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Abstract—Additive manufacturing is a rapidly growing area
that has the potential to revolutionize society. In order to better
understand and improve this process, scientists and engineers
conduct detailed studies on the applicability of various materials
and the process that additively constructs the object. One method
of analyzing the additive process is to use cameras to take images
of the object as it is built layer by layer. As the complexity of the
process, image resolution, and image capture frequency increases,
so too does the volume of data generated, which can lead to data
storage/movement issues. In this paper, we present an exploratory
study of applying various lossless and lossy reduction techniques
to an additive manufacturing data set from Los Alamos National
Laboratory. Results show that SZ gives the best reduction ratio,
ZFP yields the best accuracy, and Hybrid Data Sampling is the
fastest method.

Index Terms—Ilossy compression, lossless data compression big
data, additive manufacturing

I. INTRODUCTION

As technological advances (IoT, Cloud, Al etc.) continue to
be integrated in the industrial settings, we are on the verge of
the fourth industrial revolution (Industry 4.0) [1]. In this new
industrial age, data coming from manufacturing and industrial
process is seamlessly processed, analyzed, and communicated.
Thus, it enables more detailed insight and opens up new
avenues and capabilities. One emerging area of Industry 4.0
is additive manufacturing [2].

Additive manufacturing is a construction process where
a computer-aided design (CAD) model is constructed via
applying very fine layers of material on a 2D plane [3], [4].
Each layer is laid on top of the previous and overtime the 3D
object is reconstructed. 3D printing is a popular and common
form of additive manufacturing that uses molten plastic to
construct the object. However, AM is actively used in a wide
variety of domains such as aerospace [5], medicine [6], and
transportation [7]. Moreover, as AM continues to take hold, the
market value is estimated to grow by 19.4% in North America
along before the end of the decade [8].

In order for additive manufacturing to expand into new areas
and to continue to improve the manufacturing process, engi-
neers and scientists must understand what occurs throughout
the process. To see inside the process, arrays of sensors and
cameras are employed that capture data at a fine granularity.
For example, a camera with an exposure duration of 33 ms
generates 30 frames each second. Over the course of a day,
this yields terabytes of raw data. Moreover, as the speed of the

AM process increases, this frame rate causes blurring as the
motion and positions of the applicator obscure fine features
in the image, such as spatter. Spatter is the molten shower of
material that is pushed from the application area and deposits
itself in non-intended regions of the domain and may cause
defects in the product [9]. Leveraging high-speed cameras
with an exposure of 33 psec dramatically increase the frame
rate. This oncoming data deluge is complicated further with
higher resolution cameras. Going forward, analysis of additive
manufacturing processes must deal with large amounts of data
generated at a high velocity.

Data reduction is a common technique to reduce the size of
data, preventing data storage and transmission issues. Data
reduction is broken down into two categories: lossy and
lossless. In lossless reduction, the number of bytes requires
storing the data is less, and after the resulting data after
reconstruction is bitwise reproducible to the original data [10].
However, lossless reduction has been shown to only gives ~1—
5x reduction and does not perform well for floating-point
datasets common in scientific computing [11]. Lossy reduction
is able to obtain orders-of-magnitude larger reduction ratios,
but at the expense of distortions in the data [12], [13]. Modern
lossy compression algorithms such as SZ [11] and ZFP [14]
enable the user to bound the level of distortion in the data.
Other forms of lossy reduction such as data sampling yield
higher reduction ratios and enable in-situ visualization without
the overhead of decompression, but do not provide as robust
of error bounding as SZ and ZFP.

With combined increase in image acquisition rates for addi-
tive manufacturing analysis and the resolution of these images,
data reduction is needed for both long term storage and
data transit. In this paper, we evaluate several data reduction
techniques — e.g., lossless compression, data sampling, lossy
compression — to determine their applicability to AM analysis
data. In particular, this paper contributes the following:

o describes an emerging domain where data reduction is

needed;

e presents a comparative analysis of state-of-the-art loss-
less, lossy compression and data sampling algorithms to
be used to reduce additive manufacturing analysis data;
and

o concludes that SZ gives the best reduction ratio, ZFP
yields the best accuracy, and Hybrid Data Sampling is
the fastest method.



The remainder of this paper is as follows: Section II
provides additional background on additive manufacturing and
the specific data reduction methods we use in this work.
We describe our AM test dataset and preset our comparison
methodology in Section III. Experimental results are found in
Section IV. Finally, we conclude and present future work in
Section VI.

II. BACKGROUND
A. Adaptive Manufacturing Dataset

Additively manufactured parts, for a variety of reasons
(complexity of designs, exotic alloys, newness of the tech-
nique, myriad of tunable parameters, etc.) often have small
defects. These defects need to be analyzed to determine if
they will impact the performance of the part when used.
Both destructive — e.g., cutting up the part and analyzing
defects with microscopy — and non-destructive — e.g. CT
scan [15] — are commonly employed and generally focus on
voids in the metal such as places where the metal did not fuse
correctly.

In-situ analysis of additively manufactured parts would
enable real-time defect analysis and could enable design
modifications / adjustments of parts. This type of image data
analytics for anomalies is common in machine learning. Thus,
our problem comes down to capturing a rich training set at an
extremely high rate, pushing the data in real time upstream to
a cluster for storage, training on a massive dataset to create a
model, pushing the model back to the edge for inference, and
then using the model to detect anomalies in real time. This
process of capturing large volumes of large files necessitates
compression for storage and will undoubtedly impact machine
learning accuracy. In general, we need to consider the speed
of the compression algorithm (buffering may not be possible
given the constant rate of data acquisition), compression rate,
and reconstruction accuracy.

B. Data Reduction

In this subsection, we present background on the four data
reduction algorithms we evaluate: Blosc (lossless), SZ (lossy),
ZFP (lossy), and Hybrid Data Sampling (lossy).

1) BLOSC: https://www.blosc.org/pages/blosc-in-depth/

Blosc is a high performance lossless compression li-
brary [10]. Blosc decomposes the input data set into blocks
to more easily apply various compression operations. Blosc
enables user customization of per block filters and various
lossless compression algorithms — e.g., zstd [16] — to be
applied to obtain faster speeds or larger compression ratios.
In this paper, we use the ztd compressor from Blosc as our
lossless compression algorithm.

2) S§Z: SZ is a lossy compression framework for scientific
data that has seen rapid development over the recent years [11],
[17]-[19]. The SZ compression pipeline is composed of four
linearly dependent steps: data prediction, error quantization,
Huffman coding, and lossless compression.

During the data prediction step of SZ, unprocessed data
items are predicted based on already processed data items

via various algorithms such as Lorenzo [17] or linear regres-
sion [18]. In general, the predicted datum does not exactly
match the value from the original dataset. Storing the exact
error as a floating-point value nets no compression. Instead, SZ
maps the floating-point prediction error to an integer through
a process known as quantization to improve the compression
performance of subsequent steps. If the prediction is too far
off to be successfully quantized, that datum is marked as
unpredictable and compressed via a separate process [11].

The quantization codes are combined to generate a Huffman
tree that encodes the fixed-width code words into variable
length code words to save space. Finally, all code words along
with all necessary metadata for decompression is run through
a lossless compression pass such as Gzip [20] or zSTD [16].

3) ZFP: Unlike SZ, which relies heavily on prediction, the
ZFP lossy data compressor leverages transforms to decorrelate
the data [14]. ZFP decomposes the data array into small 4¢
blocks, where d is the number of dimensions of the data
array. For each block, the data values are converted to a
common fixed-point representation before a near-orthogonal
transform is applied. To achieve a desired fixed-rate or a
desired accuracy, the transformed data is then encoded by
truncating the least significant bits of each value.

4) Hybrid Data Sampling: Unlike lossy compression, data
sampling allows high levels of reduction at user specified
reduction ratios. The simplest algorithm is Random Sampling,
where a random number z; is computed for each datum. Each
x; is compared to a sampling threshold a. If z; < « then
that datum is included in the set of samples, otherwise it is
discarded. Systematic Sampling [21] selects every a - NV data
points from a dataset of size V.

The previous sampling methods are dataset independent
and often yield the lowest quality but the fastest reduc-
tion rate. Leveraging dataset properties allows more accurate
preservation of regions-of-interest in the data. Value-Based
Sampling [22] biases rare values in the dataset. Their algorithm
uses the distribution of data values to calculate an importance
factor, I, such that rare values have a greater I and common
values have a lower Ip. The subsequent sampling process
samples rare values before sampling common values. Multi-
Criteria Based Sampling Algorithm [23] extends value based
sampling by considers multiple criteria — e.g., rarity of
the value and gradient magnitude — when constructing Ip.
Hybrid Sampling [13] further extends Multi-Criteria Based
Sampling by leveraging temporal similarities between time-
steps. The algorithm first decomposes the domain into a
series of blocks. The data within each block is compared to
that from the previous time-step. Using a similarity metric
such as histogram-intersection or root mean squared error, the
algorithm determines if each block is similar enough. If it is,
it creates a link to the previous data file. Otherwise, it elects
to sample that block.

Sampling only keeps a subset of the data points and stores
them in full precision. In order to recover the discarded data
points, reconstruction algorithms such as nearest-neighbor or
linear interpolation are needed. It is within the interpolated —



(a) Individual image from our AM (b) Zoomed in image of the

dataset dataset’s feature.

Fig. 1: Example visualizations of our AM dataset. Red areas
indicate where material is deposited. White arcing lines are
spatter.

i.e., reconstructed — data points where distortion exists. De-
pending on the sampling rate and reconstruction algorithm
utilized, the accuracy in the reconstruction differs.

III. ADDITIVE MANUFACTURING DATA COMPRESSION
A. Description of the Additive Manufacturing Dataset

The dataset we leverage in our study comes from Los
Alamos National laboratory. The dataset is captured on an
EOS M 290 laser powder bed fusion (LPBF) metal printer.
This process uses a high speed laser, metal alloy powder
which is spread across a base, and a CAD-like design to
additively manufacture (AM) metal parts. These parts are
high quality, production-grade, and the AM process enables
designers to construct parts which are difficult or impossible
to build through conventional means. Attached to the printer
is a PCO Edge 5.5 high speed camera that captures radiance
values of the build during construction. For the experiment
discussed in this paper, the camera is set to capture images
at 30 frames per second with an exposure rate of 33ms. A
custom driver program was written which controls the camera
and saves the images as lossless 16-bit TIF images 25602160
(W xH) resulting in approximately 11MB per image or 330MB
per second. This amounts to roughly 28TB of raw data capture
per day, and it is not uncommon for AM designs to run for
over a day for a single build.

Figure 1a shows a visualization of a single time-step from
our dataset. We see that the images contains a region of interest
where the material is being deposited. Figure 1b shows a
zoomed in view of the feature. In the zoomed image, the
spatter shower becomes more visible. These fine features
extend from the source in arcs across the image. The arcing
trails are an artifact of the data collection process. With an
exposure of 33ms, the motion paths are revealed. If using
a camera with a shorter exposure time, the arcing artifacts
diminish, leaving a single small point of molten material.
Moreover, the location where the material is deposited appears
larger than it would for the same reasons.

These data collection artifacts highlight the need to move
to higher quality instruments to analyze the additive manufac-

TABLE I: Key Terms and Notation for Data Reduction Metric
Formulas

Term  Description

D Original dataset

Compressed dataset

p Reduction ratio

() Computes the size of a dataset

D Reconstructed dataset of same size and dimension of D
B Reduction bandwidth

turing process. Currently, at 11 MB per image generated at 30
frames/sec yields 330 MB/sec of data generated. An expected
daily size of 28 TB must be mitigated for effective analysis and
long term archival storage. In the remainder of this section, we
detail the metrics and methodologies we employ to evaluate
various data reduction methods on our AM dataset.

B. Comparison Metrics

In this subsection, we describe the metrics we use to
evaluate the data reduction algorithms in Section IV. Note
that not all metrics are valid for the reduction algorithms. All
lossless methods preserve accuracy. Thus, measurements of
accuracy loss do not make sense. Moreover, depending on the
configuration of the lossy methods they may fully preserve the
data, mimicking lossless methods with respect to accuracy.

To aid in our discussion of the metrics, we define key terms
and notations in Table 1.

1) Reduction Ratio: All data reduction algorithms take in
a dataset D with a fixed number of bytes s(D). In general,
after reduction, the size of the reduced data s(C'D) in bytes is
less than that of the original dataset. We define the Reduction
Ratiop, Equation 1, as the factor by which the dataset’s size
in bytes is reduced.

_ s(D)
P= s(CD)

For example, p = 2 indicates that the reduced dataset is 50%
smaller than the original version. In general, larger values of
p are preferred.

2) Reduction Bandwidth: The speed at which a dataset D is
reduced is often dependent on the configuration of the method.
For example, for lossless methods tend to take more time
to reduce the dataset as the level of compression increases.
However, lossy methods often reduce faster when they are
allowed to add more distortions into the data. We define
the reduction bandwidth, 3, in Equation 2 as the time in
seconds,trequce, to reduce a dataset of size s(D).

8= ﬂ )

treduce
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In general, large reduction bandwidth values are preferable.
3) Accuracy: Lossy reduction methods are capable of gen-
erating orders-of-magnitude levels of reduction. In order to
obtain these high levels of reduction, distortions are introduced
into the dataset. Thus, the effectiveness of lossy reduction
methods depends on the perseveration accuracy accuracy



of the method. Error-bound reduction methods such as SZ
and ZFP allow the user fine-grain control on accuracy by
selecting an error bounding value and error bounding mode
that is strictly enforced when reducing. Non-error bounding
methods such as data sampling have coarse grained control.
For example, the sampling method we evaluate [13], obtains
better accuracy in the reconstructed data as the sampling
percentage increases.

In this paper, we use the peak signal-to-noise ratio (PSNR)
to quantify accuracy in units of decibels (dBs). PNSR is
computed based on the ratio of the square of the maximal value
in the original dataset, D, to the noise in the reconstructed
dataset, D, measured using the mean squared error (MSE).
The PSNR formula is given as:

MAX(D)?
MSE(D, D)

Based on the formula for PSNR, as the accuracy in the
dataset increases, the MSE deceases. As the MSE decreases,

the calculated PSNR— oo. Similarly, as the level of distortion
grows in the data and the MSE increases, the PSNR decreases.

IV. EXPERIMENTAL RESULTS
A. Testing Environment

We run all experiments on Clemson’s Palmetto Cluster.
Each node we use contains the following hardware: 2 Intel
Xeon Gold 6148 CPUs with a max clock frequency of
2.40GHz and 370 GB of DDR4 DRAM. To compile all
our software, we employ gcc 8.5.0. The data compression
algorithms are called through libPressio v0.79.0 [24], a com-
pression abstraction library that contains numerous lossy and
lossless compression algorithms. In particular, we use BLOSC
1.21.0, SZ 2.1.11.1, and ZFP 0.5.5. For data sampling, we use
the code from [13]. As not all the methods we evaluate have
optimized GPU or threaded versions, we report the single core
performance. Future work will explore accelerated versions of
the method(s) that are the most promising.

B. Configuring the Hybrid Data Sampling Algorithm

The Hybrid Data Sampling (HDS) algorithm from [13]
seeks to preserve regions of interest that it determines ex-
ist in the dataset. It implements several variations on this
algorithm. The first method (Importance Based) does not
leverage temporal similarities and is equivalent to [23]. The
second method uses histogram intersection (Histogram Based)
to define spatial regions that are similar between time-steps,
and requires each region to have identical histograms for reuse.
The third variant (Error Based) uses the root mean squared
error to determine reuse by comparing to a threshold of 10.

We explore various block sizes and to best configure
each method. We find no difference in a method’s accu-
racy/reduction bandwidth for our data set. We attribute this
to the high degree of uniformity (constant background same
histogram and no error) in the data, which results in a
similar percentage of regions marked for reuse. Moreover, we
explored sampling percentages of 1, 5 and 10%. We observed

that as sampling percentage increased, PSNR and reduction
bandwidth increased while reduction ratio decreased. This
makes sense because if more data is sampled, then there should
be less error; however, the sampling process should take longer
and you are not able to reduce the size of the file as much.

Comparing the three HDS methods with respect to their
accuracy over the time-steps in Figure 2, we see all methods
preform similarly. Since our dataset contains large regions of
similarity, the frequency of the background is high. Thus,
Importance does not place many samples in this region.
Moreover, this region is temporally smooth, leading to a
large amount of data region reuse. Therefore, all methods
concentrate sampling only on the region of interest and yield
similar results.
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Fig. 2: Accuracy for various Hybrid Data Sampling methods
with 5% sampling.

Both of the reuse methods are derived from the Importance
based method. Figure 3 shows the sampling bandwidth for
each sampling method. Importance is the most consistent,
obtaining around 160 MB/s of bandwidth. For Error based
reuse, the bandwidth drops after the first time-step due to the
reuse calculation adding additional work on the critical path.
The most interesting HDS method is Histogram based reuse,
as it oscillates between 100-300 MB/s. The oscillation is due
to the fact that a region is only reusable for the next time-
step. Reusing regions is faster than having to sample a region.
Examining the percentage of blocks we reuse, we see the same
oscillatory pattern.

From Figure 2 and Figure 3, we elect to use the Importance
based sampler because it yields consistent and high perfor-
mance compared to the other two methods.

C. Reduction Bandwidth

The additive manufacturing process may consume a signifi-
cant amount of time. With our camera based analysis method,
data in constantly being generated and must be reduced. In
a production setting, the data is reduced in situ before it is
stored or analyzed in real-time. Because not all the reduction
methods we evaluate have threaded or accelerator support, we
focus on single-threaded performance.
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Fig. 3: Reduction Bandwidth for various Hybrid Data Sam-
pling methods with 5% samples. Fluctuations in bandwidth
are due to the overhead and savings in the reuse algorithms.

Before we compare all the methods, we explore the re-
duction bandwidth of the SZ and ZFP lossy compressors
because they allow the user to set an error bound to control
accuracy in the data. Figure 4 explores the impact of the error
bound on reduction bandwidth. We see that as we require
the compressor to yield more accurate data (smaller error
bound) the bandwidth decreases. However, as the error bound
increases allowing the compressor to add in more distortion,
bandwidth increases. Here, we select the error bound of 0.01
for our comparison, as it is the closest configuration that
achieves a similar level of accuracy as HDS (see Figure 8).
We observe that SZ has a slightly lower reduction bandwidth
for most of our tested error bounds. This is most likely due to
the fact that part of SZ’s process is determining the optimal
quantization method. This process is not performed in ZFP
and therefore could be slightly slowing SZ down.
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Fig. 4: Impact of absolute error bound value on reduction
bandwidth.

Figure 5 shows the reduction bandwidth of our methods
over the 100 time-steps. We see that for each method, its

reduction bandwidth remains consist over the time-steps. This
is due to the high degree of similarity in each image; only the
location and shape of the feature differs. When comparing each
method, HDS yield the largest bandwidth at 160 MB/s. ZFP
and SZ yield 0.4 MB/s and 0.24 MB/s, respectively. Finally,
BLOSC obtains the lowest bandwidth with 0.0025 MB/s. Our
experimental setup generates 330 MB/s of data. With a single
thread, HDS is able to process the data without a backlog or
the need for threading. Results on other datasets show that
threaded and accelerated versions of SZ and ZFP are more
than capable of sufficient bandwidths [25]. These results seem
to be fairly constant. All of our test were run on one private
node that had no other tasks to handle. This is likely due to
this consistency across all time-steps.
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Fig. 5: Evolution of the single-threaded reduction bandwidth
of various reduction methods on our additive manufacturing
dataset over time.

D. Compressibility

To determine which reduction method gives the best level
of reduction, we run each method over our dataset and
present the average reduction ratios in Figure 6. For the error-
bounded lossy compressors, we vary the absolute error bound
between le-5 and 1. As SZ’s and ZFP’s error bound grows,
the compression ratio increases, and we see a maximum of
502690x for SZ and 510x for ZFP. In the case of SZ, the
reduction ration increases by more than 4 orders-of-magnitude
over the error bound range. Comparing the lossy compressors
to HDS and BLOSC we see various trade off points. HDS
yield a reduction ratio of 20x based on its 5% sampling rate.
BLOSC achieves a reduction ratio of 7.05x. For error bounds
of less than le-3, BLOSC is better at reducing the data’s size
than ZFP. Overall, we see that SZ is the clear winner, as it
yields a reduction ratio 200x more than its closest competitor
ZFP at error bound 0.01.

E. Reconstruction Accuracy

The major advantage of lossless reduction methods is that
they perfectly preserve the data. As such, we exclude BLOSC
from this subsection. Lossy methods trade distortions in the
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Fig. 6: Impact of absolute error bound value on reduction ratio.

data for larger reduction ratios (see Figure 6). Figure 7 shows
the average PSNR for various error bounds for SZ and ZFP.
As the error bound decreases, the PSNR increases for both
compressors. For all error bounds, ZFP yields a PSNR that
is between 2-21 dB larger than SZ. However, considering
that SZ reduces the data’s size 200x more than ZFP, the
small decrease in accuracy is acceptable. These results make
sense, because ZFP is optimized for 3D datasets and we are
working with 2D image data. Also, the maximum compression
error from SZ tends to be extremely close to the user’s
specified error bound; however, ZFP always over-preserves
the compression error compared to the user’s specified error
bound. This leads to ZFP having a slightly higher accuracy
but a slightly lower reduction ratio compared to SZ.

Figure 8 shows the variation in the PSNR over the time-
steps for SZ, ZFP, and HDS. For SZ and ZFP, we use an
absolute error bound of 0.01. We see that HDS with a 5%
sampling rate yield lower PNSR than both SZ and ZFP, but
is more consistent over time. Comparing SZ and ZFP, we see
that ZFP gives the highest PSNR, except for a few time-steps
between time-step 10 and 35.
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Fig. 7: Impact of absolute error bound value on the PSNR.
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Fig. 8: Evolution of the PSNR of various reduction methods
on our AM dataset over time.

V. RELATED WORK

Large-scale scientific instruments and applications generate
massive quantities of data. The Community Earth System
Model (CESM) can generate over 2.5 PB of data in 18
months [26], but due to I/O and processing issues only 6.6%
of it can be analyzed in the next 18 months. Moreover, the
Hardware/Hybrid Accelerated Cosmology Code (HACC) [27]
can produce 21.2 petabytes of data when simulating 2 trillion
particles for 500 time-steps.

To combat the big data deluge, lossy reduction techniques
have saw swift development over the last decade [11], [13],
[14], [17]-[19], [25], [28]. Moreover, work has been ongoing
to integrate lossy compression into applications and work-
flows [29]-[33]. This paper complements these prior works
by exploring lossy data compression for nondestructive AM
analysis.

VI. CONCLUSIONS

As additive manufacturing continues to grow in importance,
improving the process become increasingly vital. One method
to analyze AM is to use high-speed cameras, but must confront
a data deluge (TBs/day) to be practical. In this paper, we
explore four methods of data reduction: BLOSC (lossless),
SZ (lossy), ZFP (lossy), and Hybrid Data Sampling (lossy).
Results show that BLOSC yield no loss in accuracy, but is
slow and does not reduce the size of data as well as the lossy
methods. Hybrid Data Sampling gives the best bandwidth and
fixed reduction sizes, but the lowest PSNRs. ZFP yields the
best PNSR and a comparable reduction bandwidth to SZ. SZ
provides the best reduction ratio over the second best ZFP. SZ
also yields comparable bandwidth and PSNR to ZFP. Based
on the analysis, we conclude that SZ is currently the best
compressor for our AM dataset. For future work, we will
explore how the inaccuracies from lossy compression impact
the quality of the analytics.
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