Exploring the Impacts of Software Cache
Configuration for In-line Compressed Arrays

Sansriti Ranjan, Dakota Fulp, and Jon C. Calhoun
Holcombe Department of Electrical and Computing Engineering, Clemson University Clemson, USA

Email: { sansrir, dakotaf,

Abstract—In order to compute on or analyze large data
sets, applications need access to large amounts of memory. To
increase the amount of physical memory requires costly hardware
upgrades. Compressing large arrays stored in an application’s
memory does not require hardware upgrades, while enabling the
appearance of more physical memory. In-line compressed arrays
compress and decompress data needed by the application as it
moves in and out of it’s working set that resides in main memory.
Naive compressed arrays require a compression or decompression
operation for each store or load, respectively, which significantly
hurts performance. Caching decompressed values in a software
managed cache limits the number of compression/decompression
operations, improving performance. The structure of the software
cache impacts the performance of the application. In this paper,
we build and utilize a compression cache simulator to analyze
and simulate various cache configurations for an application.
Our simulator is able to leverage and model the multidimen-
sional nature of high-performance computing (HPC) data and
compressors. We evaluate both direct-mapped and set-associative
caches on five HPC kernels. Finally, we construct a performance
model to explore runtime impacts of cache configurations. Results
show that cache policy tuning by increasing the block size,
associativity and cache size improves the hit rate significantly for
all applications. Incorporating dimensionality further improves
locality and hit rate, achieving speedup in the performance of an
application by up to 28.25%.

Index Terms—in-line compression, compressed arrays, lossy
compression, big-data, software cache, cache configuration

I. INTRODUCTION

Large-scale high-performance computing (HPC) applica-
tions generate large amounts of output data [1], [2]. To
analyze the output, applications need large amounts of DRAM.
Analyzing a large run on a few nodes or running a large run
on a small system is infeasible due to not enough on-node
physical memory to process the data. Using more nodes or
upgrading the amount of physical memory per-node is costly.

Compression helps to reduce the output storage require-
ments for an application and can help shrink the memory
footprint of a running application [3]. Integrating compression
inside an application to shrink the application’s footprint
is called in-line compression. A compressed array/vector is
used exactly like a standard array/vector. However, when the
application needs to access a data value from a compressed
array, the data must first be decompressed. Similarly, when
we need to write to a compressed array, the data must be
compressed before the store occurs. Naive in-line compres-
sion requires a compression/decompression operation for each

jonccall@clemson.edu

memory access, hurting the performance of the application.
Moreover, depending on how the array is compressed, each
decompression operation might need to fully decompress the
array to load a single value. Repeated requests for the same
data or data from a nearby element results in additional
decompression operations.

Caching the decompressed values in a software managed
cache limits the number of compression and decompression
operations. The configuration of this cache can significantly
impact application performance [4]. As applications differ in
their access patterns, the effectiveness of a cache configuration
changes. As the need for in-line compression grows, config-
uring the software cache involves turning several parameters
through trial-and-error or not at all.

To aid in configuring in-line compressed array caches, this
paper presents a tool to profile the memory access pattern of
an application and to simulate various cache configurations to
determine the best configuration. Our tool works for both lossy
and lossless compressed arrays that use caching. Moreover, our
tool leverages common HPC compressor design philosophies
such as data dimensionality and decomposing a dataset into
small fix-sized blocks.

Specifically, we make the following contributions:

o Construct a cache simulator that predicts the performance
of in-line lossy and lossless compressed arrays configu-
rations.

e Devise a performance model to predict the expected
execution time of an application.

e Incorporate dimensionality of the array and the decom-
position method of the compressor to reduce the number
of decompression operations on the critical path and
improve the spatial locality of in-line compressed arrays.

« Demonstrate how cache parameterization and access pat-
terns impacts the performance of the application.

The rest of the paper is as follows. In Section II, we
describe the background and related work. Section III
describes our methodology and design of our cache simulator.
It also explains the design decisions and modeling undertaken
for the simulator. Section IV describes the experimental setup
and results. Finally, Section V summarizes the results and
describes our future work.

II. BACKGROUND AND RELATED WORK

A. Caching

Caching is a method for reducing the impact of data
movement by keeping data needed for the computation in
fast memory. Previous work explores the use of hardware
compression to expand the size of hardware caches and
main-memory [5]-[12] or caching at the software level [13]-
[16]. Software caches have also been used to improve I/O
performance for distributed applications [17], [18], and to
cache the input data for parallel tasks [19], [20]. Two popular
types of cache are:

Direct Mapped Cache: Cache where each address maps
to exactly one location. To determine if a value is present,
the address is hashed, yielding a location inside the cache.
Provided the entry is valid and the address tag matches, the
value is found in the cache. Storing a single value in each
cache block enables many dispirit addresses to be stored in
the cache. However, such a design does not leverage spatial
locality. To improve spatial locality, the size of each cache
block can grow to hold several spatially close addresses. The
simple mapping logic enables fast access, but as the block
size grows, fewer dispirit addresses are present, which can
lower temporal locality. Moreover, if two addresses map to
the same cache location, an eviction occurs and the evicted
block is replaced by a new block containing the address of
the load/store.

Set Associative Cache: Improves over a direct mapped
cache by allowing multiple cache blocks at each location (set).
A k-way set associative cache has k blocks in each set. To
determine if a value is present in the cache, the address is
partitioned into 3 bit fields: tag, index, and offset. The index
determines what set the address maps to. The tag along with
a dirty bit is used to determine if the address is within any
block in the set. Finally, the offset is used to locate the address
location inside the identified block.

B. Compressors

While many lossy compression frameworks do not enable
random access into the compressed data, one notable exception
is ZFP’s fixed-rate error-bounding mode [21]. ZFP’s fixed-
rate mode splits the data into 49 sized blocks, where d is
the dimensionality of the data, and compresses each block
individually to achieve a user-specified desired bit-rate. Using
ZFP compressed arrays enables the application to compute on
datasets that exceed the capacity of main-memory.

This approach enables users to access individual data values
without decompressing the entire data, only the 4% block
containing the values. As decompressing and compressing
blocks for each read and write operation is cost-prohibitive,
this framework also includes a small direct-mapped software
cache that stores decompressed data blocks. This cache uses
a write-back policy with a dirty bit stored with each cache
block to avoid unnecessary recompression of data blocks that
the application has not altered. Not recompressing unaltered

data blocks saves time and ensures the data fidelity is not
impacted unnecessarily. While their cache size is configurable,
the default size accommodates two layers of data blocks for the
z-dimension, which the ZFP developers found to yield high-
performance. Prior work shows that tuning the parameters of
ZFP’s software cache yield a performance improvement of up
to 8% [4].

Other compressors such as SZ [22] have a random access
mode but do not support caching. Moreover, any lossy or
lossless compressor has random access capability if the data is
first “chunked” and the compressor applied to each chuck inde-
pendently. Integrating a software cache into these compressors
will make them more amenable for in-line compressed arrays.
The cache simulator we present in this paper is useful for
exploring performance aspects related to the integration.

III. IN-LINE COMPRESSED ARRAYS CACHE SIMULATOR

In-line compressed arrays compresses and decompresses
data when needed, giving the appearance of larger memory
capacity. If a cache is present, it is on the critical path;
therefore, configuration is important. Larger caches have larger
search times. Prior work shows that the cache’s configuration
can improve performance by up to 8% for matrix-matrix
multiplication [4]. To improve the performance of in-line
compression, decompressed values can be stored in a software
managed cache. When configuring the cache one must set
several parameters such as total size, block size, replacement
policy, associativity level.

Traditional hardware caches have a linear view of main
memory and only exploit spatial locality in a single dimension
through the memory addresses. When operating on an array
that is compressed, the compressor knows additional pieces
of information about the array (e.g. dimensionality, data type).
This additional information is leveraged during compression to
yield higher levels of reduction. For example, both SZ [22] and
ZFP [21], two popular HPC lossy compressors, decompose
multidimensional data into small multidimensional blocks (e.g.
ZFP block size is 49, where d is the dimensionality) and
processes each block individually. If the compressed array’s
cache is not aware of this decomposition, then performance
suffers as only a subset of each compressor’s block is placed in
each of the cache’s block. The remaining decompressed values
are discarded. To finish filling the cache block, additional de-
compressions are necessary. Figure 1 illustrates this limitation.
Moreover, for certain access patterns (e.g. walking down a
column), this leads to additional decompressions, negating the
benefits of caching. If we leverage multidimensional caching
and map the full compressor block into a cache block, we only
require one decompression for each cache miss and improve
spatial locality for certain access patterns.

To more easily configure caches in compressed arrays, we
develop a cache simulator that takes in an address trace from
an application and processes the sequence of loads/stores
on various cache configurations that incorporates knowledge
from the compressors to determine what configuration yields

Multidimensional
Caching
Cache Block 0 Cache Block 1

Linear Caching

B(:Izz:eo i:|;l: :|;l: :!: :!:i ED D i i . . i
B(:Izz:: i'l;L :|;|: :!: :!:i Ll;l' '|;|Ji EL!_ ! i
<o 00 OO 3 O
s OO '@ mo o

Cache Block 2 Cache Block 3

|:| Compressor Block 0 |:| Compressor Block 2
. Compressor Block 1 |:| Compressor Block 3

Fig. 1: Caching of a 4x4 array. Each cache block (dashed
lines) houses 4 elements of the array. The compressor decom-
poses the data into 2x2 blocks.

)-B-R-8-

Application Run Address Run Cache
Application Trace Simulation

Metrics

Fig. 2: Overview of our cache simulator workflow.

the best performance. Figure 2 shows an overview of this
workflow.

A. Address Trace Generation

As HPC applications progress, they read and write data at
various memory locations. HPC applications differ in their ac-
cess patterns, which in turn can lead to performance variability.
To ensure that we select the best cache for an application
and to avoid the need to run an application multiple times,
we extract an address trace for the variables allocated as
compressed arrays. We accomplish this via instrumenting the
code to first log the base address of each in-line compressed
array along with the data type, dimensionality, and compressor
properties such as block size. Then, for each memory access,
we log the tuple: (load/store, variable name, address)'. In
the tuple, the address logged is that of the array element
loaded. When the base address and the dimensions of the
array are run through our cache simulator, we transform
the linear memory address into a multidimensional index.
The multidimensional index enables us to determine what
compression block the array element maps to. Alternatively,
at the expense of larger address trace files, we record the
array indices in the tuple directly to reduce the computational
requirements of the simulator. Having the address trace allows

'We do not record the value loaded as it has no bearing on the sequence
of loads/stores.

us to readily parallelize the evaluation process for each cache
configuration.

B. Cache Simulator

Given an address trace from an application, our cache
simulator replays the sequence of loads/stores and quantifies
the expected performance. Because an application may con-
tain multiple compressed arrays, each with different access
patterns, we explore two types of caching for compressed
arrays. The first involves a unified cache that is shared between
multiple compressed arrays. The second is a dedicated cache
for each compressed array.

The first approach limits the memory overhead of caching.
This approach is useful for applications that operate on one
or a few compressed arrays at a time. For a fixed size
cache, as the number of compressed arrays in the working
set increases, so too does the likelihood for conflicts and
cache misses. The second approach is designed for situations
where multiple compressed arrays are used at the same time.
With each compressed array having its own private cache, the
likelihood of conflicts inside the caches diminishes. Moreover,
the configuration of each cache is tunable.

To configure each cache, our cache simulator needs several
parameters. The first four parameters are: the data type of the
array’s elements, the cache’s size (bytes), the size of each
cache block (bytes), and the set associativity level of the
cache?. For compressors that decompose the array into blocks
when compressing, the cache’s block size should mirror that of
the compressor and the cache’s blocks need to be multidimen-
sional (see Figure 1). Setting the block size this way enables
the cache block to house all the elements decompressed at the
same time, providing spatial locality in multiple dimensions,
which results in fewer decompression operations and improves
performance.

After the block size is defined, the number of sets in the
cache is computed by dividing the cache size by the size of
each set (cache block size multiplied by the associativity level).
Figure 3 shows an example of direct-mapped and a k-way set
associative cache. Finally, the cache’s replacement policy is
set. For this work, we use least recently used (LRU), but other
policy can be leveraged.

Once all the caches are constructed, the simulator processes
the address trace. Each load and store is directed to the appro-
priate cache. From the address, we determine the compressor
block in which the address resides. That block information
determines which set inside the cache to search in. For each
block inside the identified set, we attempt to match the tag.
For univariate caches, the tag is the block ID. For multivariate
caches, the tag is the block ID and an ID corresponding to
the allocation. If the block is found, a hit occurs. However,
if the block is not found, a miss occurs. The compressor
block containing the needed value must be decompressed and
placed into the cache. For the block that is evicted from the
cache, compression occurs before it is stored to main-memory.

2For a direct-mapped cache, the set associativity level is k = 1.

k-way Set
Associative Cache

Direct Mapped Cache

o - ~N c

@ ®? ® ®

]]] »n
Set 0 Way 0
Set 1 Way 1
san [] o I

Fig. 3: Diagram of direct-mapped and a k-way set associative
cache.

However, since our simulator is data and compressor agnostic,
we model the cost of compression and decompression (see
Section III-C).

C. Performance Model

As the address trace is being processed via our cache simu-
lator, the simulator computes various performance metrics. We
use these performance metrics in Section IV to determine how
cache parameterization impacts performance across several
HPC kernels.

The two primary metrics that are collected are the number
of cache hits, nHit, and cache misses, nM1iss. From these
values, we compute the hit-rate, Ry, and miss-rate, R, as
follows:

nHit
Ry=—7—— 1
A nHit +nMiss M)
Ry =1— Ry ()

Each hit results in fast retrieval of the requested datum.
However, when a miss occurs, the block containing the re-
quested value is decompressed and placed into the cache and
the evicted block is compressed and written back. Thus, having
a high hit-rate is indicative of good performance.

To better understand the performance differences between
configurations, we compute the time cost for processing the
trace. We model the time for a hit in the cache as:

Th = tiq + tsearch + tfetchy (3)

where t;4 is the time cost to determine the block ID given
an address, tseqrcn 1S the time to search a set, and fgescn is
the time to retrieve the datum and return it to the user. The
computation for each is rather small, with the ¢;4 calculation
taking the longest, due to several integer arithmetic operations.
The searching cost, tseqrch, iNVolves a comparison of the tag,
and grows as the associativity level of the cache grows. The
fetch time, ?fescn, is that of loading a datum from memory
into a register.

The cost of a miss is more substantial. A miss contains
all the cost of a hit, but also incurs additional costs due

TABLE I: Problem Size for Applications

Name Problem Size Number of Loads Number of Stores
Dijkstra 1000 nodes 1000091 2000941
FFT 1010 3543380 6726400
Jacobi 1000 x 1000 24928052 32400013
Matmul 1000 x 1000 2502500 7497500
SpMV 1000 1000 1602296 1901001

to compression and decompression. If spare computational
resources are available, compressing the evicted block is
removed from the critical path (done asynchronously in the
background) as it is not needed to satisfy the outstanding load
by the application, leading to the following:

Ty =Ty + tdecompress- “4)

Combining our metrics, we obtain the total time cost of
memory operations for the compressed array:

Tiot = nHit - Ty +nMiss-Thy. (®)]

For applications making use of multiple caches, we compute
the overall application time as the sum of 7}, for each cache.

IV. EXPERIMENTAL RESULTS

A. Testing Methodology

To explore the performance impact of cache configuration
on compressed arrays, we run five HPC kernels detailed in
Table I. Experiments are run on Clemson’s Palmetto Cluster,
and we test direct-mapped, 2-way set associative, and 4-way
set associative caches. Cache sizes range from 0.01 MB to
0.1 MB and block sizes vary between 8 B and 32 B.

B. Impact of Block Size and Set-Associativity in a 1D Cache
Configuration

The five HPC kernels are first run with different cache
configurations where the cache size, block size and associa-
tivity of the cache is varied. The kernels are run with the
dimensionality of the cache as linear and a dedicated cache
for each compressed array.

Figure 4(a)—(c) shows the hit rate vs the block size for the
five kernels for a cache size of 0.01 MB. We see that when
increasing the block size for all values of k, the hit rate in-
creases. This is because as the size of a single block increases,
more elements of the array are stored in it, improving the
spatial locality and the hit rate. FFT and Matmul have a hit
rate which is very high (0.99) while Jacobi has a significantly
low rate (0.67-0.82).

While both Matmul and Jacobi have the same problem size,
but Jacobi has many more loads/stores due to its iterative
nature, allowing it to run for a user defined iteration number
before terminating. Matmul performs better than Jacobi due
to the difference in the access patterns between the two
applications. While Matmul accesses each matrix either by
row or by column, Jacobi’s pattern is based on its stencil. For

08
EU‘G - Dukstra
To4 w— FFT
= Jacobi
02 - Matmul
— SpMV
00 —— ———

Block sze

(a) Direct Mapped.

N II I
i
EU‘G BN Dijkstra
To4 m— FFT
" Jacobi
02 - Matmul
m— SpMV
00 —— ———

B\uckS\ze
(b) Two-way Set
Associative.

- II I
206 1
K] = Dijstra
Z04 - FFT

mmm Jacobi

02 . Matmul

- SpMV
00 — =

B\uckS\Ze
(c) Four-way Set
Associative.

- | II I7
206 = I
K] = Dijkstra
Z04 [FFT

= Jacobi

02 S s Matmul

m— SpMV

0.0 — =

Block S\ze ®)

(d) Direct Mapped.

. | II Ifl
206 =
s m Dijstra
Zo4) FFT
mm Jacobi
02) . Matmul
m— SpMV
00 [————

Block Slze B)
(e) Two-way Set
Associative.

1.0
N J II I I
206 =
s = Dijkstra
Tos WS = FFT
s Jacobi
02 B = Matmul
= SpMV
00 m— m——

Block Slze B8)

(f) Four-way Set
Associative.

Fig. 4: Impact of Block Size and Associativity on 1D Caching. (a)—(c) uses a cache size of 0.01MB. (d)—(f) uses a cache size

of 0.IMB.

example, the 5-point stencil requires data from three rows: 1
element from the previous row, 3 elements from the current
row, and 1 element from the next row. Needing three rows of
values means that the probability that all the elements to be
accessed are present in the cache is lower for the same cache
size. Thus, the lower hit rate. However, increasing the block
size increases the number of elements present in the cache
block by the same factor, improving spatial locality.
Increasing the associativity increases the number of cache
blocks within the same set, and decreases the chance for
evictions due to aliasing. Furthermore, the probability that all
elements to be accessed are present in the cache increases,
leading to increases in the hit rate evident in Figure 4(b)—(c).
Yet, the increase in hit rate of Jacobi compared to Matmul is
low due to Jacobi’s access pattern. For all the applications, by
increasing the cache size to include a greater number of cache
blocks, the hit rate improves, as we see in Figure 4(d)—(f).

C. Sensitivity of 2D Cache Configuration

All five kernels except SpMV can utilize multidimensional
caching. SpMV has linear accesses throughout. This is because
our SpMV kernel uses co-ordinate format (COO) to represent
the sparse matrix as three 1D vectors of the row index, column
index, and value of each of the non-zero entries. Thus, all the
arrays for the kernel are 1D and are not able to take advantage
of multidimensional caching.

For the remaining kernels, the 2D cache configuration is
able to leverage the access patterns and spatial locality to
improve performance. For example, Matmul multiples two
matrices A and B together. A is accessed row-wise (elements
are adjacent in memory and yield a high hit rate). B is
accessed column-wise (elements are nonadjacent in memory
and yields a low hit-rate with 1D). However, with the 2D
configuration, multiple column entries are brought into the
cache, improving the hit rate. Moreover, using a dedicated
cache approach is useful to ensure the appropriate locality is
maximized, improving the hit rate.

The four remaining kernels are first run to generate the
address trace where the array indexes are configured in 2D.
After address trace generation, the trace is run with the
simulator where the cache size, block size and associativity
is tuned based on the testing methodology. Figure 5 shows
that increasing the block size from 8 to 32 improves the hit
rate similarly to the 1D cache configuration (see Figure 4).
Furthermore, increasing the associativity further increases the
hit rate as the number of blocks in each set increases, reducing

the evictions due to aliasing. FFT and Matmul do not show
any significant improvement in hit rate as the cache size and
2D configuration is sufficient for their respective problem
sizes, leading to a 0.99 hit rate. Dijkstra and Jacobi improve
significantly on increasing the associativity. Increasing the
cache size yields a very high hit rate in all the kernels
because the larger cache size is able to house more of the
array elements. Again, as associativity level increases, aliasing
evictions decreases.

The most important point to note here is that in going
from 1D Caching to 2D Caching, all the applications improve
in their hit rate. Multidimensional caching therefore enables
faster access to the data, which helps improve the performance
of the application. This is attributed to the speedup achieved
by having the block of array elements easily accessible in
the cache in its decompressed form (as the blocks are ac-
cessed in the same manner as the compressor). We explore
the performance implications of multidimensional caching in
Section IV-D.

D. Performance Implications

From the experimental results of the cache simulator, tuning
the parameters of a cache and its dimensionality improves the
hit rate for all applications when the application is run with
inline compression. Yet, to understand how this caching tran-
sitions into an improvement in performance of the application,
the time taken with and without multidimensional caching is
computed. Using the performance model from Section III-C,
we compute the time taken for all combinations of cache size,
block size, associativity, and dimensionality.

Figure 6 displays the speedup achieved over 1D caching
for each of the applications based on the metrics hit rate, miss
rate and the cache parameters. For this performance model, we
select a cache size of 0.1MB and a block size of 32. We choose
this configuration because it gave the best performance across
all applications. It is evident that there is considerable speedup
for all the applications when using a multidimensional cache.
Dijkstra shows the highest speedup with 28.25%, followed by
Matmul (24.17%), Jacobi (12.95%), and FFT (12%). These
improvements are in accordance with the hit rate improvement
seen in 2D caching for these application in Figures 5(d)—(f).
Jacobi shows a considerable amount of speedup based on its
access pattern, needing data from multiple rows and columns.
2D caching results in increased spatial locality and an increase
in hit rate, enabling it to reduce the time taken to run.

1.0

08 I II 08
£o6 l - Lo6
K] = Dijkstra =
o4 - o4

= Jacobi

0.2 . Matmul 0.2

0.0 N EN 0.0

8 16 32

Block Size (B)

206
s = Dijkstra
To4 m— FFT
=== Jacobi
02 = Matmul
00 il EN
8 16 32

Block Size (B)
(c) Four-way Set
Associative.

2

I— Dijkstra
m— FFT
s Jacobi
. Matmul
il EN
8 16 3:

Block Size (B)
(a) Direct Mapped. (b) Two-way Set

Associative.

Fig. 5: Impact of 2D Caching. (a)—(c) uses a cache

35

B Dijkstra
30 e FFT
- Jacobi
s Matmul
25
£ 2
o
=
°
3
215
n
10
5 I I
0
1.0 2.0 4.0

Way
Fig. 6: Application speedup with 2D caching compared to 1D
caching.

E. Unified Versus Individual Caches

Table II compares the hit rate between a unified cache
approach for each application and an approach where there
is an individual cache for each of the compressed arrays. We
parameterize the performance model with a cache size of 0.1
MB, block size of 32 and four-way associativity for a 2D
cache except for SpMV which uses 1D caching. We select this
configuration because it gives the best performance across all
applications. Investigating how each application performs, we
see that for all applications, using an individual cache always
gives better performance. This is because having individual
caches enables these applications to have a higher hit rate
by increasing the probability of data to be accessed already
present in the cache. From the table we see that Dijkstra,
FFT and SpMV comparatively benefit from individual caches
while Matmul and Jacobi show the same hit rate for both
approaches and can utilize both the approaches. Applications
which utilize multiple compressed arrays simultaneously need
an individual cache for each array because using a unified
cache increases collisions. However, applications that operate
on a single array at a time can utilize a unified cache without
the same performance degradation.

Overall, the cache simulator helps understand not only
the improvement in performance of an application by tuning
different parameters, but also which cache configuration and
cache approach is optimal for a specific application.

= Dijkstra

|

2

. FFT
mmm Jacobi
 Matmul

08
206
4
To4
02
00 il m
8 16 3
Block Size (B)

(f) Four-way Set
Associative.

TABLE II: Comparison of the hit rate for various caching
approaches.

l— Dijkstra
- FFT
= Jacobi
" Matmul
N N
8 16 32

Block Size (B)

(d) Direct Mapped.

8 1

Block Size (B)
(e) Two-way Set
Associative.

size of 0.01MB. (d)—(f) uses a cache size of 0.1MB.

I—I DI]IkS!
— FFT

= Jacobi
-_— Malmu]I
il IN

6 3.

2

Application Name Hit Rate - Individual Hit Rate - Unified

Dijkstra 0.98 0.94

FFT 0.99 0.88
Jacobi 0.92 0.92
Matmul 0.99 0.99
SpMV 0.97 0.95

V. CONCLUSION

Current software caches linearize arrays and do not incor-
porate the dimensionality of an application. We build a cache
simulator which incorporates dimensionality along with tuning
other parameters. The results show that increasing the cache
size improves the hit rate and performance of an application,
provided it has high spatial locality and no random access
patterns. Results further show that increasing the associativity
or cache policy improves the hit rate further and can add to
an improvement in the performance for applications with low
spatial locality. Based on the application’s access patterns and
locality, the simulator helps to configure an optimum cache
and gauge the improvement in performance of the application.
It helps to assess the trade-off between cache size, block size
and cache policy for applications with low spatial locality.
Moreover, adapting certain applications to 2D can improve the
performance of the application. Future work involves how to
optimize cache configurations for applications with low spatial
locality and random access patterns.

ACKNOWLEDGMENTS

Clemson University is acknowledged for generous allotment
of compute time on the Palmetto cluster. This material is based
upon work supported by the National Science Foundation
under Grant No. SHF-1910197 and SHF-1943114.

REFERENCES

[1] S. Habib, V. Morozov, N. Frontiere, H. Finkel, A. Pope, K. Heitmann,
K. Kumaran, V. Vishwanath, T. Peterka, J. Insley et al, “HACC:
Extreme scaling and performance across diverse architectures,” Com-
munications of the ACM, vol. 60, no. 1, pp. 97-104, 2016.

NYX simulation, https://amrex-astro.github.io/Nyx, 2019, online.

F. Cappello, S. Dj, S. Li, X. Liang, A. M. Gok, D. Tao, C. H. Yoon, X.-
C. Wu, Y. Alexeev, and F. T. Chong, “Use cases of lossy compression
for floating-point data in scientific data sets,” The International Journal
of High Performance Computing Applications, vol. 33, no. 6, pp. 1201-
1220, 2019.

[2]
[3]

[4]

[5]

[6

=

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

P. Triantafyllides and J. C. Calhoun, “Analyzing the performance of
zfp compressed arrays on hpc kernels,” in Poster Session of the 2019
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’19. Washington, DC, USA:
IEEE Computer Society, 2019.
S. Sardashti and D. A. Wood, “Decoupled compressed cache:
Exploiting spatial locality for energy-optimized compressed caching,”
in Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO-46. New York,
NY, USA: ACM, 2013, pp. 62-73. [Online]. Available:
http://doi.acm.org/10.1145/2540708.2540715
S. Sardashti, A. Seznec, and D. A. Wood, “Skewed compressed
caches,” in Proceedings of the 47th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO-47. Washington, DC,
USA: IEEE Computer Society, 2014, pp. 331-342. [Online]. Available:
http://dx.doi.org/10.1109/MICRO.2014.41
“Yet another compressed cache: A low-cost yet effective
Code Optim., vol. 13,
[Online]. Available:

compressed cache,” ACM Trans. Archit.
no. 3, pp. 27:1-27:25, Sep. 2016.
http://doi.acm.org/10.1145/2976740

A. Arelakis, F. Dahlgren, and P. Stenstrom,
hybrid cache compression method for selection of data-type-
specific compression methods,” in Proceedings of the 48th
International Symposium on Microarchitecture, ser. MICRO-48.
New York, NY, USA: ACM, 2015, pp. 38-49. [Online]. Available:
http://doi.acm.org/10.1145/2830772.2830823

G. Pekhimenko, V. Seshadri, O. Mutlu, P. B. Gibbons, M. A. Kozuch,
and T. C. Mowry, “Base-delta-immediate compression: Practical
data compression for on-chip caches,” in Proceedings of the 21st
International Conference on Parallel Architectures and Compilation
Techniques, ser. PACT *12. New York, NY, USA: ACM, 2012, pp. 377-
388. [Online]. Available: http://doi.acm.org/10.1145/2370816.2370870
X. Chen, L. Yang, R. P. Dick, L. Shang, and H. Lekatsas,
“C-pack: A high-performance microprocessor cache compression
algorithm,” IEEE Trans. Very Large Scale Integr. ~ Syst.,
vol. 18, no. 8, pp. 1196-1208, Aug. 2010. [Online]. Available:
http://dx.doi.org/10.1109/TVLSI.2009.2020989

J. S. Miguel, J. Albericio, A. Moshovos, and N. E. Jerger,
“DoppelgAnger: A cache for approximate computing,” in Proceedings
of the 48th International Symposium on Microarchitecture, ser.
MICRO-48. New York, NY, USA: ACM, 2015, pp. 50-61. [Online].
Available: http://doi.acm.org/10.1145/2830772.2830790

A. Jain, P. Hill, S. Lin, M. Khan, M. E. Haque, M. A. Laurenzano, S. A.
Mahlke, L. Tang, and J. Mars, “Concise loads and stores: The case
for an asymmetric compute-memory architecture for approximation,” in
49th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO 2016, Taipei, Taiwan, October 15-19, 2016, 2016, pp. 1-13.
[Online]. Available: https://doi.org/10.1109/MICRO.2016.7783744

S. Perarnau, J. A. Zounmevo, B. Gerofi, K. Iskra, and P. Beckman, “Ex-
ploring data migration for future deep-memory many-core systems,” in
2016 IEEE International Conference on Cluster Computing (CLUSTER),
Sep. 2016, pp. 289-297.

B. Van Essen, H. Hsieh, S. Ames, R. Pearce, and M. Gokhale, “Di-
mmap—a scalable memory-map runtime for out-of-core data-intensive
applications,” Cluster Computing, vol. 18, no. 1, pp. 15-28, Mar 2015.
[Online]. Available: https://doi.org/10.1007/s10586-013-0309-0

A. Shafiee, M. Taassori, R. Balasubramonian, and A. Davis, “Memzip:
Exploring unconventional benefits from memory compression,” in 2014
IEEE 20th International Symposium on High Performance Computer
Architecture (HPCA), Feb 2014, pp. 638-649.

J. Li, F Zafari, D. Towsley, K. K. Leung, and A. Swami,
“Joint data compression and caching: Approaching optimality with
guarantees,” in Proceedings of the 2018 ACM/SPEC International
Conference on Performance Engineering, ser. ICPE ’18. New
York, NY, USA: ACM, 2018, pp. 229-240. [Online]. Available:
http://doi.acm.org/10.1145/3184407.3184410

N. S. Islam, X. Lu, M. Wasi-ur-Rahman, R. Rajachandrasekar, and D. K.
D. K. Panda, “In-memory i/o and replication for hdfs with memcached:
Early experiences,” in 2014 IEEE International Conference on Big Data
(Big Data), Oct 2014, pp. 213-218.

T. Bicer, J. Yin, D. Chiu, G. Agrawal, and K. Schuchardt, “Integrating
online compression to accelerate large-scale data analytics applications,”
in 2013 IEEE 27th International Symposium on Parallel and Distributed
Processing, 2013, pp. 1205-1216.

“HyComp: A

[19]

[20]

[21]

[22]

Y. Wang, R. Goldstone, W. Yu, and T. Wang, “Characterization and opti-
mization of memory-resident mapreduce on hpc systems,” in 2014 I[EEE
28th International Parallel and Distributed Processing Symposium, May
2014, pp. 799-808.

G. Ananthanarayanan, A. Ghodsi, A. Warfield, D. Borthakur,
S. Kandula, S. Shenker, and I. Stoica, “Pacman: Coordinated
memory caching for parallel jobs,” in Presented as part of the 9th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 12). San Jose, CA: USENIX, 2012, pp. 267-280. [On-
line]. Available: https://www.usenix.org/conference/nsdil2/technical-
sessions/presentation/ananthanarayanan

P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE trans-
actions on visualization and computer graphics, vol. 20, no. 12, pp.
2674-2683, 2014.

X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cappello,
“Error-controlled lossy compression optimized for high compression
ratios of scientific datasets,” in 2018 IEEE International Conference
on Big Data (Big Data). 1EEE, 2018, pp. 438-447.

