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Abstract—Modern HPC applications produce increasingly
large amounts of data, which limits the performance of current
extreme-scale systems. Lossy compression, helps to mitigate this
issue by decreasing the size of data generated by these applica-
tions. SZ, a current state-of-the-art lossy compressor, is able to
achieve high compression ratios, but its prediction/quantization
methods contain RAW dependencies that prevent parallelizing
this step of the compression. Recent work proposes a parallel dual
prediction/quantization algorithm for GPUs which removes these
dependencies. However, some HPC systems and applications do
not use GPUs, and could still benefit from the fine-grained paral-
lelism of this method. Using the dual-quantization technique, we
implement and optimize a SIMD vectorized CPU version of SZ
(vecSZ), and create a heuristic for selecting the optimal block size
and vector length. We propose a novel block padding algorithm to
decrease the number of unpredictable values along compression
block borders and find it reduces the number of prediction
outliers by up to 100%. We measure performance of our vecSZ
against an CPU version of SZ using dual-quantization, pSZ, as
well as SZ-1.4. Using real-world scientific datasets, we evaluate
vecSZ on the Intel Skylake and AMD Rome architectures. vecSZ
results in up to 32% improvement in rate-distortion and up to
15× speedup over SZ-1.4, achieving a prediction and quantization
bandwidth in excess of 3.4 GB/s.

Index Terms—lossy compression, compression, big data, vec-
torization, program optimization

I. INTRODUCTION

As data produced by large scale scientific applications be-

comes larger, efficient management of application data in high-

performance computing (HPC) systems is becoming increas-

ingly important. Current petascale applications such as the

Hardware/Hybrid Accelerated Cosmology Code (HACC) [1]

can produce 21.2 petabytes of data when simulating 2 trillion

particles for 500 time-steps. Large amounts of data are difficult

or impossible to handle due to the limitations of I/O bandwidth

and storage on modern HPC systems. One mechanism for

coping with the massive amounts of data generated by these

applications is through the use of data compression.

Data compression is broken down into two areas: loss-

less and lossy. Lossless compression reduces data size and

exactly preserves the original data. However, it is only able

to achieve limited compression ratios 1–4× on floating-point

HPC datasets [2]. Lossy compression is able to achieve higher

compression ratios than lossless compression by introducing

error into data [3], [4]. Error-bounded lossy compression

(EBLC) presents an attractive solution to the data reduction

challenge because of its ability to achieve high compression

ratios while guaranteeing the error introduced remains within

a specified error bound. The ability to tune the level of loss in

the data enables EBLC to be integrated into HPC applications

and workflows, making them more efficient [5], [6].

SZ [7] is a popular EBLC algorithm seeing rapid develop-

ment lately. SZ supports a variety of error bounding modes —

e.g., absolute and relative error, peak signal-to-noise ratio

(PSNR). Newer versions of SZ optimize the compression ratio

and the compression/decompression bandwidth; however, to

significantly improve the compression/decompression band-

width, SZ must take advantage of accelerators. The CPU ver-

sion of SZ is limited to coarse grain parallelism for its predic-

tion and quantization process due to a read-after-write (RAW)

dependency that prevents fine-grained parallelism necessary to

perform single instruction multiple data (SIMD) operations.

A GPU implementation of SZ, cuSZ [8], addresses this by

introducing a dual-quantization (DQ) method that removes the

RAW dependency, allowing for fine-grained parallelism in this

compression step. However, DQ has not been explored for

CPUs, resulting in unrealized performance.

In this paper, we investigate the performance of cuSZ’s

DQ technique when applied to CPUs for prediction and

quantization of data, finding it obtains only a small fraction

of peak CPU performance (<25%). Through rigorous use of

performance models and analysis, we develop vecSZ. vecSZ

applies fine-grain program optimization via auto and manual

vectorization and thread-level parallelism via OpenMP. To

dynamically select the best configuration for each dataset and

CPU, we auto-tune for block size and vector length for the DQ

technique, substantially improving the prediction and quanti-

zation bandwidth. To improve vecSZ’s prediction accuracy on

commonly misspredicted elements and subsequently improve

the compressor’s rate-distorion, we devise a novel padding

scheme that dynamically sets the border boundary values used

during prediction based on statistical properties of the dataset.

In this paper, we:

• Generate a Roofline performance model demonstrating

the performance of the basic DQ algorithm only reaches

up to 25% of peak on current CPU architectures;

• Leverage the Roofline performance analysis to develop

and optimize vecSZ, a vectorized and threaded DQ pre-

diction algorithm, increasing the prediction/quantization



bandwidth by 15.1×;

• Argument vecSZ with an auto-tuning framework to select

the best vector length and compression block size across

multiple time-steps; and

• Propose a novel compression block padding scheme for

block borders, reducing the overall number of unpre-

dictable values by as much as 100%, leading to a 32%

improvement in rate-distortion.

II. BACKGROUND AND RELATED WORK

Lossy Data Reduction. Data sets in HPC contain large

amounts of floating-point data. Due to the random nature

of mantissa bits, lossless compression methods do not give

significant reduction. Instead of saving data at each time-step,

decimation stores data from a subset of time steps, often in

full resolution. Truncation lowers the precision level of the

data — e.g., 64-bit to 32-bit floating-point. To control accuracy

in the reduced data, error-bounded lossy compression (EBLC)

algorithms such as SZ [3] and ZFP [4] provide order-of-

magnitude larger reductions than lossless compression while

meeting user specified levels of data fidelity. However, setting

error bounds to ensure fidelity is an open question [5], [9].

SZ. SZ [3], [7] is an EBLC that compresses a data set

by first decomposing the data into fixed sized blocks and then

applying a multistep process: (1) Data Prediction – data points

in each block are predicted based on previously predicted

values using either a Lorenzo predictor or a local linear

regression predictor; (2) Linear-scale Quantization – error in

the predicted value for each point is converted from a floating-

point to an integer by applying an equal-bin-size quantization

between the range of [−ǫ, ǫ], where ǫ is the compressor’s error

bound; and (3) Encoding – sequence of integer codes are

further compressed using entropy encoding techniques such as

Huffman coding and dictionary based methods such as GZip

or Zstd. SZ bounds the error in multiple ways and supports

multiple I/O libraries. In addition, SZ takes advantage of on-

node parallelization such as OpenMP, GPUs [8]. We select SZ

due to its superior performance [10] among competing HPC

EBLC algorithms such as ZFP, and truncation.

III. PERFORMANCE OPTIMIZATION

The current CPU SZ is designed to give large compression

ratios at reasonable compression bandwidths. To improve the

compression bandwidth, SZ employs thread-level paralleliza-

tion via OpenMP where each thread works independently

on a number of blocks. The current CPU SZ has a read

after write (RAW) dependence precluding optimization via

SIMD parallelism, limiting compression bandwidth. We enable

fine-grained SIMD parallelism by exploiting the dual-quant

(DQ) algorithm of cuSZ [8] for data prediction and error

quantization1. We contribute improvements to DQ through

autotuning and dynamically selecting border padding values.

1We focus on this step as opposed to the Huffman encoding because there
exist vectorized implementations of Huffman encoding [11].

1) Dual-Quantization: SZ chunks the original dataset D

into fixed sized blocks. Each block is compressed indepen-

dently. Algorithm 1 shows an overview of compression and

decompression. We denote variables we generate and use

during compression with an open circle superscript, and data

in decompression with a closed circle superscript.

Compressing each data point d ∈ D begins by predicting the

data value via Lorenzo prediction ℓ. Lorenzo prediction pre-

dicts the value of d based on the values of previously predicted

surrounding data, dSR, in the block [7]. After prediction, we

compute the error e◦ in the original data d and our prediction

p◦. Next, we quantize the error based on the user-selected

error bound eb. Quantizing the error allows us to represent the

error in the prediction as an integer, which compresses more

efficiently than floating-point. Data whose prediction error is

larger than eb is stored in the else block verbatim with no

loss in accuracy. Decompression uses the Lorenzo prediction

to reconstruct each d, reversing the quantization process.

Algorithm 1: SZ-1.4 compression and decompression.
1 Function compress()

2 for d ∈ D do

3 p◦ ← ℓ(dSR)

4 e◦ ← p◦− d
5

6 if e◦/eb < CAP (IN-CAP) then // quantization

7 e◦
D
← INTEGERIZE(e◦/(2 × eb))

8 RECONSTRUCTED← p◦ + 2 · e◦
D
· eb

9 WATCHDOG(RECONSTRUCTED − d < eb, fallback: OUTLIER)

10 else

11 OUTLIER: e◦
D
← 0 and record the verbatim x ← d

12 end

13

14 d ← RECONSTRUCTED or x accordingly // incurs raw

15 end

16 Function decompress()

17 for d• ∈ D• to reconstruct cascadingly do

18 p• ← ℓ(d•sr)

19 d• ← p• + 2 · e◦
D
· eb if IN-CAP else verbatim x

20 end

Algorithm 1 has a loop carried RAW dependence on line

14. Because the Lorenzo predictor needs predicted data values

from prior iterations, the SZ-1.4 algorithm is not able to

be vectorized. To remove the dependence, the DQ algorithm

(Algorithm 2) separates prediction and quantization, allowing

for fine-grained parallelization [8]. Lines 2 and 3 represent the

pre-quantization stage, where each datum d ∈ D is quantized

based on the error bound, forming a new dataset D◦ of

quantized data d◦. D◦ has an error that is less than the user’s

error bound |d − 2 · d◦ · eb| < eb. After the pre-quantization

step, we use Lorenzo prediction to predict the values of d◦.

After pre-quantization, the DQ algorithm starts the post-

quantization step, where we compute the difference, δ◦, be-

tween the predicted value and the prequantized value, d◦.

We quantize d◦ similarly to linear-quantization in SZ-1.4 to

obtain an integer quantization code. Because we have pre-

computed all the prediction values, we are able to quantize

all the predictions in parallel, removing the RAW dependence

for DQ compression. For decompression, we are unable to

vectorize due to the dependency that each data point cannot be

decompressed until the values preceding it are reconstructed.
2) Performance Modeling: When optimizing, programmers

seek the highest level of performance. However, the hardware’s

maximal computation rate is often an unrealistic goal. The true



Algorithm 2: vecSZ compression and decompression.
1 Function compress()

2 for ∀d ∈ D concurrently do

3 d◦ ← round(d/(2×eb)) // pre-quant

4 d ← d◦ // barrier

5 p◦ ← ℓ(d◦sr)

6 δ◦ ← p◦− d◦

7

8 if δ◦ < CAP/2 (IN-CAP) then // post-quant

9 δ◦
D
← CAST<FLOAT2INT>(δ◦)

10 else

11 OUTLIER: δ◦
D
← 0 and record the verbatim x ← d◦

12 end

13 end

14 Function decompress()

15 for d• ∈ D• to reconstruct cascadingly do

16 p• ← ℓ(d•sr)

17 d• ← (p• + δ◦
D

) · (2 × eb) if IN-CAP else verbatim x

18 end

performance of an algorithm is highly dependent on whether

the algorithm is computation or memory bound. To establish

the maximal performance level, we construct a Roofline per-

formance modelThe Roofline model is a way to visualize the

peak floating-point and memory performance based on the

operational intensity (operations per byte of DRAM traffic) of

a given algorithm [12]. To generate the ceilings for the model,

we find the sustainable memory bandwidth and the peak

floating-point performance of each CPU using the Lawrence

Berkeley National Lab’s Empirical Roofline Tool (ERT) [13].

The ERT determines the machine characteristics by running

micro-kernels on the target machine.
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Fig. 1: Roofline model of the operational intensities for DQ.

Analyzing Algorithm 2, we compute operational intensity

(OI) as FLOPS/byte accessed by DRAM and FLOP/sec and

establish conservative and lenient bounds. The conservative

bound is calculated by including strictly arithmetic opera-

tions when calculating the FLOPS/byte, while the lenient

bound includes operations such as floating-point type casts

and comparisons. Choosing conservative and lenient bounds

as opposed to a single OI ensures our actual performance

lies between the two, easing algorithm analysis. Deriving

conservative and lenient bounds is applicable to other codes.

We find this technique useful for analyzing complex codes

where counting operations is difficult or when unsure how

compiler optimizations transform the code. Figure 1 shows the

OI bounds for 1D, 2D, and 3D version of the DQ algorithm

without any optimizations on our test applications (Table II).

We find that for both the lenient and conservative estimates,

the OI for DQ is memory-bound, corresponding to values

under the slanted region of the model. Before we apply our

contributions, DQ does not fully utilize the CPU’s resources,

reaching between 10–25% of the theoretical peak performance.

3) Vectorization: Using compiler based autovectorization

presents a non-labor intensive way to apply vectorization

without the need for further modification to the actual code.

However, autovectorization relies on compile time analysis

that is limited in applicability [14]. One example of this is

the manner in which we ensure that computation is performed

only within the dimensions of our data. Any out-of-bounds

computation as a result of block partitioning data is discarded.

In a sequential program, it is sufficient to continue to the

next row or block if the remaining values in a block contain

out-of-bounds elements. The control logic required for this

operation prevents autovectorization. With vectorization, as

long as the vector register contains at least one in-bounds

element, there is no additional cost to compute the out-

of-bounds elements. Thus, we modify the boundary check

to perform fewer checks, at a vector register granularity as

opposed to a data element granularity, by generalizing if

statements that check boundaries and moving them outside

for loops. This technique is portable to other codes where

control flow prohibit autovectorization.

For the sections of code not autovectorized, we manually

vectorize via GCC compiler intrinsics. Using intrinsics, we

port this code to other CPUs that use AVX vectorization

without modification to the code. Using the GCC intrinsic

vector functions, we vectorize the pre/post-quantization loops

manually to perform work on up to 16 floating-point values

(AVX-512) and 8 floating-point values (AVX2).

Manually vectorizing DQ while leveraging different vector

register lengths introduces several challenges that we must

consider. The AVX-512 intrinsics contain a wider range of

instructions. Determining how to map these instructions to the

operations available on CPUs with lower vector capabilities

is important for ensuring no performance degradation. In

particular, we look at the latency and throughput of the

instructions, selecting the most comparable one available for

each set of intrinsics [15]. vecSZ has code paths for each

vector length and block size and selects the best choice at

runtime via autotuning (see § III-5).

4) Block Size: SZ logically decomposes the data set into

small, fixed sized blocks to compress independently. The

dimension of the blocks is not configurable in the original

SZ. However, when mapping vector operations to the compu-

tation, certain block sizes lead to inefficiencies due to register

underutilization. For example, a block size of 6× 6 (2D data)

and a vector that holds 8 values, 25% of the vector is not

utilized for each operation. To reduce this inefficiency, we use

block sizes that are multiples of the vector register in use.

SZ’s block size of 256 for 1D, 16×16 for 2D, and 6×6×6 for

3D leaves room for additional computation in vector registers

of 256-bits and 512-bits in length. The optimal block size for

1D, 2D, and 3D data varies based on the data and the vector

register size in use. We use block sizes of 8, 16, 32, and 64

as 128 and 256 did not yield additional improvements.

5) Autotuning: The performance between different config-

urations of block size and vector length can vary prediction

and quantization bandwidth by up to 300% (see § V-5). To



determine the optimal configuration of block size and vector

length for a data set, we develop a heuristic for tuning parame-

ters by performing computation on a sample of random blocks.

Before running full DQ, we perform an exhaustive search

of all configurations, sampling a fixed percentage of blocks

from the dataset at random in order to estimate the optimal

configuration of block size and vector length. We repeat this

multiple times, choosing the best performing configuration for

compression. We amortize the overhead of autotuning when

running multiple time-steps of a simulation because the best

configuration holds across the majority of time-steps.

6) OpenMP: We introduce thread-level parallelism at a

block granularity via OpenMP to further accelerate the fine-

grained parallelism we apply through vectorization. Each

block is calculated independently of all other blocks. We

optimize scheduling of threads on cores using OpenMP

thread affinity controls. Using OMP_PLACES=cores and

OMP_PROC_BIND=close schedules threads to cores on a

single socket before scheduling threads on the next socket [16].

This configuration ensures we keep threads as close to the data

on which they are operating for as long as possible. While SZ

currently only supports OpenMP for 3D data, we implement

OpenMP capabilities in vecSZ for 1D, 2D, and 3D data.

IV. PREDICTION OPTIMIZATION VIA DYNAMIC PADDING

During the prediction and quantization step, values without

preceding elements (i.e. those found along borders) rely on

block padding for prediction. The original DQ method uses

zeros to pad the blocks, regardless of the data set. Zero padding

yields inconsistent results across different data sets. On near

zero data sets, it results in better border prediction than a

dataset with relatively few near zero values. In extreme cases,

100% of the unpredictable data points are border elements.

Increasing the number of unpredictable outliers, decreases

the compression ratio because unpredictable data needs more

storage per element than predictable data [3].

vecSZ dynamically selects a padding value based on sta-

tistical properties of the data to more closely represent the

data along block borders, reducing the number of outliers

by up to 91%. Figure 2 shows for CESM’s CLDHGH data

set, 62% of border elements are unpredictable with zero

padding. Our dynamic padding yields only 6%. Our method

of dynamic padding is applicable to other compressors that

leverage predictor that bootstrap border elements.

Original DQ Block 

Padding
vecSZ Dynamic 

Block Padding

Fig. 2: Prediction of border values using zero-padding versus

vecSZ’s dynamic padding for CESM CLDHGH.

When computing padding values, we investigate the effect

of choosing a minimum, maximum, or average value of our

data at different granularities (global, block, and edge).

Global selects a single constant padding value for all

the blocks based on the full data set and has the lowest

storage overhead. The sacrifice we make to achieve this low

overhead is in the optimality of the padding scalar chosen.

Computing a single, global scalar falls victim to the limitations

of zero padding. Even if computed via a global average, the

granularity is often too coarse for most data sets.

Block computes a per padding value per block, which

increases the storage requirements proportional to the number

of blocks in the data set. This results in a higher storage

overhead, but provides finer control over the padding value

chosen per block. This granularity is best suited for data sets

that vary significantly across their domain.

Edge computes a padding value for each block dimension,

resulting in nBlocks ∗ nDim additional values to store.

This fine-grained selection typically yields the best prediction.

However, our experiments show the storage overhead often

outweighs its benefit by decreasing the final compression ratio

even when compressing the padding values.

Dynamic selection can include additional, more robust,

methods for selecting padding values; however, we find that

our chosen methods yield good results and highlight the nec-

essary trade-offs in prediction accuracy and storage overhead.

V. EXPERIMENTAL RESULTS

1) Hardware: We conduct our experiments using Cloud-

Lab, a facility for building clouds that provides access to com-

puting, storage, and networking resources [17]. We concentrate

our attention on two popular CPU models commonly found

in HPC systems: the AMD EPYC Rome and the Intel Xeon

Gold, described in detail in Table I. The Intel nodes we use

contain two Xeon CPUs, and the AMD nodes contain one

AMD EPYC CPU.

CPU

AMD EPYC Rome 7452 Intel Xeon Gold 6142

RAM 127 GB 384 GB
Cache 128 MB 22 MB
Cores 32 16

Vectorization AVX2 AVX-512

TABLE I: Detailed CPU specifications used for experiments.

A notable difference between the two CPU architectures

is the level of vectorization supported. The Intel CPU has

AVX-512 support, meaning support for 512-bit vector registers

capable of operating on 16 32-bit floating-point values at a

time. The AMD CPU only supports operations on up to 256-

bit vector registers or 8 32-bit floating point values at a time.

Moreover, the cache size of the Intel CPU is smaller than that

of the AMD CPU. Although the Intel CPU can compute on

twice as many values simultaneously, its smaller cache size

means there is a higher probability of cache misses.



2) Test Datasets: We test vecSZ on real world HPC datasets

(see Table II) from the SDRBench [18] that are representative

of a wide range of HPC workloads. For the CESM, we use

an absolute error bound of 1e−5. For the others, we use an

absolute error bound of 1e−4.

Dataset Domain Type Dimensions Size (MB)

HACC (6) Cosmology fp32 280,953,867 1071.75
CESM (3) Climate fp32 1,800×3,600 24.72

Hurricane (20) Climate fp32 100×500×500 95.37
Nyx (6) Cosmology fp32 512×512×512 512.00

QMCPACK (2) Quantum fp32 288×115×69×69 601.52

TABLE II: Attributes of the datasets used in experiments.

Number in parentheses indicates number of fields used.

3) Experimental Methodology: We use the C++ ctime

library’s high resolution clock for timing all runtimes. Each

experiment is run on both the AMD and Intel CPUs and results

are averaged across ten total runs of each dataset. We plot

the standard deviation as error bars when appropriate. As a

baseline for evaluating vecSZ we use pSZ, a serial version

of SZ that uses the DQ method as opposed to the prediction

and quantization method used by SZ-1.4.13.5 [7]. We compare

the performance of vecSZ to SZ-1.4 as opposed to SZ-2.1

because the Lorenzo prediction and quantization method used

in SZ-1.4 is directly comparable to the DQ in vecSZ. SZ-2.1

alternates between Lorenzo prediction and liner regression,

which does not provide a fair performance comparison. For

each version of SZ, we use the same config file that comes with

SZ-1.4.13.5. GCC 9.3.1’s -O3 option compiles and optimizes

all of our codes with OpenMP v4.5 and to vectorize, we

use -march=native and the vector flags that correspond

to AVX, AVX2, and AVX-512 if they are available (-mavx,

-mavx2 -mavx512, respectively).

4) Comparison to SZ: Applying vectorization to the DQ

method enables it to process data faster, leading to im-

provements in bandwidth. Figure 3 shows the prediction and

quantization bandwidth of SZ-1.4 compared with the pSZ

baseline, as well as the best performing configuration of vecSZ

(see Section V-5). We break down the performance on the

AMD and Intel CPUs in Figure 3a and Figure 3b, respectively.
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Fig. 3: Prediction and quantization bandwidth of SZ-1.4, pSZ,

and vecSZ. Black bars are standard deviation.

For the AMD CPU, the pSZ baseline shows better perfor-

mance, on average, than SZ-1.4 in three of the five applica-

tions, with a maximal speedup of 3.4× for HACC. The AMD

CPU shows its best performance for HACC and CESM, im-

proving over the pSZ baseline by at least 2000 MB/s, resulting

in a speedup of 3.7× and 4.1× respectively. Compared to SZ-

1.4, vecSZ improves prediction and quantization bandwidth

by 2700 MB/s for 1D and 2200 MB/s for 2D data, for a

speedup of 13.1× and 12× for 1D and 2D data respectively.

For 3D datasets, we outperform SZ-1.4 by 2.2–7.3× and pSZ

by 3.2–3.7×, depending on the dataset. This corresponds to

bandwidth increases of 1000–1100 MB/s for SZ-1.4 and 900–

1200 MB/s for pSZ. 3D datasets result in increased prediction

and quantization bandwidth on the AMD CPU as opposed to

the Intel CPU due to its larger cache, resulting in an average

of 30% fewer cache misses for higher dimensional datasets.

For the Intel CPU, pSZ has better performance than SZ-1.4

in the same three applications. Furthermore, for the 1D and

2D test datasets, vecSZ increases prediction and quantization

bandwidth by greater than 2800 MB/s for SZ-1.4 and 2600

MB/s for pSZ, resulting in a 15.1× speedup over SZ-1.4 and

6× speedup over pSZ for 1D datasets, and 14.0× and 5.7×
for SZ-1.4 and pSZ, respectively, on 2D datasets. 3D datasets

exhibit less performance improvement compared to 1D and

2D, resulting in an increase of 600–900 MB/s or a 2.3–5.3×
speedup. The decrease in speedup when performing DQ for

3D data is due to an increase in cache misses, up to 6×. We at-

tempted to lower the cache miss rate by prefetching the blocks,

but it did not yield substantial performance improvements.

Both the AMD and Intel CPUs display similar trends in their

bandwidth across datasets of different dimensions. Comparing

the CPUs for 2D datasets, the larger vector registers of the Intel

enable it to outperform the AMD. However, the larger cache

of the AMD leads to higher bandwidths for 3D datasets than

the Intel. Thus, for performance portable codes that operate on

multidimensional arrays, data locality and caching are central.

Overall, we find that vecSZ improves upon the bandwidth of

SZ-1.4 by 8.7× for AMD and 9.2× for Intel on average, with

a peak prediction and quantization bandwidth in excess of 2.9

GB/s for both AMD and Intel CPUs.

Roofline Analysis. To quantify how much of peak per-

formance vecSZ obtains, we compare our results to the ex-

pected performance from the Roofline model. Using the peak

GFLOPs attained by the optimal configuration of block size

and vector length, we plot the DQ performance of pSZ and

vecSZ in Figure 4.

The AMD CPU’s performance results in peak percentage

of DRAM memory bandwidth between 47–61%, improving

over the baseline code by 3.2–4.2×. The Intel CPU shows

between 57-107% of peak DRAM memory bandwidth. HACC

and CESM result in the closest to peak performance. CESM

shows a GFLOP/sec value over the peak DRAM memory

bandwidth because it is able to fit within the 22 MB L3 cache,

whereas larger datasets cannot. We do not see this behavior for

CESM on the AMD CPU because it is able to sustain a higher

peak memory bandwidth and does not have support for 512-bit

vector registers that provide the best performance on the Intel

CPU. The combined effect of these two features results in the

performance difference between Figures 4a and 4b. For all
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Fig. 4: Roofline Model showing vecSZ performance for the

DQ algorithm and the DQ no vectorization baseline, pSZ.

applications and both CPUs, we consistently improve over the

baseline, pSZ, by 2.5–5.6× which highlights the performance

portability of vecSZ’s optimizations.

5) Understanding Vectorized Performance: The perfor-

mance of the DQ algorithm is largely dependent on the

block size used for chunking input datasets, and the vector

register length used in computation. To determine the optimal

configuration of block size and vector length for each dataset,

we perform an exhaustive run of all possible block size and

vector length configurations. We show the average prediction

and quantization bandwidth per application for each of the

possible configurations in Figure 5.
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Fig. 5: Impact of vector length and compression block size.

6) Block Size and Vector Length: Block size has the largest

impact on performance of DQ. In some cases, adjusting the

block size improves the prediction and quantization bandwidth

by 354% for Intel and 139% for AMD. The differences in

block size performance also vary across applications. HACC’s

performance improves as block size increases, whereas the

general trend of QMCPack tends to decrease as block size

increases. For AMD, we find that a block size of 64 performs

best for 1D datasets, while a block size of 8 leads to optimal

performance for 2D and 3D datasets. The Intel performance

(Figure 5b) is more ambiguous, varying depending on vector

length and the dataset. To account for this variability, we

explore autotuning in Section V-7.

Since the AMD CPU supports up to 256-bit vector registers,

choice of vector length only exists on the Intel CPU. In most

cases, 256-bit vector registers perform slightly better for the

Intel CPU. However, for CESM, QMCPack, and Hurricane,

512-bit vector registers is best. A potential reason for the

improved performance of 256-bit over 512-bit registers is that

the size of a cacheline in the Intel CPU is 64 bytes. This means

that one 512-bit vector contains an entire cache line worth of

data. If data is misaligned, it results in degraded performance.

Block size should be a multiple of the vector register in

use. For example, a block size of 8 will not fill a 512-bit

vector register. In this case, autovectorization performed by

the compiler uses 512-bit vector registers, while our manual

vectorization reverts to a vector size of 256-bits in order

to utilize the entire vector register. This creates a hybrid of

512-bit and 256-bit vector operations that attribute to the

performance improvements between 512-bit and 256-bit vector

lengths for block size 8. This technique is applicable to other

vectorizable codes, where data does not fit perfectly in vector

registers, to increase the efficiency of each vector instruction.

7) Autotuning Block Size and Vector Length: When tuning,

the Intel CPU has 8 configurations of block size and vec-

tor length, while the AMD CPU has 4. vecSZ’s autotuning

determines the best configuration based on the best average

performance of the DQ operation for a subset of all blocks in

a dataset completed across multiple sampling iterations.

Figure 6 states the percentage of the peak performance of

a configuration achieved by each pair of autotuning settings,

averaged across all applications. Results for individual ap-

plications yield similar performance. In Figure 6, the more

frequently an autotuning run selects the best configuration,

the closer that configuration’s portion of the heatmap is to the

peak performance. Results for AMD yield a higher percentage

of peak performance for smaller sample percentages of blocks.

Since across iterations the same blocks may be used, the larger

cache of the AMD CPU has many blocks resident in cache,

although a random sample of data is being taken. Since the

cache of the Intel Gold CPU is much smaller, this issue is

not present. This allows a more accurate configuration to be

found as more samples are taken and averaged over a larger

number of trials. We conclude that caching affects the accuracy

of autotuning with small datasets. However, as dataset size

increases, the cost of the autotuning increases, as we discuss

below. Clearing or polluting the cache between iterations is an

option, but incurs additional time overheads.

For both CPUs, the percentage of sampled blocks and num-

ber of iterations measured for autotuning affect the percentage

of time spent during the parameter sweep. Increasing the

blocks sampled and iterations measured increases time spent

autotuning. The performance cost of increasing the number of

iterations is lower than the cost of increasing number of blocks

sampled, however we find that increasing the percentage of

blocks sampled results in performance closer to that of the
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Fig. 6: Autotuned percentage of peak performance.

best configuration. The AMD processor completes the sweep

more quickly because it has a smaller set of vector capabilities

available and, as a result, fewer parameters to sweep.

When choosing a reasonable percentage of blocks to sample

and iterations to average before autotuning, it is also important

to consider the time required to autotune for a given config-

uration. Depending on the application, a trade-off to consider

is a balance between gaining closer to peak performance and

spending less time tuning the configuration.

The Intel CPU exhibits a trend corresponding with the result

that if a larger percentage of blocks from a dataset are sampled,

the tuning configuration chosen by our autotuning algorithm is

closer to optimal. Additionally, if we repeat our experiment for

a larger number of iterations, we achieve a value within 5–10%

of peak performance. The high-cost of autotuning for larger

percentages and larger number of iterations can be amortized if

we reuse the configuration for the next several time-steps. Prior

work shows, for fields in a scientific application, their data

properties are similar through time and an optimal compressor

configuration remains optimal or nearly optimal for several

adjacent time-steps [19]. We find that for each field of the

Hurricane dataset, when examined across all 48 time-steps,

results in one of two configurations for an average of 80%

of autotuning runs. Using this knowledge, autotuning for

each time-step based on the top two configurations drastically

reduces the overhead by up to 6× for Intel. Moreover, reusing

a single tuning for multiple time-steps further lowers the cost.

8) Thread-level Parallelization: We perform thread-level

parallelization at the block level for vecSZ’s DQ operation

using OpenMP. Figure 7 scales the tread count from 1–32

and presents the speedup of vecSZ for each application over

the single-threaded performance of vecSZ. Overall, we see a

maximal speedup of 24× at 32 threads.

(a) AMD (b) Intel

Fig. 7: Single node OpenMP scaling performance.

(a) AMD (b) Intel

Fig. 8: OpenMP performance for vecSZ and SZ-1.4

For AMD, DQ operation scales nearly linearly up to 4

threads. At 8 threads, CESM and Hurricane begin to reach

their peak speedup, while HACC, Nyx, and QMCPack con-

tinue scaling linearly. For all applications, except Hurricane,

the Intel CPU scales nearly linearly until reaching 16 threads.

Hurricane begins to not scale well at 4 threads, plateauing at

16. On the Intel node, moving from 16 to 32 OpenMP threads

utilizes the second CPU.

We compare vecSZ’s prediction and quantization bandwidth

to that of SZ-1.4 in Figure 8. We only show the performance

for the 3D datasets, as SZ-1.4 does not support OpenMP

compression of 1D or 2D datasets. When performing the

prediction and quantization operation on up to 32 threads,

vecSZ outperforms SZ-1.4 by as much as 11.6× for 16 threads

for QMCPack on the AMD CPU.

9) Overall Impact: The above results focus on optimiza-

tions performed on the prediction and quantization operations

of the compression pipeline. We now address the impact of

our optimizations on the overall performance of vecSZ.

CPU

AMD EPYC Rome Intel Xeon Gold

Dual-Quant % of Runtime 46.9% 42.9%
Theoretical Max Speedup 1.70× 1.67×

Actual Speedup 1.51× 1.47×
% of Theoretical Achieved 88.9% 87.6%

TABLE III: Theoretical and actual speedup for vecSZ over it’s

serial implementation, pSZ, averaged for all applications.

The DQ operation takes an average of 46.9% and 42.9%

of the total sequential runtime for the AMD and Intel

CPUs, respectively. Using Amdahl’s Law, theoretical maxi-

mum speedup is computed by: S = 1
(1−p)+p/s , where p is the

proportion of the sequential runtime that an operation takes

and s is the speedup of the operation being parallelized. For

the AMD CPU, we set s = 8 because a 256-bit vector register

fits 8 32-bit floating point values. For Intel, s = 16. Using this

equation, we find the theoretical speedup shown in Table III

of the total runtime possible by performing vectorization of

the DQ operation to be 1.7× for AMD and 1.67× for Intel.

We achieve 89% of the theoretical maximum by reaching a

total speedup of 1.51× for AMD and 88% for Intel at 1.47×.

10) Impact of Dynamic Padding: Across all block sizes

and error-bounds, the use of dynamic padding values results

in a decrease in unpredictable values by an average of 10%.

The best cases results in 100% elimination of all outlier
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Fig. 9: Rate distortion comparison of vecSZ and SZ-1.4.

data. For larger error-bounds, the prediction of border values

becomes more important because fewer unpredictable values

exist in the rest of the block, therefore a larger percentage

of the unpredictable values come from border regions that

remain unpredictable regardless of error-bound due to the use

of zero padding. In these cases, application of a global or

block average as dynamic padding results in elimination of

all outliers because we make it possible to predict the border

values. We also find that use of minimum and maximum values

for padding do not perform as well as average value because

they tend to be outliers in the dataset.

Using a global average value for padding to provide padding

that is representative of the data without incurring excess

overhead of storing additional padding values, we generate

Figure 9, which shows the rate-distortion of vecSZ and SZ-

1.4. For reasonable error-bounds, we perform equally, or better

than SZ-1.4. For CESM and Hurricane data, we improve rate-

distortion up to 18.9% and 32% respectively. Thus, dynamic

padding could be useful for other prediction based compres-

sors to improve rate-distortion.

VI. CONCLUSIONS

As HPC grapples with larger volumes of data, compres-

sion techniques are needed to effectively reduce the data.

In this paper, we present and optimize vecSZ, a threaded

and vectorized version of the dual-quantization algorithm for

CPU architectures. We find that best performance depends on

dataset, compression block size, and vector register length.

vecSZ’s autotuner selects the best configuration and improves

the prediction and quantization bandwidth by up to 15.1×
compared to SZ-1.4, improving peak DRAM bandwidth by as

much as 61–107%. Our novel non-zero block padding reduces

the number of outlier data on the block’s border by up to 100%

yielding up to a 32% improvement in rate distortion.
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