
Exploring the Impacts of Software Cache

Configuration for In-line Compressed Arrays

Sansriti Ranjan, Dakota Fulp, and Jon C. Calhoun
Holcombe Department of Electrical and Computing Engineering, Clemson University Clemson, USA

Email: { sansrir, dakotaf, jonccal}@clemson.edu

AbstractÐIn order to compute on or analyze large data
sets, applications need access to large amounts of memory. To
increase the amount of physical memory requires costly hardware
upgrades. Compressing large arrays stored in an application’s
memory does not require hardware upgrades, while enabling the
appearance of more physical memory. In-line compressed arrays
compress and decompress data needed by the application as it
moves in and out of it’s working set that resides in main memory.
Naive compressed arrays require a compression or decompression
operation for each store or load, respectively, which significantly
hurts performance. Caching decompressed values in a software
managed cache limits the number of compression/decompression
operations, improving performance. The structure of the software
cache impacts the performance of the application. In this paper,
we build and utilize a compression cache simulator to analyze
and simulate various cache configurations for an application.
Our simulator is able to leverage and model the multidimen-
sional nature of high-performance computing (HPC) data and
compressors. We evaluate both direct-mapped and set-associative
caches on five HPC kernels. Finally, we construct a performance
model to explore runtime impacts of cache configurations. Results
show that cache policy tuning by increasing the block size,
associativity and cache size improves the hit rate significantly for
all applications. Incorporating dimensionality further improves
locality and hit rate, achieving speedup in the performance of an
application by up to 28.25%.

Index TermsÐin-line compression, compressed arrays, lossy
compression, big-data, software cache, cache configuration

I. INTRODUCTION

Large-scale high-performance computing (HPC) applica-

tions generate large amounts of output data [1], [2]. To

analyze the output, applications need large amounts of DRAM.

Analyzing a large run on a few nodes or running a large run

on a small system is infeasible due to not enough on-node

physical memory to process the data. Using more nodes or

upgrading the amount of physical memory per-node is costly.

Compression helps to reduce the output storage require-

ments for an application and can help shrink the memory

footprint of a running application [3]. Integrating compression

inside an application to shrink the application’s footprint

is called in-line compression. A compressed array/vector is

used exactly like a standard array/vector. However, when the

application needs to access a data value from a compressed

array, the data must first be decompressed. Similarly, when

we need to write to a compressed array, the data must be

compressed before the store occurs. Naive in-line compres-

sion requires a compression/decompression operation for each

memory access, hurting the performance of the application.

Moreover, depending on how the array is compressed, each

decompression operation might need to fully decompress the

array to load a single value. Repeated requests for the same

data or data from a nearby element results in additional

decompression operations.

Caching the decompressed values in a software managed

cache limits the number of compression and decompression

operations. The configuration of this cache can significantly

impact application performance [4]. As applications differ in

their access patterns, the effectiveness of a cache configuration

changes. As the need for in-line compression grows, config-

uring the software cache involves turning several parameters

through trial-and-error or not at all.

To aid in configuring in-line compressed array caches, this

paper presents a tool to profile the memory access pattern of

an application and to simulate various cache configurations to

determine the best configuration. Our tool works for both lossy

and lossless compressed arrays that use caching. Moreover, our

tool leverages common HPC compressor design philosophies

such as data dimensionality and decomposing a dataset into

small fix-sized blocks.

Specifically, we make the following contributions:

• Construct a cache simulator that predicts the performance

of in-line lossy and lossless compressed arrays configu-

rations.

• Devise a performance model to predict the expected

execution time of an application.

• Incorporate dimensionality of the array and the decom-

position method of the compressor to reduce the number

of decompression operations on the critical path and

improve the spatial locality of in-line compressed arrays.

• Demonstrate how cache parameterization and access pat-

terns impacts the performance of the application.

The rest of the paper is as follows. In Section II, we

describe the background and related work. Section III

describes our methodology and design of our cache simulator.

It also explains the design decisions and modeling undertaken

for the simulator. Section IV describes the experimental setup

and results. Finally, Section V summarizes the results and

describes our future work.



II. BACKGROUND AND RELATED WORK

A. Caching

Caching is a method for reducing the impact of data

movement by keeping data needed for the computation in

fast memory. Previous work explores the use of hardware

compression to expand the size of hardware caches and

main-memory [5]±[12] or caching at the software level [13]±

[16]. Software caches have also been used to improve I/O

performance for distributed applications [17], [18], and to

cache the input data for parallel tasks [19], [20]. Two popular

types of cache are:

Direct Mapped Cache: Cache where each address maps

to exactly one location. To determine if a value is present,

the address is hashed, yielding a location inside the cache.

Provided the entry is valid and the address tag matches, the

value is found in the cache. Storing a single value in each

cache block enables many dispirit addresses to be stored in

the cache. However, such a design does not leverage spatial

locality. To improve spatial locality, the size of each cache

block can grow to hold several spatially close addresses. The

simple mapping logic enables fast access, but as the block

size grows, fewer dispirit addresses are present, which can

lower temporal locality. Moreover, if two addresses map to

the same cache location, an eviction occurs and the evicted

block is replaced by a new block containing the address of

the load/store.

Set Associative Cache: Improves over a direct mapped

cache by allowing multiple cache blocks at each location (set).

A k-way set associative cache has k blocks in each set. To

determine if a value is present in the cache, the address is

partitioned into 3 bit fields: tag, index, and offset. The index

determines what set the address maps to. The tag along with

a dirty bit is used to determine if the address is within any

block in the set. Finally, the offset is used to locate the address

location inside the identified block.

B. Compressors

While many lossy compression frameworks do not enable

random access into the compressed data, one notable exception

is ZFP’s fixed-rate error-bounding mode [21]. ZFP’s fixed-

rate mode splits the data into 4d sized blocks, where d is

the dimensionality of the data, and compresses each block

individually to achieve a user-specified desired bit-rate. Using

ZFP compressed arrays enables the application to compute on

datasets that exceed the capacity of main-memory.

This approach enables users to access individual data values

without decompressing the entire data, only the 4d block

containing the values. As decompressing and compressing

blocks for each read and write operation is cost-prohibitive,

this framework also includes a small direct-mapped software

cache that stores decompressed data blocks. This cache uses

a write-back policy with a dirty bit stored with each cache

block to avoid unnecessary recompression of data blocks that

the application has not altered. Not recompressing unaltered

data blocks saves time and ensures the data fidelity is not

impacted unnecessarily. While their cache size is configurable,

the default size accommodates two layers of data blocks for the

x-dimension, which the ZFP developers found to yield high-

performance. Prior work shows that tuning the parameters of

ZFP’s software cache yield a performance improvement of up

to 8% [4].

Other compressors such as SZ [22] have a random access

mode but do not support caching. Moreover, any lossy or

lossless compressor has random access capability if the data is

first ªchunkedº and the compressor applied to each chuck inde-

pendently. Integrating a software cache into these compressors

will make them more amenable for in-line compressed arrays.

The cache simulator we present in this paper is useful for

exploring performance aspects related to the integration.

III. IN-LINE COMPRESSED ARRAYS CACHE SIMULATOR

In-line compressed arrays compresses and decompresses

data when needed, giving the appearance of larger memory

capacity. If a cache is present, it is on the critical path;

therefore, configuration is important. Larger caches have larger

search times. Prior work shows that the cache’s configuration

can improve performance by up to 8% for matrix-matrix

multiplication [4]. To improve the performance of in-line

compression, decompressed values can be stored in a software

managed cache. When configuring the cache one must set

several parameters such as total size, block size, replacement

policy, associativity level.

Traditional hardware caches have a linear view of main

memory and only exploit spatial locality in a single dimension

through the memory addresses. When operating on an array

that is compressed, the compressor knows additional pieces

of information about the array (e.g. dimensionality, data type).

This additional information is leveraged during compression to

yield higher levels of reduction. For example, both SZ [22] and

ZFP [21], two popular HPC lossy compressors, decompose

multidimensional data into small multidimensional blocks (e.g.

ZFP block size is 4d, where d is the dimensionality) and

processes each block individually. If the compressed array’s

cache is not aware of this decomposition, then performance

suffers as only a subset of each compressor’s block is placed in

each of the cache’s block. The remaining decompressed values

are discarded. To finish filling the cache block, additional de-

compressions are necessary. Figure 1 illustrates this limitation.

Moreover, for certain access patterns (e.g. walking down a

column), this leads to additional decompressions, negating the

benefits of caching. If we leverage multidimensional caching

and map the full compressor block into a cache block, we only

require one decompression for each cache miss and improve

spatial locality for certain access patterns.

To more easily configure caches in compressed arrays, we

develop a cache simulator that takes in an address trace from

an application and processes the sequence of loads/stores

on various cache configurations that incorporates knowledge

from the compressors to determine what configuration yields



Compressor Block 0

Compressor Block 1

Cache
Block 0

Cache
Block 1

Cache
Block 2

Cache
Block 3

Compressor Block 2

Compressor Block 3

Cache Block 2 Cache Block 3

Cache Block 0 Cache Block 1

Linear Caching Multidimensional 
Caching

Fig. 1: Caching of a 4×4 array. Each cache block (dashed

lines) houses 4 elements of the array. The compressor decom-

poses the data into 2×2 blocks.

Application Address 
Trace

MetricsRun 
Application

Run Cache 
Simulation

Fig. 2: Overview of our cache simulator workflow.

the best performance. Figure 2 shows an overview of this

workflow.

A. Address Trace Generation

As HPC applications progress, they read and write data at

various memory locations. HPC applications differ in their ac-

cess patterns, which in turn can lead to performance variability.

To ensure that we select the best cache for an application

and to avoid the need to run an application multiple times,

we extract an address trace for the variables allocated as

compressed arrays. We accomplish this via instrumenting the

code to first log the base address of each in-line compressed

array along with the data type, dimensionality, and compressor

properties such as block size. Then, for each memory access,

we log the tuple: (load/store, variable name, address)1. In

the tuple, the address logged is that of the array element

loaded. When the base address and the dimensions of the

array are run through our cache simulator, we transform

the linear memory address into a multidimensional index.

The multidimensional index enables us to determine what

compression block the array element maps to. Alternatively,

at the expense of larger address trace files, we record the

array indices in the tuple directly to reduce the computational

requirements of the simulator. Having the address trace allows

1We do not record the value loaded as it has no bearing on the sequence
of loads/stores.

us to readily parallelize the evaluation process for each cache

configuration.

B. Cache Simulator

Given an address trace from an application, our cache

simulator replays the sequence of loads/stores and quantifies

the expected performance. Because an application may con-

tain multiple compressed arrays, each with different access

patterns, we explore two types of caching for compressed

arrays. The first involves a unified cache that is shared between

multiple compressed arrays. The second is a dedicated cache

for each compressed array.

The first approach limits the memory overhead of caching.

This approach is useful for applications that operate on one

or a few compressed arrays at a time. For a fixed size

cache, as the number of compressed arrays in the working

set increases, so too does the likelihood for conflicts and

cache misses. The second approach is designed for situations

where multiple compressed arrays are used at the same time.

With each compressed array having its own private cache, the

likelihood of conflicts inside the caches diminishes. Moreover,

the configuration of each cache is tunable.

To configure each cache, our cache simulator needs several

parameters. The first four parameters are: the data type of the

array’s elements, the cache’s size (bytes), the size of each

cache block (bytes), and the set associativity level of the

cache2. For compressors that decompose the array into blocks

when compressing, the cache’s block size should mirror that of

the compressor and the cache’s blocks need to be multidimen-

sional (see Figure 1). Setting the block size this way enables

the cache block to house all the elements decompressed at the

same time, providing spatial locality in multiple dimensions,

which results in fewer decompression operations and improves

performance.

After the block size is defined, the number of sets in the

cache is computed by dividing the cache size by the size of

each set (cache block size multiplied by the associativity level).

Figure 3 shows an example of direct-mapped and a k-way set

associative cache. Finally, the cache’s replacement policy is

set. For this work, we use least recently used (LRU), but other

policy can be leveraged.

Once all the caches are constructed, the simulator processes

the address trace. Each load and store is directed to the appro-

priate cache. From the address, we determine the compressor

block in which the address resides. That block information

determines which set inside the cache to search in. For each

block inside the identified set, we attempt to match the tag.

For univariate caches, the tag is the block ID. For multivariate

caches, the tag is the block ID and an ID corresponding to

the allocation. If the block is found, a hit occurs. However,

if the block is not found, a miss occurs. The compressor

block containing the needed value must be decompressed and

placed into the cache. For the block that is evicted from the

cache, compression occurs before it is stored to main-memory.

2For a direct-mapped cache, the set associativity level is k = 1.



Way 0

Way 1

Way k

Se
t 0

Se
t 1

Se
t 2

Se
t n

k-way Set 
Associative Cache 

Set 0

Set 1

Set n

Direct Mapped Cache

Fig. 3: Diagram of direct-mapped and a k-way set associative

cache.

However, since our simulator is data and compressor agnostic,

we model the cost of compression and decompression (see

Section III-C).

C. Performance Model

As the address trace is being processed via our cache simu-

lator, the simulator computes various performance metrics. We

use these performance metrics in Section IV to determine how

cache parameterization impacts performance across several

HPC kernels.

The two primary metrics that are collected are the number

of cache hits, nHit, and cache misses, nMiss. From these

values, we compute the hit-rate, RH , and miss-rate, RM , as

follows:

RH =
nHit

nHit+ nMiss
(1)

RM = 1−RH (2)

Each hit results in fast retrieval of the requested datum.

However, when a miss occurs, the block containing the re-

quested value is decompressed and placed into the cache and

the evicted block is compressed and written back. Thus, having

a high hit-rate is indicative of good performance.

To better understand the performance differences between

configurations, we compute the time cost for processing the

trace. We model the time for a hit in the cache as:

TH = tid + tsearch + tfetch, (3)

where tid is the time cost to determine the block ID given

an address, tsearch is the time to search a set, and tfetch is

the time to retrieve the datum and return it to the user. The

computation for each is rather small, with the tid calculation

taking the longest, due to several integer arithmetic operations.

The searching cost, tsearch, involves a comparison of the tag,

and grows as the associativity level of the cache grows. The

fetch time, tfetch, is that of loading a datum from memory

into a register.

The cost of a miss is more substantial. A miss contains

all the cost of a hit, but also incurs additional costs due

TABLE I: Problem Size for Applications

Name Problem Size Number of Loads Number of Stores

Dijkstra 1000 nodes 1000091 2000941

FFT 10
10 3543380 6726400

Jacobi 1000×1000 24928052 32400013
Matmul 1000×1000 2502500 7497500
SpMV 1000×1000 1602296 1901001

to compression and decompression. If spare computational

resources are available, compressing the evicted block is

removed from the critical path (done asynchronously in the

background) as it is not needed to satisfy the outstanding load

by the application, leading to the following:

TM = TH + tdecompress. (4)

Combining our metrics, we obtain the total time cost of

memory operations for the compressed array:

Ttot = nHit · TH + nMiss · TM . (5)

For applications making use of multiple caches, we compute

the overall application time as the sum of Ttot for each cache.

IV. EXPERIMENTAL RESULTS

A. Testing Methodology

To explore the performance impact of cache configuration

on compressed arrays, we run five HPC kernels detailed in

Table I. Experiments are run on Clemson’s Palmetto Cluster,

and we test direct-mapped, 2-way set associative, and 4-way

set associative caches. Cache sizes range from 0.01 MB to

0.1 MB and block sizes vary between 8 B and 32 B.

B. Impact of Block Size and Set-Associativity in a 1D Cache

Configuration

The five HPC kernels are first run with different cache

configurations where the cache size, block size and associa-

tivity of the cache is varied. The kernels are run with the

dimensionality of the cache as linear and a dedicated cache

for each compressed array.

Figure 4(a)±(c) shows the hit rate vs the block size for the

five kernels for a cache size of 0.01 MB. We see that when

increasing the block size for all values of k, the hit rate in-

creases. This is because as the size of a single block increases,

more elements of the array are stored in it, improving the

spatial locality and the hit rate. FFT and Matmul have a hit

rate which is very high (0.99) while Jacobi has a significantly

low rate (0.67-0.82).

While both Matmul and Jacobi have the same problem size,

but Jacobi has many more loads/stores due to its iterative

nature, allowing it to run for a user defined iteration number

before terminating. Matmul performs better than Jacobi due

to the difference in the access patterns between the two

applications. While Matmul accesses each matrix either by

row or by column, Jacobi’s pattern is based on its stencil. For



8 16 32
Block Size (B)

0.0

0.2

0.4

0.6

0.8

1.0

H
it 

R
at

e

Dijkstra
FFT
Jacobi
Matmul
SpMV

(a) Direct Mapped.

8 16 32
Block Size (B)

0.0

0.2

0.4

0.6

0.8

1.0

H
it 

R
at

e

Dijkstra
FFT
Jacobi
Matmul
SpMV

(b) Two-way Set
Associative.

8 16 32
Block Size (B)

0.0

0.2

0.4

0.6

0.8

1.0

H
it 

R
at

e

Dijkstra
FFT
Jacobi
Matmul
SpMV

(c) Four-way Set
Associative.

8 16 32
Block Size (B)

0.0

0.2

0.4

0.6

0.8

1.0

H
it 

R
at

e

Dijkstra
FFT
Jacobi
Matmul
SpMV

(d) Direct Mapped.

8 16 32
Block Size (B)

0.0

0.2

0.4

0.6

0.8

1.0

H
it 

R
at

e

Dijkstra
FFT
Jacobi
Matmul
SpMV

(e) Two-way Set
Associative.

8 16 32
Block Size (B)

0.0

0.2

0.4

0.6

0.8

1.0

H
it 

R
at

e

Dijkstra
FFT
Jacobi
Matmul
SpMV

(f) Four-way Set
Associative.

Fig. 4: Impact of Block Size and Associativity on 1D Caching. (a)±(c) uses a cache size of 0.01MB. (d)±(f) uses a cache size

of 0.1MB.

example, the 5-point stencil requires data from three rows: 1

element from the previous row, 3 elements from the current

row, and 1 element from the next row. Needing three rows of

values means that the probability that all the elements to be

accessed are present in the cache is lower for the same cache

size. Thus, the lower hit rate. However, increasing the block

size increases the number of elements present in the cache

block by the same factor, improving spatial locality.

Increasing the associativity increases the number of cache

blocks within the same set, and decreases the chance for

evictions due to aliasing. Furthermore, the probability that all

elements to be accessed are present in the cache increases,

leading to increases in the hit rate evident in Figure 4(b)±(c).

Yet, the increase in hit rate of Jacobi compared to Matmul is

low due to Jacobi’s access pattern. For all the applications, by

increasing the cache size to include a greater number of cache

blocks, the hit rate improves, as we see in Figure 4(d)±(f).

C. Sensitivity of 2D Cache Configuration

All five kernels except SpMV can utilize multidimensional

caching. SpMV has linear accesses throughout. This is because

our SpMV kernel uses co-ordinate format (COO) to represent

the sparse matrix as three 1D vectors of the row index, column

index, and value of each of the non-zero entries. Thus, all the

arrays for the kernel are 1D and are not able to take advantage

of multidimensional caching.

For the remaining kernels, the 2D cache configuration is

able to leverage the access patterns and spatial locality to

improve performance. For example, Matmul multiples two

matrices A and B together. A is accessed row-wise (elements

are adjacent in memory and yield a high hit rate). B is

accessed column-wise (elements are nonadjacent in memory

and yields a low hit-rate with 1D). However, with the 2D

configuration, multiple column entries are brought into the

cache, improving the hit rate. Moreover, using a dedicated

cache approach is useful to ensure the appropriate locality is

maximized, improving the hit rate.

The four remaining kernels are first run to generate the

address trace where the array indexes are configured in 2D.

After address trace generation, the trace is run with the

simulator where the cache size, block size and associativity

is tuned based on the testing methodology. Figure 5 shows

that increasing the block size from 8 to 32 improves the hit

rate similarly to the 1D cache configuration (see Figure 4).

Furthermore, increasing the associativity further increases the

hit rate as the number of blocks in each set increases, reducing

the evictions due to aliasing. FFT and Matmul do not show

any significant improvement in hit rate as the cache size and

2D configuration is sufficient for their respective problem

sizes, leading to a 0.99 hit rate. Dijkstra and Jacobi improve

significantly on increasing the associativity. Increasing the

cache size yields a very high hit rate in all the kernels

because the larger cache size is able to house more of the

array elements. Again, as associativity level increases, aliasing

evictions decreases.

The most important point to note here is that in going

from 1D Caching to 2D Caching, all the applications improve

in their hit rate. Multidimensional caching therefore enables

faster access to the data, which helps improve the performance

of the application. This is attributed to the speedup achieved

by having the block of array elements easily accessible in

the cache in its decompressed form (as the blocks are ac-

cessed in the same manner as the compressor). We explore

the performance implications of multidimensional caching in

Section IV-D.

D. Performance Implications

From the experimental results of the cache simulator, tuning

the parameters of a cache and its dimensionality improves the

hit rate for all applications when the application is run with

inline compression. Yet, to understand how this caching tran-

sitions into an improvement in performance of the application,

the time taken with and without multidimensional caching is

computed. Using the performance model from Section III-C,

we compute the time taken for all combinations of cache size,

block size, associativity, and dimensionality.

Figure 6 displays the speedup achieved over 1D caching

for each of the applications based on the metrics hit rate, miss

rate and the cache parameters. For this performance model, we

select a cache size of 0.1MB and a block size of 32. We choose

this configuration because it gave the best performance across

all applications. It is evident that there is considerable speedup

for all the applications when using a multidimensional cache.

Dijkstra shows the highest speedup with 28.25%, followed by

Matmul (24.17%), Jacobi (12.95%), and FFT (12%). These

improvements are in accordance with the hit rate improvement

seen in 2D caching for these application in Figures 5(d)±(f).

Jacobi shows a considerable amount of speedup based on its

access pattern, needing data from multiple rows and columns.

2D caching results in increased spatial locality and an increase

in hit rate, enabling it to reduce the time taken to run.



8 16 32
Block Size (B)

0.0

0.2

0.4

0.6

0.8

1.0

H
it 

R
at

e

Dijkstra
FFT
Jacobi
Matmul

(a) Direct Mapped.

8 16 32
Block Size (B)

0.0

0.2

0.4

0.6

0.8

1.0

H
it 

R
at

e

Dijkstra
FFT
Jacobi
Matmul

(b) Two-way Set
Associative.

8 16 32
Block Size (B)

0.0

0.2

0.4

0.6

0.8

1.0

H
it 

R
at

e

Dijkstra
FFT
Jacobi
Matmul

(c) Four-way Set
Associative.

8 16 32
Block Size (B)

0.0

0.2

0.4

0.6

0.8

1.0

H
it 

R
at

e

Dijkstra
FFT
Jacobi
Matmul

(d) Direct Mapped.

8 16 32
Block Size (B)

0.0

0.2

0.4

0.6

0.8

1.0

H
it 

R
at

e

Dijkstra
FFT
Jacobi
Matmul

(e) Two-way Set
Associative.

8 16 32
Block Size (B)

0.0

0.2

0.4

0.6

0.8

1.0

H
it 

R
at

e

Dijkstra
FFT
Jacobi
Matmul

(f) Four-way Set
Associative.

Fig. 5: Impact of 2D Caching. (a)±(c) uses a cache size of 0.01MB. (d)±(f) uses a cache size of 0.1MB.

1.0 2.0 4.0
Way

0

5

10

15

20

25

30

35

Sp
ee

du
p 

(%
)

Dijkstra
FFT
Jacobi
Matmul

Fig. 6: Application speedup with 2D caching compared to 1D

caching.

E. Unified Versus Individual Caches

Table II compares the hit rate between a unified cache

approach for each application and an approach where there

is an individual cache for each of the compressed arrays. We

parameterize the performance model with a cache size of 0.1

MB, block size of 32 and four-way associativity for a 2D

cache except for SpMV which uses 1D caching. We select this

configuration because it gives the best performance across all

applications. Investigating how each application performs, we

see that for all applications, using an individual cache always

gives better performance. This is because having individual

caches enables these applications to have a higher hit rate

by increasing the probability of data to be accessed already

present in the cache. From the table we see that Dijkstra,

FFT and SpMV comparatively benefit from individual caches

while Matmul and Jacobi show the same hit rate for both

approaches and can utilize both the approaches. Applications

which utilize multiple compressed arrays simultaneously need

an individual cache for each array because using a unified

cache increases collisions. However, applications that operate

on a single array at a time can utilize a unified cache without

the same performance degradation.

Overall, the cache simulator helps understand not only

the improvement in performance of an application by tuning

different parameters, but also which cache configuration and

cache approach is optimal for a specific application.

TABLE II: Comparison of the hit rate for various caching

approaches.

Application Name Hit Rate - Individual Hit Rate - Unified

Dijkstra 0.98 0.94
FFT 0.99 0.88

Jacobi 0.92 0.92
Matmul 0.99 0.99
SpMV 0.97 0.95

V. CONCLUSION

Current software caches linearize arrays and do not incor-

porate the dimensionality of an application. We build a cache

simulator which incorporates dimensionality along with tuning

other parameters. The results show that increasing the cache

size improves the hit rate and performance of an application,

provided it has high spatial locality and no random access

patterns. Results further show that increasing the associativity

or cache policy improves the hit rate further and can add to

an improvement in the performance for applications with low

spatial locality. Based on the application’s access patterns and

locality, the simulator helps to configure an optimum cache

and gauge the improvement in performance of the application.

It helps to assess the trade-off between cache size, block size

and cache policy for applications with low spatial locality.

Moreover, adapting certain applications to 2D can improve the

performance of the application. Future work involves how to

optimize cache configurations for applications with low spatial

locality and random access patterns.

ACKNOWLEDGMENTS

Clemson University is acknowledged for generous allotment

of compute time on the Palmetto cluster. This material is based

upon work supported by the National Science Foundation

under Grant No. SHF-1910197 and SHF-1943114.

REFERENCES

[1] S. Habib, V. Morozov, N. Frontiere, H. Finkel, A. Pope, K. Heitmann,
K. Kumaran, V. Vishwanath, T. Peterka, J. Insley et al., ªHACC:
Extreme scaling and performance across diverse architectures,º Com-

munications of the ACM, vol. 60, no. 1, pp. 97±104, 2016.

[2] NYX simulation, https://amrex-astro.github.io/Nyx, 2019, online.

[3] F. Cappello, S. Di, S. Li, X. Liang, A. M. Gok, D. Tao, C. H. Yoon, X.-
C. Wu, Y. Alexeev, and F. T. Chong, ªUse cases of lossy compression
for floating-point data in scientific data sets,º The International Journal

of High Performance Computing Applications, vol. 33, no. 6, pp. 1201±
1220, 2019.



[4] P. Triantafyllides and J. C. Calhoun, ªAnalyzing the performance of
zfp compressed arrays on hpc kernels,º in Poster Session of the 2019

ACM/IEEE International Conference for High Performance Computing,

Networking, Storage and Analysis, ser. SC ’19. Washington, DC, USA:
IEEE Computer Society, 2019.

[5] S. Sardashti and D. A. Wood, ªDecoupled compressed cache:
Exploiting spatial locality for energy-optimized compressed caching,º
in Proceedings of the 46th Annual IEEE/ACM International

Symposium on Microarchitecture, ser. MICRO-46. New York,
NY, USA: ACM, 2013, pp. 62±73. [Online]. Available:
http://doi.acm.org/10.1145/2540708.2540715

[6] S. Sardashti, A. Seznec, and D. A. Wood, ªSkewed compressed
caches,º in Proceedings of the 47th Annual IEEE/ACM International

Symposium on Microarchitecture, ser. MICRO-47. Washington, DC,
USA: IEEE Computer Society, 2014, pp. 331±342. [Online]. Available:
http://dx.doi.org/10.1109/MICRO.2014.41

[7] ÐÐ, ªYet another compressed cache: A low-cost yet effective
compressed cache,º ACM Trans. Archit. Code Optim., vol. 13,
no. 3, pp. 27:1±27:25, Sep. 2016. [Online]. Available:
http://doi.acm.org/10.1145/2976740

[8] A. Arelakis, F. Dahlgren, and P. Stenstrom, ªHyComp: A
hybrid cache compression method for selection of data-type-
specific compression methods,º in Proceedings of the 48th

International Symposium on Microarchitecture, ser. MICRO-48.
New York, NY, USA: ACM, 2015, pp. 38±49. [Online]. Available:
http://doi.acm.org/10.1145/2830772.2830823

[9] G. Pekhimenko, V. Seshadri, O. Mutlu, P. B. Gibbons, M. A. Kozuch,
and T. C. Mowry, ªBase-delta-immediate compression: Practical
data compression for on-chip caches,º in Proceedings of the 21st

International Conference on Parallel Architectures and Compilation

Techniques, ser. PACT ’12. New York, NY, USA: ACM, 2012, pp. 377±
388. [Online]. Available: http://doi.acm.org/10.1145/2370816.2370870

[10] X. Chen, L. Yang, R. P. Dick, L. Shang, and H. Lekatsas,
ªC-pack: A high-performance microprocessor cache compression
algorithm,º IEEE Trans. Very Large Scale Integr. Syst.,
vol. 18, no. 8, pp. 1196±1208, Aug. 2010. [Online]. Available:
http://dx.doi.org/10.1109/TVLSI.2009.2020989

[11] J. S. Miguel, J. Albericio, A. Moshovos, and N. E. Jerger,
ªDoppelg ÈAnger: A cache for approximate computing,º in Proceedings

of the 48th International Symposium on Microarchitecture, ser.
MICRO-48. New York, NY, USA: ACM, 2015, pp. 50±61. [Online].
Available: http://doi.acm.org/10.1145/2830772.2830790

[12] A. Jain, P. Hill, S. Lin, M. Khan, M. E. Haque, M. A. Laurenzano, S. A.
Mahlke, L. Tang, and J. Mars, ªConcise loads and stores: The case
for an asymmetric compute-memory architecture for approximation,º in
49th Annual IEEE/ACM International Symposium on Microarchitecture,

MICRO 2016, Taipei, Taiwan, October 15-19, 2016, 2016, pp. 1±13.
[Online]. Available: https://doi.org/10.1109/MICRO.2016.7783744

[13] S. Perarnau, J. A. Zounmevo, B. Gerofi, K. Iskra, and P. Beckman, ªEx-
ploring data migration for future deep-memory many-core systems,º in
2016 IEEE International Conference on Cluster Computing (CLUSTER),
Sep. 2016, pp. 289±297.

[14] B. Van Essen, H. Hsieh, S. Ames, R. Pearce, and M. Gokhale, ªDi-
mmapÐa scalable memory-map runtime for out-of-core data-intensive
applications,º Cluster Computing, vol. 18, no. 1, pp. 15±28, Mar 2015.
[Online]. Available: https://doi.org/10.1007/s10586-013-0309-0

[15] A. Shafiee, M. Taassori, R. Balasubramonian, and A. Davis, ªMemzip:
Exploring unconventional benefits from memory compression,º in 2014

IEEE 20th International Symposium on High Performance Computer

Architecture (HPCA), Feb 2014, pp. 638±649.

[16] J. Li, F. Zafari, D. Towsley, K. K. Leung, and A. Swami,
ªJoint data compression and caching: Approaching optimality with
guarantees,º in Proceedings of the 2018 ACM/SPEC International

Conference on Performance Engineering, ser. ICPE ’18. New
York, NY, USA: ACM, 2018, pp. 229±240. [Online]. Available:
http://doi.acm.org/10.1145/3184407.3184410

[17] N. S. Islam, X. Lu, M. Wasi-ur-Rahman, R. Rajachandrasekar, and D. K.
D. K. Panda, ªIn-memory i/o and replication for hdfs with memcached:
Early experiences,º in 2014 IEEE International Conference on Big Data

(Big Data), Oct 2014, pp. 213±218.

[18] T. Bicer, J. Yin, D. Chiu, G. Agrawal, and K. Schuchardt, ªIntegrating
online compression to accelerate large-scale data analytics applications,º
in 2013 IEEE 27th International Symposium on Parallel and Distributed

Processing, 2013, pp. 1205±1216.

[19] Y. Wang, R. Goldstone, W. Yu, and T. Wang, ªCharacterization and opti-
mization of memory-resident mapreduce on hpc systems,º in 2014 IEEE

28th International Parallel and Distributed Processing Symposium, May
2014, pp. 799±808.

[20] G. Ananthanarayanan, A. Ghodsi, A. Warfield, D. Borthakur,
S. Kandula, S. Shenker, and I. Stoica, ªPacman: Coordinated
memory caching for parallel jobs,º in Presented as part of the 9th

USENIX Symposium on Networked Systems Design and Implementation

(NSDI 12). San Jose, CA: USENIX, 2012, pp. 267±280. [On-
line]. Available: https://www.usenix.org/conference/nsdi12/technical-
sessions/presentation/ananthanarayanan

[21] P. Lindstrom, ªFixed-rate compressed floating-point arrays,º IEEE trans-

actions on visualization and computer graphics, vol. 20, no. 12, pp.
2674±2683, 2014.

[22] X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cappello,
ªError-controlled lossy compression optimized for high compression
ratios of scientific datasets,º in 2018 IEEE International Conference

on Big Data (Big Data). IEEE, 2018, pp. 438±447.


