
Analyzing the Energy Consumption of Synchronous
and Asynchronous Checkpointing Strategies

Grant Wilkins∗, Mikaila J. Gossman∗ Bogdan Nicolae†, Melissa C. Smith∗, Jon C. Calhoun∗
∗Clemson University, Clemson, SC, USA

†Argonne National Laboratory, Lemont, IL, USA

Emails: {gfwilki, mikailg, smithmc, jonccal}@clemson.edu and bnicolae@anl.gov

AbstractÐAt the start of the exascale computing age, the
number of components installed in high performance computing
(HPC) systems has increased by more than 70 percent, leading
to a shorter mean time between failure (MTBF) and large power
budgets approaching and exceeding 20 MWs. In this context,
resilience strategies such as checkpoint/restart (C/R), which are
traditionally adopted by tightly coupled HPC applications, face
the need to become energy efficient, in addition to the need to
minimize the runtime overheads at scale. With respect to the
latter aspect, C/R has evolved to employ asychronous multi-level
resilience techniques that leverage heterogeneous storage. Thus,
there are many factors that affect the performance and scalability
of C/R. The impact of these factors on energy efficiency and the
resulting trade-offs have been studied only to a limited degree
so far in the literature. To address this gap, we propose to study
two state-of-the-art C/R libraries, VELOC (local checkpoints to
DRAM or SSD followed by asynchronous flushes to PFS) and
GenericIO (optimized synchronous flushes to PFS). We perform
weak and strong scalability experiments and show that DRAM
provides ≈ 1.5× greater throughput while utilizing ≈ 25% less
energy than SSDs. Further, we show that asynchronous C/R
provides ≈ 4× greater throughput while using practically a
third of the energy than synchronous C/R. Further we show
that data size and throughput are directly correlated to energy
consumption, and therefore C/R developers should focus on ways
to improve/maintain high throughput in order to effectively
reduce energy consumption, rather than throttle hardware, to
efficiently address exascale needs.

Index TermsÐhigh-performance computing, fault-tolerant
computing, checkpoint-restart, energy-aware computing, perfor-
mance analysis

I. INTRODUCTION

Applications are facing ever-increasing runtimes and pro-

duce massive amounts of intermediate data [1] as production-

ready HPC systems continue to scale. In June 2022, Frontier

became the U.S.’s first Exascale capable machine, with a

reported 8,730,112 compute cores, a 72% increase from its

predecessor, Summit [2]. Historically, similar increases have

led to difficulties in the form of: (1) high energy consumption

due to relatively slower advancements in power technology

and increasing complexity of software stacks [3]; and (2) lower

mean-time-between-failures (MTBF), raising questions about

hardware reliability [4].

In 2008, the scientific community set an ambitious goal

to power future exascale-capable machines on 20 MW per

year [5]. Even if we assume a very low cost of energy in

the U.S. (<$0.05/kWH), 1 MW of power results in almost $1

million USD per year [6], meaning upwards of $20 million

USDs is required just to power the system. However, power

budgets are subject to change based on new chip technology,

cooling strategies, and facility sizes [6]. Thus, it is clear that

power draw, and therefore energy, is a major expenditure. Such

large energy costs raise problems for users as well, as they

run the possibility of system usage being capped [7]. With

energy being a key variable to control for both users and

site administrators, it is pertinent to understand the impact

different applications and middle-ware libraries have on energy

consumption in the HPC stack.

On the other hand, the dramatic increase in number

of components leads to lower mean-time-between-failures

(MTBF) [4], which prompts the need for scalable, low-

overhead resilience techniques. In the context of HPC applica-

tions, checkpoint-restart (C/R) is the most common resilience

technique due to the tightly coupled nature of the processes

and tasks. In a nutshell, C/R captures the global state of an

application in a resilient fashion at a given point in time, and

restarts from that state in case of failures, which dramatically

reduces the amount of lost runtime compared to re-running

the application from the beginning.

C/R approaches have evolved over time to leverage hetero-

geneous storage stacks (node-local memory hierarchies and

SSDs, external repositories such as a parallel file system ±

PFS±, key-value stores, etc.) as part of multi-level resilience

strategies that adapt to various classes of failures. Based on

empirical observations, simple failures like application bugs

happen more frequently than catastrophic failures like a large

number of nodes going offline at once. Thus, multi-level

resilience strategies employ lightweight ªlevelsº to protect

against simple failures more frequently (e.g. checkpoint to

and restart from local storage) and more expensive ªlevelsº

to protect against catastrophic failures less frequently (e.g.

checkpoint to and restart from a PFS that offers durability

at the expense of high I/O overheads).

Even so, shorter mean time between failures (MTBF) means

checkpointing needs to be performed more often at all levels

of resilience. As a consequence, checkpoints are written to

a PFS more frequently, which introduces unacceptable I/O

overheads. To alleviate these overhead, asynchronous multi-

level checkpointing techniques [1] block the application only

until the checkpoints have been written to local storage (fastest

level), then proceed with the other resilience strategies in

the background (e.g., flush checkpoints to the PFS using

separate threads), while the application keeps running. This

overlap hides the high I/O overhead of accessing a PFS, but

is more complex to implement and introduces competition for

resources with the application, which is non-trivial to predict

and mitigate [8]±[10].

The combined effect of more frequent checkpointing using

increasingly complex techniques, coupled with the need to

increasingly emphasize energy efficiency, has prompted the

need to design multi-level checkpointing techniques that are

not only low-overhead and scalable, but also energy efficient.

In this context, previous studies analyze the effects of the

C/R software-stack (e.g. I/O design choices [8] and different

storage layers [1] on application time memory, and bandwidth

consumption. However, energy efficiency has comparatively

received limited attention in the literature. There are recent

efforts into exploring the energy consumption of checkpoint-

restart, but these works only consider synchronous checkpoint-

ing libraries [11], and/or model certain aspects (e.g. checkpoint

frequency [12], recovery mechanisms [13], or storage tier [14])

of C/R, not the libraries themselves (which has unaccounted

for inefficiencies due to software implementation).

Thus, there is a need to analyze the energy efficiency in a

holistic fashion that takes into account the overall complexity

of checkpointing libraries. This is particularly important in the

context of asynchronous multi-level checkpointing libraries,

which have both complex implementations and runtime behav-

iors that involves competition for resources with the applica-

tion. Just as understanding the interplay between applications

and checkpointing runtimes is necessary to mitigate contention

and reduce performance degradation, understanding the trade-

off between performance, scalability, and energy consumption

using various combinations of parameters and resilience strate-

gies is a crucial step in the design of next-generation energy-

efficient checkpointing libraries. In this paper we focus on

the study of the aforementioned trade-off. We summarize our

contributions below:

• We perform weak and strong scalability analysis of

the trade-off between the performance overheads and

energy consumption of VELOC [1], a production-ready

asynchronous checkpointing library, as compared with

GenericIO [15], an optimized synchronous checkpointing

library for writing checkpoints directly to a PFS.

• We compare the impacts of C/R configurations such as

storage hardware, I/O methods, and parallelism on the

energy consumption and throughput of C/R applications.

• We detail both the CPU and DRAM energy consumption

of C/R on different storage tiers at scale, combining these

measurements to report aggregate results.

• We find asynchronous C/R writing to DRAM provides

nominal improvement over SSDs in regards to throughput

and energy consumption. Therefore, efforts should be

taken to efficiently use both resources to provide high

throughput and reduce contention for fast, local memory.

II. BACKGROUND AND RELATED WORK

A. Checkpoint-Restart

HPC checkpoint-restart (C/R) captures the global state of

multiple processes as a set of checkpoints that can be used to

restart from in case of failures. Typically, C/R captures only

the data structures residing in the memory of the processes,

while other additional states are discarded and reconstructed

on restart.

System-level vs. Application-level C/R: System-level

C/R (such as DMTCP [16]) employs a transparent approach

that captures the full set of in-memory data structures, while

application-level C/R captures only the critical data structures

and relies on the application to explicitly reconstruct the other

data structures on restart. In this paper we study the latter

approach. However, without loss of generality, our results can

be used to reason about system-level checkpointing libraries

too, as the same resilience techniques are applicable once

checkpoint files have been produced by either approach.

Synchronous C/R: in this case, all multi-level resilience

strategies are applied while blocking the application. A repre-

sentative example is SCR [17]. In practice, it is often employed

as a single level that involves blocking flushes directly to

a PFS. In this context, several optimization are employed

to reduce the I/O pressure on the PFS, such as aggregating

checkpoints on a subset of compute nodes that are responsible

for concurrent writes, as illustrated by GenericIO [15]. This

type of C/R helps ensure a consistent global-state across a

distributed application [11]. Further, synchronous C/R elim-

inates competition between the checkpointing runtime and

the application, thus eliminating the need for interference

mitigation, which is a non-trivial issue [8]. However, at scale,

synchronous checkpointing strategies have high (and often

unpredicatable) overheads, especially when concurrent writes

to PFS(s) are involved, which is typically subject to I/O

bottlenecks.

Asynchronous C/R: Asynchronous multi-level check-

pointing techniques block the application only until the check-

points have been written to local storage (fastest level), then

proceed with the other resilience levels in the background,

while the application keeps running (e.g. flush checkpoints

to the PFS using separate threads). A representative example

is VELOC [1], which supports several multi-level resilience

strategies: (1) capture the checkpoints in-memory or to node-

local storage; (2) partner replication, (3) peer-to-peer erasure

coding, (4) flush to PFS(s), (5) flush to burst buffers or (6) flush

to key-value stores. In this paper, we focus on a simple two-

level scenario that is frequently used in practice: (1), which is

blocking, followed by (4), which is performed asynchronously.

B. Energy-Aware Computing

The growing energy consumption of computing systems is

immense and requires significantly greater costs and/or power

capping users. In recent years, energy-aware computing (EAC)

has become a focus of the HPC community at large, with

efforts being made to reduce the environmental impact of

supercomputers. The main directions of research for energy re-

duction are through (1) analytic, (2) hardware, and (3) software

optimizations/comparisons. Here we outline the differences of

these approaches and discuss where our work falls.

Analytic EAC: In distributed computing, analytic ap-

proaches to optimizations are popular, as mathematical models

of parallel systems yield interesting insights into potential pit-

falls in performance. While not exhaustive, this section focuses

on the analytic models of C/R that optimize energy and power

models through aspects of C/R such as checkpoint intervals,

scalability, and probabilistic execution. Some works [18]±[20]

focus on optimizing checkpoint frequency via the Young-

Daly equation [21], often modeling runtime speedup with

this equation. Others find a more appropriate probabilistic

model for C/R which is proven to allow a more fine-tuned

model of energy consumption, resulting in better prediction

and future optimization [22], [23]. We do not proceed with

analytic methods, instead indirectly use the results as they are

implemented by C/R application developers [1], [15].

Hardware-Focused EAC: Hardware-based EAC refers to

optimizing the energy consumption of a node via controlling

hardware variables such as CPU/GPU frequency and voltage

or different storage locations/hardware. This level of control

is achieved through dynamic voltage and frequency scaling

(DVFS). Voltage and frequency are easily tunable variables

through OS-specific kernel tools (e.g. CPUfreq for Linux)

and directly lowers power consumption of a device.

In the context of C/R, previous works [24]±[26] suggest

DVFS is useful in targeting different CPU frequencies to find

an optimal power consumption without large performance loss.

Other works look at how different hardware types (e.g. NVMe

v.s. SSD) impacts the energy efficiency of C/R applications

[27], [28]. In this paper, we present a greater focus on the

different storage hardware types. Since resource contention

introduced by asynchronous C/R is not well understood, we

choose to leave DVFS work to more in-depth future studies,

where it may have adverse effects on application runtime.

Software EAC: Another area of EAC optimizes energy

consumption through software. Often times this comes in

the form of analyzing similar applications to explore which

configuration yields the greatest performance and lowest en-

ergy cost. The methods employed by these studies typically

consist of power/energy monitoring over a series of different

tests for a series of applications [29]. While studies currently

exist that have looked at the trade-offs in energy efficiency of

synchronous C/R such as [30], [31], none to our knowledge

have explored the gap of comparing the energy consumption

of synchronous and asynchronous C/R from a software per-

spective. We fill this gap in our study by analyzing the energy

scalability of asynchronous C/R and the varying storage tiers

compared to other synchronous, single-leveled C/R solutions.

C. Energy efficiency of C/R

Moran et al. [11] modeled ways to predict the energy

consumption of C/R in HPC, however they do not assume

heterogeneous storage. Various other studies model energy

consumption of C/R at Exascale; one such study by Dauwe

et al. [12] in 2017 predicted Exascale hardware configurations

and metrics rather well and took into account various storage

tiers used by multi-level checkpointing. However, they analyze

the energy efficiency of the storage levels independent of C/R.

Amrizal et al. [14] assume checkpoint and restart times are

constant, which does not apply for PFS(s) that show significant

variability in aggregated I/O bandwidth. Miao et al. [13]

looks at the interplay between certain scientific workloads and

various synchronous resilience strategies, emphasizing various

trade-offs. Other studies that seek to improve energy effi-

ciency [13], [32] of C/R suggest throttling CPU power. How-

ever, such studies typically assume synchronous C/R, which

already has unacceptable overheads at Exascale that would

only be amplified by power CPU throttling. In asynchronous

C/R, power throttling could also have adverse effects: while

the I/O operations are overlapped with the application runtime,

they need to finish by the time the next checkpoint request

arrives, otherwise resilience is not guaranteed. If this does not

happen naturally, the checkpointing library needs to guarantee

it by blocking the application, which reduces the effectiveness

of asynchronous techniques.

Overall, a comprehensive study of the trade-off between

performance overhead, scalability and energy efficiency of

C/R is necessary in order enable the design of efficient next-

generation asynchronous C/R libraries. To our best knowledge,

we are the first to address this gap.

III. METHODOLOGY TO STUDY ENERGY CONSUMPTION

OF C/R

To study the overhead vs. energy efficiency trade-off for

C/R, we investigate both synchronous and asynchronous re-

silience strategies under various write scenarios driven by

a benchmark we implemented specifically for this purpose.

The benchmark eliminates competition between the applica-

tion and C/R library, allowing us to accurately identify C/R

settings (i.e., I/O strategy, synchronicity, storage hardware)

that inherently contribute to high energy overheads. If some

configurations generate high energy overheads in isolated

testing, it is reasonable to conclude that such overheads would

be exacerbated in the presence of competitive applications.

We focus on both weak and strong scalability. Weak scal-

ability illustrates how energy is impacted as the problem size

and participating processes grow and provides valuable insight

into how we predict the C/R libraries to perform on Exascale

workloads and systems. Strong scalability is a corollary to

Amdahl’s law, allowing us to estimate how higher degrees of

parallelism affects the upper limit of energy consumption. For

application developers, interpreting our results provides insight

for choosing C/R strategies and their optimal settings to reduce

energy consumption without sacrificing performance; for C/R

developers, this work helps identify areas of C/R that con-

tribute to high energy overheads. We detail our methodology

below.

(a) GenericIO: MPI collective I/O using N → M aggregation (b) VELOC: POSIX I/O using one file-per-process flush strategy

Fig. 1: Checkpointing libraries: GenericIO vs. VELOC

A. Compared Approaches

We have chosen to focus on two representative check-

pointing approaches: (1) GenericIO (GIO) [15], which is

representative of an application-level, optimized synchronous

checkpointing approach that directly writes the checkpoints

to a PFS; (2) VELOC [1], which is representative of an

application-level, optimized multi-level asynchronous check-

pointing approach that first captures the checkpoints to local

storage and then flushes them in the background to the PFS.

GIO can use a variety of ways to flush the checkpoints to

the PFS, including MPI I/O collective operations and POSIX

read/write system calls. This allows GIO to be tuned to

accommodate many system architectures and persistent storage

options. GIO aggregates by default the checkpoints of N

processes running on a large number of compute nodes into

a smaller subset of M files. We call this N-M aggregation,

which is illustrated in Figure 1a. M is tunable by the user to

better match system composition such as storage targets, I/O

servers, or other user-based constraints. For the purpose of this

work, we configure GIO to use MPI I/O collective operations,

and we let GIO automatically optimize M .

VELOC can capture the checkpoints on a variety of

node-local memory hierarchies and storage devices (SSDs,

HDDs). We study two POSIX options: in-memory using tmpfs

(/dev/shm mount point) and SSDs using ext4. From here,

we flush the checkpoints asynchronously to the PFS using a

one-file-per process strategy (Figure 1b), which was chosen

because of its high I/O performance under write concurrency

(each file ends up on a single storage sever in its own dedi-

cated stripe) and because it complements the I/O aggregation

strategy used by GIO. A single active backend is responsible

on each compute node for interacting with the PFS in an

asynchronous fashion. We use the default settings, which

results in a number of I/O threads on each active backend

equal to the number of co-located application processes on

each compute node. VELOC is modular and employs a wide

array of other resilience strategies: partner replication, peer-

to-peer erasure coding, flushing using burst buffers and key-

value stores, etc. However, we have chosen to focus on a basic

scenario that is the most frequently used in practice.

Compared Aspects: The comparison between GIO and

VELOC uses a combination of alternative approaches that

affect the resilience strategies: synchronous vs. asynchronous,

I/O aggregation into a small set of files vs. one file-per-

process, MPI collective I/O operations vs. POSIX I/O, direct

writes to the PFS vs. leveraging a heterogeneous storage

hierarchy. These have different behaviors and implications

at scale both with respect to performance overheads and

energy consumption, which results in a relevant multi-faceted

comparison.

B. Measurements and Energy Monitoring

In this paper, our main focus is to characterize the energy

scalability of asynchronous checkpointing, and different stor-

age devices. To do this, we need the ability to capture the

energy consumption of these processes. Thus, we require an

energy monitoring tool that polls the hardware counters that

exist at the kernel level for energy consumption of the CPU

and DRAM. While there are various tools to accomplish this

as mentioned in [29] we perform our tests on an Intel CPU

and utilize the Running Average Power Limit (RAPL) [33]

hardware counters. We measure these results with Performance

Application Programming Interface (PAPI) [34].

Powercap and RAPL: Based on our cluster’s ker-

nel settings, our interface RAPL was through the pow-

ercap hardware counters. In Linux, these exist in the

/sys/devices/virtual/powercap path and consists

of several levels of telemetry data. These registers are divided

into Zones 0 and 1 with a Subzone 0 and 1 in each Zone.

These divisions represent different portions of the hardware.

For example, Zones 0 and 1 capture the data for all cores of

the CPU and the Subzones 0:0, 0:1, 1:0, 1:1 capture data for

the DRAM on board [33]. For our case, with two zones and

two subzones, if the energy of zones 0 and 1 are E0, E1 and

subzones 0:0, 0:1, 1:0, 1:1 are E0:0, E0:1, E1:0, E1:1 then the

total energy of the CPU and DRAM ECPU , EDRAM are:

ECPU = E0 + E1 (1)

EDRAM = E0:0 + E0:1 + E1:0 + E1:1. (2)

We note that DRAM and CPU are the only available hardware

counters on our system. Therefore, other presentation of total

energy is based on these two terms. In this study we define

Total Energy (kJ) to be

Etotal = ECPU + EDRAM . (3)

PAPI: To poll RAPL during application runtime, we

use PAPI, an interface that allows users to collect program

performance metrics via C library calls. This allows a user to

determine what they would like to measure and when/where

to measure it. In our case, we are interested in the energy

consumption of the checkpoint operations of both synchronous

and asynchronous C/R libraries. It is important to note that

these constitute different methodologies, as C/R synchronicity

changes the phases of a program, as touched on in Section

II-A. Ignoring the setup of PAPI, in Algorithm 1 we demon-

strate that synchronous C/R consists of a blocking checkpoint

to persistent memory.

Algorithm 1 PAPI Measurement in C/R

Input: data to ckpt[], PAPI EventSet, PAPI results[]
Output: PAPI values arr

Note: PAPI EventSet initalized with powercap events
1: PAPI start(PAPI EventSet);
2: CKPT LIB.checkpoint(data to ckpt[]);
3: if VELOC ASYNC then
4: Local storage ckpt energy
5: PAPI read(PAPI EventSet, PAPI results[0]);
6: CKPT LIB.wait();
7: end if
8: Persistent storage ckpt energy
9: PAPI stop(PAPI EventSet, PAPI results[]);

10: return PAPI results[]

On the other hand, asynchronous multi-level C/R first

checkpoints to a local device of the user’s choosing (in our

case DRAM or an SSD), then flushes said checkpoints to

persistent storage (PFS) in the background. For comparison,

we are interested in the energy of both of these operations,

therefore we read the results at two points as shown in lines

5 and 9 of Algorithm 1.

It is worth noting that we are unable to measure the energy

consumption of the SSD and the HDD using PAPI or software

available on the Palmetto Cluster. These storage drives are

not equipped with hardware counters to poll the energy draw

from the kernel-perspective, also we are unable to open the

system and perform physical energy monitoring. We consider

modeling these missing results by adding the average TDP of

the devices multiplied by the runtime of the checkpoint to the

total energy to model these results. However, in doing so we

would scale everything by almost the same factor. Therefore,

for clarity we choose to leave these modeled results out and

instead only report the empirical data from PAPI and RAPL.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we detail our experimental design for

comparing the energy consumption of C/R libraries. We also

present our results for energy usage of synchronous and asyn-

chronous C/R writing to different hardware. In our tests, we

evaluate these metrics along with throughput of the application

in both weak and strong scaling contexts to present a more full

evaluation of the merits of the different C/R options.

A. Experimental Platform

Hardware: We carry out our experiments on a multi-node

HPC cluster with a 100 Gbps Infiniband interconnect. Each

node is equipped with two Intel Xeon(R) Gold 6148 CPUs

with a total of 40 cores, a max clock frequency of 2.40GHz,

and 370GB of DDR4 DRAM. The system has various storage

options, we summarize the storage locations we employ in

Table I. Asynchronous C/R requires both a local memory

location and a persistent storage location to write to once local

checkpointing is complete. The persistent storage was chosen

as it uses a PFS. Therefore the Usage column points out how

each location is utilized.

TABLE I: Storage Hardware Summary

Location Hardware Size File System Usage

/dev/shm/ DRAM 370GB tmpfs Scratch
/localscratch/ SSD 1.8TB ext4 Scratch

/scratch1/ HDD 1933TB beegfs Persistent

In our testing, we attempt to scale to four nodes using MPI

for a total of 160 processes. However, the system in use pro-

vides only 24 I/O servers and fixed stripe settings of 4 storage

targets and a stripe size of 512kB. The system prioritizes job

compactness and throughput of small jobs versus large jobs.

Since neither of the C/R libraries we use have any sort of

node-level synchronization, it is unlikely that the performance

degradation seen in the multi-node configuration as a result of

these settings is indicative of the overall scalability of the C/R

libraries. Thus, we only present single-node results.

In the following tests, the term local refers to VELOC’s

blocking write operation to local storage as a part of the multi-

level checkpointing heuristic. GenericIO does not write to a

scratch memory and is therefore not depicted in said figures.

Software: We utilize VELOC (v1.6) and GIO (Git tag

20190417) to perform C/R operations. To monitor energy,

we use PAPI (v6.0.0) to read the RAPL counters on the

aforementioned Intel CPUs and the cluster’s operating system

of Rocky Linux (v4.18.0). We interface with these hardware

counters through PAPI (v6.0.0) and its C/C++ libraries. We

compile our code using GCC 9.5.0 and OpenMPI 4.1.3.

B. Weak Scalability

Here we present the results for a series of weak scalability

tests. For each approach and storage location from Table I,

we spawn N (1 → 40) processes. Each rank checkpoints a

uniform size of either 1 or 2 Gigabytes (GiBs). We repeat each

experiment 50 times and average the results, whose variability

is depicted using errorbars.

Note that checkpointing ≥ 2 [GiB] per MPI rank experi-

ences memory overflow errors due to MPI-IO aggregation in

the case of GIO. Therefore, we use their POSIX read/write

implementation. VELOC is capable of using different I/O

flushing methods: (1) sendfile system call that internally trans-

fers data and (2) POSIX mmap/write; (3) regular read/write.

For the purpose of this work, we use POSIX mmap/writes,

since the sendfile system call is not efficiently implemented

by our PFS.

Figures 2 and 3 illustrate how different local storage de-

vices affect throughput and energy consumption when using

VELOC. In Figure 2 we see that for local checkpoints, DRAM

provides ≈ 25% more throughput than the SSDs as processes

begin to scale. DRAM supports higher throughput in general,

but this actually has a direct impact on the energy use. Only as

the throughput begins to differ significantly do we start to see

a gap in energy consumption between the two devices. Thus,

we conclude throughput dictates energy consumption.

1 2 4 8 16 32 40
MPI Processes

0

20

40

Th
ro

ug
hp

ut
 (G

B
/s

) Local Storage Hardware
DRAM
SSD

Fig. 2: Weak scalability of I/O throughput for VELOC local

phase: capturing checkpoints to node-local storage using

blocking writes. Higher is better.

In Figure 3 the energy consumption is shown to be linearly

correlated with the size of data, as illustrated in the difference

between Figures 3a and 3b. Energy cost is dominated by the

magnitude of data movement, as checkpointing 2 GiB per

rank requires ≈ 2× more energy than 1 GiB, regardless of

the scratch memory location. On average, writing locally to

DRAM takes ≈ 20% less energy than to a local SSD.

Therefore, weak scaling reveals that asynchronous check-

points to DRAM has a higher throughput and lower energy

cost, incentivizing its use in C/R. However, this is really only

a nominal difference. In a typical scientific application, DRAM

is a heavily contested resource which may not be large enough

to store both application data structures and checkpoints. Fur-

ther, reduction techniques (such as compression) are becoming

increasingly necessary to address the exponentially growing

size of data, meaning it is unlikely that distributed pieces of

a global checkpoint will be a uniform size. Therefore, future

C/R development should work towards efficiently using both

storage tiers by assigning larger data regions to DRAM.

Figures 4 and 5 compare the overall throughput and energy

consumption of both C/R libraries when VELOC writes to

DRAM locally. Both strategies use the PFS as their persistent

storage tier. These results show that GIO consumes on average

≈ 4× the amount of energy VELOC does. Similar to energy

consumption of the local checkpointing phase, we see that

1 2 4 8 16 32 40
MPI Processes

0.0

0.1

0.2

0.3

To
ta

l E
ne

rg
y

(k
J)

Local Storage Hardware
DRAM
SSD

(a) 1 GB per Rank

1 2 4 8 16 32 40
MPI Processes

0.0

0.2

0.4

0.6

To
ta

l E
ne

rg
y

(k
J)

Local Storage Hardware
DRAM
SSD

(b) 2 GB per Rank

Fig. 3: Weak scalability of energy consumption for VELOC

local phase: capturing checkpoints to node-local storage

using blocking writes. Lower is better.

1 2 4 8 16 32 40
MPI Processes

0

2

4

6

Th
ro

ug
hp

ut
 (G

B
/s

) C/R Library
GenericIO
VELOC

Fig. 4: Weak scalability of total I/O throughput (until

checkpoints written to PFS): direct writes measured for GIO,

local phase followed flush phase (async writes to PFS)

measured for VELOC. Higher is better.

as the data assigned per rank doubles, so does the resulting

energy consumption.

C. Strong Scalability

For our strong scalability tests, we evaluate workloads using

N (1 → 40) processes on aggregate problem sizes of 40 and 80

GiB. Since we are consistently writing over 1 GiB, GIO uses

POSIX read/writes and VELOC continues to use mmap/writes.

To evaluate how parallelism affects the throughput and

energy of the local storage tiers, we analyze these metrics

through a series of strong scalability experiments in Figures 6

and 7, respectively. In these experiments, we see the same

overall trends in the weak scaling experiments: DRAM pro-

vides (1) higher throughput and (2) lower energy consumption

than the SSD during local checkpointing. This similarity

further supports the idea that better throughput directly leads

1 2 4 8 16 32 40
MPI Processes

0

2

4

6

To
ta

l E
ne

rg
y

(k
J)

C/R Library
GenericIO
VELOC

(a) 1 GB per Rank

1 2 4 8 16 32 40
MPI Processes

0

2

4

6

8

To
ta

l E
ne

rg
y

(k
J)

C/R Library
GenericIO
VELOC

(b) 2 GB per Rank

Fig. 5: Weak scalability of total energy consumption (until

checkpoints written to PFS): direct writes measured for GIO,

local phase followed flush phase (async writes to PFS)

measured for VELOC. Lower is better.

1 2 4 8 16 32 40
MPI Processes

0

20

40

Th
ro

ug
hp

ut
 (G

B
/s

) Local Storage Hardware
DRAM
SSD

Fig. 6: Strong scalability of I/O throughput for VELOC local

phase: capturing checkpoints to node-local storage using

blocking writes. Higher is better.

to more efficient energy usage. Therefore, future efforts to

improve energy efficiency should focus on ensuring high

throughput performance rather than throttling.

Figures 8 and 9 compare the throughput and energy con-

sumption of the C/R libraries, respectively. In these experi-

ments, we show that asynchronous file-per-process strategies

continue to provide the highest throughput, without consuming

extra energy. Even though the asynchronous strategy requires

more operations to (1) write the checkpoint to a local storage

device, and (2) buffering the checkpoint to transfer externally,

this is more energy efficient than directly interacting with the

PFS. There are a few possible explanations for this: (1) writing

to a local storage tier and then asynchronously flushing spreads

out writes to the PFS such that not all processes (or threads)

are competing for I/O servers at the same time, thereby

improving throughput and energy consumption; and (2) file

aggregation suffers serialization at the I/O server level (in the

1 2 4 8 16 32 40
MPI Processes

0.0

0.5

1.0

1.5

To
ta

l E
ne

rg
y

(k
J)

Local Storage Hardware
DRAM
SSD

(a) 40 GB Problem Size

1 2 4 8 16 32 40
MPI Processes

0

1

2

3

4

To
ta

l E
ne

rg
y

(k
J)

Local Storage Hardware
DRAM
SSD

(b) 80 GB Problem Size

Fig. 7: Strong scalability of energy consumption for VELOC

local phase: capturing checkpoints to node-local storage

using blocking writes. Lower is better.

1 2 4 8 16 32 40
MPI Processes

0

2

4

6

8
Th

ro
ug

hp
ut

 (G
B

/s
) C/R Library

GenericIO
VELOC

Fig. 8: Strong scalability of total I/O throughput (until

checkpoints written to PFS): direct writes measured for GIO,

local phase followed flush phase (async writes to PFS)

measured for VELOC. Higher is better.

case of poorly matched I/O strategies and stripe settings) due

to false sharing.

In figures 9a and 9b, after 8 or more processes are used,

the energy consumed by GIO begins to rise again, despite the

fact that the size per process is shrinking. We conclude that

uncoordinated file aggregation, such as the case in POSIX

writes, coupled with poor stripe settings causes CPUs to

spend time (and therefore energy) waiting for access to the

storage servers due to false sharing. Compared to VELOC,

which is using a file-per-process strategy, energy consumption

continues to decrease as more processes are added. Therefore,

we conclude that the flush strategy has an impacting effect on

energy consumption.

V. FUTURE WORKS AND AREAS OF IMPROVEMENT

There are numerous ways this work can be expanded and

improved upon.

1 2 4 8 16 32 40
MPI Processes

0

2

4

6

8

To
ta

l E
ne

rg
y

(k
J)

C/R Library
GenericIO
VELOC

(a) 40 GB Problem Size

1 2 4 8 16 32 40
MPI Processes

0

5

10

15

To
ta

l E
ne

rg
y

(k
J)

C/R Library
GenericIO
VELOC

(b) 80 GB Problem Size

Fig. 9: Strong scalability of total energy consumption (until

checkpoints written to PFS): direct writes measured for GIO,

local phase followed flush phase (async writes to PFS)

measured for VELOC. Lower is better.

First, the experiments used to characterize the synchronous

checkpointing library, GIO, were done using the POSIX im-

plementation of C/R, which relies on uncoordinated file aggre-

gation that issues regular read/write calls. While simple to set

up and use, this leads to significant performance degradation

as a side effect of file striping. Other techniques based on

MPI I/O collectives are available in GIO and perform I/O re-

organization and aggregation to better match the underlying

stripe settings. This may improve performance and scalability

at the expense of more energy consumption. In this context,

our own previous work [35] also considers file aggregation in

the context of asynchronous checkpointing, which introduces

additional trade-offs. Due to time considerations, we did not

explore such a comparison in this work, but plan to do so in

the future.

Secondly, we plan to expand upon the methods of energy

monitoring and recommendations we present. We aim to

utilize a local cluster with the ability to physically measure

the energy consumption of storage devices, allowing for more

detailed recommendations about hardware energy-efficiency.

By having this specific data, one could describe how the load

of C/R software differences affect the hardware in use.

Finally, in this work our goal was to isolate the energy con-

sumption of checkpointing from any other external influence

in synthetic benchmarks. However, in a real-life application,

the overlap between asynchronous multi-level checkpointing

strategies and the application runtime may lead to interest-

ing interference patterns that affect the energy consumption

beyond the individual behaviors in isolation. Thus, in future

work, we aim to study such effects in the context of real-life

applications as well.

VI. CONCLUSIONS

In this paper, we evaluate two different C/R libraries and

their various configurations in order to compare the energy

consumption of multi-level asynchronous C/R and single-level

synchronous C/R. We use this information to better help appli-

cation and C/R developers identify configurations and areas of

C/R that contribute to high energy overheads. Overall, we find

that throughput heavily impacts energy consumption. Thus,

asynchronous C/R to DRAM using file-per-process flushing

strategies utilize the least amount of energy. We summarize

our main observations below.

We note that energy consumption is directly tied to through-

put. Thus, C/R should focus on providing high throughput

in order to achieve low energy costs. In the context of

asynchronous checkpointing, using DRAM as the local storage

tier is shown to provide the highest throughput as compared

to SSDs. However, in real-world scientific computing it is

a heavily contended resource. Therefore, asynchronous C/R

should focus on efficiently utilizing DRAM to balance the

use of shared resources that reduce contention between ap-

plications and C/R to maximize throughput, thereby lowering

energy consumption.

Furthermore, we show that flushing strategies like syn-

chronous file aggregation have a significant impact on energy

consumption. Our results at modest scale show that file-per-

process strategies provide the highest throughput and consume

the least amount of energy. However, file-per-process strategies

may encounter I/O bottlenecks at scale due to metadata

bottlenecks, which typically is not handled in a scalable

fashion by many PFS implementations. Thus, considering the

trade-offs between performance and energy efficiency that

file aggregation introduces at scale both for synchronous and

asynchronous checkpointing are non-trivial and need to be

studied in further detail.

Encouraged by these observations, we plan to explore

in future work several follow-up directions, as outlined in

Section V.

ACKNOWLEDGMENTS

This research was supported in part by the U.S. National

Science Foundation under Grants SHF-1910197 and SHF-

1943114. This research was supported in part by the Exascale

Computing Project (ECP), Project Number: 17-SC-20-SC, a

collaborative effort of two DOE organizations ± the Office

of Science and the National Nuclear Security Administration,

responsible for the planning and preparation of a capable

exascale ecosystem, including software, applications, hard-

ware, advanced system engineering and early testbed plat-

forms, to support the nation’s exascale computing imperative.

This material was based upon work supported by the U.S.

Department of Energy, Office of Science, under contract DE-

AC02-06CH11357.

REFERENCES

[1] B. Nicolae, A. Moody, E. Gonsiorowski, K. Mohror, and F. Cappello,
ªVeloc: Towards high performance adaptive asynchronous checkpointing
at large scale,º in 2019 IEEE International Parallel and Distributed

Processing Symposium (IPDPS), 2019, pp. 911±920.

[2] (2022) top500 results for june 2022. [Online]. Available:
https://www.top500.org/lists/top500/2022/06/

[3] Z. Zong, R. Ge, and Q. Gu, ªMarcher: A heterogeneous
system supporting energy-aware high performance computing
and big data analytics,º Big Data Research, vol. 8, pp.
27±38, 2017, tutorials on Tools and Methods using High
Performance Computing resources for Big Data. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S221457961630048X

[4] J. Bent, B. W. Settlemyer, and G. Grider, ªServing data to the lunatic
fringe: The evolution of hpc storage,º login Usenix Mag., vol. 41, 2016.

[5] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Den-
neau, P. Franzon, W. Harrod, K. Hill, J. Hiller et al., ªExascale
computing study: Technology challenges in achieving exascale systems,º
Defense Advanced Research Projects Agency Information Processing

Techniques Office (DARPA IPTO), Tech. Rep, vol. 15, p. 181, 2008.

[6] J. Shalf, S. Dosanjh, and J. Morrison, ªExascale computing technology
challenges,º in High Performance Computing for Computational Science

± VECPAR 2010, J. M. L. M. Palma, M. DaydÂe, O. Marques, and J. C.
Lopes, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp.
1±25.

[7] M. Schulz, D. KranzlmÈuller, L. B. Schulz, C. Trinitis, and
J. Weidendorfer, ªOn the inevitability of integrated hpc systems and
how they will change hpc system operations,º in Proceedings of

the 11th International Symposium on Highly Efficient Accelerators

and Reconfigurable Technologies, ser. HEART ’21. New York, NY,
USA: Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3468044.3468046

[8] S.-M. Tseng, B. Nicolae, F. Cappello, and A. Chandramowlishwaran,
ªDemystifying asynchronous i/o interference in hpc applications,º The

International Journal of High Performance Computing Applications,
vol. 35, 2021.

[9] S.-M. Tseng, B. Nicolae, G. Bosilca, E. Jeannot, A. Chandramowlish-
waran, and F. Cappello, ªTowards portable online prediction of
network utilization using mpi-level monitoring,º in EuroPar’19 :

25th International European Conference on Parallel and Distributed

Systems, Goettingen, Germany, 2019, pp. 47±60. [Online]. Available:
https://hal.inria.fr/hal-02184204

[10] F. Isaila, J. GarcÂıa, J. Carretero, R. B. Ross, and D. Kimpe, ªMaking
the case for reforming the i/o software stack of extreme-scale systems,º
Adv. Eng. Softw., vol. 111, pp. 26±31, 2017.

[11] M. MorÂan, J. Balladini, D. Rexachs, and E. Luque, ªPrediction of energy
consumption by checkpoint/restart in hpc,º IEEE Access, vol. 7, pp.
71 791±71 803, 2019.

[12] D. Dauwe, R. Jhaveri, S. Pasricha, A. A. Maciejewski, and H. J.
Siegel, ªOptimizing checkpoint intervals for reduced energy use in
exascale systems,º in 2017 Eighth International Green and Sustainable

Computing Conference (IGSC), 2017, pp. 1±8.

[13] Z. Miao, J. Calhoun, and R. Ge, ªEnergy analysis and optimization for
resilient scalable linear systems,º in 2018 IEEE International Conference

on Cluster Computing (CLUSTER), 2018, pp. 24±34.

[14] M. A. Amrizal and H. Takizawa, ªOptimizing energy consumption on
hpc systems with a multi-level checkpointing mechanism,º in 2017

International Conference on Networking, Architecture, and Storage

(NAS), 2017, pp. 1±9.

[15] S. Habib, A. Pope, H. Finkel, N. Frontiere, K. Heitmann, D. Daniel,
P. Fasel, V. Morozov, G. Zagaris, T. Peterka, V. Vishwanath,
Z. LukiÂc, S. Sehrish, and W. keng Liao, ªHACC: Simulating
sky surveys on state-of-the-art supercomputing architectures,º New

Astronomy, vol. 42, pp. 49±65, jan 2016. [Online]. Available:
https://doi.org/10.48550/arXiv.1410.2805

[16] J. Ansel, K. Arya, and G. Cooperman, ªDmtcp: Transparent check-
pointing for cluster computations and the desktop,º in 2009 IEEE

International Symposium on Parallel & Distributed Processing, 2009,
pp. 1±12.

[17] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski, ªDe-
sign, modeling, and evaluation of a scalable multi-level checkpointing
system,º in SC ’10: The 2010 ACM/IEEE International Conference for

High Performance Computing, Networking, Storage and Analysis, New
Orleans, USA, 2010, pp. 1:1±1:11.

[18] N. El-Sayed and B. Schroeder, ªTo checkpoint or not to checkpoint:
Understanding energy-performance-i/o tradeoffs in hpc checkpointing,º
in 2014 IEEE International Conference on Cluster Computing (CLUS-

TER), 2014, pp. 93±102.
[19] M. Alfian Amrizal and H. Takizawa, ªOptimizing energy consumption

on hpc systems with a multi-level checkpointing mechanism,º 08 2017,
pp. 1±9.

[20] M. e. M. Diouri, O. GlÈuck, L. Lefèvre, and F. Cappello, ªEcofit: A
framework to estimate energy consumption of fault tolerance protocols
for hpc applications,º in 2013 13th IEEE/ACM International Symposium

on Cluster, Cloud, and Grid Computing, 2013, pp. 522±529.
[21] J. T. Daly, ªA higher order estimate of the optimum checkpoint interval

for restart dumps,º Future generation computer systems, vol. 22, no. 3,
pp. 303±312, 2006.

[22] M.-S. Bouguerra, T. Gautier, D. Trystram, and J.-M. Vincent, ªA flexible
checkpoint/restart model in distributed systems,º in Parallel Processing

and Applied Mathematics, R. Wyrzykowski, J. Dongarra, K. Karczewski,
and J. Wasniewski, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 206±215.

[23] L. Wan, Q. Cao, F. Wang, and S. Oral, ªOptimizing checkpoint
data placement with guaranteed burst buffer endurance in large-scale
hierarchical storage systems,º Journal of Parallel and Distributed

Computing, vol. 100, pp. 16±29, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0743731516301198

[24] M. MorÂan, J. Balladini, D. Rexachs, and E. Luque, ªPrediction of energy
consumption by checkpoint/restart in hpc,º IEEE Access, vol. 7, pp.
71 791±71 803, 2019.

[25] L. Tan, Z. Chen, and S. L. Song, ªScalable energy efficiency with
resilience for high performance computing systems: A quantitative
methodology,º ACM Trans. Archit. Code Optim., vol. 12, no. 4, nov
2015. [Online]. Available: https://doi.org/10.1145/2822893

[26] G. Wilkins and J. C. Calhoun, ªModeling power consumption of lossy
compressed i/o for exascale hpc systems,º in 2022 IEEE International

Parallel and Distributed Processing Symposium Workshops (IPDPSW),
2022, pp. 1118±1126.

[27] T. Saito, K. Sato, H. Sato, and S. Matsuoka, ªEnergy-aware i/o
optimization for checkpoint and restart on a nand flash memory
system,º in Proceedings of the 3rd Workshop on Fault-Tolerance

for HPC at Extreme Scale, ser. FTXS ’13. New York, NY, USA:
Association for Computing Machinery, 2013, p. 41±48. [Online].
Available: https://doi.org/10.1145/2465813.2465822

[28] P. Llopis, M. Dolz, J. Blas, and et al., ªAnalyzing the energy consump-
tion of the storage data path,º Journal of Supercomputing, vol. 72, pp.
4089±4106, 2016.

[29] P. Czarnul, J. Proficz, and A. Krzywaniak, ªEnergy-aware high-
performance computing: Survey of state-of-the-art tools, techniques,
and environments,º Scientific Programming, vol. 2019, p. 8348791, Apr
2019. [Online]. Available: https://doi.org/10.1155/2019/8348791

[30] N. El-Sayed and B. Schroeder, ªUnderstanding practical tradeoffs in hpc
checkpoint-scheduling policies,º IEEE Transactions on Dependable and

Secure Computing, vol. 15, no. 2, pp. 336±350, 2018.
[31] E. Stafford and J. L. Bosque, ªPerformance and energy task migration

model for heterogeneous clusters,º The Journal of Supercomputing,
vol. 77, no. 9, pp. 10 053±10 064, Sep 2021. [Online]. Available:
https://doi.org/10.1007/s11227-021-03663-1

[32] R. R. Chandrasekar, A. Venkatesh, K. Hamidouche, and D. K. Panda,
ªPower-check: An energy-efficient checkpointing framework for hpc
clusters,º in 2015 15th IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing, 2015, pp. 261±270.
[33] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le,

ªRapl: Memory power estimation and capping,º in Proceedings of the

16th ACM/IEEE International Symposium on Low Power Electronics

and Design, ser. ISLPED ’10. New York, NY, USA: Association
for Computing Machinery, 2010, p. 189±194. [Online]. Available:
https://doi.org/10.1145/1840845.1840883

[34] D. Terpstra, H. Jagode, H. You, and J. Dongarra, ªCollecting perfor-
mance data with papi-c,º in Tools for High Performance Computing

2009, M. S. MÈuller, M. M. Resch, A. Schulz, and W. E. Nagel, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 157±173.

[35] M. J. Gossman, B. Nicolae, J. C. Calhoun, F. Cappello, and M. C.
Smith, ªTowards aggregated asynchronous checkpointing,º ArXiv, vol.
abs/2112.02289, 2021.

