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Abstract—As high-performance computing systems rapidly
advance, the volumes of scientific data produced are a promi-
nent issue. Data reduction methods, including compression and
sampling, seek to alleviate these bottlenecks by significantly
reducing overall size. Yet, research shows sampling yields lower
overall reconstruction quality than lossy compression due to its
inability to bound the error it introduces. This work presents and
assesses the ability to estimate reconstruction error. We propose
an absolute error estimation scheme using various metrics and
evaluate its capabilities over several real-world datasets. Upon
evaluation, our scheme is between 63.6% and 94.9% accurate at
estimating absolute error and has an average 87.7% correlation
with the error. Lastly, we implement and discuss applications
of our error estimation, including a novel sampler enhancement
that allows for user-specified targeted data quality and a process
to achieve a user-specified storage constraint while yielding a
better preservation of data than existing methods.

Index Terms—Data Reduction, Data Sampling, Importance
Sampling, Error Quantification, Feature Preservation

I. INTRODUCTION

High-performance computing (HPC) systems have revolu-
tionized the way scientists research by enabling them to solve
previously intractable problems. While these systems have
facilitated many groundbreaking findings, they also produce
vast quantities of data. For instance, the Community Earth
System Model (CESM) simulation is only possible due to
these systems, as it is capable of generating 2.5 PB of data over
18 months [22]. However, it takes an additional 18 months to
post-process and publish only 6.6% of the results, as the I/O
subsystems cannot efficiently handle them.

Researchers alleviate these bottlenecks by using reduction
methods to decrease the amount of data they transfer and store.
Lossless compressors [9], [14] reduce data size with no loss
in precision but operate poorly with floating-points due to the
high entropy mantissa bits [28]. Lossy compressors achieve
higher reduction ratios on floating-point data by introducing
controlled approximations when encoding, which users control
through a specified error bound. Data sampling achieves high
reduction ratios by keeping specific data values with total
precision, later used to reconstruct the entire dataset.

When reducing the Deep Water Impact Ensemble
dataset [26], scientists must preserve essential features like
the water spray for post-hoc analysis. Grosset et al. used
Foresight [15] to analyze how well different data reduction

978-1-6654-8045-1/22/$31.00 ©2022 IEEE

schemes preserve the data at a 50x compression ratio. They
found that data compression algorithms achieve a higher
(better) peak signal-to-noise ratio and lower (better) absolute
error than data sampling. SZ [18], in particular, was shown to
preserve the details of the simulation much better than the most
sophisticated data sampling method to date. When analyzing
only the crater region of interest, using the signal-to-noise ratio
and a visual comparison, the compression methods outper-
formed sampling again. This case study example has shown
that at its current state, data sampling schemes can not perform
at the same level as data compression algorithms, as they have
both low data throughput and poor post-reconstruction quality.
This ineffectiveness is due to data sampling’s inability to
bound the error it introduces, like modern lossy compressors.
The first step in combating this disadvantage is understanding
how the error is introduced in the interpolation step of the
sampling pipeline. This work details the shortcomings of
existing sampling methods and proposes a scheme to estimate
the amount of error introduced into the reconstructed dataset.
Using this scheme, we aim to improve existing data reduction
pipelines. Specifically, our contributions are as follows:

o We detail how error propagates during the linear inter-
polation reconstruction process and identify five metrics
that influence potential error.

o We present our scheme for estimating the amount of error
reconstruction introduces by using a weighted combina-
tion of error-affecting metrics.

o We examine the correlation between our error estimate
and the true absolute error, finding an average correlation
of 87.7% and accuracy ranging from 63.6% to 94.9%.

o We present two applications of our approach in existing
data reduction pipelines: First, we propose a sampling
process that achieves a target user-specified storage con-
straint while maintaining data quality better than existing
methods. Second, we implement a first-of-its-kind sam-
pling process that achieves a user-specified target data
quality in terms of Peak Signal-to-Noise Ratio.

II. BACKGROUND AND RELATED WORK

Scientists working with HPC applications use various data
reduction strategies to reduce I/O bottlenecks that occur with
large datasets [3]-[6], [9], [14], [18]-[20], [30]. Lossless com-
pression algorithms, such as ZStd [9] or GZip [14], reduce data
size with no loss in precision. Due to the high entropy found



in floating-point mantissa bits, these algorithms are suboptimal
for reducing HPC scientific data, only achieving reduction
ratios of 1x to 4x when used on scientific data [28]. On the
other hand, lossy compression algorithms, such as SZ [18]
and ZFP [20], leverage data approximations and omissions to
represent the input data with lower precision. When scientists
want to retain regions of interest with higher quality, they often
use various data sampling algorithms. Data sampling methods
represent the input data by saving a small subset of data values.
Unlike lossy compression, data sampling allows high reduction
at fixed ratios. The following details the sampling methods
studied in this work. Figure 2 visualizes the resulting sample
set with varying sample method. Methods vary in the type of
data distribution they return. Systematic and random methods
yield an even distribution across the data. Importance-based
sampling methods like value-based and multi-criteria cluster
around regions of interests in the data. The following sections
discuss each method in detail.

A. Random Sampling

Simple random sampling is a basic unbiased algorithm that
gives each data value an equal opportunity to be included in
the sample set. For each data point, a random number, &, is
compared to a user-specified sampling percentage, «. In this
case, £, € [0,1] and if £ < « then the algorithm includes
the data value in the sample set. This algorithm achieves high
throughput and maintains statistical quantities of the original
dataset, such as mean and standard deviation, which makes
it ideal for datasets with unknown distributions. However, it
does not consider data point value and, as a result, does not
always yield optimal sample sets.

B. Systematic Sampling

Systematic sampling is a method that results in a group of
values gathered by an equally spaced sequence [32]. When
taking systematic samples, we take a subset of data points
that are equally spatially distanced from the previous sample.
Specifically, given a user-specified sampling percentage, o, we
calculate the spatial period of samples as n = 1/«. Following
this, we start at data location ¢ = 0 and take every nth data
point to be within our sample set.

Taking such a group of data points allows us to view a
general overview of the data without over-representation or
under-representation of any area of the data. The disadvantage
of systematic sampling is that it can lead to false statistical
overviews due to its periodic nature. However, for our error
estimation purposes, having this even representation of the
data allows us to visualize target high-error areas better, as
we further discussed in Section I'V-B.

C. Value-Based Sampling

Value-based sampling is a biased data sampling algorithm
that prioritizes more important data values. Biswas et al.’s
method biases rare data values without ignoring more common
data values [4]. Their algorithm uses the distribution of data
values to calculate an importance factor, I, for each data

value such that more rare values have a greater Ir and
more common values have a lower Ir. While this algorithm
efficiently reduces data size and preserves data values within
the data regions of interest, it does not consider areas of abrupt
change or take into account local smoothness.

D. Multi-Criteria Based Sampling Algorithm

Multi-criteria-based sampling is another form of biased data
sampling that prioritizes data values based on multiple data
properties. For instance, Biswas et al.’s multi-criteria sampling
method biases both more rare data values and data values in
regions of significant change [3]. The algorithm prioritizes
samples with a higher local gradient value during this selection
process. This algorithm efficiently reduces data size while
preserving data values within the data regions of interest and
the edges of different regions. However, this algorithm does
poorly in cases where there are too many edges or where there
is not a centralized region of interest.

E. Reconstruction Algorithms

We must reconstruct the discarded data using the sample
set to evaluate the quality. The nearest neighbor method
reconstructs a data value by setting it equal to the value of
the nearest saved point without consideration of neighboring
points. However, this method often yields jagged, blocky
results and produces the least-smooth reconstruction [11].
Linear interpolation is an approach that uses a curve-fitting
method and linear polynomials to reconstruct missing data
points. The interpolated value is within the discrete set of
saved values. While there are various methods, triangulation
with linear interpolation works best with uniform distributions
of sample locations [31], like those used in our experiments,
rather than sparse areas. Since linear interpolation yields the
highest quality reconstruction for these datasets, we focus on
estimating the error introduced while using this method.

The Delaunay triangulation [10] is traditionally used for
piece-wise linear interpolation of data points. The algorithm
constructs various triangles across the dataset, with vertices of
sample locations, ensuring that another triangle intersects no
triangle edges. The resulting set yields a patchwork of triangles
across the grid, such that a triangular surface covers every grid
point. Then, each missing data point is determined using linear
interpolation within the triangle containing that point.

This reconstruction process introduces error into the data
as it interpolates missing data values from the sample set.
Estimating the error introduced is not trivial, as many factors
affect the resulting error. For instance, Figure 1 illustrates
the initial sample set, the Delaunay triangulation process,
and the resulting reconstructed Asteroid Impact dataset. The
interpolated dataset has many differences from the original
data, yielding high amounts of error and low quality overall.

III. ESTIMATING ERROR PROPAGATION

Our novel error estimation scheme uses various mathemat-
ical metrics to predict the amount of reconstruction error
that would occur. This process begins by taking an initial
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Fig. 1: Samples, Triangulation and Interpolation of Impact.

Variable | Definition

P All data points in the plane

S All sample points € P

|4 Values at location P

1% Interpolated values at location P

DT(S) | Delaunay triangulation of samples S

T A triangle € DT(S)

A, B,C | Points € S that form T}

u A point € P, ¢ S to be interpolated

a, B,y Coefficients that hold the locational
relationship between A, B, C, u true

TABLE I: Mathematical Variable Reference

set of samples for each 2D slice of a 2D or 3D dataset.
For our initial study on error propagation, we contain the
error to a 2D space for better visualization and explanation
of mathematical correlations. Our process triangulates the
samples using Delaunay triangulation before using several
metrics to estimate the error at each data point. Finally, our
process clusters the predicted error into sections, dividing the
dataset into regions of interest and background data.

A. Initial Sample

Our scheme operates on regular structured grid datasets
that consist of implicit data point locations. The first step
in our scheme is to take an initial sample set for every 2D
slice of a 2D or 3D dataset. After the initial study of error
propagation is completed, we aim to expand this work to
study the error propagation in the 3D space in future work.
We examine various sample ratios and sampling methods,
such as random [29], systematic [32], histogram-based [4],
and multi-criteria [3] sampling. The initial sample aims to
gain a general overview of the data so that we have the best
understanding of the data. With a group of samples that are
too clustered together, we have too much information in one
area and too little in others, leading to a poor data summary.
Therefore, we base our study on systematic sampling. Even
though other sampling methods have been shown to achieve
higher quality post-reconstruction [3], [4], that is not the goal
of our analysis. We aim to achieve the best error prediction,
thereby identifying regions of interest, features, or hard-to-
preserve areas. However, we apply our error estimation process
to all sampling methods in Section IV-B to further show that
we still achieve satisfactory results regardless of method. The
result of the sampling process leaves us with two sets: the
locations of the samples, S, and the values of the samples, V.
We save each value and location for future visualization and
reconstruction purposes.

B. Delaunay Triangulation

A popular way of reconstructing a dataset is to consider it a
piece-wise union of cells, subdividing the plane into multiple
patches, each having an independent local interpolating func-
tion. Subdivision is obtained via triangulation. A Delaunay
Triangulation [10] DT'(S) is the triangulation formed from
a set of S discrete points such that no point in S is inside
the circumcircle of any triangle in DT'(S), as demonstrated
in Figure 1b. The minimum angle of each triangle in the
triangulation is maximized to avoid sliver triangles, where the
area is significantly smaller than its circumcircle.

A triangulation DT(S) over a plane is defined as a set
of multiple individual triangles, T}, represented as DT'(S) =
{T}}. Each triangle T} consists of three distinct vertices,
A, B,C € S such that T, = A«a, B3, Cy, where

e« A,B,C€ES

. Oé,ﬂ,’)/ S [O,l]

e at+pf+y=1

o the union of T}, equals the convex hull of A, B,C

Since there may be multiple Delaunay Triangulations per
S, there is no guaranteed unique solution for every set. The
advantage is that Delaunay Triangulations optimize several
geometric properties, including: smallest angle, largest cir-
cumdisk, and largest minimum containment disk (the smallest
enclosed disk that includes the triangle) [7]. Long, skinny
triangles are avoided, as they make interpolation less accurate
as the points used to interpolate are spatially far apart. Smaller,
more Equilateral triangles yield better interpolation since the
vertices are spatially closer.

C. Linear Interpolation

Linear interpolation is a method of curve fitting using linear
polynomials to build new data points within the range of
a discrete set of known data points. It is used to estimate
missing data using known values. Linear interpolation can
also be applied to triangular meshes (a piece-wise planar
surface formed by connected triangles). We utilize the vertices
in the Delaunay Triangulation to interpolate the data values
within each triangle using linear interpolation. For a triangle
T, € DT(S), with vertices at locations A, B, C, let a point
u € T}, as demonstrated in Figure 3. The point » can be
expressed as u = Aa + Bf + Cv, an affine combination
such that all coefficients sum to one, i.e. « + 3+ =1 and
a, B,y € [0,1].

An «,3,v are found based on the locations of the data
points, A, B,C,u in relation to the plane. In the 2D plane,
the system of equations u, = A, + B, + Cpy and uy, =
Aya + ByB + Cyy are used. Once an «, 3, that solve the
system of equations are found, we use them to interpolate the
value of u as V(u) = V(A)a + V(B)B 4+ V(C)y. Thus, the
interpolated value is based upon the location of u, relative to
its distance from vertices A, B, C. The closer u is to A, the
more weight the value at point A has in u’s interpolated value.
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Fig. 2: White circles are samples gathered for the Impact Dataset with various sample methods at a reduction ratio of 100:1.

P
° By °
°
L4 °
T
A(X.y) C(X.y)
° °

Fig. 3: Triangulation of point u € triangle ABC.

D. Error-Effecting Metrics

Once our scheme collects an initial set of samples, it clusters
the dataset into separate feature sections by estimating the
absolute error due to interpolation. It begins by creating the
Delaunay triangles from the initial sample set that it would use
during true reconstruction. For each data point, it leverages the
data point’s value and the triangle vertices it is in to estimate
the absolute error. Error is introduced into the reconstructed
data when V(u) # V(u). In this section, we analyze the
factors that affect how different V (u) is from V().

1) Metric: Distance Out of Range: The value of u is
calculated as the weighted sum of the contributing vertices’
values. Values A, B,C are used in a weighted average with
weights of «, 3,7, signifying the significance of each value
in relation to V(u). As seen in Lemma 1, the range of
possible interpolated values is in the range of the minimum
and maximum values of the vertices.

Lemma 1: V(u) = V(A)a+ V(B)B + V(C)y
a+pB+v=1
a, 8,7 €[0,1]
Thus, V(u) € [min(V (A, B,C)), maz(V (A, B,C))]

If a value to be reconstructed is outside the range of
the triangle’s vertices, then no method can reconstruct it
accurately. The more out of range the value is, the higher
the difference to its reconstructed value is, leading to a higher
reconstructed error and lower resulting data quality. Metric 1:
Out of Range quantifies how much out-of-range the data value

is from the extrema of the triangle vertices. The range of this
metric is the difference between the minimum and maximum
values in the entire true dataset. In the worst scenario, we have
a set of samples that only contain the minimum value in the set
of all true values, V. Since there were no samples containing
the true maximum value € V, the linear interpolation would
result in some error in locations where reconstructed data
points were assigned an incorrect value of min(V) when it
should have been max(V).

Metric 1: Out of Range: mi =
mazx[min(V (A, B,C) =V (u)|, |V (u) — maz(V(A, B,C)|]
my € [-max(V) — min(V),max(V) — min(V)]

2) Metric: Difference from Nearest: When using linear
interpolation to reconstruct the data values within each trian-
gle, the resulting value is slightly biased towards the nearest
triangle vertex sample. The weights a, 8, € [0, 1] are derived
based on the global plane coordinates of the vertices at
locations A, B, C' a point u € T'. Thus, the distance from each
vertex and u affects the resulting weight of that vertex in the
overall interpolation. With this in mind, the more significant
the difference between the value to be reconstructed and the
value of the closest triangle vertex, the higher the error in
the reconstructed data value. Metric 2: Nearest Difference
quantifies the absolute difference between values of each point
within the triangle and the nearest vertex.

Metric 2: Nearest Difference:
N = min(\/(uy — Zy)* + (uy — Z,)?), where
Z €A B,C.
me =V (u) — V(N)
mg € [min(V), maz(V)]
3) Metric: Difference in Triangle Vertices: The difference
of the values of each vertex affects the interpolated value.

Lemma 2: V(u) = V(A)a+ V(B)B + V(C)y

a+B+y=1

a, B,y €[0,1]

error = absV (u) — V (u)

error = abs(V(A)a+ V(B)B + V(C)y) — V(u)
range = max(V (A, B,C)) —min(V (A, B, C))
Thus, as range increases, potential error increases.

The higher the difference between the values of each vertex,
the harder it is to smooth out the values within the triangle,
resulting in a lower interpolation quality. Unlike the other




two error estimation metrics, this metric remains constant for
each point within a triangle, as it is not based on individual
data values. Metric 3: Vertex Difference quantifies the average
difference between the values of each triangle’s vertices.
Metric 3: Vertex Difference:
mgs = mazx(V(A, B,C)) —min(V (A, B,C))
mg € [min(V), maz(V)]

4) Metric: Triangle Area: If the triangle area is too large,
there is more mathematical uncertainty. Triangles with a large
area have more values that need to be reconstructed within
the triangle. As area grows, the three triangle vertex values
are less likely to represent the interior points sufficiently.
Therefore, larger triangles have a higher probability of yielding
lower quality in that region. We calculate Metric 4: Triangle
Area as the number of data points within the triangle to be
reconstructed rather than the mathematical area.

Metric 4: Triangle Area:
my =V €T}
my € [3, %]

5) Metric: Circle Ratio: The circle ratio is the measure of
the triangle’s flatness. With this metric, an equilateral triangle’s
circle ratio is 0.5, and any triangle more flat is less than this.
In theory, the flatter the triangle, the more it stretches over the
data, and the more it could encompass a larger distribution of
data values. Metric 5: Circle Ratio is calculated as the ratio
of the incircle radius over the circumcircle radius.

Metric 5: Circle Ratio:
Given a set S that contains all n edge lengths of triangle 7,
Incircle Radius, r» =175,
Circumcircle Radius, R ="/ S,,

m5:2—};
ms € [0, 1]

E. Error-Effecting Metrics Evaluation

As our goal is to predict the error in the reconstructed
data without having to reconstruct it completely, our scheme
uses the metrics outlined in Section III because there exists a
mathematical correlation between these metrics and the error
found in the linear interpolated values. Thus, these metrics
enable us to predict the resulting reconstruction.

Correlation is the numerical representation of the linear
relationship between two datasets. With it, we describe the
rate of change of one variable in response to changes in
another. Covariance is similar but only measures the positive or
negative direction of the linear relationship between variables,
while correlation measures both direction and magnitude. The
Pearson Correlation Coefficient (PCC) is the ratio between the
covariance of two variables and the product of their standard
deviations, which normalizes it between -100% and 100%.

Here, we discuss the PCC between each individual met-
ric and the true absolute error on the original dataset and
reconstructed data. We report the correlation percentage by
metric and dataset. The correlations range from -100%, a
perfectly negative correlation, to 100%, a perfectly positive
correlation, where 0% signifies no correlation. In general,

any |PCC| > T70% indicates possible col-linearity, while
|[PCC| < 70% implies low or negligible relationship [23].

The data from scientific simulations can vary, resulting in
some metrics being better for certain dataset types and worse
for others. To account for this, we cluster datasets into two
distinctions: centralized and decentralized feature datasets.

A centralized feature dataset has one clustered set of values
as the region of interest to the end-user. Examples of this
distinction include the impact and pressure datasets (see Ta-
ble IT). With the impact dataset, domain scientists are explicitly
interested in studying the asteroid entry into the water [1], [27].
With the hurricane pressure dataset, scientists are interested in
the hurricane eye. In both datasets, the feature scientists study
is a single cluster of data values.

Conversely, a decentralized feature dataset has no single
cluster of values. Instead, in these simulations, scientists are
interested in multiple regions of interest or the entire dataset.
These datasets have data that needs to be studied across
the entire dataset. Examples include the precipitation and
Nyx datasets, as they have multiple regions of interest or
data evenly dispersed throughout the dataset. By considering
dataset distinction, we achieve better prediction accuracy and
minimize the standard deviation between correlations.

1) Metric 1: Distance Out of Range: Upon analyzing
Figure 4, we find that Metric 1 has an average correlation to
the true error of 35% 4 8.60% when working with centralized
feature datasets and an average correlation of 76% =+ 1.96%
with decentralized feature datasets. This metric is ineffective
with centralized feature datasets as the feature values within
these datasets are clustered. Therefore, the probability of
finding a value out of range is lower. With this in mind, our
method chooses to use Metric 1 when predicting decentralized
feature datasets, as this results in a correlation > 70%.

2) Metric 2: Difference from Nearest: Metric 2 has an
average correlation to the true error of 73% + 4.20% when
working with centralized feature datasets and an average
correlation of 84%+0.38% with decentralized feature datasets.
This metric is effective regardless of the dataset feature
distinction because this metric mathematically aligns strongly
with the interpolation process we use to reconstruct the data.
Specifically, the reconstruction process utilizes a weighted
average of the triangle vertices to rebuild each missing data
point within the triangle. During this process, the weight of
each coefficient is determined by the distance between the
missing data location and each vertex. Therefore, our method
utilizes this metric for all estimations regardless of the dataset.

3) Metric 3: Difference in Triangle Vertices: When as-
sessing Metric 3’s correlation, we find it has an average
correlation to the true error of 71% + 4.22% when working
with centralized feature datasets and an average correlation
of 51% + 5.57% when working with decentralized feature
datasets. This metric is highly effective with centralized feature
datasets. If the difference between triangle vertex values is too
high, this indicates that the triangle intersects with a region
of high entropy. When this occurs, there is a much higher
possibility of error occurring within this region. Conversely,
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Fig. 4: Correlations by dataset type

this metric is ineffective on decentralized feature datasets as
most of these datasets share a similar level of entropy across
the entire data. Hence, our method utilizes this metric for
centralized feature dataset estimations.

4) Metric 4: Triangle Area: Assessing the correlation of
Metric 4, we find it has an average correlation to the true
error of 21% +22.35% when working with centralized feature
datasets and an average correlation of —1% =+ 0.34% when
working with decentralized feature datasets. In both dataset
distinctions, we find this metric has a low correlation. While
mathematically, if the area of a triangle is too big, there
should be more uncertainty, we use systematic sampling. This
sampling approach leads to the area of most triangles being
the same. This result is also visible when using other basic
sampling algorithms. As a result, the size of the triangles
cannot correlate with the error enough for this metric to be
useful in our estimation. Consequently, we choose not to

TABLE II: Datasets used in experiments.

NAME VARIABLE SHAPE ROI RANGE
Impact [26] V02 300 x 300 x 300 Central. [0.0, 1.0]
Isabel [16] Pressure 500 x 500 x 100 Central. [-3412, 3224]
Isabel [16] Precipitation 500 x 500 x 100 Decentral. [0.0, 0.008]
Nyx [21] Dark Matter p 512 X 512 X 512  Decentral. [0.0, 13779]

utilize this metric in our estimation process.

5) Metric 5: Circle Ratio: Upon assessing the correlation
of metric 5, we find it has an average correlation to the
true error of —15% =+ 13.90% when working with centralized
feature datasets and an average correlation of —1% =+ 2.18%
when working with decentralized feature datasets. Similar to
Metric 4, this metric is ineffective since we utilize systematic
sampling. By using this initial form of sample gathering, most
of the triangles are of the same shape, meaning the circle ratio
cannot correlate well enough with the overall error for it to
be useful. As a result, we choose not to utilize this metric as
well in our estimation process.

IV. ERROR METRIC EVALUATION

We evaluate each metric to determine which can be appro-
priately used to estimate error. We leverage the metrics with
a high correlation to the true reconstruction error to build our
proposed scheme and evaluate the accuracy of its estimations
against the true reconstruction error.

A. Experimental Setup

1) Hardware and Software: We conduct trials on Clemson’s
Palmetto Cluster [24]. Specifically, we use nodes that are 40
core Intel Xeon CPUs with 372 GB of memory. On these
machines, we use gcc 8.3.1. We use the Systematic sampling
method in our experiments, except where specified otherwise.

2) Datasets: We evaluate the accuracy of our scheme on
several real-world HPC single-precision simulation datasets,
detailed in Table II. The specified time-steps contain a pre-
defined region of interest (ROI) inside the domain.

B. Error-Estimation

We use a weighted average of the error metrics to estimate
the error in the dataset if we were to reconstruct. We set these
weights based on each metric’s correlation to the actual error.
Based on the metric correlations discussed in the previous
section, we evenly set the weights of the highly correlated
metrics according to whether the dataset contains a central-
ized or decentralized feature. For the centralized features,
we estimate a data value’s error as 50% Metric 2 (Nearest
Difference) and 50% Metric 3 (Vertex Difference), as these
metrics have the highest correlation with the true error that
are also > 70%. For decentralized features, Metric 3 has a
correlation < 70%, signifying that it has little relation to the
true error. However, Metric 1 (Out of Range) shifts to be
> 70%. Therefore, for these dataset types, we estimate error as
50% Metric 1 and 50% Metric 2. While the remaining metrics
could be considered in our error estimation, these three lead
to the best estimation of error overall, as they have the highest
correlations to the true error.



TABLE III: Average accuracy and correlations of error esti-
mations with varying dataset and initial method over all slices.

DATASET METHOD ACCURACY  CORRELATION
Impact (VO2) Systematic 87.11% 85.1%
Random 86.45% 86.8%
Value-Based 80.41% 94.2%
Multi-Criteria 85.68% 92.4%
Isabel (Pres.) Systematic 88.14% 85.7%
Random 85.46% 81.0%
Value-Based 86.63% 88.6%
Multi-Criteria 91.92% 80.9%
Isabel (Prec.) Systematic 94.88% 89.7%
Random 93.89% 90.2%
Value-Based 83.35% 84.5%
Multi-Criteria 93.89% 87.2%
Nyx (p) Systematic 65.61% 90.2%
Random 59.94% 90.8%
Value-Based 40.61% 80.9%
Multi-Criteria 41.09% 80.7%

1) Evaluation: To evaluate our proposed estimation, we
visualize and quantify the difference between our estimated
and the true errors that occur when reconstructing. Figure 5
illustrates both our estimated error and the true absolute error
interpolated from a 10% sample. We categorize the error
distribution into low, medium, and high errors based on the
overall range of the data values. This enables the separation
of background values and regions of interest. Specifically, if
the initial sample set adequately represents a data value, it is
a more common value that generally is of little importance
to users. However, if a value has a high predicted error, the
sample set cannot sufficiently represent it, as the value is rare.
Therefore, the data points with the highest predicted error are
most likely the most critical regions.

Visually, the results in Figure 5 find the difference between
estimated and actual absolute error nearly identical. They
also demonstrate the strength of the correlation between the
factors we use and the error present in the reconstructed
dataset. Specifically, our estimation has an average 90.11%
correlation with the actual error across all datasets. When
quantifying the error on a per-point basis to determine the
accuracy of our scheme, we consider our estimated error to
be accurate if it is within 0.01x the range of the dataset (i.e.,
value-range relative error bound). This approach enables us to
normalize the accuracy based on individual dataset attributes.
Upon evaluating each point, we find our scheme has an average
accuracy of 77%. Overall, our scheme is sufficiently capable
of accurately predicting the error interpolation introduces.

Table III details the accuracy and correlation of our error
estimation. Since systematic sampling yields an even distribu-
tion of information across the dataset, we are provided a better
understanding of the data. However, we show that we still have
high accuracy and correlations with the other methods.

2) Performance: Error estimation is highly parallelizable
for distributed systems, as it consists of triangle-based and
point-based qualities. Metric 3 (Difference in Triangle Ver-
tices) is a triangle-based quality where all points in the
triangle share the same metric value. This metric must only
be calculated once per T} € 7. The second component is
the point-based metrics, 1 (Distance Out of Range) and 2
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Fig. 5: Predicted absolute error categorized by error bound.

(Difference from Nearest), where a unique value is calculated
for each point in P. We run the calculations of each metric
in parallel, as they can each be calculated independently. For
our parallelization, we use PyMP [17], a tool that adds a
parallel iterator to Python by creating a shared array structure
and usage of the Unix system Fork (). In Table IV, we
provide the time to sample each dataset with various sampling
methods. For our solution, we provide the time it takes to
sample sequentially and with 12 processors, which yields an
average speedup of 44 x.
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5.08 x on average when using 12 processors versus one.

V. APPLICATIONS
A. Error Minimization

One standard method of quantifying the amount of error
introduced into data is the peak signal-to-noise ratio (PSNR)
(Eq. 2). PSNR is a ratio between the original and reconstructed
data, representing the amount of noise found when comparing
them. Specifically, the higher the PSNR, the higher the quality
and lower the data distortion. PSNR is calculated using mean-
square error (MSE), as shown in Equation 1, where n is the
number of data points, Y; is the original value and Y; is the
reconstructed value. We use the resulting MSE to calculate
PSNR in Equation 2, where max_val and min_val are the
maximum and minimum of the original dataset.

Iy Ly
MSE=—% (Yi—Yi) ()

=1

PSNR = 20 xlogl0((maz_val — min_val)/VMSE) (2)

Since PSNR is calculated using MSE between true and
reconstructed values, we leverage our error prediction as a
substitute for MSE, resulting in a predicted PSNR. Figure 5
illustrates the 51.50% to 89.54% accuracy of our predicted
MSE. We use this to identify regions of high absolute error

such that we can take new samples at these locations to
improve PSNR. By estimating error and adding new samples
through an iterative process, we are capable of achieving the
desired PSNR. This progressive set of samples yields a better
set than a non-iterative method but at lower speeds due to
multiple error estimations. Figure 6 illustrates the number
of error estimations we must make to achieve various target
PSNRs. To our knowledge, this is the first sampling pipeline
capable of achieving a user-specified target PSNR. While
other works exist on reducing the size of computer graphics,
they rely on mesh simplification, and only work on a single,
topologically—sound mesh [8]. Our method can work with
any existing sampling method, including those with cross-
variable [12] and cross-timestep [13] capabilities, resulting in
a more general solution. However, each dataset is limited in
the PSNR it can achieve. In Figure 6, the right-most data point
of each dataset represents the highest PSNR achievable before
reaching a sample ratio of 100%, meaning all data points are
saved, and no reduction is achieved.

B. Targeted Sampling

In situ visualization allows the user to view a reduced-size
representation of a simulation’s state while the simulation is
ongoing. As the I/O bottleneck becomes a consistent problem,
in situ visualization is critical for exascale data analysis [2].
The constraints to in situ visualizations and analysis lie in
performance relative to the storage available. As such, the
time the domain scientist spends waiting for the production
of visualizations must be minimized. The usefulness of the
visual is the trade-off between the information gained and the
time the domain scientist spends to reach that insight [25].
Scientists need to start analyzing the data as quickly as
possible and spend less time waiting for the data. Waiting for
large, exascale simulation output files to be exported to local
memory for visualization can take a long time due to the I/O
bottlenecks. Therefore, data sampling is an effective solution
where the end user can study a summary of the data rather
than analyzing the memory-intensive, high-resolution dataset.

Data sampling balances the amount of data reasonably
available to be analyzed with the amount of data desired. The
higher the sampling rate, the higher resolution of the data,
the more storage and time to read into memory for post-hoc
analysis, and the longer it takes the end user to study the data.
While higher-resolution data are necessary for presentations
and visualizations, it is essential for end users to be able to
quickly determine whether a feature is of scientific interest
by working with smaller, more quickly stored, loaded, and
visualized intermediate data. With sampled data, the end user
can spend more time analyzing the data than waiting for the
data to be transferred, loaded, and rendered. [25] found that
very low sampling rates can be used to quickly and effectively
make visualizations that display the features of interest across
time-steps of the simulation. The most important of these
visuals can then be downloaded at higher resolutions.

By identifying the areas of high potential error, we extract
the dataset’s features. We use the clustered error in Figure 5



TABLE IV: Quality (PSNR) and time to sample each dataset
with varying sampling method. Sample time for our solution is
provided in a parallel (12 processors) and sequential scheme.

DATASET METHOD RATIO  PSNR TIME PROCESSORS
Impact (VO2) Systematic 50:1 15.9 0.0026s 1
Random 50:1 17.2 0.0086s 1
Value-Based 50:1 13.6 0.0227s 1
Multi-Criteria 50:1 12.1 0.0820s 1
Our Solution 50:1 204 0.628s 12
Our Solution 50:1 204 17.80s 1
Isabel (Pres.) Systematic 50:1 31.8 0.0039s 1
Random 50:1 32.6 0.0176s 1
Value-Based 50:1 30.8 0.0335s 1
Multi-Criteria 50:1 27.0 0.0974s 1
Our Solution 50:1 35.9 0.470s 12
Our Solution 50:1 35.9 46.88s 1
Isabel (Prec.) Systematic 50:1 31.3 0.0031s 1
Random 50:1 29.5 0.0020s 1
Value-Based 50:1 18.7 0.0102s 1
Multi-Criteria 50:1 20.6 0.0559s 1
Our Solution 50:1 314 0.433s 12
Our Solution 50:1 314 13.42s 1
Nyx (p) Systematic 50:1 26.1 0.0007s 1
Random 50:1 26.4 0.0013s 1
Value-Based 50:1 18.0 0.0070s 1
Multi-Criteria 50:1 16.9 0.0134s 1
Our Solution 50:1 245 0.1485s 12
Our Solution 50:1 24.5 2.66s 1

to label data as background values and regions of interest.
If the initial sample set adequately represents a value, it is
a more typical value that generally is of little importance
to users. However, if a value has a high predicted error,
the sample set cannot sufficiently represent it. Therefore, the
data points with the highest predicted error are most likely
critical. This enables our scheme to provide insight into where
regions of interest lie in the dataset. We leverage this insight to
include better samples, yielding a more optimal data summary.
After identifying the top most error-induced values, we can
incorporate them into our sample to gain a better overall set.

For our sampling application, we first take a 0.1% sample
ratio using systematic sampling to get an overview of the data.
Then we include the areas of highest predicted error into our
sample until we reach the overall target ratio of 1%. Figure 8
shows that this method yields a better overview of samples
and a final reconstructed view of the datasets. We repeat these
experiments on other datasets, with results shown in Table IV.
The majority of improvement is with centralized ROI datasets.
We find less improvement with decentralized datasets, as they
include fine details that are difficult to capture. Statistically, we
achieve a higher PSNR with the Nyx dataset just by sampling
the four corner points (PSNR = 25.4) than we do by attempting
to achieve an accurate sample with 40x more samples.

The process of estimating error is highly parallelizable, as
the error for each point is independent. Figure 7 shows the
time it takes to perform the error estimation and targeted
sample with varying number of processes and a reduction
ratio of 10:1 (5% sample ratio). With more processes, we
can estimate multiple errors at a time. We achieve an average
speedup of 5.07x using 12 processors compared to a single
processor. When using a smaller sample ratio of 1%, as shown
in Table IV, we achieve a 44 x improvement.

VI. CONCLUSION

Due to the increasing size of data produced by scientific
applications, reduction schemes have become prominent. Even
the most sophisticated sampling algorithms still introduce
more error than domain scientists tolerate. Our work studies
the error introduced by the linear interpolation of samples.
We estimate the absolute error introduced with 63.6% to
94.88% accuracy and 87.68% correlation with the true error.
This work is highly applicable to improving current sampling
algorithms and building new data reduction pipelines, as
demonstrated in two specific applications. First, we applied
the error estimation process to targeting a user-specified data
quality, which no other sampling process has achieved, to our
knowledge. Second, we incorporated error estimation into a
sampling process that guarantees a storage constraint to be met
while retaining a higher data quality than existing methods.

In our future work, we aim to improve our scheme further.
Specifically, we have shown that our method is parallelizable
and is capable of estimating error of multiple data points
across processes. To further reduce temporal overhead, we
aim to implement our scheme on accelerated hardware such as
GPUs. Next, we aim to extend our scheme to further domains
and investigate more use cases. Lastly, we aim to extend our
error-estimation process to estimate error in the full 3D space.
Currently, we estimate error based on 2D slices. By adding
the 3D component, linear interpolation uses more samples to
estimate the missing data. In the future, we aim to estimate
how error propagates in the 3D space.
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Fig. 8: Samples and Reconstructed Quality of varying methods
with the Hurricane Pressure Dataset at a 1% sample ratio.



