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Abstract—Autonomous vehicles greatly rely on their percep-
tion system for navigation. Semantic segmentation provides a
much better understanding of a vehicle’s surroundings than
object detection. Unfortunately, complete image segmentation
comes at a higher computational cost than object detection,
which complicates developing a real-time perception system
using semantic segmentation. Perception systems contain other
bottlenecks too, and are not only limited by their deep learning
model. An inherent amount of latency exists in data transfer,
specifically through Ethernet. A vehicle’s camera feed must be
transferred to an edge device for image processing as part of
the autonomous driving decision-making process. This study
investigates decreasing image transfer time by using various
levels of JPEG compression as well as further understanding
how compression affects the accuracy of semantic segmentation.
Additionally, as most autonomous driving research focuses on
urban environments, we look to explore autonomous unmanned
ground vehicles (UGVs) in the off-road space by using the Rellis-
3D dataset. We train and evaluate SwiftNet, a state-of-the-art
semantic segmentation model, at different JPEG compression
ratios and identify the accuracy. The transfer time of these
different compression ratios is tested on three images. Results
show a continual decrease in accuracy occurs as the compression
ratios increase. When training SwiftNet on the train set with no
compression, the highest compression ratio of 16.96 achieves a
mean intersection over union (mloU) score of 67.9% compared
to the baseline achieving 78.9% mloU. There is an increase in the
accuracy of the higher compression ratios by training SwiftNet on
the corresponding compression ratios; the highest compression
ratio reaches 74.9% mloU. Lastly, we notice a positive transfer
speedup of these higher compression ratios when inducing JPEG
compression in all transfer scenarios: (a) 1870 images (b) 10
images, (c) 1 image. Each scenario has a speedup of 1.18x,1.14x,
and 1.06 x, respectively.

Index Terms—Semantic Segmentation, Lossy Compression,
Off-Road Vision, Data Transfer, Autonomous Driving

I. INTRODUCTION

Research in self-driving cars has made great strides, pri-
marily due to the rise of deep learning (DL) techniques [1].
The perception system in autonomous vehicles remains one of
the most critical components so the vehicles can understand
their surroundings. Vision algorithms like object detection [2],
and image segmentation [3] assist in the driving and decision-
making of autonomous vehicles. Compared to object detection,
semantic segmentation provides a much better understanding
of the environment, but at a significant computational cost, [4],
[5]. Specifically, a trade-off between high segmentation accu-
racy and high inference speed occurs in deep neural networks
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(DNN) [5]-[7]. This creates an issue because autonomous ve-
hicles must make decisions exceptionally quick but be accurate
enough to make the correct decision. Real-time perception
systems contain other bottlenecks, too, and are not only limited
by their DNN. In an autonomous vehicle, a camera must
transmit the video feed to an edge device for image processing,
as seen in Figure 1. Within this transfer, some latency exists
[8]. Compressing the images from the camera feed can reduce
the latency between this data transfer [9], [10]. Autonomous
vehicles generate up to 40 TB of data during daily usage [11].
High-resolution cameras and sensors can generate ~4TB+ of
data per day [12]. Without compression, processing and storing
this data would require extensive hardware.

Most autonomy research explores well-structured environ-
ments, such as urban areas with roads and street signs [13].
Unfortunately, little research has investigated autonomy in an
off-road setting; this can be seen from the absence of research
investigating this domain and the scarcity of labeled, off-road
datasets [14], [15]. Similar to self-driving cars, perception sys-
tems are critical for autonomy in unmanned ground vehicles
(UGVs5s), and other off-road vehicles [16]. Similarly, the entire
process must be accomplished in real time so the vehicle
can make correct decisions while traveling at high speeds.
Even though off-road and urban environments contain vastly
different terrain, many of the same latency bottlenecks occur
in the perception system.

This research aims to accomplish two objectives. First, to
reduce local image data transfer latency using JPEG com-
pression. Compression reduces the amount of data sent over
a local network. This size reduction minimizes the latency
of local transfer for the images. In a real-time scenario, the
system transfers more images and reduces the overall latency.
Second, investigate the semantic segmentation accuracy when
training and evaluating the compressed images. This explores
the effects of lossy data reduction on training and evaluating
a Deep Neural Network (DNN) model.

Our contributions include the following:

o Exploration of lossy compression to reduce image trans-
fer latency in real-time perception systems.

« Evaluation of semantic segmentation on compressed im-
ages at different compression ratios and a method to
increase the mloU of the compressed images.



e A unique and complex perspective by considering the
perception of autonomous vehicles in off-road terrain
rather than urban environments.

II. BACKGROUND

Autonomous vehicles generate a large amount of data,
usually between 20 TB and 40 TB during daily usage [11].
The camera alone generates data at a rate of 20 to 60
Mbps [11], although this can vary highly based on the image
quality. Scene understanding and obstacle sensing require
large amounts of camera data to process. Scene understanding
needs to perform feature extraction, and template matching
must be able to identify signs and signals during driving. At
the same time, obstacle sensing requires processing camera
data for edge detection, thresholding, object detection, and
segmentation. [17].

When working with camera data, JPEG [18] is a standard
in lossy image compression. JPEG uses a Discrete Cosine
Transform (DCT) based method, in 8 x8 pixel blocks running
through the image [18]. DCT compresses by separating the
image into parts that differ by frequencies, with less important
frequencies being discarded and only critical frequencies being
used in decompression [19]. Due to its wide use, it serves
as a good compression scheme for reducing image sizes and
reducing bandwidth transmission requirements.

III. RELATED WORK

Several studies exist which demonstrate the use of data
compression to reduce latency for a variety of applications.
In [20], the authors target data compression on mobile-edge
computing for energy internet through a local area network
(LAN). In their work, they design a framework that uses
several compression algorithms to improve random access po-
tential and reduce transmission latency. With their framework,
network latency is reduced when measured from 200 to 300
random accesses compared to the traditional architecture. An-
other study [9], [10] tries to minimize the network bandwidth
requirements using H.264 video compression [21] for a road-
side pedestrian safety application. The researchers develop an
error-bound lossy compression strategy to dynamically adjust
the compression levels of video frames in different weather
conditions. Video transmission bandwidth requirements are
reduced by up to 14X other state-of-the-art strategy. The
current study expands upon this research by instead of utilizing
object detection with YOLOvV3 [2] in an urban environment;
we investigate semantic segmentation using SwiftNet [22] in
an off-road setting. Furthermore, this study measures latency
in a local Ethernet-connected system instead of bandwidth
through a wireless network.

Because we use JPEG-compressed images for deep learning,
the effects of lossy compression on DNNs must be under-
stood. In [23], the authors compress time series data using
a compression method called Discrete Wavelet Transform
and study the effect of classification accuracy from a fully
convolutional network (FCN) [24]. They found that the FCN
model could still achieve 80-90% accuracy on compressed

data. Our experiments investigate a similar problem but with
semantic segmentation accuracy on image data.

IV. METHODS

A real-time perception system in autonomous vehicles can
be described similarly to Figure 1. Reducing the latency from
the camera feed to the video processing unit speeds up the
overall system time. Our setup first takes in camera data (to
simulate this pipeline, the Rellis-3D dataset images are used)
and performs lossy JPEG compression with FFMPEG. SCP
transfers the image data over Ethernet to a local network
switch and then sent to the local Jetson Xavier, which serves
as the video processing unit. The Jetson Xavier then performs
semantic segmentation using a deep neural network (DNN) to
classify the terrain from the compressed image data.

To benefit from image compression, the time to send com-
pressed images, Tcomp_send, must be less than the time to send
uncompressed images, Tseng. Where Tgcnq is defined as the
data size over the Ethernet bandwidth (BW), Tcom,, is defined
as the amount of time to compress the image, and Ttomp_send
is defined as the sum of the time to compress the data and the
time to send the compressed data.

Size
Tsen = 1
4= By (L
Size Comp_Size
Tcomp_send = P (2)
TComp BW
Tcomp_send < Tsend (3)

The following section describes our approach to implement-
ing compression in a real-time vision system. First, we discuss
the compression method and dataset for this experiment.
Next, we briefly explain semantic segmentation, the DNN
used, and the segmentation experiments performed. Finally,
we demonstrate our data transfer setup.

A. Image Compression

With the FEMPEG tool [25], we use JPEG compression [18]
to compress the train and test set into 31 different compression
levels. We use compression level to describe the image quality
tuner value on FFMPEG. Compression levels correspond to
an average compression ratio shown in Figure 2, so a higher
compression level equates to a higher compression ratio. The
compression ratio is the relative reduction in data size from
the JPEG compression algorithm.

B. Semantic Segmentation

For semantic segmentation, we use SwiftNet [22], [26],
a state-of-the-art deep learning model designed for high in-
ference speed and accuracy on high-resolution images. We
utilize SwiftNet because it favors high inference speed, which
will more likely be found in a real-time perception system
compared to other DNNs like Deeplabv3+ [3] which favor
higher accuracy. We implemented, trained, and evaluated
SwiftNet using the PyTorch [27] deep learning framework.
When describing the accuracy of a semantic segmentation
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Fig. 1: Local data transmission setup to simulate an autonomous off-road vehicle. Our local computer represents the camera,
and the Jetson Xavier represents the Video Processing Unit. Both devices are connected through two Ethernet cables and a

Network Switch (Linksys SE1500).
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Fig. 2: FFMPEG image quality (compression level) to com-
pression ratio. The baseline represents level 1, with no com-
pression.

model, the primary metric used is the Jaccard Index [28],
also known as the intersection over union (IoU), shown in
equation 4. The intersection and union rely on the true positive
(TP), false positive (FP), and false negative (FN) values. Pixels
labeled as void do not contribute to the score. To describe the
overall IoU, the mean IoU is used (mloU), an average of all
the class IoU scores shown in equation 5.

TP
I = 4
oUclass TP+ FP+ FN 4
I
mlolU = 2 1oUctass (5)
n_classes

Two experiments regarding semantic segmentation accuracy
are performed on compressed images. First, we train a baseline
model on the Rellis-3D train set without compression. Then,
we evaluate the mloU at each compression level using the test
set to observe how compression affects the model’s accuracy.
Secondly, we train a model at six different compression levels
(5, 10, 15, 20, 25, and 30) and evaluate the mloU at the
corresponding compression level. For example, if the model is

trained on the train set with level 15 compression, we evaluate
this model on the level 15 compressed test set.

C. Data Transmission

To simulate image transfer in an autonomous vehicle, we set
up a local Ethernet system described in Figure 1. To verify the
communication and find the theoretical limits of our system,
we measure the bandwidth from our local computer to the
Jetson Xavier using iPerf3. We use Secure Copy Protocol
(SCP) to send three sets of compressed images through our
system for our image transfer experiments. We time the
transfer between the two local hosts for each image set at
different compression levels.

V. EXPERIMENTAL RESULTS AND DISCUSSION

This section covers the results from the experiments per-
formed in this research and an interpretation of the outcomes.
First, we explore the semantic segmentation accuracy of the
SwiftNet model at various compression levels. This includes
the baseline model evaluated at multiple compression levels
and the model trained at six different compression levels.
Second, we time the latency of Ethernet transfer, the overhead
of compression, and overall end-to-end segmentation.

A. Segmentation Accuracy of Various Compression Levels

When compressing images in autonomous vehicles, the
compressed images must achieve an acceptable level of ac-
curacy in the environment to navigate safely. This research
considers autonomy in unmanned ground vehicles (UGVs);
thus, an off-road dataset, Rellis-3D [29], was utilized. Rellis-
3D is an extensive off-road dataset designed for semantic
segmentation, containing 6234 labeled 1920x1200 images.
We create a train and test set by randomly splitting 70% of
the data into the train set and using the remaining 30% for
the test set. For this experiment, we train the SwiftNet model
using the train set with no compression. We follow the same
training protocol as [22]; most notably, we train for 250 epochs
and evaluate the epoch which achieved the best validation
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Fig. 3: Evaluation of mloU at each compression level using a
model trained only on the baseline dataset (no compression).

accuracy. Figure 3 illustrates the mloU for our uncompressed
model evaluated with test data compressed to a given level.

The baseline evaluation with no compression achieves a
relatively high mloU of 78.92%. From here, the accuracy
steadily decreases in small increments when evaluated at each
compression level. The most significant drop in accuracy
occurs from compression level 27-31, the lowest mIoU being
67.90%. The most significant end-to-end speedup in later
experiments occurs towards the higher compression ratios.
Therefore, maintaining higher accuracy at these compression
ratios becomes crucial. The following experiment obtains
higher accuracy at the end compression range.

B. Training with Various Compression Levels

Due to data loss from the JPEG lossy compression, a
deep learning model can misclassify object boundaries if the
pixel has high enough distortion. From our study, training a
segmentation model on these distorted images with a given
compression level and then evaluating using the same level
achieves higher mloU at higher compression ratios. The
highest compression level reaches a mloU of 74.9%, a 7%
mloU increase from the baseline trained model at the same
compression ratio. Due to time constraints, we only trained
six different compression levels for 100 epochs. Figure 4
shows a significant drop off in accuracy compared to Figure 3
from compression levels 2—6, but from level 6-30, only a 2%
mloU drop exists. Furthermore, compression levels 20-30 in
figure 4 show a significant improvement in mloU compared to
Figure3. This most likely occurs because lossy compression
slightly distorts the features of an object, so training a model
on the distorted features will allow it to learn the object
better. These results show a strong semantic segmentation
accuracy when training and evaluating compressed images;
further experiments now focus on image compression for
increasing end-to-end system speed.

Looking at figure 4 and 5 we can see that a compression-
trained model performs best at compression level 12 or above.
Looking at the accuracy depreciation, the range 12-25 stays
within 0.4% mloU difference on either end. When the com-
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Fig. 4: Evaluation mloU on six different image quality levels,
trained on its respective image quality level.

o

1.2

=
-

=
o

Speedup Ratio
o o o o
o N o ©

o
¢

—e— Overall Speedup

2 7 12 17 22 27 32
Compression Level

Fig. 5: Overall transmission speedup of the entire compressed
Rellis-3D test set. Values above 1.0 represent a positive
speedup, and values below 1.0 did not benefit from compres-
sion.

pression level goes above this range into the 25-31 levels, the
mloU takes another 0.5% mloU decrease.

C. Theoretical Bandwidth Testing

We performed a ping-pong test to measure the bandwidth
between the local machine and a Jetson Xavier connected
with an Ethernet cable going through a switch. This test
was implemented using iPerf3 in a bidirectional test. The
iPerf3 server is set up on the Jetson Xavier, and the client
is connected through an Ethernet.

Running this test, we were able to achieve a Bandwidth
of 0.09 Gbits/second, and this test was run for 120 seconds,
reporting the rate every 30 seconds. This test was performed
over the TCP port 5001. For this test, the total amount of data
transferred over each 30-second interval is 1.29 GB.

D. Transfer, Compression, and End-to-End Timing

Using SCP, we measure the transfer and compression time
of the Rellis-3D test set (1870 images), ten images, and
one image at every compression level. The compression time
contains a summation of per-image compression. Figure 6
provides the transfer and compression times for the three sets
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Fig. 6: transfer, compression, and overall system time for the entire Rellis-3D test set when using a different number of images.
Compression levels below the dashed red line show an end-to-end speedup compared to the baseline.

of images measured, corresponding to the blue and orange
bars, respectively. The baseline level does not include an
orange bar because the baseline has no compression. The total
summation of orange and blue bars provides the entire end-
to-end system time. Compression levels below the red dashed
line demonstrate a positive overall speedup when inducing
compression to reduce the image transfer time.

In Figure 6(a), the first positive system speedup occurs
beginning at compression level 12 compared to baseline.
The speedup continues to increase in small increments to
compression level 31. Compression level 31 shows the greatest
speedup of 1.18x. While Figure 6(a) results look promising,
in a real-time perception system, it may be unreasonable to

compress and transmit over 1000 images before segmenting
occurs. Figure 6(b) shows a positive speedup beginning at
compression level 11 and continuing to gradually increase
to compression level 31. The most significant speedup, once
again, occurs at level 31 by 1.14x. Compressing and trans-
mitting ten images at a time shows a very noticeable speedup
in overall system time. This could be very viable in a real-
time perception system due to the high frame rate of modern
cameras. More so, Figure 4 shows a high mloU score for the
compression levels at which the speedup occurs. Finally, while
Figure 6(c) does show a speedup beginning at compression
level 9, no consistent speedup trend exists compared to the
other figures. The highest speedup occurs at level 30 by



1.06x. The compression and transfer times stay very similar
across compression levels, most likely due to the very small
compression sample and the maximum bandwidth capabilities
of our real-time system setup. The speedup gained through
sending a different amount of images is due to the overhead
of setting up the communication protocol. The 6(c) had this
overhead on every image in the dataset, while 6 was able to
send 10 images before introducing more overhead. 6(a) only
required this setup once before transferring the dataset.

VI. CONCLUSION

This study compresses camera data at various compression
ratios to reduce image transfer latency over Ethernet. As a re-
sult, the image transfer time to the perception system improves
while the mloU of semantic segmentation on compressed
images remains high but steadily decreases; this decrease can
be mitigated by training SwiftNet on the corresponding com-
pression levels to retain higher levels of mloU. These results
suggest that the more images compressed and transferred, the
higher the overall speedup. Out of the three timing experiments
performed, compressing and sending 10 images appears the
most logical for real-time systems. Our approach achieves a
speedup in transfer time for all three scenarios, represented by
Figure 6. Scenario (a) achieved the highest speedup of 1.18
at level 31, scenario (b) achieved the highest speedup of 1.14
at level 31, and scenario (c) achieved the highest speedup of
1.06 at level 30.

This work can be continued by expanding to various datasets
and NN models. This can also be tested on different lossy
compression algorithms, showing the effects of varying levels
of compression ratios and image quality. This could be ex-
tended for self-driving cars in urban environments for future
work since this research primarily focuses on autonomous
UGVs in the off-road setting. Additionally, other real-time
semantic segmentation models and compression algorithms
can be explored. We focus on improving the camera-to-
perception time, but other bottlenecks exist in autonomous
vehicles which can further be approached.
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