments depended on three
metrics: adjusted case rate, test positivity rate, and a health
equity metric, which was the test positivity rate in the most
disadvantaged quartile of neighborhoods (CDPH 2021b). To
advance to a less restricted tier, counties needed to meet the
criteria for movement for two consecutive weeks (CDPH
2021a). For a large county (population over 106,000), the
criteria to move from purple to red could be met in two
ways: (1) by meeting the thresholds for the red tier for all
three metrics, (2) by meeting the thresholds for test positiv-
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Figure 2: Visualizing our Z variable. (a) Z almost perfectly separates counties in the purple and red tiers. (b) Triggering patterns
for Z (among large counties compliers). (c) Cross-county mobility vs Z. All source counties are in purple (0 ≤ Z ≤ 5) and the
x-axis represents the target county’s Z. Black lines represent linear fits and dots are average outcomes per bin (size represents
the number of data points in the bin). We observe a discontuinity at Z = 0, when the target county changes from purple to red.

ity and health equity for the orange tier, thus exchanging ad-
justed case rate for more stringent thresholds on the other
two. Small counties (population under 106,000) only had
one possible path, which was to meet the adjusted case rate
and test positivity thresholds for the red tier. Small counties
were not required to meet the health equity thresholds, but
needed to demonstrate their commitment to equity through
other plans (CDPH 2021b). For most of the duration of the
Blueprint, the purple-red threshold for adjusted case rate
was 7 per 100,000 and 8% for test positivity and health
equity (and 5% for the red-orange threshold). The purple-
red threshold for adjusted case rate was increased to 10 per
100,000 on March 12, 2021, after 2 million vaccines had
been administered statewide (Ibarra and Becker 2021).

Constructing a single assignment variable Z. We take a
centering approach to RD design with multiple assignment
variables (Wong, Steiner, and Cook 2013). That is, we first
center each of the assignment variables by subtracting their
respective thresholds, then apply min/max aggregations to
the centered variables in order to construct a new assign-
ment variable Z that can singly determine a unit’s treatment.
More formally, we design a function f : Rm → R that
maps a county’smCOVID-19 metrics to a single continuous
variable, Ziw. For a large county, the m metrics include the
county’s adjusted case rate (CR), test positivity (TP ), and
health equity metric (HE) from the preceding two weeks;
for a small county, only adjusted case rate and test positiv-
ity. Our mapping f satisfies the key property that Ziw < 0 if
and only if the county was assigned to the red tier.

Let CRred
iw represent the adjusted case rate for the county

in week w with the purple-red threshold subtracted, and let
us define other terms similarly. We construct Ziw for large
counties as follows:

Z1iw = max(CRred
iw , TP

red
iw , HE

red
iw , CR

red
iw−1, TP

red
iw−1, HE

red
iw−1)

(1)

Z2iw = max(TP orange
iw , HEorange

iw , TP orange
iw−1 , HE

orange
iw−1) (2)

Ziw = min(Z1iw, Z2iw). (3)

For small counties, we only have

Ziw = max(CRred
iw , TP

red
iw , CR

red
iw−1, TP

red
iw−1). (4)

In Figure 2a, we show that our new Z variable almost per-
fectly separates the counties in the purple and red tiers. Over
the 9-week period from February 1 to March 29, 2021, there
were 480 counties/weeks in the purple or red tier, and 471 of
them follow that Ziw < 0 if and only if the county is in the
red tier. We manually check the non-compliers and find that
they were cases of counties, mostly small, that were allowed
to remain in the red tier upon special request, as noted in the
CDPH documentation.

To interpret our new Z variable, we also analyze its
“triggering” patterns; that is, for each min/max aggregation,
which input is the minimum or maximum (Figure 2b). Since
Z < 0 moves the county into the red (less restricted) tier,
a maximum can be interpreted as holding the county back
and a minimum as improving the county’s prospects. For
large counties, we find that the most frequent maximum
for the first criteria Z1 is the adjusted case rate from week
w − 1. For the second criteria Z2, the most frequent max-
imum is the health equity metric from week w − 1. This
reflects trends from this time period: COVID-19 severity
was improving over time, so week w − 1 tended to have
higher rates than week w, and health equity (i.e., test posi-
tivity in the most disadvantaged quartile) tended to be worse
than the overall test positivity. Interestingly, we also find that
Z2 triggers more often than Z1, when taking the minimum
between them. This indicates that this alternative path—
meeting more stringent test positivity and health equity
thresholds and dropping adjusted case rate—substantially
helped counties move toward less restricted tiers.

RD design with pairwise treatments. We can now for-
mulate an RD design problem where treatment (purple/red
tier) is assigned at the threshold of a single continuous vari-
able (Z). Since we are interested in spillover effects in this
work, we use cross-county mobility as our outcome. How-
ever, our RD framework is general and could be applied to
study the effects of Blueprint tiers on a variety of outcomes,
such as mask-wearing rates, vaccination rates, and COVID-
19 cases and deaths.

With cross-county mobility as our outcome, our treatment
becomes pairwise to capture the tier of each county, and
we have four treatment conditions: PP, PR,RP and RR,



where P and R represent the purple and red tiers, respec-
tively. We are particularly interested in the difference be-
tween PP and PR, since this difference indicates whether
individuals from a restricted county will increase their visits
to another county when that other county becomes less re-
stricted. In Figure 2c, we illustrate this comparison. We con-
sider all source counties that were in the purple tier and plot
their mobility to target counties that were either in the pur-
ple or red tier. The x-axis represents Z for the target county,
so that the region to the left of Z = 0 represents the PR
condition and the region to the right represents PP . We see
a discontinuity in visits at Z = 0, indicating that there is
indeed a local effect on cross-county visits when a neigh-
boring county changes from more to less restricted. In the
following section, we estimate this effect more precisely by
defining a zero-inflated Poisson regression model that we fit
to the rich CBG-POI mobility network with covariates.

Poisson regression model. We define a Poisson regres-
sion model to describe visits from CBGs to POIs. For a given
CBG ci, POI pj , and week w, the Poisson rate λijw is

λijw = exp(β0 + β1Ziw + β2Zjw + β3
TXijw + βTiw,Tjw),

(5)

where the β terms are model parameters, Ziw and Zjw rep-
resent the Z variables for ci’s and pj’s counties in this week,
Tiw and Tjw describe their respective tiers, and Xij contains
other covariates. Those covariates include the distance be-
tween the POI and CBG, SafeGraph’s CBG device count in
that week, CBG demographics from US Census, and POI at-
tributes (area in square feet, NAICS code). Spillover effects
are captured in the difference between the βTiw,Tjw terms:
for example, exp(βPR − βPP ) represents the multiplicative
increase in visits when a POI changes from the purple to red
tier, while the CBG remains in purple. To capture hetero-
geneous treatment effects, we learn separate βTiw,Tjw ’s for
different POI groups (Table A2). We also learn separate β1’s
and β2’s for our four different constructions of Z that reflect
two binary dimensions: 1) large vs. small county, 2) before
vs. after March 12, 2021, when the statewide vaccine goal
was met and the adjusted case rate threshold was increased.

The CBG-POI network is very large, with billions of
edges, but over 99% of the edges represent zero visits. Thus,
we zero-inflate our Poisson model, based on the notion that
observed zeros in zero-heavy data may represent actual pref-
erences, but could also reflect lack of exposure (Liu and Blei
2017), i.e., the CBG had never heard of the POI. We repre-
sent each number of visits Yijw as drawn from a mixture
of a Poisson(λijw) and δ0 (a point mass on 0), with mix-
ing parameter πij . We assume the likelihood of exposure is
inversely proportional to the distance dij between the CBG
and POI and define πij = 1

1+α1d
α2
ij

, where the α terms are

learned. Then, our generative model for Yijw is

bijw ∼ Bern(πij) (6)

Yijw ∼
{
δ0 if bijw = 0,
Poisson(λijq), otherwise.

(7)

In this mixture, the likelihood of a single data point given
model parameters θ is

Pr(Yijw = y|θ) =

{
(1− πij) + πije

−λijw , if y = 0

πij
λyijwe

−λijw

y! , otherwise.
(8)

We fit our model using gradient descent, with negative log
likelihood as our model loss.

Data filtering and bandwidth selection. We focus our
experiments on the 9-week period following the Regional
Stay-At-Home Order, during which we could almost per-
fectly separate the purple and red tiers with our Z variable
(Figure 2a). We keep all CBGs with at least 50 non-zero vis-
its (to any POIs) during this period and POIs with at least 30
non-zero visits (from any CBGs), so that we focus on CBGs
and POIs for which SafeGraph has more reliable coverage;
this filtering leaves 22,972 CBGs and 128,655 POIs. Due
to the specifics of our RD-based analysis, we cannot keep
every CBG-POI pair from every week. First, we do not fit
the model on data from the week of March 8, 2021, since
the purple-red threshold for adjusted case rate was changed
in the middle of the week (due to the statewide vaccine goal
being met). In the remaining 8 weeks, we keep all data points
that meet the following criteria:
• CBG ci and POI pj lie in adjacent counties,
• Tiw and Tjw are both in the purple or red tier,
• Both are compliers, i.e., Tiw is red if and only ifZiw < 0,

and likewise for Tjw,
• Ziw and Zjw both lie within a bandwidth h of 0.

In total over the 8 weeks, we keep 1.4 billion data points
after filtering (Table A3).

We only keep data points that fall within the bandwidth
since our goal is to estimate the local effect of changing
tier pairs at the purple-red threshold (Z = 0). By requiring
both Ziw and Zjw to fall within the bandwidth, we inter-
pret our resulting parameters as estimated effects at the joint
cutoff, when both the CBG and the POI are at the thresh-
old.4 Bandwidth selection introduces a bias-variance trade-
off, with larger bandwidths corresponding to greater bias but
reduced variance. We err on the side of larger bandwidths in
this work, out of concern for variance. Even though we have
over a billion data points, our assignment variable Z only
varies at the level of counties and, thus, bandwidths that are
too small could lead to very few counties represented, partic-
ularly for the PR orRP treatment conditions, which appear
less often. We choose h = 5, which keeps most of the coun-
ties in the red tier, but drops many of the counties in purple
(Figure 2a). We show in the Appendix that each treatment
condition is well-represented at this bandwidth, with a di-
versity of county pairs (Table A4). Furthermore, we conduct
sensitivity analyses with h = 4 and h = 6 and show that
results remain highly similar (Figure A1).

4Alternatively, RD design with multiple assignment variables
can estimate effects along the threshold frontiers, i.e., varying one
assignment variable while fixing the other one at its threshold (Pa-
pay, Willett, and Murnane 2011). For simplicity, we focus on ef-
fects at the joint threshold.



Loss-corrected negative sampling. To make estimation
computationally feasible in this large-scale setting, we per-
form negative sampling. Specifically, for each zero data
point (i, j, w), we define its sampling probability sijw as in-
versely proportional to the distance between the CBG and
POI (sijw ∝ 1

1+dij
). We do this to upweight “hard” neg-

ative samples; that is, since far-apart CBGs and POIs are
highly unlikely to have any visits, the model learns more
from nearby CBGs and POIs with zero visits. However, a
unique aspect of our problem—which does not typically ap-
pear in other machine learning prediction problems where
negative sampling might be used, such as link prediction or
learning word embeddings—is that because we seek to inter-
pret the model parameters as effect sizes, our learned model
parameters need to be unbiased estimates of the model pa-
rameters when learned on the full data. Left uncorrected,
negative sampling biases our model parameters by greatly
reducing the number of zeros in the training data.

In the Appendix we show that by weighting each sam-
pled zero data point by 1

sijw
when computing the overall loss

(negative log likelihood), our stochastic gradient (which is
stochastic from sampling) forms an unbiased estimate of the
true gradient, which ultimately guarantees unbiased param-
eter estimates assuming proper model specification. We also
show that upweighting harder negative samples, as well as
increasing the size of the sample, decreases the variance of
the stochastic gradient, providing formal validation of these
techniques. In our experiments, we retain 2% of the zero
data points, with sampling probabilities inversely weighted
by distance. We verify that after incorporating our loss cor-
rections, different negative sampling schemes arrive at the
same average parameters, but distance-weighting and larger
samples decrease variance. The agreement between the es-
timates from different negative sampling schemes is consis-
tent with the underlying model being properly specified.

Uncertainty quantification with bootstrapping. We run
30 trials, where in each trial, we perform negative sam-
pling on the zero data points and we sample Nnnz non-zero
data points with replacement, where Nnnz is our total num-
ber of non-zero data points. For a given estimand, such as
τPR = exp(βPR − βPP ), we compute its 95% confidence
interval as τ̄PR ± 1.96 · σ̂τPR , where τ̄PR and σ̂τPR are its
sample mean and standard deviation over trials, respectively.
This procedure captures uncertainty from the data and from
negative sampling, although we show that, given our chosen
negative sampling scheme, the former accounts for the vast
majority of the variance (Figure A2).

5 Results
Spillover estimates. We learn heterogeneous effects for
different POI groups, where we consider all “top”-categories
(first 4 digits of the POI’s NAICS code) with at least
1000 POIs.5 We also include separate effects for 4 “sub”-
categories (first 6 digits) of interest, all of which have over

5Following prior work using SafeGraph data (Chang et al.
2020), we drop the category “Elementary and Secondary Schools”
due to poor coverage of children from cell phone data.
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Figure 3: Estimated spillover effects across POI groups, with
95% confidence intervals.

1000 POIs. In Table A2, we provide the NAICS codes, de-
scriptions, and number of POIs in each POI group.

We present our spillover results in Figure 3. First, we find
significant positive PR effects in 21 out of 24 groups (all re-
sults remain significant with Bonferroni correction). That is,
visits from the CBG increase significantly when the POI’s
county changes from purple to red, while the CBG’s county
remains in purple. This indicates spillovers, as people from
more restricted counties spill over in less restricted, adjacent
counties. Furthermore, we observe varying effect sizes; for
example, with larger effects in retail (General Merchandise
Stores, Automotive Stores, Clothing Stores, Building Ma-
terial and Supplies Dealers, Department Stores), most eat-
ing places (Snack Bars, Full-Service Restaurants, Drinking
Places), and gyms (Fitness and Recreational Sports Centers).
Smaller effects are in essential retail (Grocery Stores, Gas
Stations), hotels (Traveler Accommodation), malls (Lessors
of Real Estate), museums, historical sites, and nature parks
(Museums, Historical Sites, and Similar Institutions). This
heterogeneity in effect size may partially reflect differences
across sectors in tier restrictions. For example, essential re-
tail, hotels, and malls remained open indoors with modifica-
tions under both tiers, while restaurants and gyms—which
have larger estimated spillovers—were outdoor only under
the purple tier and open indoors with modifications under
the red tier (Table A1).

We also observe significant positive RR effects in 22 POI
groups (21 with Bonferroni correction), as in, visits increase
significantly when both the CBG and POI are in red, com-
pared to when they are both in purple. Furthermore, in most
POI groups, the PR effect is larger than the RR effect (al-
though not always significantly so). This suggests an interac-



tion effect: individuals not only spill over into adjacent coun-
ties when those counties become less restrictive, but also the
spillover is larger if their home counties are more restrictive.
Finally, we observe a varying effect ofRP , which represents
when the CBG changes from purple to red, while the POI
remains in purple. The effect is slightly positive or negative
for some POI groups, but significant in neither direction for
most. We hypothesize that two mechanisms take place here:
on one hand, since the POI is in a more restricted tier than
the CBG, it becomes less appealing; on the other hand, since
the CBG opened up, its population is more willing to travel.
These counteracting mechanisms may explain the varying
and weak RP effects across POI groups.

Local vs. global restrictions. To contrast local and global
approaches to policymaking, we use our fitted model to
compare counterfactual mobility reductions under county-
level vs. hypothetical statewide restrictions. Formally, let
T ∈ R58 represent the treatment vector for all counties. For
each county A, we estimate this county’s expected mobility
(out-degree in the mobility network) under three treatment
conditions: when the entire state is in the red tier (TR), when
the entire state is in the purple tier (TP ), and when only this
county is in purple while the rest of the state remains in red
(TA). We then compare the mobility reduction that a county
would experience by going to purple on its own, relative to
the statewide shutdown, where all counties go to purple:

r(A) =
E[out(A)|TR]− E[out(A)|TA]

E[out(A)|TR]− E[out(A)|TP ]
. (9)

We calculate E[out(A)|T] as the sum over within-county
visits and out-of-county visits:

E[out(A)|T] = E[YAA|TA] +
∑

B∈N(A)

E[YAB |TA, TB ],

(10)

where YAB represents the total number of visits from any
CBG in county A to any POI in county B. When we use our
fitted model to compute the conditional expectation of YAB
given tiers, we assume Z = 0 for all CBGs and POIs, since
our RD-based framework estimated tier effects at the joint
cutoff. We also marginalize over the remaining dynamic
covariate, the CBG’s weekly device count, by taking each
CBG’s average device count over the 9-week period that we
study. In the Appendix, we describe how to efficiently com-
pute YAB for all pairs of counties and possible tier pairs.

We estimate that counties applying local restrictions
can only achieve, on average, 54.0% (46.4%–61.7%) of
the reduction in mobility that they would experience un-
der a statewide shutdown. Small counties are particu-
larly affected, keeping only 41.7% (31.0%–52.4%) of their
statewide mobility reduction, while large counties retain
62.1% (56.3%–67.9%). While we assume that the reduc-
tion in mobility within the county stays the same between
local and global regimes, the difference arises from the in-
crease in out-of-county visits when all surrounding counties
are less restricted in the red tier; this is why smaller coun-
ties are especially hard-hit, since a larger fraction of their
mobility tends to be out-of-county. We also consider a less

(a) (b) (c)

Figure 4: Macro-county restrictions. (a) Actual macro-
counties from California’s Stay-At-Home Order. (b) Trade-
off between flexibility (lower macro-county size) versus ef-
ficacy (higher rM (A)), with 95% confidence intervals. (c)
Macro-county partition for k = 7, computed by METIS.

extreme case, where instead of having all surrounding coun-
ties in red, we use the actual configuration of tiers from the
Blueprint. We still observe serious costs to efficacy in these
more realistic settings: over the course of our study period,
as the number of counties in purple fell from 40 to 11 to 3,
the average percent of mobility reduction kept for counties
in purple (compared to statewide shutdown) fell from 94%
to 75% to 65% (Figure A4). These substantial decreases in
efficacy demonstrate the cost of spillovers on local policies.

Balancing efficacy and flexibility. Although local poli-
cies are less effective in the presence of spillovers, global
policies are often too blunt and inflexible. In our final analy-
sis, we explore this trade-off between efficacy and flexibility
across policies at different spatial scales. Instead of being en-
tirely local (county-level) or global (statewide), intermediate
strategies could be implemented at the macro-county level.
California in fact pursued such a strategy with its Regional
Stay-At-Home Order (Newsom 2020) that grouped counties
into 5 macro-counties, each containing 11–13 counties (Fig-
ure 4a). Given a county partition M , we extend our analysis
to compute rM (A), the ratio of mobility reduction that each
county A would experience if only its macro-county went to
purple, compared to statewide shutdown. When we use the
county partition from California’s Regional Stay-At-Home
Order, we find that macro-county restrictions can achieve
92.1% (90.9%–93.3%) of statewide mobility reductions. In
contrast, if we use a random partitioning of counties into
equal-sized segments, such restrictions only reach 62.3%
(54.3%–70.4%, 95% CI includes randomness in partition-
ing) of statewide reductions. Thus, policies of intermediate
scale are promising in their ability to balance efficacy and
flexibility, but achieving that balance relies on optimizing
how macro-counties are defined.

Given a desired number of macro-counties k, we show
in the Appendix that we can find the optimal county par-
tition that maximizes the average rM (A) over counties by
solving a minimum k-cut problem, which seeks to partition
the nodes of an undirected graph into k disjoint sets while
minimizing the total weight of edges between nodes in dif-
ferent sets. We define our undirected graph as one between
counties, where the edge weight wAB between two adjacent



counties A and B is

wAB =
E[YAB |P,R]− E[YAB |P, P ]

E[out(A)|TR]− E[out(A)|TP ]
+ (11)

E[YBA|P,R]− E[YBA|P, P ]

E[out(B)|TR]− E[out(B)|TP ]
.

To achieve evenly sized macro-counties, we impose an ad-
ditional constraint (common in balanced graph partitioning)
that each set is no larger than 1.05 · Nk , where N = 58 is the
total number of counties. While this problem is NP-hard,
we can approximate the solution using METIS (Karypis and
Kumar 1997). In Figure 4b, we display our solutions over
a range of k. Smaller macro-county sizes are preferred for
flexibility (x-axis), while higher rM (A) represents better ef-
ficacy (y-axis). We observe a clear trade-off between the
two objectives; however, even small macro-counties—when
grouped intelligently—yield large improvements in efficacy
over county-level restrictions. For example, by just increas-
ing the average macro-county size to 8 (still 1/7th the total
number of counties), we reach over 90% of the full efficacy
of the much more drastic statewide shutdown (Figure 4c).

6 Conclusion
Geographic spillovers arise in many domains, but there are
few opportunities to reliably estimate spillover effects. In
this work, we identify a novel setting that is uniquely suit-
able for spillover analysis, California’s Blueprint for a Safer
Economy, which defined a set of policies applied with the
same deterministic thresholds across 58 counties. We lever-
age these properties to develop a causal inference frame-
work that allows us to make unconfounded estimates of
spillover movement between counties and we observe sig-
nificant spillovers in many POI groups. Finally, we evaluate
the cost of spillovers on policies across spatial scales, ana-
lyzing the trade-off between efficacy and flexibility.

Our work is not without limitations. First, SafeGraph’s
data does not cover all POIs or populations uniformly. To
mitigate this issue, we control for CBG weekly device count,
only estimate effects for the largest POI categories, and drop
categories such as elementary schools that have unreliable
coverage from cell phone apps. Second, our causal inference
framework may not entirely satisfy SUTVA, the assumption
that a unit’s outcome is only influenced by its own treatment.
In this work, we attempt to better satisfy SUTVA by mod-
eling the effect of pairwise policies on cross-county move-
ment, instead of only modeling the effect of a single county’s
policies on its population’s mobility, as prior work has done.
However, future work should explore interference beyond
pairs; for example, mobility from countyA toB may depend
not only on A and B’s policies but also on the policies of
A’s other neighbors. We also hope that future work will dive
deeper into the complex trade-offs of policymaking for in-
terconnected regions. In this work, we explored efficacy and
flexibility, but other dimensions should be considered, such
as equity in the context of certain regions bearing dispro-
portionate risks and unequal resources (e.g., with resourced
areas better able to handle spikes in COVID-19 cases).
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A1 Details on Data and Model Fitting
Data and code availability. The code to run our experi-
ments and regenerate figures is available online.6 We also
make our constructed Z variables available, to facilitate fu-
ture research that uses them in regression discontinuity de-
signs to estimate the effects of California Blueprint tiers on
spillovers and other outcomes of interest.

Documentation about the California Blueprint for a Safer
Economy is provided by the California Department of Pub-
lic Health (CDPH), such as how tiers were assigned (CDPH
2021a,b) and what the tier restrictions were for differ-
ent sectors (Table A1). CDPH has also archived histor-
ical tier assignments and COVID-19 metrics per county
over the course of the Blueprint.7 Our mobility data comes
from SafeGraph Weekly Patterns8, which is available to re-
searchers through Dewey.9 SafeGraph also provides each
POI’s “top” category (first 4 digits of NAICS code) and
“sub” category (first 6 digits), which we use to learn hetero-
geneous effects for different POI groups (Table A2). Finally,
we use data from the US Census Bureau’s 5-year Ameri-
can Community Survey about census block groups, which is
available online.10

Bandwidth selection. As we describe in Section 4, we fil-
ter the data based on a number of criteria, including that Ziw
for CBG ci’s county and Zjw for POI pj’s county both lie
within a bandwidth h of 0 (since Z = 0 is the threshold
between assignment to the purple tier and red tier). Band-
width selection introduces a bias-variance trade-off, with
larger bandwidths corresponding to greater bias but reduced
variance. We err on the side of larger bandwidths, so that we
retain enough representation from different county pairs for
each of the treatment conditions. When we use h = 5 in our
experiments and apply all our other filtering criteria, we are
left with 1,408,317,656 data points overall (Table A3).

684,604 of those data points represent non-zero visits, and
among those, 289,199 belong to the PP treatment condi-
tion, 48,608 to PR, 37,243 to RP , and 309,554 to RR. In
Table A4, we list, for each treatment condition, the number

6https://github.com/snap-stanford/covid-spillovers
7https://www.cdph.ca.gov/Programs/CID/DCDC/Pages/

COVID-19/CaliforniaBlueprintDataCharts.aspx
8https://docs.safegraph.com/docs/weekly-patterns
9https://www.deweydata.io/

10https://www.census.gov/programs-surveys/acs/data.html



Sector Purple Tier Red Tier
Critical Infrastructure (e.g., hospi-
tals, emergency services, grocery
stores, gas stations)

Open with modifications Open with modifications

Limited Services (provides services
with limited contact, e.g, laundry
services, auto repair shops, pet
grooming)

Open with modifications Open with modifications

Outdoor playgrounds & recre-
ational facilities

Open with modifications Open with modifications

Hotels and Lodging Open with modifications Open with modifications
Hair salons & barbershops Open indoors with modifications Open indoors with modifications
Personal Care Services Open indoors with modifications Open indoors with modifications
All Retail Open indoors with modifications,

max 25% capacity
Open indoors with modifications,
max 50% capacity

Shopping Centers (Malls, Destina-
tion Centers, Swap Meets)

Open indoors with modifications,
max 25% capacity

Open indoors with modifications,
max 50% capacity

Museums, Zoos, and Aquariums Outdoor only with modifications Open indoors with modifications,
max 25% capacity

Places of Worship Outdoor encouraged; indoors al-
lowed with modifications, max 25%
capacity

Open indoors with modifications,
max 25% capacity

Movie Theaters Outdoor only with modifications Open indoors with modifications,
max 25% capacity or 100 people
(whichever is fewer)

Restaurants Outdoor only with modifications Open indoors with modifications,
max 25% capacity or 100 people
(whichever is fewer)

Gyms and Fitness Centers Outdoor only with modifications Open indoors with modifications,
max 10% capacity

Table A1: The California Blueprint for a Safer Economy’s section-specific restrictions for the purple and red tiers. For the full
list of tiers and sectors, see CDPH (2021a), “Risk Criteria”.



NAICS code Full Name Description # POIs
4411 Automobile Dealers New car and old car dealers 1429
4413 Automotive Parts, Acces-

sories, and Tire Stores
Retailers for automotive parts and repair 2034

4441 Building Material and Sup-
plies Dealers

Retailers for home improvement goods, paint and
wallpaper, tools and builders’ hardware

1146

4451 Grocery Stores Supermarkets, convenience retailers, vending ma-
chine operators

6449

4551 Department Stores Department stores for apparel, jewelry, home fur-
nishings, toys, etc.

1138

4552 General Merchandise
Stores, including Warehouse
Clubs and Supercenters

Warehouse clubs, supercenters, dollar stores,
home and auto supply stores, variety stores

2280

4561 Health and Personal Care
Stores

Retailers for drugs (i.e., pharmacies), beauty sup-
plies, optical goods, food supplements

4227

4571 Gasoline Stations Gasoline stations, sometimes with convenience
stores

7514

4581 Clothing Stores Sells clothing, clothing accessories (e.g., hats,
gloves, wigs)

1656

4591 Sporting Goods, Hobby, and
Musical Instrument Stores

Retailers for sporting goods, hobbies, toys, games,
sewing and needlework supplies, musical instru-
ments and supplies

3362

4594 Office Supplies, Stationery,
and Gift Stores

Retailers for office supplies, stationery, office
equipment, greeting cards, decorations

1212

4595 Used Merchandise Stores Sells used goods, antiques, auctions 1292
4599 Other Miscellaneous Store

Retailers
Retailers for pet supplies, art dealers, mobile
home dealers, smoking supplies, other miscella-
neous things

3697

5311 Lessors of Real Estate Lessors of real-estate for residential, non-
residential (e.g., malls), and storage purposes

3144

7121 Museums, Historical Sites,
and Similar Institutions

Museums, historical sites, zoos, gardens, and na-
ture parks

7511

713940 Fitness and Recreational
Sports Centers

Sports facilities, including exercise centers, ice
or roller skating rinks, tennis club facilities, and
swimming pools

4730

7139 Other Amusement and
Recreation Industries

Golf courses, skiing facilities, marinas, bowling
centers

1834

7211 Traveler Accommodation Hotels, motels, casino hotels, bed-and-breakfasts 2252
7224 Drinking Places (Alcoholic

Beverages)
Bars, taverns, nightclubs 1791

722511 Full-Service Restaurants Provides food services to patrons who order and
are served while seated, then pay after

21972

722513 Limited-Service Restaurants Provides food services where patrons order and
pay before eating; food may be consumed on
premises, taken out, or delivered

15074

722515 Snack and Nonalcoholic
Beverage Bars

Prepares specialty snacks (e.g., ice cream) or non-
alcoholic beverages (e.g., coffee)

8528

8131 Religious Organizations Churches, religious temples, synagogues,
mosques, monasteries

1065

– Other All other POIs that were not in one of these groups 20181

Table A2: POI groups for which we learn heterogeneous treatment effects. We keep all POIs in California with at least 30
non-zero visits to CBGs, which leaves 128,655 POIs. Then, as POI groups, we keep all ‘top”-categories (first 4 digits of the
NAICS code) with at least 1000 POIs (besides “Elementary and Secondary Schools”, which we drop due to poor coverage
from cell phone data) and 4 “sub”-categories (first 6 digits of NAICS code) of interest. The category descriptions are based on
https://www.naics.com/six-digit-naics/.



Week # Counties
in Purple

# Counties
in Red

# Data Points

2021-02-01 9 0 2,659,022
2021-02-08 14 1 26,031,894
2021-02-15 20 2 58,585,151
2021-02-22 20 9 64,334,107
2021-03-01 28 16 497,292,295
2021-03-15 10 37 506,971,688
2021-03-22 7 30 204,963,737
2021-03-29 3 31 47,479,762
Total 111 126 1,408,317,656

Table A3: Size of the data we keep for fitting our model. We
keep counties that are in the purple or red tier, comply with
the expected assignment based on Z (its tier is red if and
only if Z < 0), and its Z variable lies within a bandwidth
h = 5 of 0. Then, we keep all CBG-POI data points between
adjacent kept counties. We also drop the week of March 8,
2021, since the purple-red threshold for adjusted case rate
was changed in the middle of the week, due to the statewide
vaccine goal being met.

of unique adjacent county pairs that appear for this condi-
tion, the top 5 most-represented pairs, and the proportion of
all non-zero data points that each pair accounts for within
this treatment condition. We see that all treatment condi-
tions, including the less common PR and RP , still retain
substantial diversity across counties, with over 70 unique
pairs for each condition and no single county or county pair
seriously dominating the data. The county pairs that appear
more often are, as expected, the ones with a large number of
CBGs in the source county and a large number of POIs in
the target county.

We also conduct sensitivity analyses with h = 4 and
h = 6. Compared to the estimated parameters when h = 5,
the estimated parameters when h = 4 typically only change
by 2-3% and at most 5% (Figure A1a). The change is even
smaller when we compare h = 6 to h = 5; the change is at
most 2% and mostly smaller than 1% (Figure A1b).

Loss-corrected negative sampling. We perform negative
sampling such that we sample each zero data point (i, j, w)
with probability sijw. Then, we fit our model on sample S,
which contains all of the non-zero data points from the orig-
inal data set and our sampled zero data points. However,
negative sampling biases our model parameters by greatly
reducing the number of zeros in the training data. To correct
this bias, we weight each sampled data point by 1

sijw
when

computing the overall loss (negative log likelihood). These
corrections ensure that our stochastic gradient ∇θLS(θ),
computed over sample S, forms an unbiased estimate of the
true gradient∇θL(θ), computed over the full data.

The proof of this is very straightforward, utilizing the fact
that the negative log likelihood is a sum over negative log
likelihoods per data point, and then applying linearity of ex-
pectation. Let indicator variable bijw ∼ Bern(sijw) repre-
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Figure A1: Percent change in estimated spillover parameters
for different choices of bandwidth h.



PP PR RP RR
N 126 71 74 177
1 6067→ 6061, 7.6% 6077→ 6067, 8.9% 6067→ 6077, 10.5% 6067→ 6061, 7.6%
2 6037→ 6059, 5.8% 6067→ 6113, 8.3% 6113→ 6067, 8.3% 6065→ 6071, 7.5%
3 6013→ 6001, 5.1% 6075→ 6081, 6.4% 6017→ 6067, 8.1% 6037→ 6059, 6.0%
4 6059→ 6037, 4.0% 6029→ 6037, 5.9% 6107→ 6019, 7.5% 6071→ 6065, 5.6%
5 6061→ 6067, 3.7% 6115→ 6101, 5.9% 6081→ 6075, 5.3% 6065→ 6059, 4.9%

Table A4: Distribution of top 5 most-represented adjacent county pairs per treatment condition. N represents the number of
unique county pairs seen per treatment condition.

sent whether data point (i, j, w) is in our sample S:

∇θLS(θ) = −
∑

i,j,w∈C
bijw

1

sijw
∇θ ln(Pr(Yijw|θ))

(12)

E[∇θLS(θ)] = −
∑

i,j,w∈C
E[bijw]

1

sijw
∇θ ln(Pr(Yijw|θ))

(13)

= −
∑

i,j,w∈C
∇θ ln(Pr(Yijw|θ)) = ∇θL(θ).

(14)

Thus, incorporating a correction 1
sijw

into the loss per data
point ensures that the stochastic gradient forms an unbiased
estimate of the true gradient, regardless of the negative sam-
pling scheme used.

However, different negative sampling schemes, i.e., dif-
ferent choices of sijw, may be preferable in order to reduce
the variance of the stochastic gradient. First, note that the
variance of the stochastic gradient is the sum of the vari-
ances per data point, since each indicator variable bijw is
sampled independently. Second, observe that the non-zero
data points contribute no variance, since they are sampled
with probability 1. So, the variance of the stochastic gradi-
ent is a sum of variances over the zero data points, which we
refer to as C0:

Var[∇θLS(θ)] =
∑

i,j,w∈C0

Var[bijw
1

sijw
∇θ ln(Pr(Yijw = 0|θ))]

(15)

=
∑

i,j,w∈C0

sijw(1− sijw)(
1

sijw
∇θ ln(Pr(Yijw = 0|θ)))2

(16)

=
∑

i,j,w∈C0

(
1

sijw
− 1)(∇θ ln(Pr(Yijw = 0|θ)))2. (17)

Since sijw is a probability, then 1
sijw
≥ 1. We can see, firstly,

that larger sampling probabilities reduce the variance, and
when sijw = 1 for all i, j, w (meaning we sample all zero
data points with probability 1), the variance is 0. Barring an
increase in sample size, observe that we would want to pri-
oritize sampling “harder” data points, i.e., those with larger
gradients, where the model is learning more from Yijw = 0.
While we cannot know before sampling which data points
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Figure A2: Estimated spillover effects across POI groups,
with 95% confidence intervals only capturing uncertainty
over negative samples and not over the data.

would have larger gradients, we can use proxies, such as dis-
tance between the CBG and POI, to estimate harder samples.
Thus, we set sijw ∝ 1

1+dij
, where dij is the distance be-

tween CBG ci and POI pj . Then, we scale the sijw terms
such that in expectation, we sample a certain percentage,
such as 2%, of the zero data points.

Recall that in our bootstrapping procedure, we sample the
non-zero data points with replacement and draw a fresh neg-
ative sample in every trial. This procedure allows us to cap-
ture uncertainty in the data as well as uncertainty from neg-
ative sampling. We conduct an additional experiment where
we only capture uncertainty from negative sampling, by con-
ducting 10 more trials with fresh negative samples but with-
out sampling the non-zero data points. We use the same neg-
ative sampling scheme as we do in our main experiments,
sampling 2% of zero data points with distance-weighted
sampling probabilities. Compared to our main results (Fig-
ure 3), we show in Figure A2 that negative sampling only ac-
counts for a very small proportion of the overall uncertainty,
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Figure A3: Model parameters converge over epochs. We plot
one line for each of the 30 trials. The example model param-
eters are the spillover weights βPR, βRR, and βRP for two
POI groups.

confirming that our negative sampling scheme is sufficient.

Model fitting. As described in Section 4, we quantify un-
certainty with 30 trials. In each trial, we re-sample the data
and fit the model using loss-corrected gradient descent, run-
ning for 50 epochs. Empirically, the model parameters reli-
ably converge within this number of epochs and, across tri-
als, parameters also converge to similar values (Figure A3).

A2 Details For Computing Results
Local vs. global restrictions. In this section, we discuss in
more detail how we conduct our analysis of county-level vs.
hypothetical statewide restrictions. First, let T ∈ R58 rep-
resent a treatment vector for all 58 counties. Then, let TR

represent the all-red treatment condition, TP represent the
all-purple treatment condition, and TA represent the condi-
tion where all counties are in red except county A, which is
in purple. Recall that our goal is to compare the reduction
in county A’s expected out-degree, E[out(A)], from TR to
TA, compared to TP :

r(A) =
E[out(A)|TR]− E[out(A)|TA]

E[out(A)|TR]− E[out(A)|TP ]
. (18)

We calculate E[out(A)|T] as the sum over within-county
visits and out-of-county visits:

E[out(A)|T] = E[YAA|TA] +
∑

B∈N(A)

E[YAB |TA, TB ],

(19)

where YAB represents the total number of visits from any
CBG in A to any POI in B. When we use our fitted model
to compute the conditional expectation of YAB given tiers,
we assume Z = 0 for all CBGs and POIs, since our RD-
based framework estimated tier effects at the joint cutoff.
We also marginalize over the remaining dynamic covariate,

the CBG’s weekly device count, by taking each CBG’s aver-
age device count over the 9-week period that we study. This
produces a static vector Xij , representing the CBG and POI
covariates.

Using our zero-inflated Poisson regression model, we
compute E[YAB ] as the sum over visits from each CBG inA
to each POI in B, where we use POI group-specific weights
βgj ,TA,TB to capture heterogeneous tier effects:

E[YAB |TA, TB ] =
∑
i∈A

∑
j∈B

E[Yij |TA, TB ] (20)

=
∑
i∈A

∑
j∈B

1

1 + α1d
α2
ij

exp(β0 + βT3 Xij + βgj ,TA,TB )

(21)

=
∑
g

exp(βg,TA,TB )
∑
i

∑
j;gj=g

1

1 + α1d
α2
ij

exp(β0 + βT3 Xij)︸ ︷︷ ︸
φ(g,A,B)

.

(22)

We can simplify computation by pre-computing weights
φ(g,A,B) for each adjacent county pair and POI group g.
Then, the numerator of r(A) becomes

E[out(A)|TR]− E[out(A)|TA] (23)
= E[YAA|R]− E[YAA|P ]+ (24)∑
B∈N(A)

E[YAB |R,R]− E[YAB |P,R]

= E[YAA|R]− E[YAA|P ]+ (25)∑
g∈G

exp(βg,R,R)− exp(βg,P,R)
∑

B∈N(A)

φ(g,A,B).

Similarly, the denominator is

E[out(A)|TR]− E[out(A)|TP ] (26)
= E[YAA|R]− E[YAA|P ]+ (27)∑
g∈G

exp(βg,R,R)− exp(βg,P,P )
∑

B∈N(A)

φ(g,A,B).

We fit a separate model on only within-county visits to cal-
culate E[YAA] and use it to estimate the change in within-
county visits from the red to purple tier. With this anal-
ysis, we estimate that counties applying local restrictions
can only achieve, on average, 54.0% (46.4%–61.7%) of
the reduction in mobility that they would experience un-
der a statewide shutdown. We also compute the averages
over only the 23 small counties (population under 106,000),
which yields 41.7% (31.0%–52.4%), and over the 35 large
counties, which yields 62.1% (56.3%–67.9%).

We also analyze a less extreme setting, where instead
of TA, where all counties are in red except county A, we
consider the actual tier configuration from the California
Blueprint. First, we take the real assignments from a week w
in our study period, such as March 15, 2021, when 11 coun-
ties were in the purple tier, 42 were in the red tier, 4 were
in the orange tier, and 1 was in the yellow tier (Figure 1a).
We construct a new treatment vector T

′

w, where a county is
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Figure A4: Evaluating the efficacy of realistic tier configura-
tions. Over the course of our 9-week study period, we visu-
alize the number of counties kept in the purple tier based on
the real Blueprint tier assignments from that week (top) and
the average percentage of mobility reduction kept for those
counties in purple, with 95% confidence intervals (bottom).

assigned to the purple tier if it was in the purple tier in week
w and assigned to the red tier, otherwise. Then, we compute
a similar ratio rw(A):

rw(A) =
E[out(A)|TR]− E[out(A)|T′w]

E[out(A)|TR]− E[out(A)|TP ]
. (28)

rw(A) represents the proportion of mobility reduction kept
under this more realistic scenario, compared (as before) to a
statewide shutdown. Then, we take the average rw(A) over
the counties that were assigned to purple in week w.

Over the course of our study period, the number of coun-
ties in purple fell from 54 to 3. As expected, as the number of
counties in purple fell, the amount of mobility reduction re-
tained for the counties still in purple fell as well (Figure A4).
For example, by the week of March 15, 2021, when there
were only 11 counties left in the purple tier, those coun-
ties only kept 74.7% (70.8%–78.6%) of the statewide mo-
bility reduction. Two weeks later, the remaining 3 counties
in the purple tier could only retain 64.7% (59.8%-69.6%)
of their statewide reductions. While these percentages are
higher than the worst-case (54%, if each county goes to pur-
ple alone), they are still far below the full efficacy of the
statewide restrictions, demonstrating the cost of spillovers
on local policy regimes even under more realistic realiza-
tions of policies.

Balancing efficacy and flexibility. To analyze macro-
county restrictions, we introduce TM(A), which represents
the treatment condition where all counties are in red except
county A’s macro-county, which is in purple. Then, we de-
fine rM (A) for a county partition M as a a simple extension

of r(A):

rM (A) =
E[out(A)|TR]− E[out(A)|TM(A)]

E[out(A)|TR]− E[out(A)|TP ]
(29)

We can also compute this quantity efficiently using the pre-
computed weights per county pair and POI group.

To find optimal county partitions, we define an undirected
graph G between counties, where the edge weight wAB be-
tween two adjacent counties A and B is

wAB =
E[YAB |P,R]− E[YAB |P, P ]

E[out(A)|TR]− E[out(A)|TP ]
+ (30)

E[YBA|P,R]− E[YBA|P, P ]

E[out(B)|TR]− E[out(B)|TP ]
,

and the edge weight between non-adjacent counties is 0.
Now, we show that finding the county partition that max-
imizes the average rM (A), for a fixed number of macro-
counties k, is equivalent to solving a minimum k-cut prob-
lem onG. First, observe which parts of rM (A) actually vary
with our choice of M . The denominator is constant and the
numerator we can expand out to

E[YAA|R]− E[YAA|P ] +
∑

B∈N(A);
M(A)=M(B)

E[YAB |R,R]− E[YAB |P, P ]

(31)

+
∑

B∈N(A);
M(A) 6=M(B)

E[YAB |R,R]− E[YAB |P,R].

The terms for within-county visits, YAA, are also constant,
and the remaining terms are the summations over neighbors
of A. At best, all of A’s neighbors are in its macro-county,
so M(A) = M(B) applies to all neighbors. If we consider
moving one neighbor B outside of M(A), this will add cBA
to rM (A):

cBA =
E[YAB |P, P ])− E[YAB |P,R])

E[out(A)|TR]− E[out(A)|TP ]
. (32)

This quantity tends to be negative since we showed that
E[YAB |P,R] is typically larger than E[YAB |P, P ], due to
spillovers. Furthermore, the more spillover there is from A
to B, the more negative this quantity will be. Thus, to max-
imize rM (A), we want to choose a partition M that maxi-
mizes cBA and cAB (i.e., minimizes spillovers) over all pairs
of adjacent counties that are not in the same macro-county.
This is equivalent to finding the minimum k-cut in G, since
we defined the edge weight wAB as the sum of −cBA and
−cAB . In practice, we use the mean model parameters over
our 30 trials to construct G. Then, to approximate a solu-
tion to the minimum k-cut problem, we run the METIS al-
gorithm11, with the load imbalance tolerance set to 1.05 to
encourage macro-counties of similar sizes.

11https://metis.readthedocs.io/en/latest/


