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AbstractÐAs autonomous systems become more integrated
into human lives, it is essential to ensure that they maintain
high levels of safety and reliability to prevent accidents or
injuries from occurring. One rapidly growing area is that of
autonomous vehicles. One common scenario for autonomous
vehicles is traveling down a roadway in a platoon or convoy. The
vehicles need to communicate data between them to maintain
their positions. However, unreliability in the network can lead
to missing or late arriving data, which forces the cars to use
stale data from earlier communications. This paper investigates
the effects of stale data on autonomous platooning models. In
particular, we investigate which parameters may need to be
protected by performing sensitivity analysis and analyzing how
the platooning model behaves in the presence of stale data. By
increasing the understanding of how the model behaves and
which input parameters are influential, algorithms can then
be developed to specifically target the characteristics of the
vulnerable systems.

Index TermsÐstale data, sensitivity analysis, intelligent trans-
portation systems, fault tolerance

I. INTRODUCTION

In intelligent transportation, communication is utilized be-

tween multiple vehicles to maintain a fleet or platooning

structure. As autonomous vehicle systems grow more preva-

lent, safety and reliability concerns become increasingly im-

portant. Communication sensors, however, are vulnerable to

intermittent failure, especially in unstructured environments

such as rain, cold, snow, etc. [1]. In addition to sensor failure,

the vehicle system may also be subject to communication

attacks [2]. Whenever these effects occur on communication,

stale data may be injected into the models contained in the

vehicles. Stale data is data from a sensor that is not up-

to-date. When stale data is present, a model is forced to

compute on the last known correct values that it received,

as communication has failed. It is therefore important to

understand the effects imposed on transportation systems when

stale data is introduced. To study these effects, we desire that

our analysis technique is model agnostic, such that we do not

have to understand the in-depth details of each model. We

select two primary techniques to study the models.

The first technique that we employ is statistical fault in-

jection, which allows the modeling of stale data injections

into a model. Statistical fault injection is a classic technique

in determining the robustness of systems perturbing certain
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components/data in the system to emulate a failure [3]±[5].

After injecting failures into a test model, the qualitative effects

are measured, such as collisions of vehicles or deviations from

the ideal route in the domain. The error can also be measured

quantitatively by comparing the deviation of the simulation

with the injection to the nominal simulation. This error can

inform algorithm developers to design more robust solutions.

The second type of analysis that is performed is global

sensitivity analysis. Global sensitivity analysis allows for the

exploration of N-dimensional parameter space for a given

model [6]. Through the exploration of the parameter space,

the output behavior of the model is attributed to the inputs.

In particular, a ranking is determined for which inputs are

very influential to the sensitivity of the output of the model.

This analysis helps determine which parameters need extra

protection to increase the robustness and reliability of these

models in the future. By combining these analysis techniques,

it is possible to determine the impacts and magnitude of the

effects of stale data, as well as determine a plan to improve

the model safety in the future. This paper makes the following

contributions.

• Develops an injection methodology to emulate stale data

affecting a vehicle model in the Simulink environment.

• Performs analysis on the effects of injecting stale data

faults into the model simulation.

• Generates a framework to automatically fit empirical data

to probability distributions utilized in sensitivity studies.

• Evaluates the sensitivity analysis methodology on a ve-

hicle test model to determine parameters that may need

protection from stale data.

The rest of this paper is organized as follows. Section II

presents background on fault injection and Sobol sensitivity

analysis. We present and detail our sensitivity study, probabil-

ity fitting pipeline, and injection methodology in Section III.

Section IV evaluates and discusses the model behavior by

injecting stale data and performing a sensitivity analysis.

Section V discusses work related to the area of our study.

Finally, we conclude in Section VI.

II. BACKGROUND

A. Distribution Fitting

In order to encapsulate the characteristics of empirical data,

it is often important to fit a probability distribution to the data.

The probability distributions allow for the sampling of an input



space that can be used for applications such as sensitivity

analysis. This process is not straightforward, as the proba-

bility distribution must capture the details of the empirical

distribution so that it provides an accurate model of the data.

If the fitted distribution does not reflect the characteristics of

the experimental data, the results of the analysis could lead

to invalid conclusions. In order to determine if a probability

distribution fits a set of empirical data, a method named the

Kolmogorov±Smirnov test (KS-Test) can be utilized. The KS-

Test utilizes the empirical cumulative distribution function

(ECDF) of the empirical data, which is the total number of

observations at or before the current point in the distribution

divided by the total number of observations. The ECDF is

compared to the cumulative distribution function(CDF) of the

fitted distribution by the Kolmogorov-Smirnov statistic (KS-

Stat). The KS-Test has two hypotheses, the null hypothesis is

that the data follows a specified distribution, and the alternative

hypothesis is that the data does not follow that distribution.

The test statistic is defined by Equation 1 where F0(x) is

the number of observations observed at or before the point x

divided by the total number of observations and Fr(X) is the

accumulated probability of the distribution we are testing for

fitting [7]. A smaller value of D indicates a better fit between

the ECDF and the fitted CDF. The D value is then compared to

the entry in the critical value table with the correct significance

level and the number of observations in the empirical data. If

the KS-Stat is less than the value in the table, then the null

hypothesis is accepted that the specified distribution is a good

fit for the data. If the KS-Stat is greater than the critical value,

the null hypothesis is rejected, and the alternative hypothesis is

accepted that the distribution does not fit. The KS-Test allows

for many distributions to be tested for a set of data to determine

a probability distribution that is well suited to the data.

D = max(F0(X)− Fr(X)) (1)

B. Statistical Fault Injection

Statistical fault injection is classically utilized to determine

the dependability of an application or system when soft or

hard errors such as bit-flips or crashes occur in the system

[3]±[5]. When a fault occurs in a system, the nominal behavior

of the system is perturbed. It is essential to have the ability

to quantify not only the amount of error introduced by the

fault, but also understand the qualitative effects of the fault.

A fault injection campaign is performed by simulating the

numerous occurrences of fault injection trials, where for each

trial a unique fault is injected. Note that the behavior of a

simulated fault should try to fully capture the qualities of a

true fault for accurate analysis. Different types of faults may

be modeled, such as a bit-flip occurring when a cosmic particle

contacts computing hardware [3], [5] or when communication

fails, and a model must continue to utilize the last known

data. The reference behavior of the system is then compared

to the behavior observed while the fault injection campaign is

performed.

To quantitatively measure the effects of fault injection, we

primarily observe the absolute and relative error. These abso-

lute error gives the difference between the nominal simulation

and the perturbed simulation and provides information about

how much deviation has been introduced. The absolute error

through time also indicates behavior such as convergence or

divergence with respect to the error. It is important to under-

stand whether the system can recover and converge back to the

expected behavior, or if the system will diverge and become

unstable when an error occurs. The relative error provides

similar information as the absolute error but normalizes the

scale such that it is easier to understand the magnitude of

the error across the different scales of variables in systems.

The qualitative effects are often seen by creating visualizations

of the simulations with injected error. The qualitative effects

are often closely tied to the physical phenomena that are

represented by the application, such as a collision in a car

model due to error.

C. Sobol Sensitivity Analysis

Sensitivity analysis defines the decomposition of uncertainty

in the output of a model to the uncertainty in the inputs of

a model [8]. By decomposing the uncertainty of the model

and apportioning it to the inputs, a better understanding can

be obtained of how the model transfers changes in the input

to the output of the model. Ideal sensitivity analysis methods

can provide quantitative measures of uncertainty to the inputs,

such as variance [6]. The methods are also global and model-

free, which allows the model to be treated as a black box

and avoids assumptions such as model linearity and additive

models. One downside of obtaining a quantitative measure

is the cost of the analysis. Qualitative sensitivity analysis

such as the Morris method [9] converges to a result much

faster than variance-based sensitivity analysis such as the

Sobol method [8]. The Sobol method often requires a large

number of samples and computation resources to reach a result

but provides quantitative rankings, which the Morris method

cannot provide [6], [10].

Sobol sensitivity analysis is a technique within global

sensitivity analysis that is variance based. The overall output

variance of a model is attributed to the individual inputs and

their interactions together within the model. The calculation

is performed by varying individual variables to determine

the first-order effects, and then combinations of variables

to determine the higher-order effects. The first-order indices

and N -order indices are the metrics that Sobol sensitivity

defines to rank the importance of input factors [11], [12]. The

equations for the first-order and N -order indices are described

by Equation 3 and Equation 4. The Dt term is the total

variance of the model, Di and Di..n are the variance of an

individual factor or combinations of factors, and Si is the

sensitivity index. The total order index provides a method to

calculate the contribution of a factor i and all of its higher-

order contributions in one metric to reduce computational

complexity [11], [12]. In Equation 5, Dt is the total variance,

EX
∼i
(Di(Y |X∼i)) is the expected value of the variance of



all other variables and combinations in the model excluding

the variable we are evaluating. By subtracting from one, we

are left with the variance contribution of the ith variable.

This metric attributes a fraction of the total variance to a

given input or combination of inputs. The contributions of

each input are estimated by the decomposition of the model

given in Equation 2 where each summation term describes the

contribution of individual variables, two variables combined,

and so forth until the contribution of varying all variables is

calculated. By attributing the variance from input to output,

we obtain more understanding of the model’s behavior.

D(f) =
∑

i

Di +
∑

i<j

Dij +
∑

i<j<k

Dijk + ...+D1...n

(2)

Si =
Di

Dt

(3)

Si...n =
Di...n

Dt

(4)

ST i = 1−
EX

∼i
(Di(Y |X

∼i))

Dt

(5)

III. METHODS

The model analysis framework that we build consists of two

primary studies which provide information about the behavior

of the current model under test. The first analysis of statistical

fault injection provides information about the effects that occur

when stale data is injected into a simulation of the model.

The second analysis that is performed is global sensitivity

analysis, which is utilized to encapsulate information regarding

the importance of a given input to the output of the model.

In order to support the first analysis, an injection system is

built into the Simulink environment. The supporting systems

for global sensitivity analysis require the model simulation, the

generation of probability distributions to model the inputs, and

the actual global sensitivity calculations. The block diagram

detailing the workflow is shown in Figure 1 and Figure 2.

Figure 1 describes the entire pipeline for calculating sensitivity

coefficients by generating the empirical data, creating proba-

bility distributions from the data, utilizing the distributions

to sample the parameter space, and performing sensitivity

analysis on those samples. Figure 2 shows a more abstracted

view of this process, as we simply create the inputs and

treat the sensitivity analysis as a black box to produce the

coefficients. These two methods of analysis help identify

which parts of the model may need to be protected from effects

such as stale data.

A. Statistical Fault Injection Methods

In order to perform the fault injection into the models,

we must implement a process to emulate stale data and a

method to perform of stale data injections at various time

and locations. Since many vehicle models are simulated in
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Fig. 1: Overall global sensitivity workflow.
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Fig. 2: Black box view to calculate sensitivity coefficients.

the Matlab/Simulink environment, we implement a custom

Simulink block written in Matlab. The Simulink block is

placed on the input signals to a model in order to mock stale

data injections. The block enables injections to be performed at

any time-step in the simulation, which allows us to understand

how a stale data injection affects a model simulation. The

injection functionality also enables the stale data injection

to be repeated multiple times, which helps indicate if the

error continues to accumulate or if the error diminishes and

converges. The length of the injection is configurable such that,

once again, the convergence of the error can be determined.

The injection consists of forcing the model to continuously

compute the last known valid value from an input signal. This

coincides with the definition of stale data such that the model

no longer has access to the most updated information, whether

that is due to sensor failure or an attack on a communication

system.

B. Global Sensitivity Input Modeling

In order to perform the global sensitivity analysis on the

model that we are studying, the inputs for the sensitivity

analysis must be probability distributions. In order to gener-

ate probability distributions that are fed into the sensitivity

analysis framework, we utilize the data collected from the

nominal simulation of the model. We then employ automatic

probability distribution fitting to avoid performing analysis on



TABLE I: Supported Distributions in Probability Fitting

Framework

Supported Distributions

Exponential ExtremeValue
Gamma GeneralizedExtremeValue

GeneralizedPareto HalfNormal
InverseGaussian Logistic

Loglogistic Lognormal
Nakagami NegativeBinomial

Normal Poisson
Rayleigh Rician

Stable tLocationScale
Weibull Uniform

each individual input. We support the distributions that are

shown in Table I.

In order to determine whether a distribution is well suited to

the empirical data collected in the simulation, we first generate

the empirical CDF, which describes the exact probability of the

data collected as we accumulate samples from the empirical

data across the input range of the variable. We then check

through all of our supported distributions in Table I to deter-

mine which distribution best captures the characteristics of the

empirical data. The determination for which distribution fits

the best is performed with the Kolmogorov±Smirnov test (KS-

Test). The KS-Test finds the maximum distance between the

empirical distribution and the fitted distribution. We attempt to

minimize the KS-Test statistic, which is the maximal distance

between the fitted and the empirical distributions across the

set of distributions.

C. Global Sensitivity Sobol Sensitivity Analysis

In order to perform global sensitivity analysis, we select the

Sobol method, which allows the total variance in the model

to be decomposed such that it is attributed to the inputs. In

our work, we utilize the global sensitivity Matlab toolbox

named GSAT [11], [13]. The toolbox supports two different

sensitivity methodologies, Sobol sensitivity analysis, which

we utilize in this study, and Fourier Amplitude Sensitivity

Testing (FAST). We select the Sobol method due to the less

restrictive assumptions about the model, as FAST imposes

extra conditions (e.g. model smoothness). Moreover, the Sobol

method is a black box methodology, as seen in Figure 3. This

allows us to analyze and determine better methods to protect

models without having to know and understand the intricacies

of each individual model.

The Sobol method ingests the probability distributions for

each model input. The inputs are then sampled utilizing Monte

Carlo sampling based on the probabilities associated with the

variable obtaining a particular value. This allows us to better

capture the behavior of the model by ensuring that each input

is likely to take on values that occur frequently during model

simulations. Two sets of samples are generated, which allows

a base set to be utilized to capture the total variance of the

model. The capture of the baseline variance or total variance

of the model allows us to obtain a concise ranking of the

sensitive inputs at the end of the analysis. The variance of

each individual input is divided by the total variance, which

means every input gets a sensitivity ranking between zero and

one. Once the baseline variance is established with the initial

sample set, the decomposed variance calculations begin. In

particular, there are two types of calculations performed in

this section. The first type is a first-order calculation that

computes the variance of a single input variable by itself.

This is important as it provides an understanding of how

the model reacts if you change a single input value. The

second type of calculation that is performed encapsulates

the sensitivity of the interactions between multiple variables.

This provides an interpretation of how the model behaves

when multiple input values change simultaneously. All the

higher-order effects are calculated from just varying two inputs

simultaneously to varying all the inputs simultaneously. Once

the parameter space exploration is completed, the analysis

outputs the ranking of which variables are most sensitive to a

given output of the model. The Sobol method in the toolbox

supports models that have multiple output variables, which

allows a wider range of models to be tested. This case is

handled by running multiple sensitivity analyses in parallel.

The results from the global sensitivity simulation can then

be further utilized in the future to understand which input

parameters may need further protection from effects such as

stale data that we explored in the fault injection studies.

Fig. 3: Black box methodology encapsulated within the Sobol

sensitivity analysis.

IV. EXPERIMENTAL RESULTS

A. Model Definition

For our experiments, we investigate a one-dimensional

platooning model that has a parameterizable number of ve-

hicles in the software environment. We run all experiments

using Simulink version 10.2 and Matlab 9.9 R2020b. In our

examples, we utilize four vehicles for the stale data injections

and perform the sensitivity analysis with two vehicles. A

visualization of the model under test is shown in Figure 4.

The model has a leader vehicle that sets the pacing of the

platoon. In particular, the leader vehicle has an absolute

position, velocity, and acceleration as its internal parameters.

The vehicles that follow the leader all contain the same set of

parameters and are essentially copies of the other following

vehicles. The following vehicles contain velocity, acceleration,



Fig. 4: 1D platooning test model parameters for each vehicle

type and the communication pattern.

throttle input, and relative distance as their internal states.

The following vehicles attempt to maintain a specified relative

distance between themselves and the vehicle directly in front

of them. The controls systems regulate this distance by adjust-

ing the velocity, acceleration, and throttle input parameters.

The target relative distance in our experiments is set to the

value of 20 meters. The other two notable parameters for this

framework are the velocity ramps of the leader. The velocity

ramps are inputs to the model that ramp up the velocity of the

leader vehicle to set the velocity for the platoon formation.

The number of outputs for the model is a function of the

number of vehicles in the simulation and is described by the

following formula, Outputs = 3 + 4 ∗ (NumV ehicles − 1)
since the leader vehicle has 3 parameters and each following

vehicle has four parameters. Each individual output variable

is a linear model that performs a sum of products from the

inputs, where each input is multiplied by a coefficient set by

the control system. We run each simulation for 100 time-steps.

B. Statistical Fault Injection

We perform a statistical fault injection to further understand

the qualitative and quantitative effects of stale data imposed on

our model under test. Figure 5 shows an injection performed

into the velocity variable of the first following vehicle in a

model simulation. A 10-second-long injection is performed

at time-step 50 that forces the model to compute with the

last known valid value in the simulation. Once the stale data

injection is completed, we immediately see the model attempt

to perform a correction as the velocity signal swings rapidly

to adjust to the error that was just injected. One other effect

we see in Figure 5 is that the error eventually converges back

toward the nominal simulation in which no error occurs. This

is expected since the control system should damp out the error

eventually, but it is important to understand the effects that

occur quickly after the initial error injection. Figure 6a and

Figure6b show variables from the same simulation in which

stale data is injected into the velocity variable. We see, the

error propagates to the other vehicles states in the model as the

system tries to correct for the incorrect and erroneous behavior

of the vehicle suffering the stale data injection. However, the
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Fig. 5: Deviation of the velocity after a stale data injection.
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Fig. 6: Propagation and deviation of stale data between two

variables. Fault injection occurs in Velocity.

magnitude of the error decreases as the number of vehicles

between the one suffering the stale data injection increases.

Once again, we see the control system eventually converging

and reducing the error in the states. Figure 7a and Figure 7b

show the relative error across the vehicles once the stale data

injection is performed in the first vehicle at time-step 50. Once

again, we note the converging error and the reduction in error

propagated backward through the vehicles. In Figure 7a, we

see a very large impact on the first vehicle’s relative position,

reaching a relative error of 10 or an error ten times the

measurement of the nominal simulation value. This is a very

large error deviation and provides a substantial effect on the

shape and safety of the platoon. The velocity variable receives

less overall relative error and only reaches a value of one for

the relative error of the first following vehicles (where the

error is injected). The largest effect is seen in the position of

the vehicles when the stale data injection is performed.

C. Distribution Fitting

In order to properly model the inputs for global sensitivity

analysis, we fit probability distributions to our empirical

simulation data by utilizing the KS-test. Figures 8a-8f show

the fit CDF distributions to the empirical CDF distributions

and the corresponding PDF function. Based on all the CDF

figures, we see that the empirical data’s characteristics are well

encapsulated. The empirical data cumulative distributions have

some slight variations compared to the fitted distributions, but

the deviations are small enough that they pass the goodness
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Fig. 7: Impact of stale data on accuracy of each car’s Position

and Velocity. The platooning model naturally damps error with

time.

Variable Name p-value (p < 0.01) KS-Stat

Leader Acceleration 0.707 0.0487
Following Vehicle 2 Throttle Input 0.842 0.0426

Following Vehicle 3 Relative Distance 0.390 0.0627

TABLE II: Probability Distribution p-value and KS-Stat

of fit tests. Table II shows the KS-Stat and p-values for the

distributions plotted in Figures 8a-8f. We see in Table II that

the following vehicle 2’s throttle input variable fits the best

out of these variables, with a p-value of 0.842 and KS-Stat of

0.0426. The KS-Stat is the smallest in the table and indicates

the minimum deviation from the logistic distribution that is

fit to the variable. The following vehicle 3’s relative distance

variable is the worst fit, with a p-value of 0.390 and a KS-Stat

of 0.0627. We see in Figure 8e at the 20±30 input value range,

there is a deviation that the fitted stable distribution does not

entirely capture. However, as a whole, it captures enough of

the empirical information relatively well.

D. Sensitivity Results

The first-order results of the Sobol sensitivity analysis are

shown in Figure 9a. Figure 9b shows the coefficients relating

the inputs of the model to a given output. For Figure 9a, the

rows of the heat map show inputs and the columns are outputs.

A higher value in a cell indicates that the variable on that row

contributed substantially to the output in the corresponding

column. We note that many of the variables are not related

at all, which is indicated by a zero in a given heat map cell.

We note the strong diagonal, where each variable is highly

related to its previous value. This is due to the control system’s

feedback loop utilized within the model. We, therefore, expect

variables to be quite sensitive to changes in their own value,

which is shown by the strong diagonal pattern in the first-

order indices in Figure 9a. Another important feature is the

sensitivity of the linear velocity ramps. We once again see

that the coefficients on the linear model indicate that the

values of the velocity ramps are important to the value of

throttle input for following vehicle one and the acceleration

of the leader vehicle. This is again captured by the sensitivity

analysis, as the velocity ramps obtain first-order sensitivity

indices of 0.45 for the leader acceleration and 0.34 or 0.33
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Fig. 8: Probability distributions fit to empirical simulation data.

for the throttle input of the first following vehicle. While this

method provides valuable information about the importance of

parameters in the model, the Sobol method is computationally

expensive in terms of memory and time. As the number of

parameters in the model grows, the number of possible inputs

increases exponentially, which requires a large amount of

storage. This means we need an increasing number of samples

to sufficiently explore the parameter space, and we also have

to vary an exponentially increasing number of combinations.

In our experiments, the full model contains 21 parameters. We

estimate the compute time to run the Sobol sensitivity analysis

to take weeks to converge sufficiently. To make execution time,

tractable, we prune the parameter space selecting 9 parameters,

which reduces runtime to a few several hours. Selecting fewer

parameters does reduce the power of the Sobol analysis as not

all sensitivity indices have fully converged, but as the number

of parameters approaches the maximum, results fully converge.

V. RELATED WORKS

Le et al. [14] applies sensitivity analysis to autonomous

vehicle models in order to determine the effects on three

metrics they define. In particular, they investigate throughput,
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Fig. 9: Sensitivity of inputs/states (y-axis) to outputs (x-axis).

passenger safety, and comfort but do not investigate platooning

models and how communication may impact those systems.

Qiao et al. [15] apply global sensitivity analysis in order

to determine which parameters are important to traffic simu-

lation models in the domain of intelligent transportation. In

particular, they determine which parameters must be selected

carefully and which parameters may be discarded. The authors

stick to traffic topics specifically, such as lane change distance

and stop distance, within their study.

Monteil et al. [16] apply global sensitivity analysis to car-

following traffic models. The authors utilize global sensitivity

techniques to disregard insensitive parameters, but employ

other statistical techniques to perform parameter estimations.

While we both utilize global sensitivity analysis on a leader-

follower based model, the end goal of the analysis diverges

into different domains in intelligent transportation. The authors

apply their results to traffic modeling, while we apply our re-

sults to determine which parameters may need to be protected

in models from stale data.

VepsÈalÈainen et al. [17], and Fiori et al. [18] both utilize

Sobol sensitivity analysis techniques to understand which

parameters are highly important for energy consumption in

intelligent transportation. VepsÈalÈainen et al. [17], in particular,

investigate models concerning the energy utilization of buses

in the city. While we also apply Sobol sensitivity analysis to

vehicle models, we focus on the controls models for platooning

instead of energy modeling in our work.

Gallo et al. [19] investigate virtual coupling for variable

train composition by utilizing sensitivity analysis to determine

the effects of transport demand, passengers behavior, and

boarding trains. The authors seek to determine which parame-

ters should be modeled to higher fidelity. This work focuses on

which parameters need better protection from external effects.

Jha et al. [20] utilize a machine learning Bayesian fault

injector which seeks to find a safe situation that becomes

unsafe after a fault is injected. The authors must utilize

causal and counterfactual reasoning to estimate the behavior

of the autonomous driving system under the effects of a fault.

They inject faults into parameters such as the throttle and

observe how the autonomous driving system responds. We

also inject faults and observe whether an unsafe condition

occurs. We target platooning models in our analysis instead

of individual autonomous driving systems. Additionally, our

faults are modeled after the effects of stale data by continuing

with the last known valid value, while the authors of this work

directly modify the value of a parameter to a new value to

simulate a fault.

Pisu et al. [21] model faults in a platoon using cruise control

to maintain the distance between the vehicles. They implement

an observer to attempt to mitigate faults from the sensors. The

observer detects faults using the residual. While these authors

focus on detecting faults in sensors, we focus on injecting

faults and determining the magnitude of the effects. These

techniques may be helpful in the future to protect parameters

that we identify as sensitive.

VI. CONCLUSION

Overall, we can successfully implement our two analysis

methods in a method that allows intelligent transportation

models to be analyzed seamlessly. With the model that we

tested, we found that stale data can cause drastic negative

effects such as collisions with other vehicles through statis-

tical fault injection. Additionally, we saw the convergence of

the introduced error, but an initial deviation spike in some

parameters was ten times the value of the nominal simulation.

The global sensitivity analysis was also successfully able to

reflect the expected sensitivity of our simple linear model.

We additionally note that the Leader Acceleration and Fol-

lowing Vehicle 1Throttle Input parameters should have the

velocity ramps protected, as they are sensitive in particular

to those inputs. The rest of the values should primarily have

their feedback value protected, as they are most sensitive to

that value. The global sensitivity analysis provides valuable

information about models, but it is a resource-intensive method

both in terms of memory and computation time. Therefore, this



technique is best suited for evaluating models with smaller

sets of input parameters as with each increasing input, the

dimensions of the search space increase.
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