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Abstract—Additive manufacturing is a rapidly growing area
that has the potential to revolutionize society. In order to better
understand and improve this process, scientists and engineers
conduct detailed studies on the applicability of various materials
and the process that additively constructs the object. One method
of analyzing the additive process is to use cameras to take images
of the object as it is built layer by layer. As the complexity of the
process, image resolution, and image capture frequency increases,
so too does the volume of data generated, which can lead to data
storage/movement issues. In this paper, we present an exploratory
study of applying various lossless and lossy reduction techniques
to an additive manufacturing data set from Los Alamos National
Laboratory. Results show that SZ gives the best reduction ratio,
ZFP yields the best accuracy, and Hybrid Data Sampling is the
fastest method.

Index Terms—lossy compression, lossless data compression big
data, additive manufacturing

I. INTRODUCTION

As technological advances (IoT, Cloud, AI, etc.) continue to

be integrated in the industrial settings, we are on the verge of

the fourth industrial revolution (Industry 4.0) [1]. In this new

industrial age, data coming from manufacturing and industrial

process is seamlessly processed, analyzed, and communicated.

Thus, it enables more detailed insight and opens up new

avenues and capabilities. One emerging area of Industry 4.0

is additive manufacturing [2].

Additive manufacturing is a construction process where

a computer-aided design (CAD) model is constructed via

applying very fine layers of material on a 2D plane [3], [4].

Each layer is laid on top of the previous and overtime the 3D

object is reconstructed. 3D printing is a popular and common

form of additive manufacturing that uses molten plastic to

construct the object. However, AM is actively used in a wide

variety of domains such as aerospace [5], medicine [6], and

transportation [7]. Moreover, as AM continues to take hold, the

market value is estimated to grow by 19.4% in North America

along before the end of the decade [8].

In order for additive manufacturing to expand into new areas

and to continue to improve the manufacturing process, engi-

neers and scientists must understand what occurs throughout

the process. To see inside the process, arrays of sensors and

cameras are employed that capture data at a fine granularity.

For example, a camera with an exposure duration of 33 ms

generates 30 frames each second. Over the course of a day,

this yields terabytes of raw data. Moreover, as the speed of the

AM process increases, this frame rate causes blurring as the

motion and positions of the applicator obscure fine features

in the image, such as spatter. Spatter is the molten shower of

material that is pushed from the application area and deposits

itself in non-intended regions of the domain and may cause

defects in the product [9]. Leveraging high-speed cameras

with an exposure of 33 µsec dramatically increase the frame

rate. This oncoming data deluge is complicated further with

higher resolution cameras. Going forward, analysis of additive

manufacturing processes must deal with large amounts of data

generated at a high velocity.

Data reduction is a common technique to reduce the size of

data, preventing data storage and transmission issues. Data

reduction is broken down into two categories: lossy and

lossless. In lossless reduction, the number of bytes requires

storing the data is less, and after the resulting data after

reconstruction is bitwise reproducible to the original data [10].

However, lossless reduction has been shown to only gives ˜1±

5× reduction and does not perform well for floating-point

datasets common in scientific computing [11]. Lossy reduction

is able to obtain orders-of-magnitude larger reduction ratios,

but at the expense of distortions in the data [12], [13]. Modern

lossy compression algorithms such as SZ [11] and ZFP [14]

enable the user to bound the level of distortion in the data.

Other forms of lossy reduction such as data sampling yield

higher reduction ratios and enable in-situ visualization without

the overhead of decompression, but do not provide as robust

of error bounding as SZ and ZFP.

With combined increase in image acquisition rates for addi-

tive manufacturing analysis and the resolution of these images,

data reduction is needed for both long term storage and

data transit. In this paper, we evaluate several data reduction

techniques Ð e.g., lossless compression, data sampling, lossy

compression Ð to determine their applicability to AM analysis

data. In particular, this paper contributes the following:

• describes an emerging domain where data reduction is

needed;

• presents a comparative analysis of state-of-the-art loss-

less, lossy compression and data sampling algorithms to

be used to reduce additive manufacturing analysis data;

and

• concludes that SZ gives the best reduction ratio, ZFP

yields the best accuracy, and Hybrid Data Sampling is

the fastest method.



The remainder of this paper is as follows: Section II

provides additional background on additive manufacturing and

the specific data reduction methods we use in this work.

We describe our AM test dataset and preset our comparison

methodology in Section III. Experimental results are found in

Section IV. Finally, we conclude and present future work in

Section VI.

II. BACKGROUND

A. Adaptive Manufacturing Dataset

Additively manufactured parts, for a variety of reasons

(complexity of designs, exotic alloys, newness of the tech-

nique, myriad of tunable parameters, etc.) often have small

defects. These defects need to be analyzed to determine if

they will impact the performance of the part when used.

Both destructive Ð e.g., cutting up the part and analyzing

defects with microscopy Ð and non-destructive Ð e.g. CT

scan [15] Ð are commonly employed and generally focus on

voids in the metal such as places where the metal did not fuse

correctly.

In-situ analysis of additively manufactured parts would

enable real-time defect analysis and could enable design

modifications / adjustments of parts. This type of image data

analytics for anomalies is common in machine learning. Thus,

our problem comes down to capturing a rich training set at an

extremely high rate, pushing the data in real time upstream to

a cluster for storage, training on a massive dataset to create a

model, pushing the model back to the edge for inference, and

then using the model to detect anomalies in real time. This

process of capturing large volumes of large files necessitates

compression for storage and will undoubtedly impact machine

learning accuracy. In general, we need to consider the speed

of the compression algorithm (buffering may not be possible

given the constant rate of data acquisition), compression rate,

and reconstruction accuracy.

B. Data Reduction

In this subsection, we present background on the four data

reduction algorithms we evaluate: Blosc (lossless), SZ (lossy),

ZFP (lossy), and Hybrid Data Sampling (lossy).

1) BLOSC: https://www.blosc.org/pages/blosc-in-depth/

Blosc is a high performance lossless compression li-

brary [10]. Blosc decomposes the input data set into blocks

to more easily apply various compression operations. Blosc

enables user customization of per block filters and various

lossless compression algorithms Ð e.g., zstd [16] Ð to be

applied to obtain faster speeds or larger compression ratios.

In this paper, we use the ztd compressor from Blosc as our

lossless compression algorithm.

2) SZ: SZ is a lossy compression framework for scientific

data that has seen rapid development over the recent years [11],

[17]±[19]. The SZ compression pipeline is composed of four

linearly dependent steps: data prediction, error quantization,

Huffman coding, and lossless compression.

During the data prediction step of SZ, unprocessed data

items are predicted based on already processed data items

via various algorithms such as Lorenzo [17] or linear regres-

sion [18]. In general, the predicted datum does not exactly

match the value from the original dataset. Storing the exact

error as a floating-point value nets no compression. Instead, SZ

maps the floating-point prediction error to an integer through

a process known as quantization to improve the compression

performance of subsequent steps. If the prediction is too far

off to be successfully quantized, that datum is marked as

unpredictable and compressed via a separate process [11].

The quantization codes are combined to generate a Huffman

tree that encodes the fixed-width code words into variable

length code words to save space. Finally, all code words along

with all necessary metadata for decompression is run through

a lossless compression pass such as Gzip [20] or zSTD [16].

3) ZFP: Unlike SZ, which relies heavily on prediction, the

ZFP lossy data compressor leverages transforms to decorrelate

the data [14]. ZFP decomposes the data array into small 4d

blocks, where d is the number of dimensions of the data

array. For each block, the data values are converted to a

common fixed-point representation before a near-orthogonal

transform is applied. To achieve a desired fixed-rate or a

desired accuracy, the transformed data is then encoded by

truncating the least significant bits of each value.

4) Hybrid Data Sampling: Unlike lossy compression, data

sampling allows high levels of reduction at user specified

reduction ratios. The simplest algorithm is Random Sampling,

where a random number xi is computed for each datum. Each

xi is compared to a sampling threshold α. If xi < α then

that datum is included in the set of samples, otherwise it is

discarded. Systematic Sampling [21] selects every α ·N data

points from a dataset of size N .

The previous sampling methods are dataset independent

and often yield the lowest quality but the fastest reduc-

tion rate. Leveraging dataset properties allows more accurate

preservation of regions-of-interest in the data. Value-Based

Sampling [22] biases rare values in the dataset. Their algorithm

uses the distribution of data values to calculate an importance

factor, IF , such that rare values have a greater IF and common

values have a lower IF . The subsequent sampling process

samples rare values before sampling common values. Multi-

Criteria Based Sampling Algorithm [23] extends value based

sampling by considers multiple criteria Ð e.g., rarity of

the value and gradient magnitude Ð when constructing IF .

Hybrid Sampling [13] further extends Multi-Criteria Based

Sampling by leveraging temporal similarities between time-

steps. The algorithm first decomposes the domain into a

series of blocks. The data within each block is compared to

that from the previous time-step. Using a similarity metric

such as histogram-intersection or root mean squared error, the

algorithm determines if each block is similar enough. If it is,

it creates a link to the previous data file. Otherwise, it elects

to sample that block.

Sampling only keeps a subset of the data points and stores

them in full precision. In order to recover the discarded data

points, reconstruction algorithms such as nearest-neighbor or

linear interpolation are needed. It is within the interpolated Ð



(a) Individual image from our AM
dataset

(b) Zoomed in image of the
dataset’s feature.

Fig. 1: Example visualizations of our AM dataset. Red areas

indicate where material is deposited. White arcing lines are

spatter.

i.e., reconstructed ± data points where distortion exists. De-

pending on the sampling rate and reconstruction algorithm

utilized, the accuracy in the reconstruction differs.

III. ADDITIVE MANUFACTURING DATA COMPRESSION

A. Description of the Additive Manufacturing Dataset

The dataset we leverage in our study comes from Los

Alamos National laboratory. The dataset is captured on an

EOS M 290 laser powder bed fusion (LPBF) metal printer.

This process uses a high speed laser, metal alloy powder

which is spread across a base, and a CAD-like design to

additively manufacture (AM) metal parts. These parts are

high quality, production-grade, and the AM process enables

designers to construct parts which are difficult or impossible

to build through conventional means. Attached to the printer

is a PCO Edge 5.5 high speed camera that captures radiance

values of the build during construction. For the experiment

discussed in this paper, the camera is set to capture images

at 30 frames per second with an exposure rate of 33ms. A

custom driver program was written which controls the camera

and saves the images as lossless 16-bit TIF images 25602160

(W×H) resulting in approximately 11MB per image or 330MB

per second. This amounts to roughly 28TB of raw data capture

per day, and it is not uncommon for AM designs to run for

over a day for a single build.

Figure 1a shows a visualization of a single time-step from

our dataset. We see that the images contains a region of interest

where the material is being deposited. Figure 1b shows a

zoomed in view of the feature. In the zoomed image, the

spatter shower becomes more visible. These fine features

extend from the source in arcs across the image. The arcing

trails are an artifact of the data collection process. With an

exposure of 33ms, the motion paths are revealed. If using

a camera with a shorter exposure time, the arcing artifacts

diminish, leaving a single small point of molten material.

Moreover, the location where the material is deposited appears

larger than it would for the same reasons.

These data collection artifacts highlight the need to move

to higher quality instruments to analyze the additive manufac-

TABLE I: Key Terms and Notation for Data Reduction Metric

Formulas

Term Description

D Original dataset
CD Compressed dataset
ρ Reduction ratio

s(·) Computes the size of a dataset

D̃ Reconstructed dataset of same size and dimension of D
β Reduction bandwidth

turing process. Currently, at 11 MB per image generated at 30

frames/sec yields 330 MB/sec of data generated. An expected

daily size of 28 TB must be mitigated for effective analysis and

long term archival storage. In the remainder of this section, we

detail the metrics and methodologies we employ to evaluate

various data reduction methods on our AM dataset.

B. Comparison Metrics

In this subsection, we describe the metrics we use to

evaluate the data reduction algorithms in Section IV. Note

that not all metrics are valid for the reduction algorithms. All

lossless methods preserve accuracy. Thus, measurements of

accuracy loss do not make sense. Moreover, depending on the

configuration of the lossy methods they may fully preserve the

data, mimicking lossless methods with respect to accuracy.

To aid in our discussion of the metrics, we define key terms

and notations in Table I.

1) Reduction Ratio: All data reduction algorithms take in

a dataset D with a fixed number of bytes s(D). In general,

after reduction, the size of the reduced data s(CD) in bytes is

less than that of the original dataset. We define the Reduction

Ratioρ, Equation 1, as the factor by which the dataset’s size

in bytes is reduced.

ρ =
s(D)

s(CD)
(1)

For example, ρ = 2 indicates that the reduced dataset is 50%

smaller than the original version. In general, larger values of

ρ are preferred.

2) Reduction Bandwidth: The speed at which a dataset D is

reduced is often dependent on the configuration of the method.

For example, for lossless methods tend to take more time

to reduce the dataset as the level of compression increases.

However, lossy methods often reduce faster when they are

allowed to add more distortions into the data. We define

the reduction bandwidth, β, in Equation 2 as the time in

seconds,treduce, to reduce a dataset of size s(D).

β =
s(D)

treduce
(2)

In general, large reduction bandwidth values are preferable.

3) Accuracy: Lossy reduction methods are capable of gen-

erating orders-of-magnitude levels of reduction. In order to

obtain these high levels of reduction, distortions are introduced

into the dataset. Thus, the effectiveness of lossy reduction

methods depends on the perseveration accuracy accuracy



of the method. Error-bound reduction methods such as SZ

and ZFP allow the user fine-grain control on accuracy by

selecting an error bounding value and error bounding mode

that is strictly enforced when reducing. Non-error bounding

methods such as data sampling have coarse grained control.

For example, the sampling method we evaluate [13], obtains

better accuracy in the reconstructed data as the sampling

percentage increases.

In this paper, we use the peak signal-to-noise ratio (PSNR)

to quantify accuracy in units of decibels (dBs). PNSR is

computed based on the ratio of the square of the maximal value

in the original dataset, D, to the noise in the reconstructed

dataset, D̃, measured using the mean squared error (MSE).

The PSNR formula is given as:

PSNR = 10 · log10
MAX(D)2

MSE(D, D̃)
(3)

Based on the formula for PSNR, as the accuracy in the

dataset increases, the MSE deceases. As the MSE decreases,

the calculated PSNR→ ∞. Similarly, as the level of distortion

grows in the data and the MSE increases, the PSNR decreases.

IV. EXPERIMENTAL RESULTS

A. Testing Environment

We run all experiments on Clemson’s Palmetto Cluster.

Each node we use contains the following hardware: 2 Intel

Xeon Gold 6148 CPUs with a max clock frequency of

2.40GHz and 370 GB of DDR4 DRAM. To compile all

our software, we employ gcc 8.5.0. The data compression

algorithms are called through libPressio v0.79.0 [24], a com-

pression abstraction library that contains numerous lossy and

lossless compression algorithms. In particular, we use BLOSC

1.21.0, SZ 2.1.11.1, and ZFP 0.5.5. For data sampling, we use

the code from [13]. As not all the methods we evaluate have

optimized GPU or threaded versions, we report the single core

performance. Future work will explore accelerated versions of

the method(s) that are the most promising.

B. Configuring the Hybrid Data Sampling Algorithm

The Hybrid Data Sampling (HDS) algorithm from [13]

seeks to preserve regions of interest that it determines ex-

ist in the dataset. It implements several variations on this

algorithm. The first method (Importance Based) does not

leverage temporal similarities and is equivalent to [23]. The

second method uses histogram intersection (Histogram Based)

to define spatial regions that are similar between time-steps,

and requires each region to have identical histograms for reuse.

The third variant (Error Based) uses the root mean squared

error to determine reuse by comparing to a threshold of 10.

We explore various block sizes and to best configure

each method. We find no difference in a method’s accu-

racy/reduction bandwidth for our data set. We attribute this

to the high degree of uniformity (constant background same

histogram and no error) in the data, which results in a

similar percentage of regions marked for reuse. Moreover, we

explored sampling percentages of 1, 5 and 10%. We observed

that as sampling percentage increased, PSNR and reduction

bandwidth increased while reduction ratio decreased. This

makes sense because if more data is sampled, then there should

be less error; however, the sampling process should take longer

and you are not able to reduce the size of the file as much.

Comparing the three HDS methods with respect to their

accuracy over the time-steps in Figure 2, we see all methods

preform similarly. Since our dataset contains large regions of

similarity, the frequency of the background is high. Thus,

Importance does not place many samples in this region.

Moreover, this region is temporally smooth, leading to a

large amount of data region reuse. Therefore, all methods

concentrate sampling only on the region of interest and yield

similar results.
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Fig. 2: Accuracy for various Hybrid Data Sampling methods

with 5% sampling.

Both of the reuse methods are derived from the Importance

based method. Figure 3 shows the sampling bandwidth for

each sampling method. Importance is the most consistent,

obtaining around 160 MB/s of bandwidth. For Error based

reuse, the bandwidth drops after the first time-step due to the

reuse calculation adding additional work on the critical path.

The most interesting HDS method is Histogram based reuse,

as it oscillates between 100±300 MB/s. The oscillation is due

to the fact that a region is only reusable for the next time-

step. Reusing regions is faster than having to sample a region.

Examining the percentage of blocks we reuse, we see the same

oscillatory pattern.

From Figure 2 and Figure 3, we elect to use the Importance

based sampler because it yields consistent and high perfor-

mance compared to the other two methods.

C. Reduction Bandwidth

The additive manufacturing process may consume a signifi-

cant amount of time. With our camera based analysis method,

data in constantly being generated and must be reduced. In

a production setting, the data is reduced in situ before it is

stored or analyzed in real-time. Because not all the reduction

methods we evaluate have threaded or accelerator support, we

focus on single-threaded performance.
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Fig. 3: Reduction Bandwidth for various Hybrid Data Sam-

pling methods with 5% samples. Fluctuations in bandwidth

are due to the overhead and savings in the reuse algorithms.

Before we compare all the methods, we explore the re-

duction bandwidth of the SZ and ZFP lossy compressors

because they allow the user to set an error bound to control

accuracy in the data. Figure 4 explores the impact of the error

bound on reduction bandwidth. We see that as we require

the compressor to yield more accurate data (smaller error

bound) the bandwidth decreases. However, as the error bound

increases allowing the compressor to add in more distortion,

bandwidth increases. Here, we select the error bound of 0.01

for our comparison, as it is the closest configuration that

achieves a similar level of accuracy as HDS (see Figure 8).

We observe that SZ has a slightly lower reduction bandwidth

for most of our tested error bounds. This is most likely due to

the fact that part of SZ’s process is determining the optimal

quantization method. This process is not performed in ZFP

and therefore could be slightly slowing SZ down.
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Fig. 4: Impact of absolute error bound value on reduction

bandwidth.

Figure 5 shows the reduction bandwidth of our methods

over the 100 time-steps. We see that for each method, its

reduction bandwidth remains consist over the time-steps. This

is due to the high degree of similarity in each image; only the

location and shape of the feature differs. When comparing each

method, HDS yield the largest bandwidth at 160 MB/s. ZFP

and SZ yield 0.4 MB/s and 0.24 MB/s, respectively. Finally,

BLOSC obtains the lowest bandwidth with 0.0025 MB/s. Our

experimental setup generates 330 MB/s of data. With a single

thread, HDS is able to process the data without a backlog or

the need for threading. Results on other datasets show that

threaded and accelerated versions of SZ and ZFP are more

than capable of sufficient bandwidths [25]. These results seem

to be fairly constant. All of our test were run on one private

node that had no other tasks to handle. This is likely due to

this consistency across all time-steps.
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Fig. 5: Evolution of the single-threaded reduction bandwidth

of various reduction methods on our additive manufacturing

dataset over time.

D. Compressibility

To determine which reduction method gives the best level

of reduction, we run each method over our dataset and

present the average reduction ratios in Figure 6. For the error-

bounded lossy compressors, we vary the absolute error bound

between 1e-5 and 1. As SZ’s and ZFP’s error bound grows,

the compression ratio increases, and we see a maximum of

502690× for SZ and 510× for ZFP. In the case of SZ, the

reduction ration increases by more than 4 orders-of-magnitude

over the error bound range. Comparing the lossy compressors

to HDS and BLOSC we see various trade off points. HDS

yield a reduction ratio of 20× based on its 5% sampling rate.

BLOSC achieves a reduction ratio of 7.05×. For error bounds

of less than 1e-3, BLOSC is better at reducing the data’s size

than ZFP. Overall, we see that SZ is the clear winner, as it

yields a reduction ratio 200× more than its closest competitor

ZFP at error bound 0.01.

E. Reconstruction Accuracy

The major advantage of lossless reduction methods is that

they perfectly preserve the data. As such, we exclude BLOSC

from this subsection. Lossy methods trade distortions in the
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data for larger reduction ratios (see Figure 6). Figure 7 shows

the average PSNR for various error bounds for SZ and ZFP.

As the error bound decreases, the PSNR increases for both

compressors. For all error bounds, ZFP yields a PSNR that

is between 2±21 dB larger than SZ. However, considering

that SZ reduces the data’s size 200× more than ZFP, the

small decrease in accuracy is acceptable. These results make

sense, because ZFP is optimized for 3D datasets and we are

working with 2D image data. Also, the maximum compression

error from SZ tends to be extremely close to the user’s

specified error bound; however, ZFP always over-preserves

the compression error compared to the user’s specified error

bound. This leads to ZFP having a slightly higher accuracy

but a slightly lower reduction ratio compared to SZ.

Figure 8 shows the variation in the PSNR over the time-

steps for SZ, ZFP, and HDS. For SZ and ZFP, we use an

absolute error bound of 0.01. We see that HDS with a 5%

sampling rate yield lower PNSR than both SZ and ZFP, but

is more consistent over time. Comparing SZ and ZFP, we see

that ZFP gives the highest PSNR, except for a few time-steps

between time-step 10 and 35.
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Fig. 8: Evolution of the PSNR of various reduction methods

on our AM dataset over time.

V. RELATED WORK

Large-scale scientific instruments and applications generate

massive quantities of data. The Community Earth System

Model (CESM) can generate over 2.5 PB of data in 18

months [26], but due to I/O and processing issues only 6.6%

of it can be analyzed in the next 18 months. Moreover, the

Hardware/Hybrid Accelerated Cosmology Code (HACC) [27]

can produce 21.2 petabytes of data when simulating 2 trillion

particles for 500 time-steps.

To combat the big data deluge, lossy reduction techniques

have saw swift development over the last decade [11], [13],

[14], [17]±[19], [25], [28]. Moreover, work has been ongoing

to integrate lossy compression into applications and work-

flows [29]±[33]. This paper complements these prior works

by exploring lossy data compression for nondestructive AM

analysis.

VI. CONCLUSIONS

As additive manufacturing continues to grow in importance,

improving the process become increasingly vital. One method

to analyze AM is to use high-speed cameras, but must confront

a data deluge (TBs/day) to be practical. In this paper, we

explore four methods of data reduction: BLOSC (lossless),

SZ (lossy), ZFP (lossy), and Hybrid Data Sampling (lossy).

Results show that BLOSC yield no loss in accuracy, but is

slow and does not reduce the size of data as well as the lossy

methods. Hybrid Data Sampling gives the best bandwidth and

fixed reduction sizes, but the lowest PSNRs. ZFP yields the

best PNSR and a comparable reduction bandwidth to SZ. SZ

provides the best reduction ratio over the second best ZFP. SZ

also yields comparable bandwidth and PSNR to ZFP. Based

on the analysis, we conclude that SZ is currently the best

compressor for our AM dataset. For future work, we will

explore how the inaccuracies from lossy compression impact

the quality of the analytics.



ACKNOWLEDGMENTS

Clemson University is acknowledged for generous allotment

of compute time on the Palmetto cluster. This material is based

upon work supported by the National Science Foundation

under Grant No. SHF-1910197 and SHF-1943114. The data

is provided by Los Alamos National Laboratory: LA-UR-21-

32202. This paper has been approved by Los Alamos National

Laboratory: LA-UR-22-29693.

REFERENCES

[1] ªWhat is industry 4.0?º https://mep.purdue.edu/news-folder/what-is-
industry-4-0/, accessed: 2022-08-21.

[2] I. Gibson, D. Rosen, B. Stucker, and M. Khorasani, Additive Manufac-

turing Technologies. Springer International Publishing, 2021.

[3] W. E. Frazier, ªMetal additive manufacturing: A review,º Journal of

Materials Engineering and Performance, vol. 23, no. 6, pp. 1917±1928,
Jun 2014. [Online]. Available: https://doi.org/10.1007/s11665-014-0958-
z

[4] I. Gibson, D. Rosen, B. Stucker, and M. Khorasani, ªIntroduction and
basic principles,º in Additive Manufacturing Technologies. Springer
International Publishing, nov 2020, pp. 1±21.

[5] B. Blakey-Milner, P. Gradl, G. Snedden, M. Brooks, J. Pitot, E. Lopez,
M. Leary, F. Berto, and A. du Plessis, ªMetal additive manufacturing in
aerospace: A review,º Materials & Design, vol. 209, p. 110008, 2021.

[6] C. Culmone, G. Smit, and P. Breedveld, ªAdditive manufacturing of
medical instruments: A state-of-the-art review,º Additive manufacturing,
vol. 27, pp. 461±473, 2019.

[7] M. Akbari and N. Ha, ªImpact of additive manufacturing on the
vietnamese transportation industry: An exploratory study,º The Asian

Journal of Shipping and Logistics, vol. 36, no. 2, pp. 78±88, 2020.

[8] G. V. Research, ªGvr report cover additive manufacturing market size,
share & trends analysis report by component, by printer type, by
technology, by software, by application, by vertical, by material, by
region, and segment forecasts, 2022 - 2030,º Grand View Research,
Tech. Rep., 2022.

[9] Z. A. Young, Q. Guo, N. D. Parab, C. Zhao, M. Qu, L. I.
Escano, K. Fezzaa, W. Everhart, T. Sun, and L. Chen, ªTypes
of spatter and their features and formation mechanisms in laser
powder bed fusion additive manufacturing process,º Additive

Manufacturing, vol. 36, p. 101438, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2214860420308101

[10] ªWhat is blosc?º https://www.blosc.org/pages/blosc-in-depth/, accessed:
2022-08-21.

[11] S. Di and F. Cappello, ªFast error-bounded lossy hpc data compression
with sz,º in 2016 ieee international parallel and distributed processing

symposium (ipdps). IEEE, 2016, pp. 730±739.

[12] F. Cappello, S. Di, S. Li, X. Liang, A. M. Gok, D. Tao,
C. H. Yoon, X.-C. Wu, Y. Alexeev, and F. T. Chong, ªUse
cases of lossy compression for floating-point data in scientific data
sets,º The International Journal of High Performance Computing

Applications, vol. 33, no. 6, pp. 1201±1220, 2019. [Online]. Available:
https://doi.org/10.1177/1094342019853336

[13] M. H. Fulp, A. Biswas, and J. C. Calhoun, ªCombining spatial and
temporal properties for improvements in data reduction,º in 2020 IEEE

International Conference on Big Data (Big Data). IEEE, 2020, pp.
2654±2663.

[14] P. Lindstrom, ªFixed-rate compressed floating-point arrays,º IEEE

Transactions on Visualization and Computer Graphics, vol. 20, no. 12,
pp. 2674±2683, Dec 2014.

[15] A. du Plessis, S. G. le Roux, J. Els, G. Booysen, and D. C. Blaine,
ªApplication of microct to the non-destructive testing of an additive
manufactured titanium component,º Case Studies in Nondestructive

Testing and Evaluation, vol. 4, pp. 1±7, 2015. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2214657115000155

[16] Y. Collet and M. Kucherawy, ªZstandard Compression and the
application/zstd Media Type,º RFC 8478, Oct. 2018. [Online].
Available: https://rfc-editor.org/rfc/rfc8478.txt

[17] D. Tao, S. Di, Z. Chen, and F. Cappello, ªSignificantly improving lossy
compression for scientific data sets based on multidimensional prediction
and error-controlled quantization,º in 2017 IEEE International Parallel

and Distributed Processing Symposium, IPDPS 2017, Orlando, FL,

USA, May 29 - June 2, 2017, 2017, pp. 1129±1139. [Online]. Available:
https://doi.org/10.1109/IPDPS.2017.115

[18] X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and
F. Cappello, ªError-controlled lossy compression optimized for high
compression ratios of scientific datasets,º in IEEE International

Conference on Big Data, Big Data 2018, Seattle, WA, USA,

December 10-13, 2018, 2018, pp. 438±447. [Online]. Available:
https://doi.org/10.1109/BigData.2018.8622520

[19] X. Liang, K. Zhao, S. Di, S. Li, R. Underwood, A. M. Gok, J. Tian,
J. Deng, J. C. Calhoun, D. Tao, Z. Chen, and F. Cappello, ªSz3: A
modular framework for composing prediction-based error-bounded lossy
compressors,º IEEE Transactions on Big Data, pp. 1±14, 2022.

[20] P. Deutsch, ªGzip file format specification version 4.3,º United States,
Tech. Rep., 1996.

[21] F. Yates, ªSystematic sampling,º Philosophical Transactions of the Royal

Society of London. Series A, Mathematical and Physical Sciences, vol.
241, no. 834, pp. 345±377, 1948.

[22] A. Biswas, S. Dutta, J. Pulido, and J. Ahrens, ªIn situ
data-driven adaptive sampling for large-scale simulation data
summarization,º in Proceedings of the Workshop on In Situ

Infrastructures for Enabling Extreme-Scale Analysis and Visualization

- ISAV ’18. ACM Press, 2018, p. 13±18. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3281464.3281467

[23] A. Biswas, S. Dutta, E. Lawrence, J. Patchett, J. C. Calhoun, and
J. Ahrens, ªProbabilistic data-driven sampling via multi-criteria im-
portance analysis,º IEEE Transactions on Visualization and Computer

Graphics, vol. 27, no. 12, pp. 4439±4454, 2021.

[24] R. Underwood, V. Malvoso, J. C. Calhoun, S. Di, and F. Cappello, ªPro-
ductive and performant generic lossy data compression with libpressio,º
in 2021 7th International Workshop on Data Analysis and Reduction for

Big Scientific Data (DRBSD-7). IEEE, 2021, pp. 1±10.

[25] J. Tian, S. Di, K. Zhao, C. Rivera, M. H. Fulp, R. Underwood, S. Jin,
X. Liang, J. Calhoun, D. Tao, and F. Cappello, ªCusz: An efficient
gpu-based error-bounded lossy compression framework for scientific
data,º in Proceedings of the ACM International Conference on Parallel

Architectures and Compilation Techniques, ser. PACT 2020. New
York, NY, USA: Association for Computing Machinery, 2020, p. 3±15.
[Online]. Available: https://doi.org/10.1145/3410463.3414624

[26] S. Mickelson, A. Bertini, G. Strand, K. Paul, E. Nienhouse, J. Dennis,
and M. Vertenstein, ªA new end-to-end workflow for the community
earth system model (version 2.0) for the coupled model intercomparison
project phase 6 (cmip6),º Geoscientific Model Development, vol. 13,
no. 11, pp. 5567±5581, 2020.

[27] S. Habib, V. Morozov, N. Frontiere, H. Finkel, A. Pope, K. Heitmann,
K. Kumaran, V. Vishwanath, T. Peterka, J. Insley et al., ªHACC:
Extreme scaling and performance across diverse architectures,º Com-

munications of the ACM, vol. 60, no. 1, pp. 97±104, 2016.

[28] M. Ainsworth, O. Tugluk, B. Whitney, and S. Klasky, ªMultilevel tech-
niques for compression and reduction of scientific dataÐthe multivariate
case,º vol. 41, pp. A1278±A1303.

[29] A. Fox, J. Diffenderfer, J. Hittinger, G. Sanders, and P. Lindstrom,
ªStability Analysis of Inline ZFP Compression for Floating-Point Data
in Iterative Methods,º vol. 42, no. 5, pp. A2701±A2730, 2020. [Online].
Available: https://epubs.siam.org/doi/10.1137/19M126904X

[30] D. M. Hammerling, A. H. Baker, A. Pinard, and P. Lindstrom, ªA
collaborative effort to improve lossy compression methods for climate
data,º in 2019 IEEE/ACM 5th International Workshop on Data Analysis

and Reduction for Big Scientific Data (DRBSD-5), 2019, pp. 16±22.

[31] X.-C. Wu, S. Di, E. M. Dasgupta, F. Cappello, Y. Alexeev, H. Finkel,
and F. T. Chong, ªFull state quantum circuit simulation by using data
compression,º in IEEE/ACM 30th The International Conference for High

Performance computing, Networking, Storage and Analysis (IEEE/ACM

SC2019), 2019, pp. 1±12.

[32] J. Calhoun, F. Cappello, L. N. Olson, M. Snir, and W. D.
Gropp, ªExploring the feasibility of lossy compression for pde
simulations,º The International Journal of High Performance Computing

Applications, vol. 33, no. 2, pp. 397±410, 2019. [Online]. Available:
https://doi.org/10.1177/1094342018762036

[33] A. H. Baker, H. Xu, D. M. Hammerling, S. Li, and J. P. Clyne, ªToward
a multi-method approach: Lossy data compression for climate simulation



data,º in High Performance Computing, ser. Lecture Notes in Computer
Science, J. M. Kunkel, R. Yokota, M. Taufer, and J. Shalf, Eds. Springer
International Publishing, 2017, vol. 10524, pp. 30±42.


