
Estimating Potential Error in Sampling Interpolation

Megan Hickman Fulp, Dakota Fulp, Jon C. Calhoun
Holcombe Department of Electrical and Computer Engineering

Clemson University

Clemson, SC, USA

mlhickm@clemson.edu, dakotaf@clemson.edu, jonccal@clemson.edu

AbstractÐAs high-performance computing systems rapidly
advance, the volumes of scientific data produced are a promi-
nent issue. Data reduction methods, including compression and
sampling, seek to alleviate these bottlenecks by significantly
reducing overall size. Yet, research shows sampling yields lower
overall reconstruction quality than lossy compression due to its
inability to bound the error it introduces. This work presents and
assesses the ability to estimate reconstruction error. We propose
an absolute error estimation scheme using various metrics and
evaluate its capabilities over several real-world datasets. Upon
evaluation, our scheme is between 63.6% and 94.9% accurate at
estimating absolute error and has an average 87.7% correlation
with the error. Lastly, we implement and discuss applications
of our error estimation, including a novel sampler enhancement
that allows for user-specified targeted data quality and a process
to achieve a user-specified storage constraint while yielding a
better preservation of data than existing methods.

Index TermsÐData Reduction, Data Sampling, Importance
Sampling, Error Quantification, Feature Preservation

I. INTRODUCTION

High-performance computing (HPC) systems have revolu-

tionized the way scientists research by enabling them to solve

previously intractable problems. While these systems have

facilitated many groundbreaking findings, they also produce

vast quantities of data. For instance, the Community Earth

System Model (CESM) simulation is only possible due to

these systems, as it is capable of generating 2.5 PB of data over

18 months [22]. However, it takes an additional 18 months to

post-process and publish only 6.6% of the results, as the I/O

subsystems cannot efficiently handle them.

Researchers alleviate these bottlenecks by using reduction

methods to decrease the amount of data they transfer and store.

Lossless compressors [9], [14] reduce data size with no loss

in precision but operate poorly with floating-points due to the

high entropy mantissa bits [28]. Lossy compressors achieve

higher reduction ratios on floating-point data by introducing

controlled approximations when encoding, which users control

through a specified error bound. Data sampling achieves high

reduction ratios by keeping specific data values with total

precision, later used to reconstruct the entire dataset.

When reducing the Deep Water Impact Ensemble

dataset [26], scientists must preserve essential features like

the water spray for post-hoc analysis. Grosset et al. used

Foresight [15] to analyze how well different data reduction

schemes preserve the data at a 50× compression ratio. They

found that data compression algorithms achieve a higher

(better) peak signal-to-noise ratio and lower (better) absolute

error than data sampling. SZ [18], in particular, was shown to

preserve the details of the simulation much better than the most

sophisticated data sampling method to date. When analyzing

only the crater region of interest, using the signal-to-noise ratio

and a visual comparison, the compression methods outper-

formed sampling again. This case study example has shown

that at its current state, data sampling schemes can not perform

at the same level as data compression algorithms, as they have

both low data throughput and poor post-reconstruction quality.

This ineffectiveness is due to data sampling’s inability to

bound the error it introduces, like modern lossy compressors.

The first step in combating this disadvantage is understanding

how the error is introduced in the interpolation step of the

sampling pipeline. This work details the shortcomings of

existing sampling methods and proposes a scheme to estimate

the amount of error introduced into the reconstructed dataset.

Using this scheme, we aim to improve existing data reduction

pipelines. Specifically, our contributions are as follows:

• We detail how error propagates during the linear inter-

polation reconstruction process and identify five metrics

that influence potential error.

• We present our scheme for estimating the amount of error

reconstruction introduces by using a weighted combina-

tion of error-affecting metrics.

• We examine the correlation between our error estimate

and the true absolute error, finding an average correlation

of 87.7% and accuracy ranging from 63.6% to 94.9%.

• We present two applications of our approach in existing

data reduction pipelines: First, we propose a sampling

process that achieves a target user-specified storage con-

straint while maintaining data quality better than existing

methods. Second, we implement a first-of-its-kind sam-

pling process that achieves a user-specified target data

quality in terms of Peak Signal-to-Noise Ratio.

II. BACKGROUND AND RELATED WORK

Scientists working with HPC applications use various data

reduction strategies to reduce I/O bottlenecks that occur with

large datasets [3]±[6], [9], [14], [18]±[20], [30]. Lossless com-

pression algorithms, such as ZStd [9] or GZip [14], reduce data

size with no loss in precision. Due to the high entropy found978-1-6654-8045-1/22/$31.00 ©2022 IEEE



in floating-point mantissa bits, these algorithms are suboptimal

for reducing HPC scientific data, only achieving reduction

ratios of 1× to 4× when used on scientific data [28]. On the

other hand, lossy compression algorithms, such as SZ [18]

and ZFP [20], leverage data approximations and omissions to

represent the input data with lower precision. When scientists

want to retain regions of interest with higher quality, they often

use various data sampling algorithms. Data sampling methods

represent the input data by saving a small subset of data values.

Unlike lossy compression, data sampling allows high reduction

at fixed ratios. The following details the sampling methods

studied in this work. Figure 2 visualizes the resulting sample

set with varying sample method. Methods vary in the type of

data distribution they return. Systematic and random methods

yield an even distribution across the data. Importance-based

sampling methods like value-based and multi-criteria cluster

around regions of interests in the data. The following sections

discuss each method in detail.

A. Random Sampling

Simple random sampling is a basic unbiased algorithm that

gives each data value an equal opportunity to be included in

the sample set. For each data point, a random number, ξ, is

compared to a user-specified sampling percentage, α. In this

case, ξ, α ∈ [0, 1] and if ξ < α then the algorithm includes

the data value in the sample set. This algorithm achieves high

throughput and maintains statistical quantities of the original

dataset, such as mean and standard deviation, which makes

it ideal for datasets with unknown distributions. However, it

does not consider data point value and, as a result, does not

always yield optimal sample sets.

B. Systematic Sampling

Systematic sampling is a method that results in a group of

values gathered by an equally spaced sequence [32]. When

taking systematic samples, we take a subset of data points

that are equally spatially distanced from the previous sample.

Specifically, given a user-specified sampling percentage, α, we

calculate the spatial period of samples as n = 1/α. Following

this, we start at data location i = 0 and take every nth data

point to be within our sample set.

Taking such a group of data points allows us to view a

general overview of the data without over-representation or

under-representation of any area of the data. The disadvantage

of systematic sampling is that it can lead to false statistical

overviews due to its periodic nature. However, for our error

estimation purposes, having this even representation of the

data allows us to visualize target high-error areas better, as

we further discussed in Section IV-B.

C. Value-Based Sampling

Value-based sampling is a biased data sampling algorithm

that prioritizes more important data values. Biswas et al.’s

method biases rare data values without ignoring more common

data values [4]. Their algorithm uses the distribution of data

values to calculate an importance factor, IF , for each data

value such that more rare values have a greater IF and

more common values have a lower IF . While this algorithm

efficiently reduces data size and preserves data values within

the data regions of interest, it does not consider areas of abrupt

change or take into account local smoothness.

D. Multi-Criteria Based Sampling Algorithm

Multi-criteria-based sampling is another form of biased data

sampling that prioritizes data values based on multiple data

properties. For instance, Biswas et al.’s multi-criteria sampling

method biases both more rare data values and data values in

regions of significant change [3]. The algorithm prioritizes

samples with a higher local gradient value during this selection

process. This algorithm efficiently reduces data size while

preserving data values within the data regions of interest and

the edges of different regions. However, this algorithm does

poorly in cases where there are too many edges or where there

is not a centralized region of interest.

E. Reconstruction Algorithms

We must reconstruct the discarded data using the sample

set to evaluate the quality. The nearest neighbor method

reconstructs a data value by setting it equal to the value of

the nearest saved point without consideration of neighboring

points. However, this method often yields jagged, blocky

results and produces the least-smooth reconstruction [11].

Linear interpolation is an approach that uses a curve-fitting

method and linear polynomials to reconstruct missing data

points. The interpolated value is within the discrete set of

saved values. While there are various methods, triangulation

with linear interpolation works best with uniform distributions

of sample locations [31], like those used in our experiments,

rather than sparse areas. Since linear interpolation yields the

highest quality reconstruction for these datasets, we focus on

estimating the error introduced while using this method.

The Delaunay triangulation [10] is traditionally used for

piece-wise linear interpolation of data points. The algorithm

constructs various triangles across the dataset, with vertices of

sample locations, ensuring that another triangle intersects no

triangle edges. The resulting set yields a patchwork of triangles

across the grid, such that a triangular surface covers every grid

point. Then, each missing data point is determined using linear

interpolation within the triangle containing that point.

This reconstruction process introduces error into the data

as it interpolates missing data values from the sample set.

Estimating the error introduced is not trivial, as many factors

affect the resulting error. For instance, Figure 1 illustrates

the initial sample set, the Delaunay triangulation process,

and the resulting reconstructed Asteroid Impact dataset. The

interpolated dataset has many differences from the original

data, yielding high amounts of error and low quality overall.

III. ESTIMATING ERROR PROPAGATION

Our novel error estimation scheme uses various mathemat-

ical metrics to predict the amount of reconstruction error

that would occur. This process begins by taking an initial



Fig. 1: Samples, Triangulation and Interpolation of Impact.

Variable Definition
P All data points in the plane
S All sample points ∈ P
V Values at location P

V̂ Interpolated values at location P
DT (S) Delaunay triangulation of samples S
Tk A triangle ∈ DT (S)
A,B,C Points ∈ S that form Tk

u A point ∈ P , /∈ S to be interpolated
α, β, γ Coefficients that hold the locational

relationship between A,B,C, u true

TABLE I: Mathematical Variable Reference

set of samples for each 2D slice of a 2D or 3D dataset.

For our initial study on error propagation, we contain the

error to a 2D space for better visualization and explanation

of mathematical correlations. Our process triangulates the

samples using Delaunay triangulation before using several

metrics to estimate the error at each data point. Finally, our

process clusters the predicted error into sections, dividing the

dataset into regions of interest and background data.

A. Initial Sample

Our scheme operates on regular structured grid datasets

that consist of implicit data point locations. The first step

in our scheme is to take an initial sample set for every 2D

slice of a 2D or 3D dataset. After the initial study of error

propagation is completed, we aim to expand this work to

study the error propagation in the 3D space in future work.

We examine various sample ratios and sampling methods,

such as random [29], systematic [32], histogram-based [4],

and multi-criteria [3] sampling. The initial sample aims to

gain a general overview of the data so that we have the best

understanding of the data. With a group of samples that are

too clustered together, we have too much information in one

area and too little in others, leading to a poor data summary.

Therefore, we base our study on systematic sampling. Even

though other sampling methods have been shown to achieve

higher quality post-reconstruction [3], [4], that is not the goal

of our analysis. We aim to achieve the best error prediction,

thereby identifying regions of interest, features, or hard-to-

preserve areas. However, we apply our error estimation process

to all sampling methods in Section IV-B to further show that

we still achieve satisfactory results regardless of method. The

result of the sampling process leaves us with two sets: the

locations of the samples, S, and the values of the samples, V .

We save each value and location for future visualization and

reconstruction purposes.

B. Delaunay Triangulation

A popular way of reconstructing a dataset is to consider it a

piece-wise union of cells, subdividing the plane into multiple

patches, each having an independent local interpolating func-

tion. Subdivision is obtained via triangulation. A Delaunay

Triangulation [10] DT (S) is the triangulation formed from

a set of S discrete points such that no point in S is inside

the circumcircle of any triangle in DT (S), as demonstrated

in Figure 1b. The minimum angle of each triangle in the

triangulation is maximized to avoid sliver triangles, where the

area is significantly smaller than its circumcircle.

A triangulation DT (S) over a plane is defined as a set

of multiple individual triangles, Tk, represented as DT (S) =
{Tk}. Each triangle Tk consists of three distinct vertices,

A,B,C ∈ S such that Tk = Aα,Bβ,Cγ, where

• A,B,C ∈ S
• α, β, γ ∈ [0, 1]
• α+ β + γ = 1
• the union of Tk equals the convex hull of A,B,C

Since there may be multiple Delaunay Triangulations per

S, there is no guaranteed unique solution for every set. The

advantage is that Delaunay Triangulations optimize several

geometric properties, including: smallest angle, largest cir-

cumdisk, and largest minimum containment disk (the smallest

enclosed disk that includes the triangle) [7]. Long, skinny

triangles are avoided, as they make interpolation less accurate

as the points used to interpolate are spatially far apart. Smaller,

more Equilateral triangles yield better interpolation since the

vertices are spatially closer.

C. Linear Interpolation

Linear interpolation is a method of curve fitting using linear

polynomials to build new data points within the range of

a discrete set of known data points. It is used to estimate

missing data using known values. Linear interpolation can

also be applied to triangular meshes (a piece-wise planar

surface formed by connected triangles). We utilize the vertices

in the Delaunay Triangulation to interpolate the data values

within each triangle using linear interpolation. For a triangle

Tk ∈ DT (S), with vertices at locations A,B,C, let a point

u ∈ Tk, as demonstrated in Figure 3. The point u can be

expressed as u = Aα + Bβ + Cγ, an affine combination

such that all coefficients sum to one, i.e. α + β + γ = 1 and

α, β, γ ∈ [0, 1].

An α, β, γ are found based on the locations of the data

points, A,B,C, u in relation to the plane. In the 2D plane,

the system of equations ux = Axα + Bxβ + Cxγ and uy =
Ayα + Byβ + Cyγ are used. Once an α, β, γ that solve the

system of equations are found, we use them to interpolate the

value of u as V̂ (u) = V (A)α + V (B)β + V (C)γ. Thus, the

interpolated value is based upon the location of u, relative to

its distance from vertices A,B,C. The closer u is to A, the

more weight the value at point A has in u’s interpolated value.



(a) Systematic (b) Random (c) Value-Based (d) Multi-Criteria

Fig. 2: White circles are samples gathered for the Impact Dataset with various sample methods at a reduction ratio of 100:1.

B(x,y)

A(x,y) C(x,y)

u(x,y)

P

Tk

Fig. 3: Triangulation of point u ∈ triangle ABC.

D. Error-Effecting Metrics

Once our scheme collects an initial set of samples, it clusters

the dataset into separate feature sections by estimating the

absolute error due to interpolation. It begins by creating the

Delaunay triangles from the initial sample set that it would use

during true reconstruction. For each data point, it leverages the

data point’s value and the triangle vertices it is in to estimate

the absolute error. Error is introduced into the reconstructed

data when V̂ (u) ̸= V (u). In this section, we analyze the

factors that affect how different V̂ (u) is from V (u).

1) Metric: Distance Out of Range: The value of u is

calculated as the weighted sum of the contributing vertices’

values. Values A,B,C are used in a weighted average with

weights of α, β, γ, signifying the significance of each value

in relation to V (u). As seen in Lemma 1, the range of

possible interpolated values is in the range of the minimum

and maximum values of the vertices.

Lemma 1: V̂ (u) = V (A)α+ V (B)β + V (C)γ

α+ β + γ = 1

α, β, γ ∈ [0, 1]

Thus, V̂ (u) ∈ [min(V (A,B,C)),max(V (A,B,C))]

If a value to be reconstructed is outside the range of

the triangle’s vertices, then no method can reconstruct it

accurately. The more out of range the value is, the higher

the difference to its reconstructed value is, leading to a higher

reconstructed error and lower resulting data quality. Metric 1:

Out of Range quantifies how much out-of-range the data value

is from the extrema of the triangle vertices. The range of this

metric is the difference between the minimum and maximum

values in the entire true dataset. In the worst scenario, we have

a set of samples that only contain the minimum value in the set

of all true values, V. Since there were no samples containing

the true maximum value ∈ V , the linear interpolation would

result in some error in locations where reconstructed data

points were assigned an incorrect value of min(V) when it

should have been max(V).

Metric 1: Out of Range: m1 =
max[|min(V (A,B,C)− V (u)|, |V (u)−max(V (A,B,C)|]

m1 ∈ [−max(V )−min(V ),max(V )−min(V )]
2) Metric: Difference from Nearest: When using linear

interpolation to reconstruct the data values within each trian-

gle, the resulting value is slightly biased towards the nearest

triangle vertex sample. The weights α, β, γ ∈ [0, 1] are derived

based on the global plane coordinates of the vertices at

locations A,B,C a point u ∈ T . Thus, the distance from each

vertex and u affects the resulting weight of that vertex in the

overall interpolation. With this in mind, the more significant

the difference between the value to be reconstructed and the

value of the closest triangle vertex, the higher the error in

the reconstructed data value. Metric 2: Nearest Difference

quantifies the absolute difference between values of each point

within the triangle and the nearest vertex.

Metric 2: Nearest Difference:

N = min(
√

(ux − Zx)2 + (uy − Zy)2), where

Z ∈ A,B,C.

m2 = V (u)− V (N)
m2 ∈ [min(V ),max(V )]

3) Metric: Difference in Triangle Vertices: The difference

of the values of each vertex affects the interpolated value.

Lemma 2: V̂ (u) = V (A)α+ V (B)β + V (C)γ
α+ β + γ = 1
α, β, γ ∈ [0, 1]

error = absV̂ (u)− V (u)
error = abs(V (A)α+ V (B)β + V (C)γ)− V (u)
range = max(V (A,B,C))−min(V (A,B,C))

Thus, as range increases, potential error increases.

The higher the difference between the values of each vertex,

the harder it is to smooth out the values within the triangle,

resulting in a lower interpolation quality. Unlike the other



two error estimation metrics, this metric remains constant for

each point within a triangle, as it is not based on individual

data values. Metric 3: Vertex Difference quantifies the average

difference between the values of each triangle’s vertices.

Metric 3: Vertex Difference:

m3 = max(V (A,B,C))−min(V (A,B,C))

m3 ∈ [min(V ),max(V )]

4) Metric: Triangle Area: If the triangle area is too large,

there is more mathematical uncertainty. Triangles with a large

area have more values that need to be reconstructed within

the triangle. As area grows, the three triangle vertex values

are less likely to represent the interior points sufficiently.

Therefore, larger triangles have a higher probability of yielding

lower quality in that region. We calculate Metric 4: Triangle

Area as the number of data points within the triangle to be

reconstructed rather than the mathematical area.

Metric 4: Triangle Area:

m4 = V ∈ Tk

m4 ∈ [3, V
2
]

5) Metric: Circle Ratio: The circle ratio is the measure of

the triangle’s flatness. With this metric, an equilateral triangle’s

circle ratio is 0.5, and any triangle more flat is less than this.

In theory, the flatter the triangle, the more it stretches over the

data, and the more it could encompass a larger distribution of

data values. Metric 5: Circle Ratio is calculated as the ratio

of the incircle radius over the circumcircle radius.

Metric 5: Circle Ratio:

Given a set S that contains all n edge lengths of triangle T ,

Incircle Radius, r = Πn
i=0

Sn

Circumcircle Radius, R =
∑n

i=0
Sn

m5 = 2r
R

m5 ∈ [0, 1]

E. Error-Effecting Metrics Evaluation

As our goal is to predict the error in the reconstructed

data without having to reconstruct it completely, our scheme

uses the metrics outlined in Section III because there exists a

mathematical correlation between these metrics and the error

found in the linear interpolated values. Thus, these metrics

enable us to predict the resulting reconstruction.

Correlation is the numerical representation of the linear

relationship between two datasets. With it, we describe the

rate of change of one variable in response to changes in

another. Covariance is similar but only measures the positive or

negative direction of the linear relationship between variables,

while correlation measures both direction and magnitude. The

Pearson Correlation Coefficient (PCC) is the ratio between the

covariance of two variables and the product of their standard

deviations, which normalizes it between -100% and 100%.

Here, we discuss the PCC between each individual met-

ric and the true absolute error on the original dataset and

reconstructed data. We report the correlation percentage by

metric and dataset. The correlations range from -100%, a

perfectly negative correlation, to 100%, a perfectly positive

correlation, where 0% signifies no correlation. In general,

any |PCC| > 70% indicates possible col-linearity, while

|PCC| < 70% implies low or negligible relationship [23].

The data from scientific simulations can vary, resulting in

some metrics being better for certain dataset types and worse

for others. To account for this, we cluster datasets into two

distinctions: centralized and decentralized feature datasets.

A centralized feature dataset has one clustered set of values

as the region of interest to the end-user. Examples of this

distinction include the impact and pressure datasets (see Ta-

ble II). With the impact dataset, domain scientists are explicitly

interested in studying the asteroid entry into the water [1], [27].

With the hurricane pressure dataset, scientists are interested in

the hurricane eye. In both datasets, the feature scientists study

is a single cluster of data values.

Conversely, a decentralized feature dataset has no single

cluster of values. Instead, in these simulations, scientists are

interested in multiple regions of interest or the entire dataset.

These datasets have data that needs to be studied across

the entire dataset. Examples include the precipitation and

Nyx datasets, as they have multiple regions of interest or

data evenly dispersed throughout the dataset. By considering

dataset distinction, we achieve better prediction accuracy and

minimize the standard deviation between correlations.

1) Metric 1: Distance Out of Range: Upon analyzing

Figure 4, we find that Metric 1 has an average correlation to

the true error of 35%±8.60% when working with centralized

feature datasets and an average correlation of 76% ± 1.96%
with decentralized feature datasets. This metric is ineffective

with centralized feature datasets as the feature values within

these datasets are clustered. Therefore, the probability of

finding a value out of range is lower. With this in mind, our

method chooses to use Metric 1 when predicting decentralized

feature datasets, as this results in a correlation > 70%.

2) Metric 2: Difference from Nearest: Metric 2 has an

average correlation to the true error of 73% ± 4.20% when

working with centralized feature datasets and an average

correlation of 84%±0.38% with decentralized feature datasets.

This metric is effective regardless of the dataset feature

distinction because this metric mathematically aligns strongly

with the interpolation process we use to reconstruct the data.

Specifically, the reconstruction process utilizes a weighted

average of the triangle vertices to rebuild each missing data

point within the triangle. During this process, the weight of

each coefficient is determined by the distance between the

missing data location and each vertex. Therefore, our method

utilizes this metric for all estimations regardless of the dataset.

3) Metric 3: Difference in Triangle Vertices: When as-

sessing Metric 3’s correlation, we find it has an average

correlation to the true error of 71% ± 4.22% when working

with centralized feature datasets and an average correlation

of 51% ± 5.57% when working with decentralized feature

datasets. This metric is highly effective with centralized feature

datasets. If the difference between triangle vertex values is too

high, this indicates that the triangle intersects with a region

of high entropy. When this occurs, there is a much higher

possibility of error occurring within this region. Conversely,
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Fig. 4: Correlations by dataset type

this metric is ineffective on decentralized feature datasets as

most of these datasets share a similar level of entropy across

the entire data. Hence, our method utilizes this metric for

centralized feature dataset estimations.

4) Metric 4: Triangle Area: Assessing the correlation of

Metric 4, we find it has an average correlation to the true

error of 21%±22.35% when working with centralized feature

datasets and an average correlation of −1% ± 0.34% when

working with decentralized feature datasets. In both dataset

distinctions, we find this metric has a low correlation. While

mathematically, if the area of a triangle is too big, there

should be more uncertainty, we use systematic sampling. This

sampling approach leads to the area of most triangles being

the same. This result is also visible when using other basic

sampling algorithms. As a result, the size of the triangles

cannot correlate with the error enough for this metric to be

useful in our estimation. Consequently, we choose not to

TABLE II: Datasets used in experiments.

NAME VARIABLE SHAPE ROI RANGE

Impact [26] V02 300 × 300 × 300 Central. [0.0, 1.0]
Isabel [16] Pressure 500 × 500 × 100 Central. [-3412, 3224]
Isabel [16] Precipitation 500 × 500 × 100 Decentral. [0.0, 0.008]
Nyx [21] Dark Matter ρ 512 × 512 × 512 Decentral. [0.0, 13779]

utilize this metric in our estimation process.
5) Metric 5: Circle Ratio: Upon assessing the correlation

of metric 5, we find it has an average correlation to the

true error of −15%± 13.90% when working with centralized

feature datasets and an average correlation of −1% ± 2.18%
when working with decentralized feature datasets. Similar to

Metric 4, this metric is ineffective since we utilize systematic

sampling. By using this initial form of sample gathering, most

of the triangles are of the same shape, meaning the circle ratio

cannot correlate well enough with the overall error for it to

be useful. As a result, we choose not to utilize this metric as

well in our estimation process.

IV. ERROR METRIC EVALUATION

We evaluate each metric to determine which can be appro-

priately used to estimate error. We leverage the metrics with

a high correlation to the true reconstruction error to build our

proposed scheme and evaluate the accuracy of its estimations

against the true reconstruction error.

A. Experimental Setup

1) Hardware and Software: We conduct trials on Clemson’s

Palmetto Cluster [24]. Specifically, we use nodes that are 40

core Intel Xeon CPUs with 372 GB of memory. On these

machines, we use gcc 8.3.1. We use the Systematic sampling

method in our experiments, except where specified otherwise.
2) Datasets: We evaluate the accuracy of our scheme on

several real-world HPC single-precision simulation datasets,

detailed in Table II. The specified time-steps contain a pre-

defined region of interest (ROI) inside the domain.

B. Error-Estimation

We use a weighted average of the error metrics to estimate

the error in the dataset if we were to reconstruct. We set these

weights based on each metric’s correlation to the actual error.

Based on the metric correlations discussed in the previous

section, we evenly set the weights of the highly correlated

metrics according to whether the dataset contains a central-

ized or decentralized feature. For the centralized features,

we estimate a data value’s error as 50% Metric 2 (Nearest

Difference) and 50% Metric 3 (Vertex Difference), as these

metrics have the highest correlation with the true error that

are also > 70%. For decentralized features, Metric 3 has a

correlation < 70%, signifying that it has little relation to the

true error. However, Metric 1 (Out of Range) shifts to be

> 70%. Therefore, for these dataset types, we estimate error as

50% Metric 1 and 50% Metric 2. While the remaining metrics

could be considered in our error estimation, these three lead

to the best estimation of error overall, as they have the highest

correlations to the true error.



TABLE III: Average accuracy and correlations of error esti-

mations with varying dataset and initial method over all slices.

DATASET METHOD ACCURACY CORRELATION

Impact (VO2) Systematic 87.11% 85.1%
Random 86.45% 86.8%

Value-Based 80.41% 94.2%
Multi-Criteria 85.68% 92.4%

Isabel (Pres.) Systematic 88.14% 85.7%
Random 85.46% 81.0%

Value-Based 86.63% 88.6%
Multi-Criteria 91.92% 80.9%

Isabel (Prec.) Systematic 94.88% 89.7%
Random 93.89% 90.2%

Value-Based 83.35% 84.5%
Multi-Criteria 93.89% 87.2%

Nyx (ρ) Systematic 65.61% 90.2%
Random 59.94% 90.8%

Value-Based 40.61% 80.9%
Multi-Criteria 41.09% 80.7%

1) Evaluation: To evaluate our proposed estimation, we

visualize and quantify the difference between our estimated

and the true errors that occur when reconstructing. Figure 5

illustrates both our estimated error and the true absolute error

interpolated from a 10% sample. We categorize the error

distribution into low, medium, and high errors based on the

overall range of the data values. This enables the separation

of background values and regions of interest. Specifically, if

the initial sample set adequately represents a data value, it is

a more common value that generally is of little importance

to users. However, if a value has a high predicted error, the

sample set cannot sufficiently represent it, as the value is rare.

Therefore, the data points with the highest predicted error are

most likely the most critical regions.

Visually, the results in Figure 5 find the difference between

estimated and actual absolute error nearly identical. They

also demonstrate the strength of the correlation between the

factors we use and the error present in the reconstructed

dataset. Specifically, our estimation has an average 90.11%

correlation with the actual error across all datasets. When

quantifying the error on a per-point basis to determine the

accuracy of our scheme, we consider our estimated error to

be accurate if it is within 0.01× the range of the dataset (i.e.,

value-range relative error bound). This approach enables us to

normalize the accuracy based on individual dataset attributes.

Upon evaluating each point, we find our scheme has an average

accuracy of 77%. Overall, our scheme is sufficiently capable

of accurately predicting the error interpolation introduces.

Table III details the accuracy and correlation of our error

estimation. Since systematic sampling yields an even distribu-

tion of information across the dataset, we are provided a better

understanding of the data. However, we show that we still have

high accuracy and correlations with the other methods.

2) Performance: Error estimation is highly parallelizable

for distributed systems, as it consists of triangle-based and

point-based qualities. Metric 3 (Difference in Triangle Ver-

tices) is a triangle-based quality where all points in the

triangle share the same metric value. This metric must only

be calculated once per Tk ∈ T . The second component is

the point-based metrics, 1 (Distance Out of Range) and 2

(a) Impact (Accuracy: 87.11%, Correlation: 85.1%)

(b) Pressure (Accuracy: 88.14%, Correlation: 85.7%)

(c) Precipitation (Accuracy: 94.88%, Correlation: 89.7%)

(d) Nyx (Accuracy: 63.61%, Correlation: 90.2%)

Fig. 5: Predicted absolute error categorized by error bound.

(Difference from Nearest), where a unique value is calculated

for each point in P . We run the calculations of each metric

in parallel, as they can each be calculated independently. For

our parallelization, we use PyMP [17], a tool that adds a

parallel iterator to Python by creating a shared array structure

and usage of the Unix system Fork(). In Table IV, we

provide the time to sample each dataset with various sampling

methods. For our solution, we provide the time it takes to

sample sequentially and with 12 processors, which yields an

average speedup of 44×.
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Fig. 6: Error iterations needed to converge to target PSNR.
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Fig. 7: Time to complete targeted 10:1 sampling process with

varying number of processes. Sampling time is improved by

5.08× on average when using 12 processors versus one.

V. APPLICATIONS

A. Error Minimization

One standard method of quantifying the amount of error

introduced into data is the peak signal-to-noise ratio (PSNR)

(Eq. 2). PSNR is a ratio between the original and reconstructed

data, representing the amount of noise found when comparing

them. Specifically, the higher the PSNR, the higher the quality

and lower the data distortion. PSNR is calculated using mean-

square error (MSE), as shown in Equation 1, where n is the

number of data points, Yi is the original value and Ŷi is the

reconstructed value. We use the resulting MSE to calculate

PSNR in Equation 2, where max val and min val are the

maximum and minimum of the original dataset.

MSE =
1

n

n
∑

i=1

(Yi − Ŷi)
2 (1)

PSNR = 20 ∗ log10((max val −min val)/
√
MSE) (2)

Since PSNR is calculated using MSE between true and

reconstructed values, we leverage our error prediction as a

substitute for MSE, resulting in a predicted PSNR. Figure 5

illustrates the 51.50% to 89.54% accuracy of our predicted

MSE. We use this to identify regions of high absolute error

such that we can take new samples at these locations to

improve PSNR. By estimating error and adding new samples

through an iterative process, we are capable of achieving the

desired PSNR. This progressive set of samples yields a better

set than a non-iterative method but at lower speeds due to

multiple error estimations. Figure 6 illustrates the number

of error estimations we must make to achieve various target

PSNRs. To our knowledge, this is the first sampling pipeline

capable of achieving a user-specified target PSNR. While

other works exist on reducing the size of computer graphics,

they rely on mesh simplification, and only work on a single,

topologically±sound mesh [8]. Our method can work with

any existing sampling method, including those with cross-

variable [12] and cross-timestep [13] capabilities, resulting in

a more general solution. However, each dataset is limited in

the PSNR it can achieve. In Figure 6, the right-most data point

of each dataset represents the highest PSNR achievable before

reaching a sample ratio of 100%, meaning all data points are

saved, and no reduction is achieved.

B. Targeted Sampling

In situ visualization allows the user to view a reduced-size

representation of a simulation’s state while the simulation is

ongoing. As the I/O bottleneck becomes a consistent problem,

in situ visualization is critical for exascale data analysis [2].

The constraints to in situ visualizations and analysis lie in

performance relative to the storage available. As such, the

time the domain scientist spends waiting for the production

of visualizations must be minimized. The usefulness of the

visual is the trade-off between the information gained and the

time the domain scientist spends to reach that insight [25].

Scientists need to start analyzing the data as quickly as

possible and spend less time waiting for the data. Waiting for

large, exascale simulation output files to be exported to local

memory for visualization can take a long time due to the I/O

bottlenecks. Therefore, data sampling is an effective solution

where the end user can study a summary of the data rather

than analyzing the memory-intensive, high-resolution dataset.

Data sampling balances the amount of data reasonably

available to be analyzed with the amount of data desired. The

higher the sampling rate, the higher resolution of the data,

the more storage and time to read into memory for post-hoc

analysis, and the longer it takes the end user to study the data.

While higher-resolution data are necessary for presentations

and visualizations, it is essential for end users to be able to

quickly determine whether a feature is of scientific interest

by working with smaller, more quickly stored, loaded, and

visualized intermediate data. With sampled data, the end user

can spend more time analyzing the data than waiting for the

data to be transferred, loaded, and rendered. [25] found that

very low sampling rates can be used to quickly and effectively

make visualizations that display the features of interest across

time-steps of the simulation. The most important of these

visuals can then be downloaded at higher resolutions.

By identifying the areas of high potential error, we extract

the dataset’s features. We use the clustered error in Figure 5



TABLE IV: Quality (PSNR) and time to sample each dataset

with varying sampling method. Sample time for our solution is

provided in a parallel (12 processors) and sequential scheme.

DATASET METHOD RATIO PSNR TIME PROCESSORS

Impact (VO2) Systematic 50:1 15.9 0.0026s 1
Random 50:1 17.2 0.0086s 1

Value-Based 50:1 13.6 0.0227s 1
Multi-Criteria 50:1 12.1 0.0820s 1
Our Solution 50:1 20.4 0.628s 12
Our Solution 50:1 20.4 17.80s 1

Isabel (Pres.) Systematic 50:1 31.8 0.0039s 1
Random 50:1 32.6 0.0176s 1

Value-Based 50:1 30.8 0.0335s 1
Multi-Criteria 50:1 27.0 0.0974s 1
Our Solution 50:1 35.9 0.470s 12
Our Solution 50:1 35.9 46.88s 1

Isabel (Prec.) Systematic 50:1 31.3 0.0031s 1
Random 50:1 29.5 0.0020s 1

Value-Based 50:1 18.7 0.0102s 1
Multi-Criteria 50:1 20.6 0.0559s 1
Our Solution 50:1 31.4 0.433s 12
Our Solution 50:1 31.4 13.42s 1

Nyx (ρ) Systematic 50:1 26.1 0.0007s 1
Random 50:1 26.4 0.0013s 1

Value-Based 50:1 18.0 0.0070s 1
Multi-Criteria 50:1 16.9 0.0134s 1
Our Solution 50:1 24.5 0.1485s 12
Our Solution 50:1 24.5 2.66s 1

to label data as background values and regions of interest.

If the initial sample set adequately represents a value, it is

a more typical value that generally is of little importance

to users. However, if a value has a high predicted error,

the sample set cannot sufficiently represent it. Therefore, the

data points with the highest predicted error are most likely

critical. This enables our scheme to provide insight into where

regions of interest lie in the dataset. We leverage this insight to

include better samples, yielding a more optimal data summary.

After identifying the top most error-induced values, we can

incorporate them into our sample to gain a better overall set.

For our sampling application, we first take a 0.1% sample

ratio using systematic sampling to get an overview of the data.

Then we include the areas of highest predicted error into our

sample until we reach the overall target ratio of 1%. Figure 8

shows that this method yields a better overview of samples

and a final reconstructed view of the datasets. We repeat these

experiments on other datasets, with results shown in Table IV.

The majority of improvement is with centralized ROI datasets.

We find less improvement with decentralized datasets, as they

include fine details that are difficult to capture. Statistically, we

achieve a higher PSNR with the Nyx dataset just by sampling

the four corner points (PSNR = 25.4) than we do by attempting

to achieve an accurate sample with 40× more samples.

The process of estimating error is highly parallelizable, as

the error for each point is independent. Figure 7 shows the

time it takes to perform the error estimation and targeted

sample with varying number of processes and a reduction

ratio of 10:1 (5% sample ratio). With more processes, we

can estimate multiple errors at a time. We achieve an average

speedup of 5.07× using 12 processors compared to a single

processor. When using a smaller sample ratio of 1%, as shown

in Table IV, we achieve a 44× improvement.

VI. CONCLUSION

Due to the increasing size of data produced by scientific

applications, reduction schemes have become prominent. Even

the most sophisticated sampling algorithms still introduce

more error than domain scientists tolerate. Our work studies

the error introduced by the linear interpolation of samples.

We estimate the absolute error introduced with 63.6% to

94.88% accuracy and 87.68% correlation with the true error.

This work is highly applicable to improving current sampling

algorithms and building new data reduction pipelines, as

demonstrated in two specific applications. First, we applied

the error estimation process to targeting a user-specified data

quality, which no other sampling process has achieved, to our

knowledge. Second, we incorporated error estimation into a

sampling process that guarantees a storage constraint to be met

while retaining a higher data quality than existing methods.

In our future work, we aim to improve our scheme further.

Specifically, we have shown that our method is parallelizable

and is capable of estimating error of multiple data points

across processes. To further reduce temporal overhead, we

aim to implement our scheme on accelerated hardware such as

GPUs. Next, we aim to extend our scheme to further domains

and investigate more use cases. Lastly, we aim to extend our

error-estimation process to estimate error in the full 3D space.

Currently, we estimate error based on 2D slices. By adding

the 3D component, linear interpolation uses more samples to

estimate the missing data. In the future, we aim to estimate

how error propagates in the 3D space.
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(a) Systematic (PSNR: 31.8)

Piece-Wise Interpolation

(b) Random (PSNR: 32.6)

Piece-Wise Interpolation

(c) Value-Based (PSNR: 30.8)

Piece-Wise Interpolation

(d) Multi-Criteria (PSNR: 27.0)

Piece-Wise Interpolation

(e) Our Systematic Error-Minimization (PSNR: 35.9)

Fig. 8: Samples and Reconstructed Quality of varying methods

with the Hurricane Pressure Dataset at a 1% sample ratio.


