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AbstractÐAutonomous vehicles greatly rely on their percep-
tion system for navigation. Semantic segmentation provides a
much better understanding of a vehicle’s surroundings than
object detection. Unfortunately, complete image segmentation
comes at a higher computational cost than object detection,
which complicates developing a real-time perception system
using semantic segmentation. Perception systems contain other
bottlenecks too, and are not only limited by their deep learning
model. An inherent amount of latency exists in data transfer,
specifically through Ethernet. A vehicle’s camera feed must be
transferred to an edge device for image processing as part of
the autonomous driving decision-making process. This study
investigates decreasing image transfer time by using various
levels of JPEG compression as well as further understanding
how compression affects the accuracy of semantic segmentation.
Additionally, as most autonomous driving research focuses on
urban environments, we look to explore autonomous unmanned
ground vehicles (UGVs) in the off-road space by using the Rellis-
3D dataset. We train and evaluate SwiftNet, a state-of-the-art
semantic segmentation model, at different JPEG compression
ratios and identify the accuracy. The transfer time of these
different compression ratios is tested on three images. Results
show a continual decrease in accuracy occurs as the compression
ratios increase. When training SwiftNet on the train set with no
compression, the highest compression ratio of 16.96 achieves a
mean intersection over union (mIoU) score of 67.9% compared
to the baseline achieving 78.9% mIoU. There is an increase in the
accuracy of the higher compression ratios by training SwiftNet on
the corresponding compression ratios; the highest compression
ratio reaches 74.9% mIoU. Lastly, we notice a positive transfer
speedup of these higher compression ratios when inducing JPEG
compression in all transfer scenarios: (a) 1870 images (b) 10
images, (c) 1 image. Each scenario has a speedup of 1.18×, 1.14×,
and 1.06×, respectively.

Index TermsÐSemantic Segmentation, Lossy Compression,
Off-Road Vision, Data Transfer, Autonomous Driving

I. INTRODUCTION

Research in self-driving cars has made great strides, pri-

marily due to the rise of deep learning (DL) techniques [1].

The perception system in autonomous vehicles remains one of

the most critical components so the vehicles can understand

their surroundings. Vision algorithms like object detection [2],

and image segmentation [3] assist in the driving and decision-

making of autonomous vehicles. Compared to object detection,

semantic segmentation provides a much better understanding

of the environment, but at a significant computational cost, [4],

[5]. Specifically, a trade-off between high segmentation accu-

racy and high inference speed occurs in deep neural networks

(DNN) [5]±[7]. This creates an issue because autonomous ve-

hicles must make decisions exceptionally quick but be accurate

enough to make the correct decision. Real-time perception

systems contain other bottlenecks, too, and are not only limited

by their DNN. In an autonomous vehicle, a camera must

transmit the video feed to an edge device for image processing,

as seen in Figure 1. Within this transfer, some latency exists

[8]. Compressing the images from the camera feed can reduce

the latency between this data transfer [9], [10]. Autonomous

vehicles generate up to 40 TB of data during daily usage [11].

High-resolution cameras and sensors can generate ≈4TB+ of

data per day [12]. Without compression, processing and storing

this data would require extensive hardware.

Most autonomy research explores well-structured environ-

ments, such as urban areas with roads and street signs [13].

Unfortunately, little research has investigated autonomy in an

off-road setting; this can be seen from the absence of research

investigating this domain and the scarcity of labeled, off-road

datasets [14], [15]. Similar to self-driving cars, perception sys-

tems are critical for autonomy in unmanned ground vehicles

(UGVs), and other off-road vehicles [16]. Similarly, the entire

process must be accomplished in real time so the vehicle

can make correct decisions while traveling at high speeds.

Even though off-road and urban environments contain vastly

different terrain, many of the same latency bottlenecks occur

in the perception system.

This research aims to accomplish two objectives. First, to

reduce local image data transfer latency using JPEG com-

pression. Compression reduces the amount of data sent over

a local network. This size reduction minimizes the latency

of local transfer for the images. In a real-time scenario, the

system transfers more images and reduces the overall latency.

Second, investigate the semantic segmentation accuracy when

training and evaluating the compressed images. This explores

the effects of lossy data reduction on training and evaluating

a Deep Neural Network (DNN) model.

Our contributions include the following:

• Exploration of lossy compression to reduce image trans-

fer latency in real-time perception systems.

• Evaluation of semantic segmentation on compressed im-

ages at different compression ratios and a method to

increase the mIoU of the compressed images.



• A unique and complex perspective by considering the

perception of autonomous vehicles in off-road terrain

rather than urban environments.

II. BACKGROUND

Autonomous vehicles generate a large amount of data,

usually between 20 TB and 40 TB during daily usage [11].

The camera alone generates data at a rate of 20 to 60

Mbps [11], although this can vary highly based on the image

quality. Scene understanding and obstacle sensing require

large amounts of camera data to process. Scene understanding

needs to perform feature extraction, and template matching

must be able to identify signs and signals during driving. At

the same time, obstacle sensing requires processing camera

data for edge detection, thresholding, object detection, and

segmentation. [17].

When working with camera data, JPEG [18] is a standard

in lossy image compression. JPEG uses a Discrete Cosine

Transform (DCT) based method, in 8×8 pixel blocks running

through the image [18]. DCT compresses by separating the

image into parts that differ by frequencies, with less important

frequencies being discarded and only critical frequencies being

used in decompression [19]. Due to its wide use, it serves

as a good compression scheme for reducing image sizes and

reducing bandwidth transmission requirements.

III. RELATED WORK

Several studies exist which demonstrate the use of data

compression to reduce latency for a variety of applications.

In [20], the authors target data compression on mobile-edge

computing for energy internet through a local area network

(LAN). In their work, they design a framework that uses

several compression algorithms to improve random access po-

tential and reduce transmission latency. With their framework,

network latency is reduced when measured from 200 to 300

random accesses compared to the traditional architecture. An-

other study [9], [10] tries to minimize the network bandwidth

requirements using H.264 video compression [21] for a road-

side pedestrian safety application. The researchers develop an

error-bound lossy compression strategy to dynamically adjust

the compression levels of video frames in different weather

conditions. Video transmission bandwidth requirements are

reduced by up to 14× other state-of-the-art strategy. The

current study expands upon this research by instead of utilizing

object detection with YOLOv3 [2] in an urban environment;

we investigate semantic segmentation using SwiftNet [22] in

an off-road setting. Furthermore, this study measures latency

in a local Ethernet-connected system instead of bandwidth

through a wireless network.

Because we use JPEG-compressed images for deep learning,

the effects of lossy compression on DNNs must be under-

stood. In [23], the authors compress time series data using

a compression method called Discrete Wavelet Transform

and study the effect of classification accuracy from a fully

convolutional network (FCN) [24]. They found that the FCN

model could still achieve 80-90% accuracy on compressed

data. Our experiments investigate a similar problem but with

semantic segmentation accuracy on image data.

IV. METHODS

A real-time perception system in autonomous vehicles can

be described similarly to Figure 1. Reducing the latency from

the camera feed to the video processing unit speeds up the

overall system time. Our setup first takes in camera data (to

simulate this pipeline, the Rellis-3D dataset images are used)

and performs lossy JPEG compression with FFMPEG. SCP

transfers the image data over Ethernet to a local network

switch and then sent to the local Jetson Xavier, which serves

as the video processing unit. The Jetson Xavier then performs

semantic segmentation using a deep neural network (DNN) to

classify the terrain from the compressed image data.

To benefit from image compression, the time to send com-

pressed images, Tcomp send, must be less than the time to send

uncompressed images, Tsend. Where Tsend is defined as the

data size over the Ethernet bandwidth (BW ), TComp is defined

as the amount of time to compress the image, and Tcomp send

is defined as the sum of the time to compress the data and the

time to send the compressed data.

Tsend =
Size

BW
(1)

Tcomp send =
Size

TComp

+
Comp Size

BW
(2)

Tcomp send < Tsend (3)

The following section describes our approach to implement-

ing compression in a real-time vision system. First, we discuss

the compression method and dataset for this experiment.

Next, we briefly explain semantic segmentation, the DNN

used, and the segmentation experiments performed. Finally,

we demonstrate our data transfer setup.

A. Image Compression

With the FFMPEG tool [25], we use JPEG compression [18]

to compress the train and test set into 31 different compression

levels. We use compression level to describe the image quality

tuner value on FFMPEG. Compression levels correspond to

an average compression ratio shown in Figure 2, so a higher

compression level equates to a higher compression ratio. The

compression ratio is the relative reduction in data size from

the JPEG compression algorithm.

B. Semantic Segmentation

For semantic segmentation, we use SwiftNet [22], [26],

a state-of-the-art deep learning model designed for high in-

ference speed and accuracy on high-resolution images. We

utilize SwiftNet because it favors high inference speed, which

will more likely be found in a real-time perception system

compared to other DNNs like Deeplabv3+ [3] which favor

higher accuracy. We implemented, trained, and evaluated

SwiftNet using the PyTorch [27] deep learning framework.

When describing the accuracy of a semantic segmentation
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Fig. 1: Local data transmission setup to simulate an autonomous off-road vehicle. Our local computer represents the camera,

and the Jetson Xavier represents the Video Processing Unit. Both devices are connected through two Ethernet cables and a

Network Switch (Linksys SE1500).
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Fig. 2: FFMPEG image quality (compression level) to com-

pression ratio. The baseline represents level 1, with no com-

pression.

model, the primary metric used is the Jaccard Index [28],

also known as the intersection over union (IoU), shown in

equation 4. The intersection and union rely on the true positive

(TP), false positive (FP), and false negative (FN) values. Pixels

labeled as void do not contribute to the score. To describe the

overall IoU, the mean IoU is used (mIoU), an average of all

the class IoU scores shown in equation 5.

IoUclass =
TP

TP + FP + FN
(4)

mIoU =

∑
IoUclass

n classes
(5)

Two experiments regarding semantic segmentation accuracy

are performed on compressed images. First, we train a baseline

model on the Rellis-3D train set without compression. Then,

we evaluate the mIoU at each compression level using the test

set to observe how compression affects the model’s accuracy.

Secondly, we train a model at six different compression levels

(5, 10, 15, 20, 25, and 30) and evaluate the mIoU at the

corresponding compression level. For example, if the model is

trained on the train set with level 15 compression, we evaluate

this model on the level 15 compressed test set.

C. Data Transmission

To simulate image transfer in an autonomous vehicle, we set

up a local Ethernet system described in Figure 1. To verify the

communication and find the theoretical limits of our system,

we measure the bandwidth from our local computer to the

Jetson Xavier using iPerf3. We use Secure Copy Protocol

(SCP) to send three sets of compressed images through our

system for our image transfer experiments. We time the

transfer between the two local hosts for each image set at

different compression levels.

V. EXPERIMENTAL RESULTS AND DISCUSSION

This section covers the results from the experiments per-

formed in this research and an interpretation of the outcomes.

First, we explore the semantic segmentation accuracy of the

SwiftNet model at various compression levels. This includes

the baseline model evaluated at multiple compression levels

and the model trained at six different compression levels.

Second, we time the latency of Ethernet transfer, the overhead

of compression, and overall end-to-end segmentation.

A. Segmentation Accuracy of Various Compression Levels

When compressing images in autonomous vehicles, the

compressed images must achieve an acceptable level of ac-

curacy in the environment to navigate safely. This research

considers autonomy in unmanned ground vehicles (UGVs);

thus, an off-road dataset, Rellis-3D [29], was utilized. Rellis-

3D is an extensive off-road dataset designed for semantic

segmentation, containing 6234 labeled 1920×1200 images.

We create a train and test set by randomly splitting 70% of

the data into the train set and using the remaining 30% for

the test set. For this experiment, we train the SwiftNet model

using the train set with no compression. We follow the same

training protocol as [22]; most notably, we train for 250 epochs

and evaluate the epoch which achieved the best validation
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Fig. 3: Evaluation of mIoU at each compression level using a

model trained only on the baseline dataset (no compression).

accuracy. Figure 3 illustrates the mIoU for our uncompressed

model evaluated with test data compressed to a given level.

The baseline evaluation with no compression achieves a

relatively high mIoU of 78.92%. From here, the accuracy

steadily decreases in small increments when evaluated at each

compression level. The most significant drop in accuracy

occurs from compression level 27-31, the lowest mIoU being

67.90%. The most significant end-to-end speedup in later

experiments occurs towards the higher compression ratios.

Therefore, maintaining higher accuracy at these compression

ratios becomes crucial. The following experiment obtains

higher accuracy at the end compression range.

B. Training with Various Compression Levels

Due to data loss from the JPEG lossy compression, a

deep learning model can misclassify object boundaries if the

pixel has high enough distortion. From our study, training a

segmentation model on these distorted images with a given

compression level and then evaluating using the same level

achieves higher mIoU at higher compression ratios. The

highest compression level reaches a mIoU of 74.9%, a 7%

mIoU increase from the baseline trained model at the same

compression ratio. Due to time constraints, we only trained

six different compression levels for 100 epochs. Figure 4

shows a significant drop off in accuracy compared to Figure 3

from compression levels 2±6, but from level 6±30, only a 2%

mIoU drop exists. Furthermore, compression levels 20±30 in

figure 4 show a significant improvement in mIoU compared to

Figure3. This most likely occurs because lossy compression

slightly distorts the features of an object, so training a model

on the distorted features will allow it to learn the object

better. These results show a strong semantic segmentation

accuracy when training and evaluating compressed images;

further experiments now focus on image compression for

increasing end-to-end system speed.

Looking at figure 4 and 5 we can see that a compression-

trained model performs best at compression level 12 or above.

Looking at the accuracy depreciation, the range 12-25 stays

within 0.4% mIoU difference on either end. When the com-
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Fig. 4: Evaluation mIoU on six different image quality levels,

trained on its respective image quality level.
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Fig. 5: Overall transmission speedup of the entire compressed

Rellis-3D test set. Values above 1.0 represent a positive

speedup, and values below 1.0 did not benefit from compres-

sion.

pression level goes above this range into the 25-31 levels, the

mIoU takes another 0.5% mIoU decrease.

C. Theoretical Bandwidth Testing

We performed a ping-pong test to measure the bandwidth

between the local machine and a Jetson Xavier connected

with an Ethernet cable going through a switch. This test

was implemented using iPerf3 in a bidirectional test. The

iPerf3 server is set up on the Jetson Xavier, and the client

is connected through an Ethernet.

Running this test, we were able to achieve a Bandwidth

of 0.09 Gbits/second, and this test was run for 120 seconds,

reporting the rate every 30 seconds. This test was performed

over the TCP port 5001. For this test, the total amount of data

transferred over each 30-second interval is 1.29 GB.

D. Transfer, Compression, and End-to-End Timing

Using SCP, we measure the transfer and compression time

of the Rellis-3D test set (1870 images), ten images, and

one image at every compression level. The compression time

contains a summation of per-image compression. Figure 6

provides the transfer and compression times for the three sets
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(a) Transfer batch size: full test set of 1870 images.
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(b) Transfer batch size of 10 images.
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(c) Transfer batch size of 1 image.

Fig. 6: transfer, compression, and overall system time for the entire Rellis-3D test set when using a different number of images.

Compression levels below the dashed red line show an end-to-end speedup compared to the baseline.

of images measured, corresponding to the blue and orange

bars, respectively. The baseline level does not include an

orange bar because the baseline has no compression. The total

summation of orange and blue bars provides the entire end-

to-end system time. Compression levels below the red dashed

line demonstrate a positive overall speedup when inducing

compression to reduce the image transfer time.

In Figure 6(a), the first positive system speedup occurs

beginning at compression level 12 compared to baseline.

The speedup continues to increase in small increments to

compression level 31. Compression level 31 shows the greatest

speedup of 1.18×. While Figure 6(a) results look promising,

in a real-time perception system, it may be unreasonable to

compress and transmit over 1000 images before segmenting

occurs. Figure 6(b) shows a positive speedup beginning at

compression level 11 and continuing to gradually increase

to compression level 31. The most significant speedup, once

again, occurs at level 31 by 1.14×. Compressing and trans-

mitting ten images at a time shows a very noticeable speedup

in overall system time. This could be very viable in a real-

time perception system due to the high frame rate of modern

cameras. More so, Figure 4 shows a high mIoU score for the

compression levels at which the speedup occurs. Finally, while

Figure 6(c) does show a speedup beginning at compression

level 9, no consistent speedup trend exists compared to the

other figures. The highest speedup occurs at level 30 by



1.06×. The compression and transfer times stay very similar

across compression levels, most likely due to the very small

compression sample and the maximum bandwidth capabilities

of our real-time system setup. The speedup gained through

sending a different amount of images is due to the overhead

of setting up the communication protocol. The 6(c) had this

overhead on every image in the dataset, while 6 was able to

send 10 images before introducing more overhead. 6(a) only

required this setup once before transferring the dataset.

VI. CONCLUSION

This study compresses camera data at various compression

ratios to reduce image transfer latency over Ethernet. As a re-

sult, the image transfer time to the perception system improves

while the mIoU of semantic segmentation on compressed

images remains high but steadily decreases; this decrease can

be mitigated by training SwiftNet on the corresponding com-

pression levels to retain higher levels of mIoU. These results

suggest that the more images compressed and transferred, the

higher the overall speedup. Out of the three timing experiments

performed, compressing and sending 10 images appears the

most logical for real-time systems. Our approach achieves a

speedup in transfer time for all three scenarios, represented by

Figure 6. Scenario (a) achieved the highest speedup of 1.18

at level 31, scenario (b) achieved the highest speedup of 1.14

at level 31, and scenario (c) achieved the highest speedup of

1.06 at level 30.

This work can be continued by expanding to various datasets

and NN models. This can also be tested on different lossy

compression algorithms, showing the effects of varying levels

of compression ratios and image quality. This could be ex-

tended for self-driving cars in urban environments for future

work since this research primarily focuses on autonomous

UGVs in the off-road setting. Additionally, other real-time

semantic segmentation models and compression algorithms

can be explored. We focus on improving the camera-to-

perception time, but other bottlenecks exist in autonomous

vehicles which can further be approached.
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