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Abstract—The enormous volume of data generated by large-
scale instruments and simulations poses significant challenges in
archiving, transferring, sharing and analyzing data for various
scientific groups. Lossy reduction techniques are vital to reducing
data size to acceptable levels. However, putting more information
content per bit, increases the severity of loss if perturbed by
malicious users or hardware failures. In the worst case, the entire
dataset is compromised. Malevolent alteration or destruction of
datasets containing crucial discoveries can completely invalidate
research outcomes in scientific studies. Therefore, it is critical to
integrate compression and encryption to handle data securely and
efficiently. The current state-of-the-art combination technique
Cmpr-Encr handles compression and encryption as two distinct
processes. This reduces the compression ratio and bandwidth,
especially for hard-to-compress datasets.

In this paper, we propose two data protection strategies that
work in conjunction with the lossy compressor SZ: Encr-Quant
and Encr-Huffman, and carefully evaluate the overhead they
introduce on compression bandwidth and ratio. Based on the
results of testing with real-world scientific datasets, we find that
the cost of Encr-Quant varies with the dataset’s properties and
requires cautious selection. Encr-Huffman is able to maintain
more than 99% of the original compression ratio while saving
6.5% in compression time compared to SZ. Applying Cmpr-Encr
leads to a reduction in compression bandwidth, whereas Encr-
Huffman increases bandwidth by 3.1% over the SZ, on average.

Index Terms—Lossy Data Compression, Encryption, Data
Security, High-performance Computing

I. INTRODUCTION

Over the past decade, the utilization of large-scale com-
puting has spread to more diverse domains. In order to
conduct their science and make advances in their fields,
scientists generate, share, and analyze large amounts of data.
For example, approximately 170 TB of Community Earth
System Model (CESM) data were produced for the Coupled
Model Intercomparison Project 5 (CMIPS) [1]. The overall
amount of output data for the CMIP6 is estimated to be
between 20 and 40 PB [2]. Another typical example is the
cosmological simulation code HACC, which can generate over
20 PB of down-sampled snapshots of particles in a single
run [3]. Although large amounts of data can be generated, I/O
bottlenecks result in a higher overhead to store computational
results [4], [5]. Storage constraints are already limiting the
length and size of some large-scale simulations [6], which
presents difficulties for subsequent data analysis. Thus, the

cost of storing/transmitting the output data from calculations
can no longer be overlooked.

Lossless and lossy data compression are approaches for
handling the large amount of floating-point data generated by
large-scale scientific projects [7]-[10]. Error-bounded lossy
compression (EBLC) is receiving considerable attention be-
cause of its ability to significantly reduce data size while
maintaining user-defined accuracy constraints. While EBLC
brings a lot of benefits, it neglects the problems that arise in
terms of security. Prior work shows that lossy compression
cannot withstand the consequences of bits being corrupted.
Even a single bit-corruption can result in the complete failure
of decompression [11]. Besides, information leakage may
occur in compression techniques due to observable features
such as the compression ratio [12]. Furthermore, sensitive data
on HPC still faces a serious threat of being compromised,
intercepted, or eavesdropped [13]. The loss of vital data or
the availability of instruments can hinder or even halt the
scientific process. To ensure the security of data, cryptographic
techniques, such as encryption, are attractive due to their
ability to provide strong privacy guarantees [14]-[16].

The question of how EBLC and data security can be
properly and effectively integrated in practical situations is
still an open question [17], [18]. The reasons this problem
presents difficulties are as follows: 1) Lossy compressors
have undergone rapid development in recent years. Conse-
quently, most of the development is predominantly focused
on improving compression efficiency (e.g., compression ratio)
rather than ensuring the security of data. 2) Data compression
and security are generally considered separately. Incorporating
security methods into the compression process may adversely
affect the compression ratio as well as the level of security
provided by original encryption algorithms. It is important to
investigate how to establish a link between security and lossy
compression. 3) HPC systems are designed to process large
datasets quickly and efficiently, and the emergence of security
methods could influence the computational process, resulting
in a reduction in overall performance. Therefore, the security
solution should be light-weight, so as not to impose substantial
overhead on the systems.

The cutting-edge technique in this domain, Cmpr-Encr
(treats compression and encryption as independent processes),
which introduces the problem of excessive overhead [18].



In particular, encryption dominates performance for hard-to-
compress datasets and the sizable overhead imposed by en-
cryption has a substantial impact on system performance. Our
goal is to analyze and develop techniques for the unification
of lossy data reduction and data security to enable reliable and
dependable across scientific workflows. An efficient and secure
compression-encryption method for all scientific datasets must
be developed, and the biggest challenge is striking a balance
between time/space overheads and data security.

Our contribution is summarized in two main points:

o We analyze the current-state-of-art method Cmpr-Encr
and identify key weaknesses in the approach. To alleviate
those weaknesses, we present two techniques for combin-
ing error-bounded lossy compression with data encryption
in HPC systems: Encr-Quant and Encr-Huffman, which
seek to limit the volume of data encrypted while main-
taining a high-level of data security.

o We evaluate our proposed approaches on real-world sci-
entific datasets to quantify the overhead caused by each
on the compression ratio and bandwidth. The experi-
mental results demonstrate that the light-weight Encr-
Huffman method is able to retain over 99% of the original
compression ratio while achieving higher bandwidth in
the majority of circumstances. In the best case, Encr-
Huffman achieves a bandwidth improvement of 4.8% and
7.8% over Cmpr-Encr and the original SZ, respectively,
thus, enabling fast and secure data transmission and
storage in HPC systems.

The rest of the paper is organized as follows. In Section II,
we introduce background. We discuss the importance of inte-
grating data compression and security and application scenar-
ios in Section III. In Section IV, we propose our method and
present experimental results in Section V. Finally, we discuss
related work in Section VI and conclude in Section VIIL.

II. BACKGROUND
A. Data compression

Compression reduces the burden produced by enormous
volumes of data on transmission and storage by scientific
datasets. Lossless compression is not an appropriate option in
this situation since scientific datasets are primarily made up of
floating-point values, and the highly random nature of the man-
tissa bits results in low compression ratios, typically around
2-4x [19], [20]. Some lossless compressors, e.g., FPZIP [9],
are built exclusively for floating-point data; they can achieve
a maximum compression ratio of roughly 10X, which is still
far from satisfactory. On the other hand, error-bounded lossy
compression (EBLC) allows for user-controlled data loss and
has higher compression ratios on scientific datasets. Although
lossy methods introduce errors into data, prior work has shown
that error-bounding can preserve the workflow correctness very
well [21]-[23]. Furthermore, in scientific simulation, some
errors are inevitable due to inaccurate scientific sensors [24].
Current state-of-the-art lossy compressors, such as SZ [25]
and ZFP [8], achieve compression ratios of 10-1000x while
strictly respecting the error bound specified by the user.

SZ is an error-bounded lossy compression scheme for
scientific data which is based on data prediction. Numerous
studies [25], [26] have demonstrated that SZ behaves remark-
ably well for compressing scientific data.

As shown in the solid black chain in Figure 1, SZ’s
compression is composed of four steps: data prediction, linear-
scale quantization, variable-length encoding and lossless com-
pression [7], [27], [28]. In data prediction stage, SZ first
splits the whole dataset into blocks of equal size and then
uses a sampling approach to pick the best predictor among
classical Lorenzo [29], mean-integrated Lorenzo and linear
regression [27]. The classical Lorenzo predictor predicts the
value of the current data point based on the value of the
adjacent data point, but the uniformly skewed issue will occur
since it uses the decompressed data to reconstruct the data
point. Mean-integrated Lorenzo predictor is used to eliminate
this deviation by approximating data points by a fixed value if
the majority of data values are clustered to a small range with
high density. A linear-regression model provides relatively
accurate predictions for uniformly distributed datasets. SZ then
continues to quantify the difference between the predicted and
actual values using linear-scale quantification based on the
user-identified error bound. In quantization, integers are used
to represent the predictable data, whereas the unpredictable
data is stored separately. Huffman encoding is subsequently
performed in the third step to encode the predictable data. The
final step is a pass of a lossless compressor such as GZIP [30]
over reduced data to further boost the compression ratio.

B. Data security

The goal of data security is to ensure the security and
compliance of data throughout its entire life cycle. A variety of
techniques are available for securing data, including intrusion
detection, role-based access control, multifactor authentica-
tion, firewalls, etc. [31]-[34]. However, due to the constraints
in the HPC environment, these typical security measures may
not operate as effectively in HPC as they do in traditional
IT systems. For example, the size of the monitoring object
in an HPC system is several orders of magnitude larger,
which makes traditional intrusion detection approaches, such
as inspecting every byte transmitted over the network imprac-
tical [35].

Security issues in HPC have received insufficient attention
within the past few years as most HPC systems were mostly
closed environments [36]. The advent of open-science expects
researchers to transcend geographical boundaries and share
their data among different organizations and systems [37].
However, open-science faces confidentiality challenges, as it
may include information that is embargoed for regulatory
purposes or that requires special handling before publication,
such as HIPAA-regulated medical data. In HPC environments,
security protocols must adhere to the PICA model, which
emphasizes ensuring high performance while maintaining data
confidentiality, integrity, and availability [38].

Cryptography is widely used for data protection. For
example, the National Center for Computational Sciences
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Fig. 1: Overview of the SZ compression process (Solid black chain) and modifications to enable encryption of the data.

(NCCS) at Oak Ridge National Laboratory (ORNL) released a
secure framework, CITADEL, that allows researchers to access
NCCS’s supercomputers for open-science projects utilizing
protected data [39]. This framework uses an encrypted parallel
file system that enhances reliability and functionality.

Among the various algorithms available in the field of
cryptography, the symmetric encryption algorithm Advanced
encryption standard (AES) stands out for its efficiency and
security [14]. According to the National Institute of Standards
and Technology (NIST), AES is robust enough to guarantee
security at extended key lengths and has a high probability
of remaining secure well into the coming decades. Other
widely known symmetric algorithms, such as Data Encryption
Standard (DES) [40] and 3DES [41], suffer from a low level
of confidentiality or slow processing speed. DES is extremely
vulnerable due to its short 56-bit key. 3DES is a more secure
variant of DES which applies DES encryption three times
to each data block to improve data security. Because of the
multiple calculations required for this process, the encryption
speed of 3DES is not promising [42]. Meanwhile, asym-
metric encryption methods such as Rivest—-Shamir—Adleman
(RSA) [43] are inappropriate for high-performance situations,
as they are particularly slow in encrypting large data files.

III. MOTIVATION

In this section, we discuss the importance of applying error-
bounded lossy compression and cryptography in practice and
analyze the use cases and the possible application scenarios.

A. Importance

Security in HPC is essential in order to maintain the
legitimacy and confidentiality of data. Stakeholders in the HPC
ecosystem can include academic computing, industry, national
laboratories and even defense R&D. Moreover, some HPC
systems are utilized for real-time operational challenges such
as air traffic control and transportation, weather forecasting,
etc. Under this premise, there is a legal obligation to provide
enhanced security for sensitive information. Besides, malicious
alteration of data can affect critical studies with policy impli-
cations, such as climate studies. Prior work investigates the re-
silience of lossy compressed data to bit-flip corruptions. Their
results show that even a single bit-corruption is sufficient to
violate the compressor’s error bound or make the compressor

fail during decompression [11], [44]. As for academia HPC
systems, the loss of integrity of important research datasets,
as well as the loss of confidentiality in terms of intellectual
property, are serious issues. Furthermore, the theft of certain
types of personal information, such as biometric data, can have
catastrophic ramifications. There are numerous examples of
science projects that were affected by cyberattacks. The cost
of the damage ranges from lost working time to the usage
of a substantial amount of financial resources to repair the
system and restore scientific data. For instance, when COVID-
19 research at UC San Francisco was hacked by ransomware,
they were forced to pay approximately $1.14 million to obtain
a tool to decrypt the sensitive data [45].

B. Use-cases

Applying compression methods significantly relieves the
pressure of communication and storage. Although modern
computers are capable of calculating billions to trillions of
floating-point operations per second and generating datasets
of terabytes and even petabytes in size, the bandwidth of the
current internal interconnects is approximately 200 Gb/s [5].
This disparity places a significant strain on I/O devices. Data
compression alleviates this by shrinking the size of data files.
Some studies [4] observed that the overall I/O performance
can increase by 1.86—4.12x over the original when using
different types of compressors.

Meanwhile, cryptographic algorithms protect the transmit-
ted content and prevent attacks from external sources. Jobs
and resources stored or executed in HPC systems may include
sensitive and highly profitable data, making them valuable
targets for cybercriminals. Encryption protects these data in
transit and during storage, preventing them from being easily
interpreted even if they are intercepted or accessed by unau-
thorized users [13]. When a suitable encryption algorithm is
selected and only used on the most sensitive portions of the
system, the purpose of securing data can be achieved with
little impact on system performance.

Furthermore, the redundancy reduced by data compression
can potentially hinder certain cryptanalysis attacks such as
frequency analysis and decrease their effectiveness [46]. The
less ciphertext there is, the fewer clues it contains. Thus,
making it harder for attackers to decipher [47].



C. Application Scenarios

The combination of compression and cryptography algo-
rithms manifests in several scenarios:

HPC is the most typical scenario. Data from scientific
projects, such as weather forecasts, inform national policy
decisions and can have a direct impact on a country’s destiny.
Therefore, datasets residing on HPC systems must be of high
integrity in order to assure reliable analysis. Applying com-
pression methods at the proper phase could mitigate the I/O
burden by shrinking the size of data files, while cryptography
methods offer an effective solution to protect sensitive data.

In a cloud computing scenario, compression methods could
help avoid the problem of storing massive data in the cloud.
From the perspective of security, encryption schemes are
needed to prevent the content of the data from being inter-
preted or by unauthorized access. Some cryptography meth-
ods, such as Homomorphic, enable users to leverage the power
of cloud-based servers to process encrypted data without the
original content being compromised during the computation,
but with added costs [48].

The beauty of this combination also presents a possibility
for its application in federated learning [49] [50]. Federated
learning is the process of constructing efficient distributed
machine learning systems by integrating models trained by
various participants or computing nodes that do not have direct
access to the training data. The ideas adhered to by this model
reduce some costs brought by traditional centralized models,
but also pose bandwidth and privacy issues in the transmission
of gradients updates. In this circumstance, the combination of
compression and encryption can be used to accelerate model
transmission while also preventing unauthorized alternations.

IV. COMBINING COMPRESSION AND ENCRYPTION

In this section, we describe the current state-of-the-art
and our two proposed combination strategies for reducing
inefficiency and insecurity in data transmission and storage.
Cmpr-Encr is the most advanced technique in the field of
integrated compression and encryption. It treats compression
as a black-box, thus providing broad adaptability, but poses
overhead problems [18]. In contrast, we present two white-
box approaches that are tightly integrated within SZ and
only focus on the most critical part of the datasets. Each
scheme is designed from a unique perspective and incorporates
certain modifications to SZ at different stages to satisfy users’
expectations in terms of efficient and secure data transit and
storage. Our methods significantly reduce the overhead of
combining EBLC and encryption. We concentrate on SZ since
it is an open-source compressor that provides the most robust
and stable compression performance when compared to other
existing lossy compressors [51], [52]. We note that our ideas
can be translated into developing white-box integrations of
compression and encryption for any compressor that leverages
Huffman encoding (e.g., MGARD [53] and JPEG [54]).

A. Method 1: Cmpr-Encr

Cmpr-Encr considers data compression and encryption as
two separate processes, where the cryptographic algorithm
consumes the direct output of the compressor [18]. The blue
dashed lines in Figure 1 indicate adjustments to SZ needed
for Cmpr-Encr.

The contradiction between the ideas of compression and
encryption algorithms is one justification for placing encryp-
tion at the end of the compression process. The ultimate
goal of an encryption algorithm is to eliminate redundancies
in the plaintext whereas EBLC needs these repetitions to
identify relationships between each data point to compress
them. In other words, the entropy of a dataset hits a theoretical
maximum when optimally encrypted, making it extremely
difficult to compress [55].

Even though some encryption schemes may require the
injection of metadata (e.g., data from padding), which ad-
versely affects compression performance, previous studies [18]
show Cmpr-Encr encrypts data without significantly impacting
the compression ratio. Thus, the encryption overhead is com-
pletely acceptable as long as fast and lightweight encryption
methods such as AES are applied. Furthermore, the encryption
bandwidth is data-type agnostic and only sensitive to data size.

The benefit of this methodology is that no changes need
to be made to the compressor itself, and no in-depth under-
standing of how the compressor works is required. Developers
simply regard it as a black-box with an encryption algorithm
attached at the end. Moreover, it is a generic solution that
is applicable to any lossless or lossy compressor, not just
SZ. This strategy, however, does have certain limitations. For
instance, there are occasions when it is necessary to encrypt
a very large dataset because of a non-optimal compression
ratio. At this point, the addition of encryption presents a large
bandwidth overhead, which is inappropriate for efficiency-
conscious systems such as HPC.

In general, Cmpr-Encr is suitable for cases that have high
compression ratios and strict confidentiality requirements.
Meanwhile, it is imperative to ensure that the system is
adequately resourced.

B. Method 2. Encr-Quant

As SZ compresses the data, it attempts to predict data values
based on spatial similarities. SZ stores the predictable and the
unpredictable data separately and performs lossless compres-
sion on both together at the fourth stage. Consequently, we
decided to encrypt the quantization array, which includes the
Huffman tree, Huffman codewords and other metadata before
lossless compression. The process of SZ after modification
with Encr-Quant is depicted in Figure 1 by the orange dashed
lines, and the pseudocode of Encr-Quant is presented in
Algorithm 1 with orange and green text.

The Encr-Quant design is influenced by the following fac-
tors. First, in contrast to establishing security policies on tradi-
tional IT systems, performance is an additional core mission
in data-intensive science. Thus, instead of assuming that all
compressed bits are equally important and encrypting them all,
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Fig. 3: Images of dark_matter_density from Nyx with different
error bounds (EBs) where gray is the unpredictable data and
black is the predictable data.

it is more effective to encrypt only a subset of the compressed
bit stream. Figure 2 displays the quantization array size as
a percentage of the overall compressed bit stream for four
datasets we use in our evaluations (see Section V). In some
cases, encrypting the quantization array is a relatively light
approach to achieve the goal of securing data without incurring
excessive costs. Thus, it should increase the efficiency of
the encryption process for datasets with a relatively small
percentage of predictable data (see Table IV). Second, even
if the exact value of a data point is determined, it is irrelevant
unless it can be precisely positioned into the raw dataset.
Although unpredictable values in SZ are stored independently,
it is notable that the location information of unpredictable data
is stored in the quantization array as part of the codewords to
ensure that the decompression results are accurate. In other
words, the value of predictable and the location of unpre-
dictable data are encrypted in this scheme. Figure 3 illustrates
the binary images of the dark_matter_density.bin from dataset
Nyx, with le-7 and le-3 error bounds along with the original
data, respectively. Data points that are unpredictable are shown
in gray, whereas data points that are predictable are shown
in black. As shown in the Figure 3(b), relying simply on
unpredictable data points does not help much in reconstructing
the original image when predictable data dominates.

The Encr-Quant method is more suitable for HPC environ-
ments than Cmpr-Encr in certain cases. The reason is that
this scheme is relatively lightweight; it decreases the amount
of data that needs to be encrypted as well as the resources
consumed during the process, thus reducing the overhead
involved. However, the low overhead here is a relative concept.
Due to the fact that each dataset has its own characteristics,
when predictable data constitutes a particularly large fraction
(e.g., more than 99%) of the entire data volume, the encryption
effort of Encr-Quant is comparable to that of Cmpr-Encr.
Besides, since we encrypt the quantization array before the
lossless stage, the randomness introduced by encryption affects
the performance of this subsequent process by some degree.
Thus, this method may have a relatively large impact on the
compression ratio. Although Encr-Quant is designed SZ, it is
compatible with other compressors that use quantization and
Huffman coding (e.g., JPEG [54]).

C. Method 3: Encr-Huffman

In the Encr-Huffman method, only the small-size Huffman
tree is encrypted after the quantization array is compressed
by Huffman encoding. Red dashed lines in Figure 1 represent
the process after applying Encr-Huffman. According to our
previous assumption, the efficiency of Encr-Quant could be
comparable to that of Cmpr-Encr at a higher compression
ratio. Thus, instead of processing the entire quantization array,
we decide to extract the Huffman tree and encrypt it. The
pseudocode of Encr-Huffman is presented in Algorithm 1 with
red and green text.

Two key factors are considered in this design. On one
hand, in HPC security, efforts should be concentrated on those
elements that are most crucial, such as sensitive data and the
limited hardware and stack [35]. The composition of the Huft-
man tree is the most important step in the entire compression
process. On the other hand, according to previous studies,
guessing the plaintext of encoded data without Huffman trees
is NP-hard [56], [57]. In our case, this means that in the
absence of the Huffman tree, it is almost impossible to restore
the quantization array and reconstruct the dataset. Besides, the
effective key space of AES-128 is large enough to withstand
brute force attacks(see Section V-G).

Although the size of the Huffman tree varies when com-
pressing different datasets, it remains a relatively small and
stable proportion of the compressed bit stream. We compress
and compare the percentage of the Huffman tree within several
datasets. Results in Figure 4 demonstrate our assumptions: the
Huffman tree comprises no more than 4.5% of the quantization
array during the compression process.

The Encr-Huffman scheme is not generic, but can be applied
to other compressors that leverage Huffman encoding, such
as JPEG [54], MGARD [53], and MP3. However, as it only
encrypts a small fraction of the compressed data, it offers high
bandwidth while guarantying the CR. Section V shows this
strategy has a lower overhead and superior performance in the
HPC environment than the previous two approaches.



Algorithm 1: Combining compression and encryption.
Black indicates the flow of original SZ, orange repre-
sents Encr-Quant, red stands for Encr-Huffman, and
green shows the process of encryption

Input: Dataset D, user-specified error-bound eb, Key k
Output: Compressed-Encrypted Dataset D’
while Next data point in dataset exists do
Calculate the predicted value v1 based on the previous
predicted value vg and the best-fit predictor;
if data point is predictable then
Quantified the difference between predicted value and its
original value;
else
| Data point is unpredictable;
end
end
Construct the Huffman tree H according to the quantization array;
Encode quantization array using H;
Divide H into n blocks By, ;

Get predictable array P A includes H and codewords;
Divide H and codewords into n blocks By,
Generate random Initial Vector IV
while i<n do
if i = O then
‘ ]\[1:IV® Bi;
else
‘ ]\r’fl: Cipheri,1 @ B,
end
Clipher; = Encrypt(k, M;);
i++;
end

Compress the unpredictable array using IEEE 754 binary
representation analysis;

Compress regression coefficients;

Apply Zlib compression;
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V. EVALUATION RESULTS

A. Experimental Setup

To evaluate the efficiency and applicability of each of the
proposed strategies, we run various experiments on Clemson
University’s Palmetto, which has two 2.4 GHz Intel Xeon Gold
6148 processors and 376 GB of RAM per node. We test with
data sets from SDRBench [58]: CLOUDf48 and Wf48 from the

Hurricane Isabel simulation, dark_matter_density from Nyx,
as well as four fields Q2, Height, QI, and T from atmospheric
modeling code SCALE-LetKF [59] for our experiments. We
use Nyx to denote dark_matter_density in the rest of our paper.
Table I details the attributes of each dataset.

TABLE I: Attributes of the datasets used in experiments.

dataset Dimensions Size Description
CLOUD(f48 100x 500500 95.37MB  Cloud moisture mixing ratio
Wif48 100x500x 500 95.37MB Hurricane wind speed
Nyx 512x512x512 527MB Dark matter density
Q2 11x1200x 1200 61MB 2m Specific humidity
Height 98x1200x 1200 1.1GB Height above ground
QI 11x98x1200x 1200 5.8GB Cloud Ice mixing ratio
T 11x98x1200x 1200 5.8GB Temperature

We compile our code using GCC-8.3.1 and run all of
our experiments with a single thread. We employ the error-
bounded lossy compressor SZ [26] with absolute error bound
mode because several studies have demonstrated the benefits
of SZ in terms of its ability to compress scientific datasets
among current up-to-date lossy compressors [51]. We choose
SZ-1.4 because it is easier to integrate encryption into than
later versions. Newer versions of SZ leverage all the features
of SZ-1.4, but add newer prediction algorithms. Therefore,
our approach is also applicable to subsequent versions. On
the basis of SZ-1.4, we implement three strategies proposed
in Section IV. For encryption, we adopt the lightweight cryp-
tography algorithm AES-128 Cipher Block Chaining (CBC)
mode, as it maintains adequate security levels with faster
encryption [60], [61].

B. Evaluation metrics

We evaluate the performance of different combined com-
pression and encryption methods based on several criteria.

Compression Ratio (CR) quantifies the degree of compres-
sion. CR is defined as the ratio of the original total data size
to the compressed data size. A higher CR indicates that data
has been compressed to a greater extent.

Slzeom'ginal

CompressionRatio(CR) = )

Sizecompressed

Bandwidth refers to the total amount of data that is
compressed/decompressed per unit of time. A larger band-
width is attained when a dataset takes less time to com-
press/decompress.

Slzeoriginal

Bandwidth(BW) = 2)

compression/decompression

Time Overhead represents the percentage of the total time
required for compression after adding the encryption process
compared with the time required to compress the file using
the original compressor. When this value is less than 100%,
it signifies that the new approach takes less time to process
the dataset than the original method, and vice versa. A lower
time overhead indicates that encryption places less strain on
the critical path in the reduction pipeline.
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Randomness analysis. Encryption algorithms should gen-
erate random output from any input data to prevent an attacker
from identifying patterns between plaintext and ciphertext. The
National Institute of Standards and Technology (NIST) has
a test suite, NIST SP800-22 [62], for randomness analysis.
This test suite includes 15 statistical tests, each of which is
evaluated using a p-value between 0 and 1. When the p-value
exceeds 0.01, the test results meet the criteria.

C. Compression Ratio

Table II summarizes the CR of each dataset under differ-
ent error bounds while using the original compressor. It is
evident that there is a significant difference in CR amongst
datasets. These variations are attributed to the characteristics
of each dataset. CLOUDf48 and QI have the highest CRs of
all datasets, indicating that these two datasets are easier to
compress. In contrast, Nyx is a hard-to-compress dataset with
CRs in the range of 1-3x. One of the major reasons for this
discrepancy is the fact that SZ relies on data correlations to
make predictions. In general, datasets with highly correlated
data points are more compressible. When a high proportion of
predictable data is present in the dataset (see Figure 2), such
as CLOUDf48 and Q2 when the error bound is set to le-3,
the CR is relatively higher. However, data predictability is not
the only criterion used to assess compressibility. For example,
T and Nyx have more than 96% predictability when the error
bound is le-3, but the CR is still in the single digits. One of
the reasons is that the size of the Huffman tree is still relatively
large for Nyx (see Figure 4). Besides, the predictable data is
unique, and a vast number of unique codewords are generated
when encoded with a Huffman tree, leading to a lower CR.

TABLE II: Baseline compression ratio with no encryption.
Absolute Error Bound

Dataset le-7 le-6 le-5 le-4 le-3
CLOUDf48  17.959 27.216 51.731 311.799 2380.782
Nyx 1.145 1.184 1.704 2.320 3.082
Q2 4.288 7.387 13.352 24.470 89.384
Height 2.802 4.343 5.718 7.847 12.687
QI 67.931 182.291 446.896  1709.021  3654.457
T 3.076 3.301 3414 5.197 9.997

The addition of data encryption has an adverse effect on CRs
by introducing extra data. We use the original CR as a baseline
and normalization point to compare the three compression
and encryption methods. Figure 5 presents the impact on
CR. Both Cmpr-Encr and Encr-Huffman are able to retain
more than 99% of the original CR in each experiment. In
most cases, the CR of Cmpr-Encr is closer to the original
than Encr-Huffman. The largest discrepancy is roughly 0.26%
in Nyx where error bound is le-7. Nyx is dominated by
unpredictable data (see Figure 2), with the Huffman tree
accounting for approximately 4.4% of its quantization array
(see Figure 4). Encrypting the relatively large-size Huffman
tree reduces the CR by lowering the quality of the subsequent
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Fig. 5: Normalized compression ratio for different datasets.

lossless compression. Conversely, Encr-Quant has a significant
impact on the CR in some datasets. For example, the ratio for
QI and Q2 is only 5%~20% of the original. In general, the
Encr-Quant approach has a greater impact on easy-to-compress
datasets (CLOUDf48, Q2, QI) than on those which are hard-to-
compress (Nyx, Height, Temperature). These easy-to-compress
datasets contain a higher proportion of predictable data that is
encoded with high repeatability, hence obtaining greater CRs
when lossless compression is subsequently applied. The en-
cryption of the quantization array prior to lossless compression
increases the entropy and randomness of the array and limits
its ability to benefit from the lossless process, resulting in
substantial reductions in the CR. The worst case occurs when
the error bound for Q2 is set to le-2. At this point, 99.99% of
the data is predictable and the Encr-Quant scheme is roughly
0.01% of the original CR. By contrast, the Encr-Huffman
method introduces randomness into the Huffman tree storage,
which has little effect on the compression capabilities of the
lossless compression step. Thus, we conclude that Cmpr-Encr
and Encr-Huffman algorithms are preferable for applications
with data security requirements and strict size restrictions.

D. Compression Bandwidth

To make the experimental results more generalizable, we
use three datasets from Table I to evaluate the throughput
of our methods. We select Temperature from SCALE-LetKF
(lowest CR), CLOUDf48 from Hurricane (high CR) and
dark_matter_density from Nyx (low CR). All data points in
Figure 6 are an average of five runs.
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Fig. 6: Bandwidth for different datasets.

Generally, the bandwidth increases with the easing of the
error bound. A special case is when the error bound is le-3
in CLOUDf48 for Encr-Quant, the bandwidth actually drops.
This is due to the encryption process generating data that
requires more time to compress losslessly. Thus, decreasing
the bandwidth. Compression bandwidth is usually lower than
decompression. In the case of CLOUDf48, the highest com-
pression bandwidth is 117 MB/s while the lowest decompres-
sion bandwidth is 157 MB/s per CPU core. This is due to
the mathematical computations required in the compression
process, such as prediction and quantification, that are not
present in decompression.

The three methods perform similarly on the hard-to-
compress dataset Nyx, but differ significantly on the compress-
ible dataset. It is noteworthy that Encr-Huffman (red trend)
remains dominant over the other methods. The largest perfor-
mance gap among Encr-Huffman, Cmpr-Encr and Original SZ
occurs while processing Temperature. In this case, the band-
width of Encr-Huffman is 7.8% and 4.8% higher than Cmpr-
Encr and SZ, respectively, on average. Besides, Encr-Huffman
achieves a bandwidth that is 25% higher on average than
Encr-Quant when working with CLOUDf48. Encryption is a
time-consuming and resource-intensive operation, the Encr-
Huffman approach encrypts only small-sized Huffman trees
(see Figure 4) rather than the entire dataset. Consequently, a
high level of security is provided while saving considerable
computation time and energy (see Section V-G).

TABLE III: Time overhead for Cmpr-Encr when compressing
(%)
Absolute Error Bound

Dataset le-7 le-6 le-5 le-4 le-3
CLOUDf48 102.172 101.789 101.729 101.244 101.138
Nyx 105.870  105.252  105.026 105332  103.602
Height 103.849  103.877 103.465 103.020 102.234
Q2 105.550  102.480 101.963 101.507 101.059
QI 100.885  100.124  100.055 100.022  100.016
T 103.869  102.920 103.641  103.389  100.555

When compared to Encr-Quant, Cmpr-Encr exhibits impres-
sive bandwidth for CLOUDf48 and Temperature; however,
since it must impose time overhead from encryption on the
original compressor, it cannot attain more bandwidth than
the original SZ. Besides, Cmpr-Encr never achieves a higher
bandwidth than Encr-Huffman since the size of Huffman tree
is always smaller than the compressed bit stream with the
same error bound. The overhead of Cmpr-Encr varies with
the size of the compressed dataset. As the data size decreases,
the cost of encryption also reduces. The advantage of Encr-
Huffman is apparent in this evaluation. However, when dealing
with datasets like Nyx, the bandwidth of the three methods is
similar. In this case, the data in Nyx is evenly distributed and
the majority of data points are unpredictable. At this point, the
encryption process takes a relatively short time and does not
have a significant impact on the compression time. The data
size to be encrypted by Encr-Quant may be larger than that
of Cmpr-Encr for a dataset containing primarily predictable
data. For example, CLOUDf48 has 96.8% predictable data
when the error bound is 1e-7, and the size of codewords to be
encrypted by Encr-Quant is around 8.8 MB, whereas Cmpr-
Encr only needs to encrypt 5.3 MB compressed bit streams.
Besides, encrypting large-size codewords introduces a lot of
randomnesses, which significantly increases the time required
for lossless compression (see Figure 7).

E. Time Overhead

Tables III-V summarize the results of testing the time
overhead of three combination algorithms with CLOUDf48,
Nyx, Q2, Height, QI, T under different error bounds. The
values in each table represent the average of five runs.

As shown in Table IV, the overhead of Cmpr-Encr is greater
than 100% in all cases, meaning that executing the Cmpr-Encr
algorithm takes longer than running the original algorithm.
Since this approach makes no changes to the compression
algorithm, all overhead is derived from the subsequent en-
cryption process. The overhead grows as the error bounds
get tighter because larger data takes longer to encrypt. The
overhead for most of the datasets ranges between 0.1%—-3%.
QI has the lowest overhead of 0.016% with an error bound
of le-3, while Nyx has the highest overhead of approximately
6% when the error bound is set to le-7.

The time overhead of Encr-Quant is not proportional to
the change in the error bound in most cases. The overhead
of this scheme is affected by two factors: the size of the
quantization array and the time spend on lossless compression.
The huge amount of codewords places considerable loads on



TABLE IV: Time overhead for Encr-Quant when compressing
(%)
Absolute Error Bound

Dataset le-7 le-6 le-5 le-4 le-3
CLOUDf48 115.301 117.019 118.154 119.303 122.882
Nyx 104.787  104.376 104950 103.957 102.853
Height 103.670  109.089  107.983  104.066  108.504
Q2 100.601  100.345 100.138  104.093  100.217
QI 127.163  119.645 131.480 133.524  133.299
T 111.272 113277 114337 106470 102.432

TABLE V: Time overhead for Encr-Huffman when compress-
ing (%)

Absolute Error Bound

Dataset le-7 le-6 le-5 le-4 le-3
CLOUDf48 97.032 96.576  96.828 96.114  96.679
Nyx 98.691 98.328 99.364 99.524  99.157
Height 95.739 95953 94993 94469 93.577
Q2 95204 91.512 89.598 91.295 90.175
QI 98.541 97.188 97.193 97.818 97.623
T 99.084 99.344 97.949 97747  97.567

encryption when the proportion of predictable data in the
dataset is relatively large and the data is uniquely distributed.
Meanwhile, the increase in entropy of the encoding array
after encryption reduces the dataset’s compressibility and
slows down lossless compression. This unpredictability is
determined by the dataset’s properties. It is clear from Table IV
that the overhead of this technique is not promising in some
circumstances, it sometimes increases processing time by more
than 30%. For datasets like Nyx where unpredictable data
dominates, Encr-Quant requires a smaller encryption size than
Cmpr-Encr, thus lowering the overhead by approximately 1%.
However, for compressible datasets as QI and CLOUDf48,
fewer unpredictable data cause a significant temporal over-
head, which in the worst case introduces 33% overhead more
than that introduced by Cmpr-Encr and 46% more than the
time overhead of the Encr-Huffman.

With respect to time overhead, Encr-Huffman performs well
and relatively stable in comparison to the first two schemes.
Encr-Huffman takes less time to execute in most circum-
stances than utilizing SZ only, as it only encrypts the small-
size Huffman tree. In the best situation, Encr-Huffman saves
6.5% in time compared to the original SZ. The randomness
introduced by the encryption algorithm in this case affects a
tiny portion of the data. This small modification to the buffer
results in a transformation that enables the lossless compressor
to compress faster, but not give as good of a compression ratio.
The entropy value of the dataset after applying Encr-Quant is
extremely high, approaching the theoretical maximum value
of 8 [55], making lossless compression time-consuming. In
comparison to the original SZ, Encr-Huffman reduces entropy
by 0.01 on average. Thus, not only preserving more than 99%
of the original CR, but also speeding up the lossless procedure.
Therefore, when considering all the factors, the Encr-Huffman
scheme is the best choice among the three.

F. Randomness Analysis

Randomness is critical to data security because it allows
intruders to see all the coded data but cannot extract any
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Fig. 7: Time breakdown for different datasets.

information or patterns from it. The NIST SP800-22 [62]
test suite is an excellent tool to investigate different aspects
of randomness in the crypto bit streams. We conduct NIST
SP800-22 tests on all approaches, but only discuss results
from Nyx and Q2 for space reasons. The test suite splits
the compressed data file is separated into several bit streams,
each of which is evaluated independently to obtain a complete
picture of the data distribution. The Pass Rate column in Table
VI, show the number of bit streams passing the test.

The second column in Table VI lists results when we set the
error-bound to le-7 and apply the Encr-Quant method to the
dataset Nyx. Nyx in this setting is an extreme example, with
only 7.2% of predictable data that is encrypted (see Figure 2).
Unlike Cmpr-Encr, which easily passes all the randomness
tests from the test suite, Encr-Quant failed the vast majority
of the tests, indicating the resulting data has non-randomness.

We also investigate the randomness of Q2 when the er-
ror bound is le-6, where the data is 85% predictable. The
third column in Table VI shows that the Encr-Quant scheme
successfully passes all NIST tests in this case, thus proving
its randomness. Compared with the results from Nyx, we
conclude that when there is a high amount of predictable
data, the Encr-Quant technique can encrypt most of the data
and successfully produce completely random compressed bit
streams. Encr-Huffman, predictably, fails all randomness tests
since it only encrypts the small-size Huffman tree and has no
effect on the randomness of the rest of the compressed data.
The studies above reveal that the proportion of the encryption
scale determines the randomness of output bit streams. The
randomness of the compressed data improves as the proportion
of encrypted data grows. As a result, Cmpr-Encr produces
completely random output, whereas the randomness of Encr-
Quant is dictated by the fraction of predictable data, and Encr-
Huffman does not provide sufficiently random results because
it only encrypts a very small part of the data.

G. Security Analysis

From a randomness standpoint, Encr-Huffman and Encr-
Quant may appear insufficient to guarantee appropriate secu-
rity, but randomness is only one of the factors that determine
data security. These two techniques still provide an adequate
security level because the attacker is unable to rebuild the
Huffman tree and decode the compressed data without the



TABLE VI: NIST test for Nyx and Q2 with Encr-Quant
Statistical test Pass Rate for Nyx = Pass Rate for Q2

Frequency 58.33% 100%
Block frequency 50.00% 100%
Runs 58.33% 100%
Long runs of one’s 58.33% 100%
Binary Matrix Rank 91.66% 100%
Spectral DFT 91.66% 100%
No overlapping templates 50.00% 100%
Overlapping templates 58.33% 100%
Universal 58.33% 100%
Linear complexity 100% 100%
Serial 66.67% 100%
Approximate entropy 58.33% 100%
Cumulative sums 58.33% 100%
Random excursions 100% 100%
Random excursions variant 100% 100%

key. Several studies have demonstrated that it is an NP-
Hard problem to completely decompress the compressed data
without the Huffman tree [56], [57], and the Encr-Huffman
method complicates decoding by injecting randomness into
the Huffman tree. Moreover, the encryption algorithm we use,
AES-128, has an effective key space of 264 [63], which is
large enough to resist brute force attacks. Even with a super-
computer capable of testing 22 x 10 encryptions/sec, brute-
forcing the encrypted data still takes roughly 3.7 x 1019 years.
Among the currently known attack strategies against AES,
the biclique attack is computationally faster than the brute-
force attack, which can recover the key for AES-128 with a
computational complexity of 21261 and is not feasible [64].

VI. RELATED WORK

HPC security is currently gaining popularity and inspiring
a growing quantity of research in this field. Science DM
Z (Demilitarized Zone) is an effective solution for opti-
mizing security strategy for high-performance scientific ap-
plications [38]. With this security model, a site’s scientific
computing is isolated in its own network enclave while all data
is transferred through a single network that can be monitored
with intrusion detection systems (IDS) controlled with access
control lists (ACLs). However, resources in the Science DMZ
are specifically designed to interact with external systems and
are segregated from internal systems, making them ineffective
when confronting insider threats. Other than this isolation-
based security strategy, some studies [65] have explored the
potential for hardware-based Trusted Execution Environment
(TSS) to achieve safe scientific computing. Their findings
reveal that AMD’s Secure Encrypted Virtualization (SEV) can
protect HPC systems against threats with lower performance
overhead if configured correctly. However, SEV still slows
down the performance by 1x-4x compared to native execution
for graph applications.

A verity of additional fields are investigating combining
compression with encryption. Some researchers [60] have
investigated the possibility of combining encryption and com-
pression with edge computing. After data is collected, it is
first encrypted at the sensor node with the AES algorithm
prior to transmission, then decrypted and compressed at the
edge-assisted gateway before finally sent to the LoRa-based

gateway. This design has proven to be effective at saving
bandwidth while providing more robust data validation with
only a minor increase in latency. A Fast and Secure (FS) data
transmission module is proposed for vertical federated learning
structure in paper [50]. The Host first extracts and compresses
half of the feature value of the data in the host side, then
use a homomorphic-based encryption algorithm to transmit
the data to the Guest. This module can boost transmission
efficiency by 50% and significantly reduce overall system
delay. The aforementioned studies demonstrate the numerous
practical applications of lossless compression and encryption.
However, these methods are not suitable for scientific data
due to its massive size and need for lossy algorithms with fast
reduction bandwidths and higher compression ratios to handle
data generated from instruments and applications.

There is also some exploratory work on combining data
compression and encryption on HPC systems, such as inte-
grating these two techniques into persistent key-value stores
(KVS) for HPC [66]. The author proposes only compressing
and encrypting the value in the key-value pair and sensitive
data in the Sorted Strings Table (SSTable) by exploiting the
memory hierarchy in HPC systems. Their findings demonstrate
that this strategy can achieve the goal of decreasing data size
and securely sharing at a cost that is practically undetectable.
However, this scheme is limited to lossless compression and
encryption of key-value pairs and is not suitable for scientific
datasets with large amounts of floating-point data.

VII. CONCLUSION

Lossy compression techniques significantly alleviate the
problem of managing, transferring, and storing large volumes
of data. However, the data is still vulnerable and valuable to
malicious agents. Encryption is a method to preserve the con-
fidentiality and integrity of data throughout its lifecycle, but
is currently not well integrated into lossy compressors. This
paper presents two techniques for integrating data compression
and encryption in HPC systems. Our experiments indicate that
the Encr-Quant method is more sensitive to dataset features
and has a restricted range of applicability. When there is a
considerable amount of predictable data, this strategy reduces
the effectiveness of the subsequent lossless process, which
leads to a significant fall in compression ratio and bandwidth.
The Encr-Huffman approach has a wider range of applications
on which it achieves higher compression bandwidth than the
original SZ while still retaining a great compression ratio
even for hard-to-compress datasets. Overall, the Encr-Huffman
scheme is light-weight and has a great practical utility. This ap-
proach compresses datasets in high quality while maintaining
data security, enabling fast and confidential data transmission
and storage in HPC environments.
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