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Abstract—As autonomous systems become more integrated
into human lives, it is essential to ensure that they maintain
high levels of safety and reliability to prevent accidents or
injuries from occurring. One rapidly growing area is that of
autonomous vehicles. One common scenario for autonomous
vehicles is traveling down a roadway in a platoon or convoy. The
vehicles need to communicate data between them to maintain
their positions. However, unreliability in the network can lead
to missing or late arriving data, which forces the cars to use
stale data from earlier communications. This paper investigates
the effects of stale data on autonomous platooning models. In
particular, we investigate which parameters may need to be
protected by performing sensitivity analysis and analyzing how
the platooning model behaves in the presence of stale data. By
increasing the understanding of how the model behaves and
which input parameters are influential, algorithms can then
be developed to specifically target the characteristics of the
vulnerable systems.

Index Terms—stale data, sensitivity analysis, intelligent trans-
portation systems, fault tolerance

I. INTRODUCTION

In intelligent transportation, communication is utilized be-
tween multiple vehicles to maintain a fleet or platooning
structure. As autonomous vehicle systems grow more preva-
lent, safety and reliability concerns become increasingly im-
portant. Communication sensors, however, are vulnerable to
intermittent failure, especially in unstructured environments
such as rain, cold, snow, etc. [1]. In addition to sensor failure,
the vehicle system may also be subject to communication
attacks [2]. Whenever these effects occur on communication,
stale data may be injected into the models contained in the
vehicles. Stale data is data from a sensor that is not up-
to-date. When stale data is present, a model is forced to
compute on the last known correct values that it received,
as communication has failed. It is therefore important to
understand the effects imposed on transportation systems when
stale data is introduced. To study these effects, we desire that
our analysis technique is model agnostic, such that we do not
have to understand the in-depth details of each model. We
select two primary techniques to study the models.

The first technique that we employ is statistical fault in-
jection, which allows the modeling of stale data injections
into a model. Statistical fault injection is a classic technique
in determining the robustness of systems perturbing certain
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components/data in the system to emulate a failure [3]-[5].
After injecting failures into a test model, the qualitative effects
are measured, such as collisions of vehicles or deviations from
the ideal route in the domain. The error can also be measured
quantitatively by comparing the deviation of the simulation
with the injection to the nominal simulation. This error can
inform algorithm developers to design more robust solutions.

The second type of analysis that is performed is global
sensitivity analysis. Global sensitivity analysis allows for the
exploration of N-dimensional parameter space for a given
model [6]. Through the exploration of the parameter space,
the output behavior of the model is attributed to the inputs.
In particular, a ranking is determined for which inputs are
very influential to the sensitivity of the output of the model.
This analysis helps determine which parameters need extra
protection to increase the robustness and reliability of these
models in the future. By combining these analysis techniques,
it is possible to determine the impacts and magnitude of the
effects of stale data, as well as determine a plan to improve
the model safety in the future. This paper makes the following
contributions.

« Develops an injection methodology to emulate stale data
affecting a vehicle model in the Simulink environment.

o Performs analysis on the effects of injecting stale data
faults into the model simulation.

o Generates a framework to automatically fit empirical data
to probability distributions utilized in sensitivity studies.

« Evaluates the sensitivity analysis methodology on a ve-
hicle test model to determine parameters that may need
protection from stale data.

The rest of this paper is organized as follows. Section II
presents background on fault injection and Sobol sensitivity
analysis. We present and detail our sensitivity study, probabil-
ity fitting pipeline, and injection methodology in Section III.
Section IV evaluates and discusses the model behavior by
injecting stale data and performing a sensitivity analysis.
Section V discusses work related to the area of our study.
Finally, we conclude in Section VI.

II. BACKGROUND

A. Distribution Fitting

In order to encapsulate the characteristics of empirical data,
it is often important to fit a probability distribution to the data.
The probability distributions allow for the sampling of an input



space that can be used for applications such as sensitivity
analysis. This process is not straightforward, as the proba-
bility distribution must capture the details of the empirical
distribution so that it provides an accurate model of the data.
If the fitted distribution does not reflect the characteristics of
the experimental data, the results of the analysis could lead
to invalid conclusions. In order to determine if a probability
distribution fits a set of empirical data, a method named the
Kolmogorov—Smirnov test (KS-Test) can be utilized. The KS-
Test utilizes the empirical cumulative distribution function
(ECDF) of the empirical data, which is the total number of
observations at or before the current point in the distribution
divided by the total number of observations. The ECDF is
compared to the cumulative distribution function(CDF) of the
fitted distribution by the Kolmogorov-Smirnov statistic (KS-
Stat). The KS-Test has two hypotheses, the null hypothesis is
that the data follows a specified distribution, and the alternative
hypothesis is that the data does not follow that distribution.
The test statistic is defined by Equation 1 where Fy(x) is
the number of observations observed at or before the point x
divided by the total number of observations and F,.(X) is the
accumulated probability of the distribution we are testing for
fitting [7]. A smaller value of D indicates a better fit between
the ECDF and the fitted CDF. The D value is then compared to
the entry in the critical value table with the correct significance
level and the number of observations in the empirical data. If
the KS-Stat is less than the value in the table, then the null
hypothesis is accepted that the specified distribution is a good
fit for the data. If the KS-Stat is greater than the critical value,
the null hypothesis is rejected, and the alternative hypothesis is
accepted that the distribution does not fit. The KS-Test allows
for many distributions to be tested for a set of data to determine
a probability distribution that is well suited to the data.

D = max(Fo(X) — F.(X)) (D

B. Statistical Fault Injection

Statistical fault injection is classically utilized to determine
the dependability of an application or system when soft or
hard errors such as bit-flips or crashes occur in the system
[3]-[5]. When a fault occurs in a system, the nominal behavior
of the system is perturbed. It is essential to have the ability
to quantify not only the amount of error introduced by the
fault, but also understand the qualitative effects of the fault.
A fault injection campaign is performed by simulating the
numerous occurrences of fault injection trials, where for each
trial a unique fault is injected. Note that the behavior of a
simulated fault should try to fully capture the qualities of a
true fault for accurate analysis. Different types of faults may
be modeled, such as a bit-flip occurring when a cosmic particle
contacts computing hardware [3], [5] or when communication
fails, and a model must continue to utilize the last known
data. The reference behavior of the system is then compared
to the behavior observed while the fault injection campaign is
performed.

To quantitatively measure the effects of fault injection, we
primarily observe the absolute and relative error. These abso-
lute error gives the difference between the nominal simulation
and the perturbed simulation and provides information about
how much deviation has been introduced. The absolute error
through time also indicates behavior such as convergence or
divergence with respect to the error. It is important to under-
stand whether the system can recover and converge back to the
expected behavior, or if the system will diverge and become
unstable when an error occurs. The relative error provides
similar information as the absolute error but normalizes the
scale such that it is easier to understand the magnitude of
the error across the different scales of variables in systems.
The qualitative effects are often seen by creating visualizations
of the simulations with injected error. The qualitative effects
are often closely tied to the physical phenomena that are
represented by the application, such as a collision in a car
model due to error.

C. Sobol Sensitivity Analysis

Sensitivity analysis defines the decomposition of uncertainty
in the output of a model to the uncertainty in the inputs of
a model [8]. By decomposing the uncertainty of the model
and apportioning it to the inputs, a better understanding can
be obtained of how the model transfers changes in the input
to the output of the model. Ideal sensitivity analysis methods
can provide quantitative measures of uncertainty to the inputs,
such as variance [6]. The methods are also global and model-
free, which allows the model to be treated as a black box
and avoids assumptions such as model linearity and additive
models. One downside of obtaining a quantitative measure
is the cost of the analysis. Qualitative sensitivity analysis
such as the Morris method [9] converges to a result much
faster than variance-based sensitivity analysis such as the
Sobol method [8]. The Sobol method often requires a large
number of samples and computation resources to reach a result
but provides quantitative rankings, which the Morris method
cannot provide [6], [10].

Sobol sensitivity analysis is a technique within global
sensitivity analysis that is variance based. The overall output
variance of a model is attributed to the individual inputs and
their interactions together within the model. The calculation
is performed by varying individual variables to determine
the first-order effects, and then combinations of variables
to determine the higher-order effects. The first-order indices
and N-order indices are the metrics that Sobol sensitivity
defines to rank the importance of input factors [11], [12]. The
equations for the first-order and N-order indices are described
by Equation 3 and Equation 4. The D, term is the total
variance of the model, D; and D;..n are the variance of an
individual factor or combinations of factors, and S; is the
sensitivity index. The total order index provides a method to
calculate the contribution of a factor ¢ and all of its higher-
order contributions in one metric to reduce computational
complexity [11], [12]. In Equation 5, D; is the total variance,
Ex_,(D;(Y|X~;)) is the expected value of the variance of



all other variables and combinations in the model excluding
the variable we are evaluating. By subtracting from one, we
are left with the variance contribution of the ith variable.
This metric attributes a fraction of the total variance to a
given input or combination of inputs. The contributions of
each input are estimated by the decomposition of the model
given in Equation 2 where each summation term describes the
contribution of individual variables, two variables combined,
and so forth until the contribution of varying all variables is
calculated. By attributing the variance from input to output,
we obtain more understanding of the model’s behavior.

D(f) = ZDZ- + ZDij + Z D+ ...+ Dy,
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III. METHODS

The model analysis framework that we build consists of two
primary studies which provide information about the behavior
of the current model under test. The first analysis of statistical
fault injection provides information about the effects that occur
when stale data is injected into a simulation of the model.
The second analysis that is performed is global sensitivity
analysis, which is utilized to encapsulate information regarding
the importance of a given input to the output of the model.
In order to support the first analysis, an injection system is
built into the Simulink environment. The supporting systems
for global sensitivity analysis require the model simulation, the
generation of probability distributions to model the inputs, and
the actual global sensitivity calculations. The block diagram
detailing the workflow is shown in Figure 1 and Figure 2.
Figure 1 describes the entire pipeline for calculating sensitivity
coefficients by generating the empirical data, creating proba-
bility distributions from the data, utilizing the distributions
to sample the parameter space, and performing sensitivity
analysis on those samples. Figure 2 shows a more abstracted
view of this process, as we simply create the inputs and
treat the sensitivity analysis as a black box to produce the
coefficients. These two methods of analysis help identify
which parts of the model may need to be protected from effects
such as stale data.

A. Statistical Fault Injection Methods

In order to perform the fault injection into the models,
we must implement a process to emulate stale data and a
method to perform of stale data injections at various time
and locations. Since many vehicle models are simulated in
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Fig. 2: Black box view to calculate sensitivity coefficients.

the Matlab/Simulink environment, we implement a custom
Simulink block written in Matlab. The Simulink block is
placed on the input signals to a model in order to mock stale
data injections. The block enables injections to be performed at
any time-step in the simulation, which allows us to understand
how a stale data injection affects a model simulation. The
injection functionality also enables the stale data injection
to be repeated multiple times, which helps indicate if the
error continues to accumulate or if the error diminishes and
converges. The length of the injection is configurable such that,
once again, the convergence of the error can be determined.
The injection consists of forcing the model to continuously
compute the last known valid value from an input signal. This
coincides with the definition of stale data such that the model
no longer has access to the most updated information, whether
that is due to sensor failure or an attack on a communication
system.

B. Global Sensitivity Input Modeling

In order to perform the global sensitivity analysis on the
model that we are studying, the inputs for the sensitivity
analysis must be probability distributions. In order to gener-
ate probability distributions that are fed into the sensitivity
analysis framework, we utilize the data collected from the
nominal simulation of the model. We then employ automatic
probability distribution fitting to avoid performing analysis on



TABLE I: Supported Distributions in Probability Fitting
Framework

Supported Distributions

Exponential ExtremeValue
Gamma GeneralizedExtremeValue
GeneralizedPareto HalfNormal
InverseGaussian Logistic
Loglogistic Lognormal
Nakagami NegativeBinomial
Normal Poisson
Rayleigh Rician
Stable tLocationScale
Weibull Uniform

each individual input. We support the distributions that are
shown in Table L.

In order to determine whether a distribution is well suited to
the empirical data collected in the simulation, we first generate
the empirical CDF, which describes the exact probability of the
data collected as we accumulate samples from the empirical
data across the input range of the variable. We then check
through all of our supported distributions in Table I to deter-
mine which distribution best captures the characteristics of the
empirical data. The determination for which distribution fits
the best is performed with the Kolmogorov—Smirnov test (KS-
Test). The KS-Test finds the maximum distance between the
empirical distribution and the fitted distribution. We attempt to
minimize the KS-Test statistic, which is the maximal distance
between the fitted and the empirical distributions across the
set of distributions.

C. Global Sensitivity Sobol Sensitivity Analysis

In order to perform global sensitivity analysis, we select the
Sobol method, which allows the total variance in the model
to be decomposed such that it is attributed to the inputs. In
our work, we utilize the global sensitivity Matlab toolbox
named GSAT [11], [13]. The toolbox supports two different
sensitivity methodologies, Sobol sensitivity analysis, which
we utilize in this study, and Fourier Amplitude Sensitivity
Testing (FAST). We select the Sobol method due to the less
restrictive assumptions about the model, as FAST imposes
extra conditions (e.g. model smoothness). Moreover, the Sobol
method is a black box methodology, as seen in Figure 3. This
allows us to analyze and determine better methods to protect
models without having to know and understand the intricacies
of each individual model.

The Sobol method ingests the probability distributions for
each model input. The inputs are then sampled utilizing Monte
Carlo sampling based on the probabilities associated with the
variable obtaining a particular value. This allows us to better
capture the behavior of the model by ensuring that each input
is likely to take on values that occur frequently during model
simulations. Two sets of samples are generated, which allows
a base set to be utilized to capture the total variance of the
model. The capture of the baseline variance or total variance
of the model allows us to obtain a concise ranking of the
sensitive inputs at the end of the analysis. The variance of

each individual input is divided by the total variance, which
means every input gets a sensitivity ranking between zero and
one. Once the baseline variance is established with the initial
sample set, the decomposed variance calculations begin. In
particular, there are two types of calculations performed in
this section. The first type is a first-order calculation that
computes the variance of a single input variable by itself.
This is important as it provides an understanding of how
the model reacts if you change a single input value. The
second type of calculation that is performed encapsulates
the sensitivity of the interactions between multiple variables.
This provides an interpretation of how the model behaves
when multiple input values change simultaneously. All the
higher-order effects are calculated from just varying two inputs
simultaneously to varying all the inputs simultaneously. Once
the parameter space exploration is completed, the analysis
outputs the ranking of which variables are most sensitive to a
given output of the model. The Sobol method in the toolbox
supports models that have multiple output variables, which
allows a wider range of models to be tested. This case is
handled by running multiple sensitivity analyses in parallel.
The results from the global sensitivity simulation can then
be further utilized in the future to understand which input
parameters may need further protection from effects such as
stale data that we explored in the fault injection studies.
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Fig. 3: Black box methodology encapsulated within the Sobol
sensitivity analysis.

IV. EXPERIMENTAL RESULTS
A. Model Definition

For our experiments, we investigate a one-dimensional
platooning model that has a parameterizable number of ve-
hicles in the software environment. We run all experiments
using Simulink version 10.2 and Matlab 9.9 R2020b. In our
examples, we utilize four vehicles for the stale data injections
and perform the sensitivity analysis with two vehicles. A
visualization of the model under test is shown in Figure 4.
The model has a leader vehicle that sets the pacing of the
platoon. In particular, the leader vehicle has an absolute
position, velocity, and acceleration as its internal parameters.
The vehicles that follow the leader all contain the same set of
parameters and are essentially copies of the other following
vehicles. The following vehicles contain velocity, acceleration,
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Fig. 4: 1D platooning test model parameters for each vehicle
type and the communication pattern.

throttle input, and relative distance as their internal states.
The following vehicles attempt to maintain a specified relative
distance between themselves and the vehicle directly in front
of them. The controls systems regulate this distance by adjust-
ing the velocity, acceleration, and throttle input parameters.
The target relative distance in our experiments is set to the
value of 20 meters. The other two notable parameters for this
framework are the velocity ramps of the leader. The velocity
ramps are inputs to the model that ramp up the velocity of the
leader vehicle to set the velocity for the platoon formation.
The number of outputs for the model is a function of the
number of vehicles in the simulation and is described by the
following formula, Outputs = 3 + 4 * (NumVehicles — 1)
since the leader vehicle has 3 parameters and each following
vehicle has four parameters. Each individual output variable
is a linear model that performs a sum of products from the
inputs, where each input is multiplied by a coefficient set by
the control system. We run each simulation for 100 time-steps.

B. Statistical Fault Injection

We perform a statistical fault injection to further understand
the qualitative and quantitative effects of stale data imposed on
our model under test. Figure 5 shows an injection performed
into the velocity variable of the first following vehicle in a
model simulation. A 10-second-long injection is performed
at time-step 50 that forces the model to compute with the
last known valid value in the simulation. Once the stale data
injection is completed, we immediately see the model attempt
to perform a correction as the velocity signal swings rapidly
to adjust to the error that was just injected. One other effect
we see in Figure 5 is that the error eventually converges back
toward the nominal simulation in which no error occurs. This
is expected since the control system should damp out the error
eventually, but it is important to understand the effects that
occur quickly after the initial error injection. Figure 6a and
Figure6b show variables from the same simulation in which
stale data is injected into the velocity variable. We see, the
error propagates to the other vehicles states in the model as the
system tries to correct for the incorrect and erroneous behavior
of the vehicle suffering the stale data injection. However, the

w
@
(

w— Original
m— clelayInjected

w
S

n N
o @

Velocity (m/sZ)
o

o

&

. . | .
0 20 40 60 80 100
Time (secs)

Fig. 5: Deviation of the velocity after a stale data injection.

— original — original
2 = delayinjected | e delayinected

Velocity (m/s?)
&
Velocity (m/s?)

~o 20 40 60 80 100 0 20 40 60 80 100
Time (secs) Time (secs)

(a) Velocity. (b) Acceleration.

Fig. 6: Propagation and deviation of stale data between two
variables. Fault injection occurs in Velocity.

magnitude of the error decreases as the number of vehicles
between the one suffering the stale data injection increases.
Once again, we see the control system eventually converging
and reducing the error in the states. Figure 7a and Figure 7b
show the relative error across the vehicles once the stale data
injection is performed in the first vehicle at time-step 50. Once
again, we note the converging error and the reduction in error
propagated backward through the vehicles. In Figure 7a, we
see a very large impact on the first vehicle’s relative position,
reaching a relative error of 10 or an error ten times the
measurement of the nominal simulation value. This is a very
large error deviation and provides a substantial effect on the
shape and safety of the platoon. The velocity variable receives
less overall relative error and only reaches a value of one for
the relative error of the first following vehicles (where the
error is injected). The largest effect is seen in the position of
the vehicles when the stale data injection is performed.

C. Distribution Fitting

In order to properly model the inputs for global sensitivity
analysis, we fit probability distributions to our empirical
simulation data by utilizing the KS-test. Figures 8a-8f show
the fit CDF distributions to the empirical CDF distributions
and the corresponding PDF function. Based on all the CDF
figures, we see that the empirical data’s characteristics are well
encapsulated. The empirical data cumulative distributions have
some slight variations compared to the fitted distributions, but
the deviations are small enough that they pass the goodness
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Variable Name p-value (p < 0.01)  KS-Stat

Leader Acceleration 0.707 0.0487
Following Vehicle 2 Throttle Input 0.842 0.0426
Following Vehicle 3 Relative Distance 0.390 0.0627

TABLE II: Probability Distribution p-value and KS-Stat

of fit tests. Table II shows the KS-Stat and p-values for the
distributions plotted in Figures 8a-8f. We see in Table II that
the following vehicle 2’s throttle input variable fits the best
out of these variables, with a p-value of 0.842 and KS-Stat of
0.0426. The KS-Stat is the smallest in the table and indicates
the minimum deviation from the logistic distribution that is
fit to the variable. The following vehicle 3’s relative distance
variable is the worst fit, with a p-value of 0.390 and a KS-Stat
of 0.0627. We see in Figure 8e at the 20-30 input value range,
there is a deviation that the fitted stable distribution does not
entirely capture. However, as a whole, it captures enough of
the empirical information relatively well.

D. Sensitivity Results

The first-order results of the Sobol sensitivity analysis are
shown in Figure 9a. Figure 9b shows the coefficients relating
the inputs of the model to a given output. For Figure 9a, the
rows of the heat map show inputs and the columns are outputs.
A higher value in a cell indicates that the variable on that row
contributed substantially to the output in the corresponding
column. We note that many of the variables are not related
at all, which is indicated by a zero in a given heat map cell.
We note the strong diagonal, where each variable is highly
related to its previous value. This is due to the control system’s
feedback loop utilized within the model. We, therefore, expect
variables to be quite sensitive to changes in their own value,
which is shown by the strong diagonal pattern in the first-
order indices in Figure 9a. Another important feature is the
sensitivity of the linear velocity ramps. We once again see
that the coefficients on the linear model indicate that the
values of the velocity ramps are important to the value of
throttle input for following vehicle one and the acceleration
of the leader vehicle. This is again captured by the sensitivity
analysis, as the velocity ramps obtain first-order sensitivity
indices of 0.45 for the leader acceleration and 0.34 or 0.33

4 -3 2 1 0 1 2 3 4 -4 -3 2 1 0 1 2 3 4
Input Variable Ranae Input Variable Ranae

(a) Following Vehicle 1 Acceler- (b) Following Vehicle 1 Acceler-
ation CDF. ation PDF.

0.18
—— Empirical CDF — Logistic PDF
0.9 | e Logistic CDF

0.16

0.14

0.12

Probability
-
s 8
S e
g 2

s o
g
Probability

8

0.04

8 6 -4 2 0 2 4 6 8 8 6 -4 2 0 2 4 6 8
Input Variable Ranae Input Variable Ranae

(c) Following Vehicle 2 Throttle (d) Following Vehicle 2 Throttle
Input CDE. Input PDE.

7 0.05

PDF
0.045

0.04

0.035

°
>

5 0.03

10025
}

Probability
o o
&

2

© 002
0015
0.01

0.005

0
10 15 20 25 30 35 40 45 50 55 0 15 20 25 30 35 40 45 50
Input Variable Range Input Variable Ranae

(e) Following Vehicle 3 Relative (f) Following Vehicle 3 Relative
Distance CDF Distance PDF.

Fig. 8: Probability distributions fit to empirical simulation data.

for the throttle input of the first following vehicle. While this
method provides valuable information about the importance of
parameters in the model, the Sobol method is computationally
expensive in terms of memory and time. As the number of
parameters in the model grows, the number of possible inputs
increases exponentially, which requires a large amount of
storage. This means we need an increasing number of samples
to sufficiently explore the parameter space, and we also have
to vary an exponentially increasing number of combinations.
In our experiments, the full model contains 21 parameters. We
estimate the compute time to run the Sobol sensitivity analysis
to take weeks to converge sufficiently. To make execution time,
tractable, we prune the parameter space selecting 9 parameters,
which reduces runtime to a few several hours. Selecting fewer
parameters does reduce the power of the Sobol analysis as not
all sensitivity indices have fully converged, but as the number
of parameters approaches the maximum, results fully converge.

V. RELATED WORKS

Le et al. [14] applies sensitivity analysis to autonomous
vehicle models in order to determine the effects on three
metrics they define. In particular, they investigate throughput,
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passenger safety, and comfort but do not investigate platooning
models and how communication may impact those systems.

Qiao et al. [15] apply global sensitivity analysis in order
to determine which parameters are important to traffic simu-
lation models in the domain of intelligent transportation. In
particular, they determine which parameters must be selected
carefully and which parameters may be discarded. The authors
stick to traffic topics specifically, such as lane change distance
and stop distance, within their study.

Monteil et al. [16] apply global sensitivity analysis to car-
following traffic models. The authors utilize global sensitivity
techniques to disregard insensitive parameters, but employ
other statistical techniques to perform parameter estimations.
While we both utilize global sensitivity analysis on a leader-
follower based model, the end goal of the analysis diverges
into different domains in intelligent transportation. The authors
apply their results to traffic modeling, while we apply our re-
sults to determine which parameters may need to be protected
in models from stale data.

Vepsildinen et al. [17], and Fiori et al. [18] both utilize
Sobol sensitivity analysis techniques to understand which
parameters are highly important for energy consumption in
intelligent transportation. Vepséldinen et al. [17], in particular,
investigate models concerning the energy utilization of buses
in the city. While we also apply Sobol sensitivity analysis to
vehicle models, we focus on the controls models for platooning
instead of energy modeling in our work.

Gallo et al. [19] investigate virtual coupling for variable
train composition by utilizing sensitivity analysis to determine
the effects of transport demand, passengers behavior, and
boarding trains. The authors seek to determine which parame-
ters should be modeled to higher fidelity. This work focuses on
which parameters need better protection from external effects.

Jha et al. [20] utilize a machine learning Bayesian fault
injector which seeks to find a safe situation that becomes
unsafe after a fault is injected. The authors must utilize
causal and counterfactual reasoning to estimate the behavior
of the autonomous driving system under the effects of a fault.
They inject faults into parameters such as the throttle and
observe how the autonomous driving system responds. We
also inject faults and observe whether an unsafe condition
occurs. We target platooning models in our analysis instead
of individual autonomous driving systems. Additionally, our
faults are modeled after the effects of stale data by continuing
with the last known valid value, while the authors of this work
directly modify the value of a parameter to a new value to
simulate a fault.

Pisu et al. [21] model faults in a platoon using cruise control
to maintain the distance between the vehicles. They implement
an observer to attempt to mitigate faults from the sensors. The
observer detects faults using the residual. While these authors
focus on detecting faults in sensors, we focus on injecting
faults and determining the magnitude of the effects. These
techniques may be helpful in the future to protect parameters
that we identify as sensitive.

VI. CONCLUSION

Overall, we can successfully implement our two analysis
methods in a method that allows intelligent transportation
models to be analyzed seamlessly. With the model that we
tested, we found that stale data can cause drastic negative
effects such as collisions with other vehicles through statis-
tical fault injection. Additionally, we saw the convergence of
the introduced error, but an initial deviation spike in some
parameters was ten times the value of the nominal simulation.
The global sensitivity analysis was also successfully able to
reflect the expected sensitivity of our simple linear model.
We additionally note that the Leader Acceleration and Fol-
lowing Vehicle 1Throttle Input parameters should have the
velocity ramps protected, as they are sensitive in particular
to those inputs. The rest of the values should primarily have
their feedback value protected, as they are most sensitive to
that value. The global sensitivity analysis provides valuable
information about models, but it is a resource-intensive method
both in terms of memory and computation time. Therefore, this



technique is best suited for evaluating models with smaller
sets of input parameters as with each increasing input, the
dimensions of the search space increase.
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