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AbstractÐThe enormous volume of data generated by large-
scale instruments and simulations poses significant challenges in
archiving, transferring, sharing and analyzing data for various
scientific groups. Lossy reduction techniques are vital to reducing
data size to acceptable levels. However, putting more information
content per bit, increases the severity of loss if perturbed by
malicious users or hardware failures. In the worst case, the entire
dataset is compromised. Malevolent alteration or destruction of
datasets containing crucial discoveries can completely invalidate
research outcomes in scientific studies. Therefore, it is critical to
integrate compression and encryption to handle data securely and
efficiently. The current state-of-the-art combination technique
Cmpr-Encr handles compression and encryption as two distinct
processes. This reduces the compression ratio and bandwidth,
especially for hard-to-compress datasets.

In this paper, we propose two data protection strategies that
work in conjunction with the lossy compressor SZ: Encr-Quant
and Encr-Huffman, and carefully evaluate the overhead they
introduce on compression bandwidth and ratio. Based on the
results of testing with real-world scientific datasets, we find that
the cost of Encr-Quant varies with the dataset’s properties and
requires cautious selection. Encr-Huffman is able to maintain
more than 99% of the original compression ratio while saving
6.5% in compression time compared to SZ. Applying Cmpr-Encr
leads to a reduction in compression bandwidth, whereas Encr-
Huffman increases bandwidth by 3.1% over the SZ, on average.

Index TermsÐLossy Data Compression, Encryption, Data
Security, High-performance Computing

I. INTRODUCTION

Over the past decade, the utilization of large-scale com-

puting has spread to more diverse domains. In order to

conduct their science and make advances in their fields,

scientists generate, share, and analyze large amounts of data.

For example, approximately 170 TB of Community Earth

System Model (CESM) data were produced for the Coupled

Model Intercomparison Project 5 (CMIP5) [1]. The overall

amount of output data for the CMIP6 is estimated to be

between 20 and 40 PB [2]. Another typical example is the

cosmological simulation code HACC, which can generate over

20 PB of down-sampled snapshots of particles in a single

run [3]. Although large amounts of data can be generated, I/O

bottlenecks result in a higher overhead to store computational

results [4], [5]. Storage constraints are already limiting the

length and size of some large-scale simulations [6], which

presents difficulties for subsequent data analysis. Thus, the

cost of storing/transmitting the output data from calculations

can no longer be overlooked.

Lossless and lossy data compression are approaches for

handling the large amount of floating-point data generated by

large-scale scientific projects [7]±[10]. Error-bounded lossy

compression (EBLC) is receiving considerable attention be-

cause of its ability to significantly reduce data size while

maintaining user-defined accuracy constraints. While EBLC

brings a lot of benefits, it neglects the problems that arise in

terms of security. Prior work shows that lossy compression

cannot withstand the consequences of bits being corrupted.

Even a single bit-corruption can result in the complete failure

of decompression [11]. Besides, information leakage may

occur in compression techniques due to observable features

such as the compression ratio [12]. Furthermore, sensitive data

on HPC still faces a serious threat of being compromised,

intercepted, or eavesdropped [13]. The loss of vital data or

the availability of instruments can hinder or even halt the

scientific process. To ensure the security of data, cryptographic

techniques, such as encryption, are attractive due to their

ability to provide strong privacy guarantees [14]±[16].

The question of how EBLC and data security can be

properly and effectively integrated in practical situations is

still an open question [17], [18]. The reasons this problem

presents difficulties are as follows: 1) Lossy compressors

have undergone rapid development in recent years. Conse-

quently, most of the development is predominantly focused

on improving compression efficiency (e.g., compression ratio)

rather than ensuring the security of data. 2) Data compression

and security are generally considered separately. Incorporating

security methods into the compression process may adversely

affect the compression ratio as well as the level of security

provided by original encryption algorithms. It is important to

investigate how to establish a link between security and lossy

compression. 3) HPC systems are designed to process large

datasets quickly and efficiently, and the emergence of security

methods could influence the computational process, resulting

in a reduction in overall performance. Therefore, the security

solution should be light-weight, so as not to impose substantial

overhead on the systems.

The cutting-edge technique in this domain, Cmpr-Encr

(treats compression and encryption as independent processes),

which introduces the problem of excessive overhead [18].



In particular, encryption dominates performance for hard-to-

compress datasets and the sizable overhead imposed by en-

cryption has a substantial impact on system performance. Our

goal is to analyze and develop techniques for the unification

of lossy data reduction and data security to enable reliable and

dependable across scientific workflows. An efficient and secure

compression-encryption method for all scientific datasets must

be developed, and the biggest challenge is striking a balance

between time/space overheads and data security.
Our contribution is summarized in two main points:

• We analyze the current-state-of-art method Cmpr-Encr

and identify key weaknesses in the approach. To alleviate

those weaknesses, we present two techniques for combin-

ing error-bounded lossy compression with data encryption

in HPC systems: Encr-Quant and Encr-Huffman, which

seek to limit the volume of data encrypted while main-

taining a high-level of data security.

• We evaluate our proposed approaches on real-world sci-

entific datasets to quantify the overhead caused by each

on the compression ratio and bandwidth. The experi-

mental results demonstrate that the light-weight Encr-

Huffman method is able to retain over 99% of the original

compression ratio while achieving higher bandwidth in

the majority of circumstances. In the best case, Encr-

Huffman achieves a bandwidth improvement of 4.8% and

7.8% over Cmpr-Encr and the original SZ, respectively,

thus, enabling fast and secure data transmission and

storage in HPC systems.

The rest of the paper is organized as follows. In Section II,

we introduce background. We discuss the importance of inte-

grating data compression and security and application scenar-

ios in Section III. In Section IV, we propose our method and

present experimental results in Section V. Finally, we discuss

related work in Section VI and conclude in Section VII.

II. BACKGROUND

A. Data compression

Compression reduces the burden produced by enormous

volumes of data on transmission and storage by scientific

datasets. Lossless compression is not an appropriate option in

this situation since scientific datasets are primarily made up of

floating-point values, and the highly random nature of the man-

tissa bits results in low compression ratios, typically around

2±4× [19], [20]. Some lossless compressors, e.g., FPZIP [9],

are built exclusively for floating-point data; they can achieve

a maximum compression ratio of roughly 10×, which is still

far from satisfactory. On the other hand, error-bounded lossy

compression (EBLC) allows for user-controlled data loss and

has higher compression ratios on scientific datasets. Although

lossy methods introduce errors into data, prior work has shown

that error-bounding can preserve the workflow correctness very

well [21]±[23]. Furthermore, in scientific simulation, some

errors are inevitable due to inaccurate scientific sensors [24].

Current state-of-the-art lossy compressors, such as SZ [25]

and ZFP [8], achieve compression ratios of 10±1000× while

strictly respecting the error bound specified by the user.

SZ is an error-bounded lossy compression scheme for

scientific data which is based on data prediction. Numerous

studies [25], [26] have demonstrated that SZ behaves remark-

ably well for compressing scientific data.

As shown in the solid black chain in Figure 1, SZ’s

compression is composed of four steps: data prediction, linear-

scale quantization, variable-length encoding and lossless com-

pression [7], [27], [28]. In data prediction stage, SZ first

splits the whole dataset into blocks of equal size and then

uses a sampling approach to pick the best predictor among

classical Lorenzo [29], mean-integrated Lorenzo and linear

regression [27]. The classical Lorenzo predictor predicts the

value of the current data point based on the value of the

adjacent data point, but the uniformly skewed issue will occur

since it uses the decompressed data to reconstruct the data

point. Mean-integrated Lorenzo predictor is used to eliminate

this deviation by approximating data points by a fixed value if

the majority of data values are clustered to a small range with

high density. A linear-regression model provides relatively

accurate predictions for uniformly distributed datasets. SZ then

continues to quantify the difference between the predicted and

actual values using linear-scale quantification based on the

user-identified error bound. In quantization, integers are used

to represent the predictable data, whereas the unpredictable

data is stored separately. Huffman encoding is subsequently

performed in the third step to encode the predictable data. The

final step is a pass of a lossless compressor such as GZIP [30]

over reduced data to further boost the compression ratio.

B. Data security

The goal of data security is to ensure the security and

compliance of data throughout its entire life cycle. A variety of

techniques are available for securing data, including intrusion

detection, role-based access control, multifactor authentica-

tion, firewalls, etc. [31]±[34]. However, due to the constraints

in the HPC environment, these typical security measures may

not operate as effectively in HPC as they do in traditional

IT systems. For example, the size of the monitoring object

in an HPC system is several orders of magnitude larger,

which makes traditional intrusion detection approaches, such

as inspecting every byte transmitted over the network imprac-

tical [35].

Security issues in HPC have received insufficient attention

within the past few years as most HPC systems were mostly

closed environments [36]. The advent of open-science expects

researchers to transcend geographical boundaries and share

their data among different organizations and systems [37].

However, open-science faces confidentiality challenges, as it

may include information that is embargoed for regulatory

purposes or that requires special handling before publication,

such as HIPAA-regulated medical data. In HPC environments,

security protocols must adhere to the PICA model, which

emphasizes ensuring high performance while maintaining data

confidentiality, integrity, and availability [38].

Cryptography is widely used for data protection. For

example, the National Center for Computational Sciences
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Fig. 1: Overview of the SZ compression process (Solid black chain) and modifications to enable encryption of the data.

(NCCS) at Oak Ridge National Laboratory (ORNL) released a

secure framework, CITADEL, that allows researchers to access

NCCS’s supercomputers for open-science projects utilizing

protected data [39]. This framework uses an encrypted parallel

file system that enhances reliability and functionality.

Among the various algorithms available in the field of

cryptography, the symmetric encryption algorithm Advanced

encryption standard (AES) stands out for its efficiency and

security [14]. According to the National Institute of Standards

and Technology (NIST), AES is robust enough to guarantee

security at extended key lengths and has a high probability

of remaining secure well into the coming decades. Other

widely known symmetric algorithms, such as Data Encryption

Standard (DES) [40] and 3DES [41], suffer from a low level

of confidentiality or slow processing speed. DES is extremely

vulnerable due to its short 56-bit key. 3DES is a more secure

variant of DES which applies DES encryption three times

to each data block to improve data security. Because of the

multiple calculations required for this process, the encryption

speed of 3DES is not promising [42]. Meanwhile, asym-

metric encryption methods such as Rivest±Shamir±Adleman

(RSA) [43] are inappropriate for high-performance situations,

as they are particularly slow in encrypting large data files.

III. MOTIVATION

In this section, we discuss the importance of applying error-

bounded lossy compression and cryptography in practice and

analyze the use cases and the possible application scenarios.

A. Importance

Security in HPC is essential in order to maintain the

legitimacy and confidentiality of data. Stakeholders in the HPC

ecosystem can include academic computing, industry, national

laboratories and even defense R&D. Moreover, some HPC

systems are utilized for real-time operational challenges such

as air traffic control and transportation, weather forecasting,

etc. Under this premise, there is a legal obligation to provide

enhanced security for sensitive information. Besides, malicious

alteration of data can affect critical studies with policy impli-

cations, such as climate studies. Prior work investigates the re-

silience of lossy compressed data to bit-flip corruptions. Their

results show that even a single bit-corruption is sufficient to

violate the compressor’s error bound or make the compressor

fail during decompression [11], [44]. As for academia HPC

systems, the loss of integrity of important research datasets,

as well as the loss of confidentiality in terms of intellectual

property, are serious issues. Furthermore, the theft of certain

types of personal information, such as biometric data, can have

catastrophic ramifications. There are numerous examples of

science projects that were affected by cyberattacks. The cost

of the damage ranges from lost working time to the usage

of a substantial amount of financial resources to repair the

system and restore scientific data. For instance, when COVID-

19 research at UC San Francisco was hacked by ransomware,

they were forced to pay approximately $1.14 million to obtain

a tool to decrypt the sensitive data [45].

B. Use-cases

Applying compression methods significantly relieves the

pressure of communication and storage. Although modern

computers are capable of calculating billions to trillions of

floating-point operations per second and generating datasets

of terabytes and even petabytes in size, the bandwidth of the

current internal interconnects is approximately 200 Gb/s [5].

This disparity places a significant strain on I/O devices. Data

compression alleviates this by shrinking the size of data files.

Some studies [4] observed that the overall I/O performance

can increase by 1.86±4.12× over the original when using

different types of compressors.

Meanwhile, cryptographic algorithms protect the transmit-

ted content and prevent attacks from external sources. Jobs

and resources stored or executed in HPC systems may include

sensitive and highly profitable data, making them valuable

targets for cybercriminals. Encryption protects these data in

transit and during storage, preventing them from being easily

interpreted even if they are intercepted or accessed by unau-

thorized users [13]. When a suitable encryption algorithm is

selected and only used on the most sensitive portions of the

system, the purpose of securing data can be achieved with

little impact on system performance.

Furthermore, the redundancy reduced by data compression

can potentially hinder certain cryptanalysis attacks such as

frequency analysis and decrease their effectiveness [46]. The

less ciphertext there is, the fewer clues it contains. Thus,

making it harder for attackers to decipher [47].



C. Application Scenarios

The combination of compression and cryptography algo-

rithms manifests in several scenarios:

HPC is the most typical scenario. Data from scientific

projects, such as weather forecasts, inform national policy

decisions and can have a direct impact on a country’s destiny.

Therefore, datasets residing on HPC systems must be of high

integrity in order to assure reliable analysis. Applying com-

pression methods at the proper phase could mitigate the I/O

burden by shrinking the size of data files, while cryptography

methods offer an effective solution to protect sensitive data.

In a cloud computing scenario, compression methods could

help avoid the problem of storing massive data in the cloud.

From the perspective of security, encryption schemes are

needed to prevent the content of the data from being inter-

preted or by unauthorized access. Some cryptography meth-

ods, such as Homomorphic, enable users to leverage the power

of cloud-based servers to process encrypted data without the

original content being compromised during the computation,

but with added costs [48].

The beauty of this combination also presents a possibility

for its application in federated learning [49] [50]. Federated

learning is the process of constructing efficient distributed

machine learning systems by integrating models trained by

various participants or computing nodes that do not have direct

access to the training data. The ideas adhered to by this model

reduce some costs brought by traditional centralized models,

but also pose bandwidth and privacy issues in the transmission

of gradients updates. In this circumstance, the combination of

compression and encryption can be used to accelerate model

transmission while also preventing unauthorized alternations.

IV. COMBINING COMPRESSION AND ENCRYPTION

In this section, we describe the current state-of-the-art

and our two proposed combination strategies for reducing

inefficiency and insecurity in data transmission and storage.

Cmpr-Encr is the most advanced technique in the field of

integrated compression and encryption. It treats compression

as a black-box, thus providing broad adaptability, but poses

overhead problems [18]. In contrast, we present two white-

box approaches that are tightly integrated within SZ and

only focus on the most critical part of the datasets. Each

scheme is designed from a unique perspective and incorporates

certain modifications to SZ at different stages to satisfy users’

expectations in terms of efficient and secure data transit and

storage. Our methods significantly reduce the overhead of

combining EBLC and encryption. We concentrate on SZ since

it is an open-source compressor that provides the most robust

and stable compression performance when compared to other

existing lossy compressors [51], [52]. We note that our ideas

can be translated into developing white-box integrations of

compression and encryption for any compressor that leverages

Huffman encoding (e.g., MGARD [53] and JPEG [54]).

A. Method 1: Cmpr-Encr

Cmpr-Encr considers data compression and encryption as

two separate processes, where the cryptographic algorithm

consumes the direct output of the compressor [18]. The blue

dashed lines in Figure 1 indicate adjustments to SZ needed

for Cmpr-Encr.

The contradiction between the ideas of compression and

encryption algorithms is one justification for placing encryp-

tion at the end of the compression process. The ultimate

goal of an encryption algorithm is to eliminate redundancies

in the plaintext whereas EBLC needs these repetitions to

identify relationships between each data point to compress

them. In other words, the entropy of a dataset hits a theoretical

maximum when optimally encrypted, making it extremely

difficult to compress [55].

Even though some encryption schemes may require the

injection of metadata (e.g., data from padding), which ad-

versely affects compression performance, previous studies [18]

show Cmpr-Encr encrypts data without significantly impacting

the compression ratio. Thus, the encryption overhead is com-

pletely acceptable as long as fast and lightweight encryption

methods such as AES are applied. Furthermore, the encryption

bandwidth is data-type agnostic and only sensitive to data size.

The benefit of this methodology is that no changes need

to be made to the compressor itself, and no in-depth under-

standing of how the compressor works is required. Developers

simply regard it as a black-box with an encryption algorithm

attached at the end. Moreover, it is a generic solution that

is applicable to any lossless or lossy compressor, not just

SZ. This strategy, however, does have certain limitations. For

instance, there are occasions when it is necessary to encrypt

a very large dataset because of a non-optimal compression

ratio. At this point, the addition of encryption presents a large

bandwidth overhead, which is inappropriate for efficiency-

conscious systems such as HPC.

In general, Cmpr-Encr is suitable for cases that have high

compression ratios and strict confidentiality requirements.

Meanwhile, it is imperative to ensure that the system is

adequately resourced.

B. Method 2. Encr-Quant

As SZ compresses the data, it attempts to predict data values

based on spatial similarities. SZ stores the predictable and the

unpredictable data separately and performs lossless compres-

sion on both together at the fourth stage. Consequently, we

decided to encrypt the quantization array, which includes the

Huffman tree, Huffman codewords and other metadata before

lossless compression. The process of SZ after modification

with Encr-Quant is depicted in Figure 1 by the orange dashed

lines, and the pseudocode of Encr-Quant is presented in

Algorithm 1 with orange and green text.

The Encr-Quant design is influenced by the following fac-

tors. First, in contrast to establishing security policies on tradi-

tional IT systems, performance is an additional core mission

in data-intensive science. Thus, instead of assuming that all

compressed bits are equally important and encrypting them all,
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size of compressed dataset.

(a) EB=1e-7. (b) EB=1e-3. (c) Original.

Fig. 3: Images of dark matter density from Nyx with different

error bounds (EBs) where gray is the unpredictable data and

black is the predictable data.

it is more effective to encrypt only a subset of the compressed

bit stream. Figure 2 displays the quantization array size as

a percentage of the overall compressed bit stream for four

datasets we use in our evaluations (see Section V). In some

cases, encrypting the quantization array is a relatively light

approach to achieve the goal of securing data without incurring

excessive costs. Thus, it should increase the efficiency of

the encryption process for datasets with a relatively small

percentage of predictable data (see Table IV). Second, even

if the exact value of a data point is determined, it is irrelevant

unless it can be precisely positioned into the raw dataset.

Although unpredictable values in SZ are stored independently,

it is notable that the location information of unpredictable data

is stored in the quantization array as part of the codewords to

ensure that the decompression results are accurate. In other

words, the value of predictable and the location of unpre-

dictable data are encrypted in this scheme. Figure 3 illustrates

the binary images of the dark matter density.bin from dataset

Nyx, with 1e-7 and 1e-3 error bounds along with the original

data, respectively. Data points that are unpredictable are shown

in gray, whereas data points that are predictable are shown

in black. As shown in the Figure 3(b), relying simply on

unpredictable data points does not help much in reconstructing

the original image when predictable data dominates.

The Encr-Quant method is more suitable for HPC environ-

ments than Cmpr-Encr in certain cases. The reason is that

this scheme is relatively lightweight; it decreases the amount

of data that needs to be encrypted as well as the resources

consumed during the process, thus reducing the overhead

involved. However, the low overhead here is a relative concept.

Due to the fact that each dataset has its own characteristics,

when predictable data constitutes a particularly large fraction

(e.g., more than 99%) of the entire data volume, the encryption

effort of Encr-Quant is comparable to that of Cmpr-Encr.

Besides, since we encrypt the quantization array before the

lossless stage, the randomness introduced by encryption affects

the performance of this subsequent process by some degree.

Thus, this method may have a relatively large impact on the

compression ratio. Although Encr-Quant is designed SZ, it is

compatible with other compressors that use quantization and

Huffman coding (e.g., JPEG [54]).

C. Method 3: Encr-Huffman

In the Encr-Huffman method, only the small-size Huffman

tree is encrypted after the quantization array is compressed

by Huffman encoding. Red dashed lines in Figure 1 represent

the process after applying Encr-Huffman. According to our

previous assumption, the efficiency of Encr-Quant could be

comparable to that of Cmpr-Encr at a higher compression

ratio. Thus, instead of processing the entire quantization array,

we decide to extract the Huffman tree and encrypt it. The

pseudocode of Encr-Huffman is presented in Algorithm 1 with

red and green text.

Two key factors are considered in this design. On one

hand, in HPC security, efforts should be concentrated on those

elements that are most crucial, such as sensitive data and the

limited hardware and stack [35]. The composition of the Huff-

man tree is the most important step in the entire compression

process. On the other hand, according to previous studies,

guessing the plaintext of encoded data without Huffman trees

is NP-hard [56], [57]. In our case, this means that in the

absence of the Huffman tree, it is almost impossible to restore

the quantization array and reconstruct the dataset. Besides, the

effective key space of AES-128 is large enough to withstand

brute force attacks(see Section V-G).

Although the size of the Huffman tree varies when com-

pressing different datasets, it remains a relatively small and

stable proportion of the compressed bit stream. We compress

and compare the percentage of the Huffman tree within several

datasets. Results in Figure 4 demonstrate our assumptions: the

Huffman tree comprises no more than 4.5% of the quantization

array during the compression process.

The Encr-Huffman scheme is not generic, but can be applied

to other compressors that leverage Huffman encoding, such

as JPEG [54], MGARD [53], and MP3. However, as it only

encrypts a small fraction of the compressed data, it offers high

bandwidth while guarantying the CR. Section V shows this

strategy has a lower overhead and superior performance in the

HPC environment than the previous two approaches.



Algorithm 1: Combining compression and encryption.

Black indicates the flow of original SZ, orange repre-

sents Encr-Quant, red stands for Encr-Huffman, and

green shows the process of encryption

Input: Dataset D, user-specified error-bound eb, Key k

Output: Compressed-Encrypted Dataset D′

while Next data point in dataset exists do
Calculate the predicted value v1 based on the previous

predicted value v0 and the best-fit predictor;
if data point is predictable then

Quantified the difference between predicted value and its
original value;

else
Data point is unpredictable;

end

end

Construct the Huffman tree H according to the quantization array;
Encode quantization array using H;
Divide H into n blocks Bn;
Get predictable array PA includes H and codewords;
Divide H and codewords into n blocks Bn;
Generate random Initial Vector IV ;
while i<n do

if i = 0 then
Mi=IV

⊕
Bi;

else
Mi= Cipheri−1

⊕
Bi;

end

Cipheri = Encrypt(k,Mi);
i++;

end

Compress the unpredictable array using IEEE 754 binary
representation analysis;

Compress regression coefficients;
Apply Zlib compression;
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Fig. 4: The percentage of compressed array size of Huffman

tree compared to quantization array.

V. EVALUATION RESULTS

A. Experimental Setup

To evaluate the efficiency and applicability of each of the

proposed strategies, we run various experiments on Clemson

University’s Palmetto, which has two 2.4 GHz Intel Xeon Gold

6148 processors and 376 GB of RAM per node. We test with

data sets from SDRBench [58]: CLOUDf48 and Wf48 from the

Hurricane Isabel simulation, dark matter density from Nyx,

as well as four fields Q2, Height, QI, and T from atmospheric

modeling code SCALE-LetKF [59] for our experiments. We

use Nyx to denote dark matter density in the rest of our paper.

Table I details the attributes of each dataset.

TABLE I: Attributes of the datasets used in experiments.
dataset Dimensions Size Description

CLOUDf48 100×500×500 95.37MB Cloud moisture mixing ratio
Wf48 100×500×500 95.37MB Hurricane wind speed
Nyx 512×512×512 527MB Dark matter density
Q2 11×1200×1200 61MB 2m Specific humidity

Height 98×1200×1200 1.1GB Height above ground
QI 11×98×1200×1200 5.8GB Cloud Ice mixing ratio
T 11×98×1200×1200 5.8GB Temperature

We compile our code using GCC-8.3.1 and run all of

our experiments with a single thread. We employ the error-

bounded lossy compressor SZ [26] with absolute error bound

mode because several studies have demonstrated the benefits

of SZ in terms of its ability to compress scientific datasets

among current up-to-date lossy compressors [51]. We choose

SZ-1.4 because it is easier to integrate encryption into than

later versions. Newer versions of SZ leverage all the features

of SZ-1.4, but add newer prediction algorithms. Therefore,

our approach is also applicable to subsequent versions. On

the basis of SZ-1.4, we implement three strategies proposed

in Section IV. For encryption, we adopt the lightweight cryp-

tography algorithm AES-128 Cipher Block Chaining (CBC)

mode, as it maintains adequate security levels with faster

encryption [60], [61].

B. Evaluation metrics

We evaluate the performance of different combined com-

pression and encryption methods based on several criteria.

Compression Ratio (CR) quantifies the degree of compres-

sion. CR is defined as the ratio of the original total data size

to the compressed data size. A higher CR indicates that data

has been compressed to a greater extent.

CompressionRatio(CR) =
Sizeoriginal

Sizecompressed
(1)

Bandwidth refers to the total amount of data that is

compressed/decompressed per unit of time. A larger band-

width is attained when a dataset takes less time to com-

press/decompress.

Bandwidth(BW ) =
Sizeoriginal

tcompression/decompression
(2)

Time Overhead represents the percentage of the total time

required for compression after adding the encryption process

compared with the time required to compress the file using

the original compressor. When this value is less than 100%,

it signifies that the new approach takes less time to process

the dataset than the original method, and vice versa. A lower

time overhead indicates that encryption places less strain on

the critical path in the reduction pipeline.



Overhead(%) =
tnew

toriginal
× 100% (3)

Randomness analysis. Encryption algorithms should gen-

erate random output from any input data to prevent an attacker

from identifying patterns between plaintext and ciphertext. The

National Institute of Standards and Technology (NIST) has

a test suite, NIST SP800-22 [62], for randomness analysis.

This test suite includes 15 statistical tests, each of which is

evaluated using a p-value between 0 and 1. When the p-value

exceeds 0.01, the test results meet the criteria.

C. Compression Ratio

Table II summarizes the CR of each dataset under differ-

ent error bounds while using the original compressor. It is

evident that there is a significant difference in CR amongst

datasets. These variations are attributed to the characteristics

of each dataset. CLOUDf48 and QI have the highest CRs of

all datasets, indicating that these two datasets are easier to

compress. In contrast, Nyx is a hard-to-compress dataset with

CRs in the range of 1±3×. One of the major reasons for this

discrepancy is the fact that SZ relies on data correlations to

make predictions. In general, datasets with highly correlated

data points are more compressible. When a high proportion of

predictable data is present in the dataset (see Figure 2), such

as CLOUDf48 and Q2 when the error bound is set to 1e-3,

the CR is relatively higher. However, data predictability is not

the only criterion used to assess compressibility. For example,

T and Nyx have more than 96% predictability when the error

bound is 1e-3, but the CR is still in the single digits. One of

the reasons is that the size of the Huffman tree is still relatively

large for Nyx (see Figure 4). Besides, the predictable data is

unique, and a vast number of unique codewords are generated

when encoded with a Huffman tree, leading to a lower CR.

TABLE II: Baseline compression ratio with no encryption.
Absolute Error Bound

Dataset 1e-7 1e-6 1e-5 1e-4 1e-3

CLOUDf48 17.959 27.216 51.731 311.799 2380.782
Nyx 1.145 1.184 1.704 2.320 3.082
Q2 4.288 7.387 13.352 24.470 89.384

Height 2.802 4.343 5.718 7.847 12.687
QI 67.931 182.291 446.896 1709.021 3654.457
T 3.076 3.301 3.414 5.197 9.997

The addition of data encryption has an adverse effect on CRs

by introducing extra data. We use the original CR as a baseline

and normalization point to compare the three compression

and encryption methods. Figure 5 presents the impact on

CR. Both Cmpr-Encr and Encr-Huffman are able to retain

more than 99% of the original CR in each experiment. In

most cases, the CR of Cmpr-Encr is closer to the original

than Encr-Huffman. The largest discrepancy is roughly 0.26%

in Nyx where error bound is 1e-7. Nyx is dominated by

unpredictable data (see Figure 2), with the Huffman tree

accounting for approximately 4.4% of its quantization array

(see Figure 4). Encrypting the relatively large-size Huffman

tree reduces the CR by lowering the quality of the subsequent
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Fig. 5: Normalized compression ratio for different datasets.

lossless compression. Conversely, Encr-Quant has a significant

impact on the CR in some datasets. For example, the ratio for

QI and Q2 is only 5%∼20% of the original. In general, the

Encr-Quant approach has a greater impact on easy-to-compress

datasets (CLOUDf48, Q2, QI) than on those which are hard-to-

compress (Nyx, Height, Temperature). These easy-to-compress

datasets contain a higher proportion of predictable data that is

encoded with high repeatability, hence obtaining greater CRs

when lossless compression is subsequently applied. The en-

cryption of the quantization array prior to lossless compression

increases the entropy and randomness of the array and limits

its ability to benefit from the lossless process, resulting in

substantial reductions in the CR. The worst case occurs when

the error bound for Q2 is set to 1e-2. At this point, 99.99% of

the data is predictable and the Encr-Quant scheme is roughly

0.01% of the original CR. By contrast, the Encr-Huffman

method introduces randomness into the Huffman tree storage,

which has little effect on the compression capabilities of the

lossless compression step. Thus, we conclude that Cmpr-Encr

and Encr-Huffman algorithms are preferable for applications

with data security requirements and strict size restrictions.

D. Compression Bandwidth

To make the experimental results more generalizable, we

use three datasets from Table I to evaluate the throughput

of our methods. We select Temperature from SCALE-LetKF

(lowest CR), CLOUDf48 from Hurricane (high CR) and

dark matter density from Nyx (low CR). All data points in

Figure 6 are an average of five runs.
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Fig. 6: Bandwidth for different datasets.

Generally, the bandwidth increases with the easing of the

error bound. A special case is when the error bound is 1e-3

in CLOUDf48 for Encr-Quant, the bandwidth actually drops.

This is due to the encryption process generating data that

requires more time to compress losslessly. Thus, decreasing

the bandwidth. Compression bandwidth is usually lower than

decompression. In the case of CLOUDf48, the highest com-

pression bandwidth is 117 MB/s while the lowest decompres-

sion bandwidth is 157 MB/s per CPU core. This is due to

the mathematical computations required in the compression

process, such as prediction and quantification, that are not

present in decompression.

The three methods perform similarly on the hard-to-

compress dataset Nyx, but differ significantly on the compress-

ible dataset. It is noteworthy that Encr-Huffman (red trend)

remains dominant over the other methods. The largest perfor-

mance gap among Encr-Huffman, Cmpr-Encr and Original SZ

occurs while processing Temperature. In this case, the band-

width of Encr-Huffman is 7.8% and 4.8% higher than Cmpr-

Encr and SZ, respectively, on average. Besides, Encr-Huffman

achieves a bandwidth that is 25% higher on average than

Encr-Quant when working with CLOUDf48. Encryption is a

time-consuming and resource-intensive operation, the Encr-

Huffman approach encrypts only small-sized Huffman trees

(see Figure 4) rather than the entire dataset. Consequently, a

high level of security is provided while saving considerable

computation time and energy (see Section V-G).

TABLE III: Time overhead for Cmpr-Encr when compressing

(%)
Absolute Error Bound

Dataset 1e-7 1e-6 1e-5 1e-4 1e-3

CLOUDf48 102.172 101.789 101.729 101.244 101.138
Nyx 105.870 105.252 105.026 105.332 103.602

Height 103.849 103.877 103.465 103.020 102.234
Q2 105.550 102.480 101.963 101.507 101.059
QI 100.885 100.124 100.055 100.022 100.016
T 103.869 102.920 103.641 103.389 100.555

When compared to Encr-Quant, Cmpr-Encr exhibits impres-

sive bandwidth for CLOUDf48 and Temperature; however,

since it must impose time overhead from encryption on the

original compressor, it cannot attain more bandwidth than

the original SZ. Besides, Cmpr-Encr never achieves a higher

bandwidth than Encr-Huffman since the size of Huffman tree

is always smaller than the compressed bit stream with the

same error bound. The overhead of Cmpr-Encr varies with

the size of the compressed dataset. As the data size decreases,

the cost of encryption also reduces. The advantage of Encr-

Huffman is apparent in this evaluation. However, when dealing

with datasets like Nyx, the bandwidth of the three methods is

similar. In this case, the data in Nyx is evenly distributed and

the majority of data points are unpredictable. At this point, the

encryption process takes a relatively short time and does not

have a significant impact on the compression time. The data

size to be encrypted by Encr-Quant may be larger than that

of Cmpr-Encr for a dataset containing primarily predictable

data. For example, CLOUDf48 has 96.8% predictable data

when the error bound is 1e-7, and the size of codewords to be

encrypted by Encr-Quant is around 8.8 MB, whereas Cmpr-

Encr only needs to encrypt 5.3 MB compressed bit streams.

Besides, encrypting large-size codewords introduces a lot of

randomnesses, which significantly increases the time required

for lossless compression (see Figure 7).

E. Time Overhead

Tables III±V summarize the results of testing the time

overhead of three combination algorithms with CLOUDf48,

Nyx, Q2, Height, QI, T under different error bounds. The

values in each table represent the average of five runs.

As shown in Table IV, the overhead of Cmpr-Encr is greater

than 100% in all cases, meaning that executing the Cmpr-Encr

algorithm takes longer than running the original algorithm.

Since this approach makes no changes to the compression

algorithm, all overhead is derived from the subsequent en-

cryption process. The overhead grows as the error bounds

get tighter because larger data takes longer to encrypt. The

overhead for most of the datasets ranges between 0.1%±3%.

QI has the lowest overhead of 0.016% with an error bound

of 1e-3, while Nyx has the highest overhead of approximately

6% when the error bound is set to 1e-7.

The time overhead of Encr-Quant is not proportional to

the change in the error bound in most cases. The overhead

of this scheme is affected by two factors: the size of the

quantization array and the time spend on lossless compression.

The huge amount of codewords places considerable loads on



TABLE IV: Time overhead for Encr-Quant when compressing

(%)
Absolute Error Bound

Dataset 1e-7 1e-6 1e-5 1e-4 1e-3

CLOUDf48 115.301 117.019 118.154 119.303 122.882
Nyx 104.787 104.376 104.950 103.957 102.853

Height 103.670 109.089 107.983 104.066 108.504
Q2 100.601 100.345 100.138 104.093 100.217
QI 127.163 119.645 131.480 133.524 133.299
T 111.272 113.277 114.337 106.470 102.432

TABLE V: Time overhead for Encr-Huffman when compress-

ing (%)
Absolute Error Bound

Dataset 1e-7 1e-6 1e-5 1e-4 1e-3

CLOUDf48 97.032 96.576 96.828 96.114 96.679
Nyx 98.691 98.328 99.364 99.524 99.157

Height 95.739 95.953 94.993 94.469 93.577
Q2 95.204 91.512 89.598 91.295 90.175
QI 98.541 97.188 97.193 97.818 97.623
T 99.084 99.344 97.949 97.747 97.567

encryption when the proportion of predictable data in the

dataset is relatively large and the data is uniquely distributed.

Meanwhile, the increase in entropy of the encoding array

after encryption reduces the dataset’s compressibility and

slows down lossless compression. This unpredictability is

determined by the dataset’s properties. It is clear from Table IV

that the overhead of this technique is not promising in some

circumstances, it sometimes increases processing time by more

than 30%. For datasets like Nyx where unpredictable data

dominates, Encr-Quant requires a smaller encryption size than

Cmpr-Encr, thus lowering the overhead by approximately 1%.

However, for compressible datasets as QI and CLOUDf48,

fewer unpredictable data cause a significant temporal over-

head, which in the worst case introduces 33% overhead more

than that introduced by Cmpr-Encr and 46% more than the

time overhead of the Encr-Huffman.

With respect to time overhead, Encr-Huffman performs well

and relatively stable in comparison to the first two schemes.

Encr-Huffman takes less time to execute in most circum-

stances than utilizing SZ only, as it only encrypts the small-

size Huffman tree. In the best situation, Encr-Huffman saves

6.5% in time compared to the original SZ. The randomness

introduced by the encryption algorithm in this case affects a

tiny portion of the data. This small modification to the buffer

results in a transformation that enables the lossless compressor

to compress faster, but not give as good of a compression ratio.

The entropy value of the dataset after applying Encr-Quant is

extremely high, approaching the theoretical maximum value

of 8 [55], making lossless compression time-consuming. In

comparison to the original SZ, Encr-Huffman reduces entropy

by 0.01 on average. Thus, not only preserving more than 99%

of the original CR, but also speeding up the lossless procedure.

Therefore, when considering all the factors, the Encr-Huffman

scheme is the best choice among the three.

F. Randomness Analysis

Randomness is critical to data security because it allows

intruders to see all the coded data but cannot extract any
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Fig. 7: Time breakdown for different datasets.

information or patterns from it. The NIST SP800-22 [62]

test suite is an excellent tool to investigate different aspects

of randomness in the crypto bit streams. We conduct NIST

SP800-22 tests on all approaches, but only discuss results

from Nyx and Q2 for space reasons. The test suite splits

the compressed data file is separated into several bit streams,

each of which is evaluated independently to obtain a complete

picture of the data distribution. The Pass Rate column in Table

VI, show the number of bit streams passing the test.

The second column in Table VI lists results when we set the

error-bound to 1e-7 and apply the Encr-Quant method to the

dataset Nyx. Nyx in this setting is an extreme example, with

only 7.2% of predictable data that is encrypted (see Figure 2).

Unlike Cmpr-Encr, which easily passes all the randomness

tests from the test suite, Encr-Quant failed the vast majority

of the tests, indicating the resulting data has non-randomness.

We also investigate the randomness of Q2 when the er-

ror bound is 1e-6, where the data is 85% predictable. The

third column in Table VI shows that the Encr-Quant scheme

successfully passes all NIST tests in this case, thus proving

its randomness. Compared with the results from Nyx, we

conclude that when there is a high amount of predictable

data, the Encr-Quant technique can encrypt most of the data

and successfully produce completely random compressed bit

streams. Encr-Huffman, predictably, fails all randomness tests

since it only encrypts the small-size Huffman tree and has no

effect on the randomness of the rest of the compressed data.

The studies above reveal that the proportion of the encryption

scale determines the randomness of output bit streams. The

randomness of the compressed data improves as the proportion

of encrypted data grows. As a result, Cmpr-Encr produces

completely random output, whereas the randomness of Encr-

Quant is dictated by the fraction of predictable data, and Encr-

Huffman does not provide sufficiently random results because

it only encrypts a very small part of the data.

G. Security Analysis

From a randomness standpoint, Encr-Huffman and Encr-

Quant may appear insufficient to guarantee appropriate secu-

rity, but randomness is only one of the factors that determine

data security. These two techniques still provide an adequate

security level because the attacker is unable to rebuild the

Huffman tree and decode the compressed data without the



TABLE VI: NIST test for Nyx and Q2 with Encr-Quant
Statistical test Pass Rate for Nyx Pass Rate for Q2

Frequency 58.33% 100%
Block frequency 50.00% 100%
Runs 58.33% 100%
Long runs of one’s 58.33% 100%
Binary Matrix Rank 91.66% 100%
Spectral DFT 91.66% 100%
No overlapping templates 50.00% 100%
Overlapping templates 58.33% 100%
Universal 58.33% 100%
Linear complexity 100% 100%
Serial 66.67% 100%
Approximate entropy 58.33% 100%
Cumulative sums 58.33% 100%
Random excursions 100% 100%
Random excursions variant 100% 100%

key. Several studies have demonstrated that it is an NP-

Hard problem to completely decompress the compressed data

without the Huffman tree [56], [57], and the Encr-Huffman

method complicates decoding by injecting randomness into

the Huffman tree. Moreover, the encryption algorithm we use,

AES-128, has an effective key space of 264 [63], which is

large enough to resist brute force attacks. Even with a super-

computer capable of testing 22× 1019 encryptions/sec, brute-

forcing the encrypted data still takes roughly 3.7×1010 years.

Among the currently known attack strategies against AES,

the biclique attack is computationally faster than the brute-

force attack, which can recover the key for AES-128 with a

computational complexity of 2126.1 and is not feasible [64].

VI. RELATED WORK

HPC security is currently gaining popularity and inspiring

a growing quantity of research in this field. Science DM

Z (Demilitarized Zone) is an effective solution for opti-

mizing security strategy for high-performance scientific ap-

plications [38]. With this security model, a site’s scientific

computing is isolated in its own network enclave while all data

is transferred through a single network that can be monitored

with intrusion detection systems (IDS) controlled with access

control lists (ACLs). However, resources in the Science DMZ

are specifically designed to interact with external systems and

are segregated from internal systems, making them ineffective

when confronting insider threats. Other than this isolation-

based security strategy, some studies [65] have explored the

potential for hardware-based Trusted Execution Environment

(TSS) to achieve safe scientific computing. Their findings

reveal that AMD’s Secure Encrypted Virtualization (SEV) can

protect HPC systems against threats with lower performance

overhead if configured correctly. However, SEV still slows

down the performance by 1x-4x compared to native execution

for graph applications.

A verity of additional fields are investigating combining

compression with encryption. Some researchers [60] have

investigated the possibility of combining encryption and com-

pression with edge computing. After data is collected, it is

first encrypted at the sensor node with the AES algorithm

prior to transmission, then decrypted and compressed at the

edge-assisted gateway before finally sent to the LoRa-based

gateway. This design has proven to be effective at saving

bandwidth while providing more robust data validation with

only a minor increase in latency. A Fast and Secure (FS) data

transmission module is proposed for vertical federated learning

structure in paper [50]. The Host first extracts and compresses

half of the feature value of the data in the host side, then

use a homomorphic-based encryption algorithm to transmit

the data to the Guest. This module can boost transmission

efficiency by 50% and significantly reduce overall system

delay. The aforementioned studies demonstrate the numerous

practical applications of lossless compression and encryption.

However, these methods are not suitable for scientific data

due to its massive size and need for lossy algorithms with fast

reduction bandwidths and higher compression ratios to handle

data generated from instruments and applications.

There is also some exploratory work on combining data

compression and encryption on HPC systems, such as inte-

grating these two techniques into persistent key-value stores

(KVS) for HPC [66]. The author proposes only compressing

and encrypting the value in the key-value pair and sensitive

data in the Sorted Strings Table (SSTable) by exploiting the

memory hierarchy in HPC systems. Their findings demonstrate

that this strategy can achieve the goal of decreasing data size

and securely sharing at a cost that is practically undetectable.

However, this scheme is limited to lossless compression and

encryption of key-value pairs and is not suitable for scientific

datasets with large amounts of floating-point data.

VII. CONCLUSION

Lossy compression techniques significantly alleviate the

problem of managing, transferring, and storing large volumes

of data. However, the data is still vulnerable and valuable to

malicious agents. Encryption is a method to preserve the con-

fidentiality and integrity of data throughout its lifecycle, but

is currently not well integrated into lossy compressors. This

paper presents two techniques for integrating data compression

and encryption in HPC systems. Our experiments indicate that

the Encr-Quant method is more sensitive to dataset features

and has a restricted range of applicability. When there is a

considerable amount of predictable data, this strategy reduces

the effectiveness of the subsequent lossless process, which

leads to a significant fall in compression ratio and bandwidth.

The Encr-Huffman approach has a wider range of applications

on which it achieves higher compression bandwidth than the

original SZ while still retaining a great compression ratio

even for hard-to-compress datasets. Overall, the Encr-Huffman

scheme is light-weight and has a great practical utility. This ap-

proach compresses datasets in high quality while maintaining

data security, enabling fast and confidential data transmission

and storage in HPC environments.
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