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Abstract—Today’s scientific simulations require a significant reduction of data volume because of extremely large amounts of data
they produce and the limited 1/O bandwidth and storage space. Error-bounded lossy compression has been considered one of the
most effective solutions to the above problem. In practice, however, the best-fit compression method often needs to be customized or
optimized in particular because of diverse characteristics in different datasets and various user requirements on the compression
quality and performance. In this paper, we address this issue with a novel modular, composable compression framework named SZ3.
Our contributions are four-folds. (1) We develop SZ3 which features an innovative modular abstraction for the prediction-based
compression framework, such that compression modules can be plugged in easily to create new compressors based on characteristics
of data and user requirements. (2) We create a new compression pipeline by SZ3 for GAMESS data, which significantly improves the
compression ratios over state-of-the-art compressors. (3) We develop an adaptive compression pipeline by SZ3 for APS data with
minimal efforts, which leads to the best rate-distortion among all existing error-bounded lossy compressors for any bit-rate. (4) We
compare the sustainability of SZ3 with leading error-bounded prediction-based compressors, and then demonstrate the necessity of
diverse pipelines by integrating and evaluating several compression pipelines on diverse scientific datasets from multiple disciplines.
Experiments show that SZ3 incurs very limited overhead in compressor integration and our customized compression pipelines lead to
up to 20% improvement in compression ratios under the same data distortion, when compared with the best existing approach.

Index Terms—Big Data, Error-Bounded Lossy Compression, Data Reduction, Large-Scale Scientific Simulation

1 INTRODUCTION

DATA reduction is becoming increasingly important to
scientific research because of the large amount of data
produced by simulations running on exascale computing
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systems and experiments conducted on advanced instru-
ments. For instance, recent climate research, which performs
climate simulation in 1 kmx1 km resolution, generates 260
TB of floating-point data every 16 seconds [1]. When the
generated data are dumped into parallel file systems or
secondary storage systems to ensure long-term access, the
limited storage capacity and/or I/O bandwidth will impose
great challenges. While scientists aim to significantly reduce
the size of their data to mitigate this problem, they are also
concerned about the quality of data reduction. General data
reduction approaches, including traditional wavelet-based
methods [2], [3] and emerging neural-network-based meth-
ods [4], [5] widely used in the image processing community,
may lead to loss of important scientific insights as they do
not enforce quantifiable error bounds on reconstructed data.

Over the past decade, error-bounded lossy compres-
sion [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18] has been proposed and employed to reduce scientific
data while controlling the distortion. Depending on how the
original data are decorrelated, existing compressors can be
classified into prediction-based and transform-based. These
compressors all allow users to specify an error bound during
compression and ensure that the error between original
and decompressed data is strictly lower than the bound. In
this paper we focus mainly on prediction-based approaches
because transformed-based approaches can be formulated
to prediction-based ones by using the corresponding trans-
forms as predictors (at the cost of certain speed degrada-
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tion), as suggested by prior works [19].

Although existing prediction-based approaches such as
SZ [6], [20], [21] are general and can be applied to various
scenarios, they may not lead to the best quality and perfor-
mance given a specific dataset or error bound requirement.
The best-fit compression method is never universal, which
is true even for the same dataset because the compression
efficiency would be affected by the required error bounds
as well. For instance, SZ-1.4 [21] with a Lorenzo predictor
shows very good compression ratios with low error bounds,
but it suffers from low quality and artifacts with high error
bounds, where approaches with a regression-based predic-
tor [6] or an interpolation-based predictor [8] have been
proved to be much more efficient. Likewise, data generated
by the GAMESS quantum chemistry package [22] exhibits
periodic scaled patterns, where a pattern-based predictor
demonstrates obvious improvements in both compression
speed and ratios [23]. Thus, a loosely coupled compression
framework that allows for customization of the prediction-
based error-bounded lossy compression model is critical to
optimizing the compression quality and performance for
users in practice.

Developing a modular error-controlled compression
framework that can adapt to diverse scientific datasets is
very challenging. First, existing compressors have diverse
designs that could be hard to unify, thus designing such
a framework requires in-depth understanding and analysis
of both their algorithms and the underlying implementa-
tions. Second, stages in the unified compression framework
should provide different variations to allow for generaliza-
tion to different compression methods, which poses chal-
lenges on designing the corresponding interfaces. Third, it
is very difficult to retain the performance while providing
generality and modularity, because optimizations usually
come from specialities. Last but not the least, composing ef-
ficient compressors for applications is challenging, because
existing compressors have already been well-optimized, and
some of them are specifically designed (e.g., SZ-Pastri for
GAMESS data).

In this paper, we present a modular and composable
framework—SZ3—which can be used to easily create new
error-bounded lossy compressors on demand. SZ3 features
a modular abstraction for the prediction-based compression
pipelines such that modules can be developed and adopted
independently. Specifically, users can customize any stages
in the compression pipeline, including preprocessing, pre-
diction, quantization, encoding, and lossless compression,
via carefully designed modules. Based on these customized
modules, SZ3 allows users to compose their own com-
pressors (or compression pipelines) to adapt to diverse
data characteristics and requirements, thus achieving high
compression quality and performance with minimal effort.
Such a composable design is able to provide a variety of
useful supports, including point-wise relative error bounds
(logarithmic transform-based preprocessor [24]), feature-
preserving compression (element-wise quantizer [25]), and
speed-ratio tradeoffs (module bypass). Although designed
for data in Cartesian grids, SZ3 can also work with data
in unstructured grids by applying a linearization which re-
arranges data to a one-dimensional array.

We summarize our contributions as follows.
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e We design and develop the first general prediction-
based error-bounded lossy compression framework —
SZ3. With modularity and adaptivity in mind, SZ3
allows for easy creation and customization of various
prediction-based error-bounded lossy compressors that
can obtain high compression quality in diverse use
cases. This is critical for the developers and users of
scientific data compressors, because these compressors
are expected to handle scientific data with diverse
characteristics and meet varying user requirements in
practice.

e We develop a new compressor using SZ3 for data
generated from GAMESS quantum chemistry package.
Specifically, we propose and implement a quantizer
which significantly reduces the storage overhead of
unpreditable data. Composed by this quantizer and
a newly added lossless compression stage, the devel-
oped compressor leads to up to 18% improvement in
compression ratios compared with the best existing
approach.

o We develop an efficient compressor using SZ3 for data
collected from Advanced Photon Source instruments.
Noticing that the best-fit compression pipelines vary
with the target error requirements, we compose an
adaptive compression pipeline that leads to the best
rate-distortion under any bit rate.

o We implement SZ3 in a way that delivers high usability
with low overhead. By leveraging advanced template
programming and compile-time polymorphism, SZ3
significantly shrinks the codebase of SZ2 while im-
proving the sustainability and functionality. We also
propose and develop a pipeline mapping technique
to map the composed pipeline to optimized imple-
mentations. The effectiveness of SZ3 is validated by
extensive experiments on six diverse scientific datasets,
which demonstrate that compressors composed by SZ3
achieve comparable compression ratios and throughput
compared to state of the arts.

The target end users of SZ3 include both compression
experts and non-experts. For the former, SZ3 allows for the
reuse of compression modules (e.g., Huffman encoder) and
utility functions (e.g., the multi-dimensional iterator) that
are tricky to implement, such that compression experts only
need to implement a subset of modules to develop new
compressors. For instance, we develop the new compressor
for GAMESS data by implementing only a new quantizer,
with the majority of the implementation reusing existing
codes. For the latter, SZ3 could be either used as references
to multiple built-in compression pipelines that are widely
used, or paired with high level tools such as OptZCon-
fig [26] to automatically select or suggest the appropriate
sets of module instances. As such, we envision SZ3 as a
very useful and practical tool with a wide range of users.

The rest of the paper is organized as follows. In Section 2
we discuss related work. In Section 3 we present the design
and modules of SZ3 framework. In Section 4 and Section 5
we describe how we leverage the proposed framework to
create efficient compressors for GAMESS and APS data in
details. In Section 6 we present the comparison on sustain-
ability and evaluation for diverse pipelines. In Section 7 we
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conclude with a vision of future work.

2 RELATED WORK

With more powerful high-performance computing (HPC)
systems and high-resolution instruments, the volume and
generation speed of scientific data have been experiencing
an unprecedented increase in recent years, causing problems
in data storage, transmission, and analysis. Compared with
the fast evolution of computing resources, the I/O systems
are heavily underdeveloped, remaining a bottleneck in most
scenarios. Data compression is regarded as a direct way to
mitigate such a bottleneck, and many approaches have been
presented in the literature to address this issue.

Lossless compressors [27], [28], [29], [30], [31] ensure
that no information is lost during the compression. Despite
their success in many fields, lossless compressors suffer
from low compression ratios on floating-point scientific data
due to the almost randomly distributed mantissas. Previous
work [32] has shown that state-of-the-art lossless compres-
sors can lead to a compression ratio of only 2 when directly
applied to most floating-point scientific datasets, whereas
scientific applications usually require over 10x reduction
on their data [33].

Lossy compressors [2], [3], [4], [5], [34], [35] offer the
flexibility to trade off data quality for high compression
ratios, but they may result in a higher distortion than
users’ expectation. The unbounded distortion may result in
unexpected behaviors in post hoc data analytics and even
false discoveries, leaving risks in trusting the analysis results
on the decompressed data.

In comparison with traditional lossy compression, error-
bounded lossy compression has been rapidly developed
to fill the gap by reducing the size of scientific data
while guaranteeing quantifiable error bounds. Prediction-
based and transform-based models are the most popu-
lar models for designing error-bounded lossy compres-
sors. One of the most well-known transform-based error-
bounded lossy compressors is ZFP [13], which decorrelates
the data using a near-orthogonal transform and encodes
the transformed coefficients using embedded encoding.
MGARD [15], [16] is another compressor relying on the
transform-based model. It leverages wavelet theories and
L? projection for data decorrelation, followed by linear-
scaling quantization, variable-length encoding, and lossless
compression. It is further used to compress the data while
preserving certain derived quantities [17], [36], [37]. In a
recent compressor [38], High-Order Singular Value Decom-
position (HOSVD) is leveraged to improve the compression
ratios for low accuracy cases, but it suffers from orders
of higher computational overhead due to the expensive
decomposition.

According to recent studies [39], SZ [6], [20], [21] is
regarded as one of the leading prediction-based lossy com-
pressor in the scientific computing community. SZ follows
a 4-step pipeline to perform the compression, namely data
prediction, quantization, Huffman encoding, and lossless
compression. Significant efforts have been made to enable
new features or functionalities based on this pipeline. For
instance, in [24], a logarithmic transform was used in a pre-
processing step to change a pointwise-relative-error-bound
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compression problem to an absolute-error-bound compres-
sion problem, which is then solved by the SZ compression
pipeline. In [25], the authors derived the element-wise error
bounds based on how critical points are extracted, and they
leveraged the SZ compression pipeline along with element-
wise quantization to ensure that those critical points are
preserved in the decompressed data. In [23], the authors
adjusted the pipeline by using a pattern-based predictor
to better exploit the correlation in data and a predefined
fixed Huffman tree for faster encoding. Attempts were also
made to use the near-orthogonal transform in ZFP as a
predictor in the pipeline [19]. All the above works, how-
ever, are developed within a tightly-coupled design, so that
the compression pipelines cannot be adjusted on demand,
which thus cannot adapt to user’s diverse requirements or
different use-cases in turn. By contrast, the proposed SZ3
framework offers a breakthrough, flexible, modular frame-
work, which can be leveraged to adapt to diverse use-cases
very efficiently. Furthermore, SZ3 could serve as a building
block and benefit the development of new compressors with
more complex workflows including online selection [40],
parameter tuning [7], and configuration search [26].

Although many efforts have been spent on abstracting
lossy compression, most of them are focused on enabling
an adaptive selection of existing compressors. For instance,
SCIL [41] attempts to abstract across compressors and acts as
a metacompressor that provides backends to various exist-
ing algorithms. LibPressio [42] provides a common API for
different compressors to allow for easy integration of lossy
compression in an extensible fashion. Instead, SZ3 separates
and abstracts stages in the prediction-based compression
model, allowing for easy creation of new compressors in
fine granularity rather than selection of existing ones. To
the best of our knowledge, this is the first attempt to build
a generic framework that allows users to easily customize
their own compressors based on their actual needs.

3 SZ3: AMoDULAR COMPRESSION FRAMEWORK

In this section we introduce the design and implementation
of 5Z3. With modularity in mind, SZ3 enables easy cus-
tomization of prediction-based compression pipelines with
minimal overhead.

3.1 Design overview

Figure 1 illustrates the design overview of SZ3. The com-
pression process is abstracted into five stages (displayed
as the dotted boxes), each of which serves as an individ-
ual module. Orange boxes depict the key functionalities
of each module and green boxes illustrate several corre-
sponding instances. A compressor is realized by identifying
a compression pipeline which is composed by instances
from each module. This figure demonstrates how five lead-
ing compressors designed for different purposes, namely
FPZIP [14], SZ1.4 [21], SZ2 [6], SZ-Pastri [23], and cpSZ [25],
are composed using this abstraction (see the solid lines),
which shows the generality of the abstraction. For instance,
the FPZIP compression pipeline bypasses the precessor and
leverages Lorenzo predictor for data decorrelation, followed
by residual encoding to ensure error control and arithmetic
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Fig. 1. SZ3 design overview: left part of the figure shows the abstraction

and key functionalities of prediction-based compression pipeline with SZ3

modules; right part of the figure displays common instances of these modules and how five leading compressors are composed by these instances.

encoding for size reduction. In the following text we will
detail the modular design in SZ3, along with example
instances of the modules.

3.2 Modularity

In this section we discuss the five modules in SZ3, namely
preprocessor, predictor, quantizer, encoder, and lossless
compressor, with module instances that have proven to be
effective for scientific datasets. Developers can write their
own module instances and plug them in the compression
pipeline to design prediction-based error-bounded lossy
compression for their dataset. Due to space limitation, we
present only the most important functions and several rep-
resentative instances for each module. Detailed interfaces
for each module are listed in Appendix A.

Preprocessor (see Appendix A.1): The preprocessor
is used to process the input dataset for achieving high
efficiency or diverse requirements before performing the
actual compression. The key function in the preprocessor,
namely preprocess, takes in original data and compres-
sion configuration as input, and then transforms the data
in an in-place fashion and change the compression con-
figuration accordingly. If users want to keep original data
while the preprocessor needs to alter the data, a separate
buffer is required to perform the preprocessing. Based on the
actual design, the postprocess function either reverses
the preprocessing procedure or is omitted.

Instances: A typical preprocessor for error-bounded lossy
compressors is the logarithmic transform used to enable
point-wise relative error bounds [24], where data are trans-
formed to the logarithmic domain and compressed with
an absolute error bound transformed from the point-wise

relative one. Besides, SZ-Pastri [23] may require a prepro-
cessing step to identify the proper parameters, such as block
size and pattern size if not provided, for the pattern-based
predictor. In Section 5, we further leverage a preprocessor to
alter the layout of data for better compression ratio. This is
based on our observations that some 3D datasets will have a
better compression ratio when treated as a 2D or 1D dataset
(as will be detailed later).

Predictor (see Appendix A.2): Predictors are the key
components of prediction-based compressors, which per-
form value prediction based on diverse patterns for data
decorrelation. There are two important functions in the
predictor interface, namely predict and save/load. The
predict function outputs the predicted value based on the
characteristics of the underlying predictor using the multidi-
mensional iterator (to be detailed in Section 6.1). Necessary
information about the predictor, for instance the coefficients
of the regression predictor [6], [7], will be recorded in the
save function. During decompression, load function will
be invoked to reconstruct the predictor.

Instances: Lorenzo predictor [43] and its high order
variations [21], which perform multidimensional prediction
for each data point based on its neighbor data points, are
classic and powerful prediction methods used in lossy com-
pressors such as SZ [21] and FPZIP [14]. In [6], a regression-
based predictor is proposed to construct a hyperplane and
uses points on the hyperplane as predicted values, which
significantly improves the prediction efficiency when user-
specified error bound is high. We further implement a com-
posite predictor instance inherited from this interface, which
may consist of multiple predictors using different prediction
algorithms. This requires an error estimation function for
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each predictor, which will be used to determine the best-fit
predictor for a given data chunk. The statistical approach
in [6] and [18] is generalized as the estimation criterion in
S73. With the composite predictor, multialgorithm designs
with more than one predictors can be implemented very
easily.

Quantizer (see Appendix A.3): The quantizer is used
to approximate prediction errors generated by the predic-
tors with a smaller countable set to reduce their entropy
while respecting the error bound. As the only module that
introduces errors in the compression pipeline, quantizer
determines how the final errors in the decompressed data
are controlled. The quantize function is the most impor-
tant function in a quantizer, where the prediction error is
quantized based on the original data value and its predicted
value from the predictor. During decompression, the decom-
pressed data value is computed by the recover function,
which reverses the steps in the quantize function. The
quantizer module is also responsible for encoding/decoding
the unpredictable data, i.e., data fall out of the countable set.
This is realized in the save/load function.

Instances: Linear-scaling quantizer [21] is a widely used
quantizer to enable absolute error control in lossy compres-
sion. In particular, this quantizer constructs a set of equal-
sized consecutive bins each with twice the error bound in
length. Then, the prediction error will be translated into the
index of the bin containing it. Prediction errors that fall out
of range are regarded as unpredictable and will be encoded
and stored separately. Besides, log-scale quantizer [44] is
used to adjust the size of bins for a more centralized error
distribution and element-wise quantizer [25] is used to
provide fine-granularity error control for each data point.

Encoder (see Appendix A.4): Encoder is a lossless
scheme to reduce the storage of integer indices (or symbols)
generated by quantizers. The encoder module involves two
essential functions—encode and save/load. The encode
function transforms the quantized integers from the quan-
tizer to compressed binary formats; similar to other mod-
ules, the encoder module has a decode function which
performs the reverse process during decompression. This
module also has save/load functions for storing/recover-
ing metadata such as the Huffman tree.

Instances: Huffman encoder [45] is a classic variable-
length encoding algorithm that uses fewer bits to represent
more common symbols. This encoder first constructs a
Huffman tree based on the frequency of input data using
a greedy algorithm, generates codebook according to the
tree, and then compress the data using the codebook. The
fixed Huffman encoder used in SZ-Pastri [23] is a variation
of the Huffman encoder, which uses a predefined Huffman
tree instead of constructing one on the fly to eliminate the
cost for both construction and storage of the tree. Arithmetic
encoder is another type of encoder widely used in data
compression, which represents current information as range
and encodes the entire data into a single number.

Lossless Compressor (see Appendix A.5): Lossless com-
pressors are used to further shrink the size of compressed
binary formats produced by the encoders, because the
entropy-based encoders may overlook repeated patterns
in the data thus lead to suboptimal compression ratios.
The lossless compressor module in SZ3 acts mainly as a
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proxy of state-of-the-art lossless compression libraries. This
module invokes external libraries to compress the output
from the encoder module with compress and decompress
interfaces.

Instances: We provide portable interfaces in SZ3 to in-
tegrate with state-of-the-art lossless compressors including
ZSTD [28], GZIP [27], and BLOSC [31]. Because lossless
compressor is a standlone module attached to the previous
stages, it would be fairly easy to include and integrate new
lossless compression routines as well.

3.3 Compression pipeline composition

In SZ3, a compression pipeline can be composed by identi-
fying the instances of modules and putting them together.
Algorithm 1 shows how the algorithm of a general error-
bounded lossy compressor using the given preprocessor,
predictor, quantizer, encoder, and lossless compressor. In
addition, SZ3 employs compile-time polymorphism (see
Section 6.1) such that users can switch the instances without
bothering to modify the compression functions. This makes
SZ3 highly adaptive to diverse use cases, with significantly
reduced efforts on compressor development.

Algorithm 1 A GENERAL COMPRESSOR IN SZ3

Input: input data d of size n, compression configuration con f

Output: compressed data cc
1: preprocessor.process(d, conf) /*perform preprocessing®/
2: fori=1—=ndo
3:  p <« predictor.predict(d[i]) /*perform prediction*/
4:  q[i] < quantizer.quantize(d[i],p) /*perform quantization*/
5: end for

6: ¢+ allocate_memory()

7

8

9

0

1

: predictor.save(c) /*save predictor*/

: quantizer.save(c) /*save quantizer*/

: encoder.encode(gq, ¢) /*perform encoding*/

: encoder.save(c) /*save encoder*/

: cc < lossless_compressor.compress(c) /*perform lossless com-
pression*/

12: return cc

With the algorithm of the general compressor, compres-
sion developers or users can easily customize their own
compressor by setting each component in the pipeline. We
illustrate how to leverage SZ3 to implement three exist-
ing compressors, namely SZ-pwr [24], SZ-2.1 [6], and SZ-
interp [8] in Figure 2(a)-(c). We further show how SZ3 can be
used to implement customized compressors with different
specialities. Figure 2(d) composes a customized compressor
with only linear-scaling quantizer and arithmetic encoder.
By skipping the prediction and lossless compression stages
that are computationally expensive when the target bi-
trate is medium or high, this compressor can yield higher
compression throughput at the cost of compression ratios.
The compressor in Figure 2(e) leverages a second-order
Lorenzo predictor [21] which significantly improves the
prediction accuracy (while introducing more computation)
when the target bitrate is relatively high. It also excludes the
lossless compressor which provides minor size reduction
while bringing high computational overhead. Thus, it gen-
erally leads to better rate-distortion with lower compression
throughput. A transform-based compressor is composed in
Figure 2(f) to demonstrate the generality of our framework.
This kind of compressors is widely used in image processing
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(b) SZ-2.1 for 2D integer data

(c) SZ-interp for 3D double-precision data

Use log preprocessor

PP_log preprocessor; Use Lorenzo predictor

P_Lorenzo predictor; ) ) .
Use linear-scaling quantizer

Q_linear quantizer(log(l+eb));
E_Huffman encoder; +————— Use Huffman encoder
L_gzip lossless; +——— Use GZIP compressor

auto compressor = SZCompressor<T, N, PP_lof, P_Lorenzo, Q_linear,
E_Huffman, L_zstd> (preprocessor, predictor,

(quantizer‘, encoder, lossless);
Compose compressor

using T = i
using N = 2;

Exclude preprocessor
PP_bypass preprocessor; 4~ prep

P_Lorenzo_reg predictor; +— Use adaptive predictor

Q_linear quantizer(eb); 4 Use linear-scaling quantizer

E_Huffman encoder; +——— Use Huffman encoder

L_zstd lossless; +—— Use ZSTD compressor

auto compressor = SZCompressor<T, N, PP_bypass, P_Lorenzo_reg,
Q_linear, E_Huffman, L_zstd> (preprocessor,

<pred|ctor, quantizer, encoder, lossless);
Compose compressor

using T = double;
using N = 3;

Exclude preprocessor
PP_bypass preprocessor; 4 prep

P_interp predictor; 4+— Use interpolation predictor

Q_linear quantizer(eb);<— Use linear-scaling quantizer

E_Huffman encoder; +——— Use Huffman encoder
L_zstd lossless; Use ZSTD compressor

auto compressor = SZCompressor<T, N, PP_bypass, P_interp, Q_linear,
E_Huffman, L_zstd> (preprocessor, predictor,

<quantizer, encoder, lossless);
Compose compressor

(d) Customizing a compressor for 1D single-precision data

(e) Customizing a compressor for 2D integer data

(f) Customizing a compressor for 3D double-precision data

using T

= float;
using N = 1

H Exclude preprocessor

PP_bypass preprocessor;

—

Q_linear quantizer(eb); <

Exclude predictor
P_bypass predictor;
Use linear-scaling quantizer

E_arithmetic encoder; +—— Use Arithmetic encoder
L_bypass lossless; «—— Exclude lossless compressor

auto compressor = SZCompressor<T, N, PP_bypass, P_bypass, Q_linear,
E_arithmetic, L_bypass> (preprocessor, predictor,

Quqntizer, encoder, lossless);
Compose compressor

using T = int;
using N = 2; Exclude preprocessor

PP_bypass preprocessor; .
Use second-order Lorenzo predictor

P_Lorenzo_2nd predictor;

Q_linear quantizer(eb); +—— Use linear-scaling quantizer

E_Huffman encoder; — +——— Use Huffman encoder

L_bypass lossless; «————— Exclude lossless compressor

auto compressor = SZCompressor<T, N, PP_bypass, P_Lorenzo_2nd,
Q_linear, E_Huffman, L_bypass> (preprocessor,

<predictor, quantizer, encoder, lossless);
Compose compressor

using T

= double;
using N = 3;

Use DFT preprocessor

PP_DFT preprocessor; Exclude predictor

/

—

P_bypass predictor;

. . Use linear-scaling quantizer
Q_linear quantizer(eb);

E_arithmetic encoder; +——  Use Arithmetic encoder

L_zstd lossless; +—— Use ZSTD compressor

auto compressor = SZCompressor<T, N, PP_DFT, P_bypass, Q_linear,
E_arithmetic, L_zstd> (preprocessor, predictor,
quantizer, encoder, lossless);

Compose compressor

Fig. 2. Examples of using SZ3 to compose existing or customized compressors.

and some specific scientific domains, as it preserves the
transformed coefficients which are important in certain post
hoc data analysis such as power spectrum. As shown in
these examples, users are allowed to reuse or replace any
stages in SZ3 by simply defining the desired components
and using them while composing the compressor.

4 DEVELOPING AN EFFICIENT COMPRESSOR FOR
GAMESS DATA USING SZ3

In this section, we present how we create a new compressor
using SZ3, which can improve the compression ratios for
the data generated from the real-world scientific simulation
GAMESS [22]. In the following text, we first introduce the
GAMESS data and its current compressor — SZ-Pastri [23],
and then present our characterization on the quanzation
integers and the new customization method. At last, we
evaluate the compression ratios and speed based on three
representative data fields in GAMESS.

4.1 GAMESS data and SZ-Pastri Compressor

Quantum chemistry researchers often need to obtain a
wavefunction by solving the Schrodinger differential equa-
tion, which involves all the chemical system’s informa-
tion. The wavefunction needs to be constructed by two-
electron repulsion integrals (ERI), which requires a too large
memory capacity to hold at runtime during the simula-
tion. A straightforward solution is reproducing the ERI
dataset whenever needed during the simulation, although
this would significantly delay the simulation because of
the fairly expensive cost in generating the ERI data. In our
prior work, we developed an efficient error-bounded lossy
compressor called SZ-Pastri [23], which can compress the
ERI data in memory and decompress it in the beginning
of each iteration of the simulation. Such a method can
effectively avoid the ERI recalculation cost, so as to improve

the overall performance. SZ-Pastri takes advantages of the
periodic patterns that exist in the GAMESS dataset, because
the ERI values are calculated in order and are dependent
on shape and distance of electron clouds. Specifically, SZ-
Pastri identifies a periodic pattern and uses it along with
a scaling coefficient for each block to enable accurate data
prediction. Using Figure 3, we give an example to further
illustrate the scaled-pattern data feature of the GAMESS ERI
dataset. Note that the chemistry shells have specific names,
e.g., s,p,d, f, depending on the total angular momentum,
so (dd|dd) in the example indicates the ERI block formed by
d, d, d, d shells. As shown in the figure, the adjacent data
values are not smooth at all throughout the whole dataset.
However, after splitting the entire dataset into many small
blocks (each with 36 data points), we note that different
blocks can overlap very well based on a scaling coefficient.
That is, we just need to record one block of data as they
appear exactly, and then use them to predict all other data
blocks with a calculated scaling coefficient. This leads to
substantial performance gain compared to existing general
compressors [6], [13] that strongly relies on the smoothness
of adjacent data points. In absolute terms, SZ-Pastri achieves
a compression ratio that is 2.3x that of the best existing
compressors, while maintaining the precision required by
the scientists [23].

4.2 Data characterization and pipeline customization

We first characterize the quantization integers for SZ-Pastri,
which are the most impactful factors for the final com-
pression ratios. To enable correct decompression, SZ-Pastri
needs to quantize and store the information for both the pe-
riodic patterns and block-wise scales. Thus, the quantization
integers in SZ-Pastri consist of three components, which are
computed from data, patterns, and scales, respectively. As
displayed in Figure 5(a), the distribution of quantization
integers for the pattern-based predictor is centered in 0,
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Fig. 3. ERIs can be presented as a 1D array where x-axis is the BF index
and y-axis is the integral value. A part of the generated (dd|dd) ERI block
is shown in (a) [23].

which indicates very high prediction accuracy and thus
high compression ratios. However, a significant percentage
(20% for data) of the quantization integers fall out of the
quantization range (64 in this setting), and these data
are called ‘unpredictable’. These data require additional
mechanisms for storage in order to be correctly recovered
during decompression. In the original design of SZ-Pastri,
they are directly truncated and stored based on the user-
specified error, which fails to exploit the correlation in the
data to achieve high compression, though relatively fast
compression speed is obtained.

Pipeline of SZ3-Pastri

Preprocessor
Predictor Pattern-based
Predictor
u d-
Quantizer
Fixed Huffman
Encoder
Encoder
L
ossless 7STD
Compressor

Fig. 4. Compression pipelines for GAMESS data. Blue boxes indicate
optimized/added modules in SZ3-Pastri over SZ-Pastri.

Based on these observations, we improve the compres-
sion efficiency of SZ-Pastri by leveraging a specialized quan-
tizer to deal with the unpredictable data. Inspired by the
embedded encoding approaches widely used in transform-
based compressors [13], [46], we store data in the order
of bitplane instead of applying the truncation directly. A
bitplane represents a set of bits corresponding to a given
bit position in the binary representations of the data. Be-
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cause small data values have meaningful bits only in less
significant bitplanes, the relatively significant bitplanes will
yield good compression ratios because of consecutive Os.
Similar to [13], we first align the exponents of the prediction
difference on unpredictable data to that of the error bound to
convert the floating-point data into integers. These integers
are then recorded in the order of bitplanes, namely, from
the most significant bitplane to the least significant bitplane.
Compared with direct truncation, this encoding method
will not change the encoded size at this stage; however, its
compressive encoded format will promise better compres-
sion ratios when lossless compression is adopted. Since this
quantizer takes special care of unpredictable data storage,
we name it Unpred-aware Quantizer throughout the paper.
To take advantage of this method, we also add a lossless
stage to the composed compression pipeline, as displayed
in Figure 4. This new compressor is called SZ3-Pastri, as it
optimizes SZ-Pastri using the SZ3 framework.

4.3 Evaluation results

We evaluate our method and compare it with SZ-Pastri and
its variation (SZ-Pastri equipped with lossless compression)
using three representative fields in GAMESS. Unless other-
wise noted, all the experiments in this paper are conducted
on the Bebop supercomputer [47] at Argonne National Lab-
oratory. Bebop has 664 Broadwell nodes, each of which is
equipped with two Intel Xeon E5-2695v4 processors contain-
ing 36 physical cores in total and 128 GB of DDL4 memory.

The rate-distortion graphs of the evaluation are dis-
played in Figure 6. This graph entails the correlation be-
tween bit rate and Peak Signal-to-Noise Ratio (PSNR). The
bit rate equals bits/cr where bits is the number of bits in
original data representation (e.g., 32 for single-precision and
64 for double-precision floating-point data) and cr is the
compression ratio. PSNR is inversely proportional to the
mean square error of decompress data and original data in
logarithmic scale. Lower bit rate and higher PSNR indicate
better compression quality. According to this figure, SZ3-
Pastri leads to the best rate-distortion along almost all bit
rates. For example, the improvements of compression ratios
on the (ff|ff) dataset are generally 40% and 20%, respec-
tively, compared with SZ-Pastri and its lossless variation.
We also show the exact compression ratio and speed of
the three approaches under the desired absolute error tol-
erance (1E-10 according to the domain scientists) in Table 1.
Compared with original SZ-Pastri, SZ3-Pastri significantly
improves the compression ratios under the requirements.
However, it has a degradation in performance, which is
caused by the embedded encoding on unpredictable data
(i.e., Unpred-aware Quantizer, which improves the com-
pression ratio) and the final lossless compression.

5 COMPOSING AN EFFICIENT COMPRESSOR FOR
APS DATA USING SZ3

We then leverage our SZ3 framework to create an adap-
tive compression pipeline for the X-ray ptychographic data
acquired at the Advanced Photon Source (APS). Similar to
the previous section, we first introduce APS data, followed
by the data characterization and compression pipeline cus-
tomization along with the evaluation.
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Fig. 6. Rate-distortion on GAMESS data. (ff|ff), (ff|dd), and (dd|dd) indicate different electron repulsion integrals (ERI) blocks.

TABLE 1
Result on GAMESS data when absolute error bound is 1E-10
Dataset Compressor Ratios | Compression Speed
SZ-Pastri 8.46 662.01 MB/s
(FfIff) | SZ-Pastri-with-zstd 9.27 37717 MB/s
SZ3-Pastri 10.76 244.43 MB/s
SZ-Pastri 8.40 643.58 MB/s
(ffldd) | SZ-Pastri-with-zstd 9.23 370.88 MB/s
SZ3-Pastri 10.06 221.03 MB/s
SZ-Pastri 9.14 613.12 MB/s
(dd|dd) | SZ-Pastri-with-zstd 9.96 364.51 MB/s
SZ3-Pastri 10.71 226.80 MB/s
5.1 APS data

X-ray ptychography is a main high-resolution imaging tech-
nique that takes advantage of the coherence provided by the
synchrotron source. However, this computational method
of microscopic imaging requires much larger data volumes
and computational resources compared with conventional
microscopic techniques. A revolutionary increase of about
3 orders of magnitude in the coherent flux provided by the
coming APS upgrade will aggravate the burden of the data
transfer and storage. Therefore, a new compression strategy
with high compression ratios is being highly pursued in
ptychography. In order to represent most sample scenarios,
two ptychographic datasets were acquired from a computer
chip pillar (isolated sample) and a subregion of an entire
flat chip (extended sample), respectively. In both cases, a
Dectris Eiger detector (514x1030 pixels) was used to ac-
quire diffraction patterns as X-ray beam scanned across the
sample, and the 2D diffraction images were saved along the

time dimension to form a 3D matrix array (19500514 x 1030
for chip pillar and 16800x514x1030 for flat chip). In the
data analysis, domain experts usually cropped only the
central region of the diffraction pattern that contains X-ray
signals (lots of zeros outside this region). To fairly assess
our compression strategy without giving an overestimated
compression ratio, we cropped only central 256 x256 pixels.

5.2 Data characterization and pipeline customization

We design an adaptive compression pipeline for APS data
based on the following analysis. First, multidimensional
Lorenzo predictor introduces higher noise because more
decompressed data values are used for prediction [6], even
though it is usually superior to the one-dimensional one
by exploiting the multidimensional correlation. Second, al-
though APS data has three dimensions (e.g., 19500 x 256 X
256 for the chip pillar sample), it is actually a stack of 2D
images along the time dimension with relatively low spatial
correlation. When the spatial correlation is not strong, the
benefit of using the multidimension Lorenzo predictor may
not be able to make up the cost for the higher noise. In
addition, considering the usually high correlation in time
compared with that in spatial region, it might be more
effective to compress the data along the time dimension,
namely, treating the data as 256 x 256 1D time series.
On the other hand, the multidimensional regression-based
predictor should be included because it leverages the mul-
tidimensional correlation without being affected by the
decompression noise [6], which yields good performance
when error bound is relatively high. This requires switching
predictors based on the error bound: using a traditional
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multialgorithm predictor that involves regression for high
error bounds and a customized 1D Lorenzo predictor with
a transposition preprocessor that reorganizes the data along
the time dimension for low error bounds. In our implemen-
tation, we switch to the latter along with quantization bin
width 2 when the user-specified absolute error bound is less
than 0.5 since this setting generates lossless compression.
Under such circumstance, the noise introduced by using
decompressed data is reduced to 0 when the Unpred-aware
Quantizer is leveraged, thanks to the restricted quantization
bin and the principle of embedded encoding. We further
employ a fixed Huffman encoder for fast encoding with
comparable compression ratios. The corresponding com-
pression pipeline for APS data is depicted in Figure 7.

Adaptive pipeline of SZ3-APS
Eb > threshold

yes no
Preprocessor Bypass Transpose
Predictor 30 Lorenzc? * 1D Lorenzo
3D Regression
. Unpred-aware Unpred-aware
Quantizer Quantizer Quantizer
Huffman Fixed Huffman
Encoder
Encoder Encoder
Lossless 75D
Compressor

Fig. 7. Adaptive compression pipeline for APS data.

5.3 Evaluation results

We evaluate the customized APS compressor and compare
it with 3 baselines: the generic SZ-2.1 compressor for 1D,
3D, and transposed 1D data. As illustrated in Figure 8, a
3D compressor leads to higher PSNR under low bit-rate
(high compression ratios), but it suffers when the bit-rate
increases to a certain level, where there is a sharp increase in
the compression quality for 1D compressors. This is caused
by the fact that the noise introduced by decompressed data
is mitigated with such an error setting in this dataset. 5Z-2.1
is not aware of this information and incorrectly estimates
the Lorenzo prediction noise, leading to the selection of
regression predictor even when Lorenzo predictor is better.
SZ3-APS adaptively chooses the compression pipeline based
on the error bound, which leads to comparable performance
to that of SZ-2.1 for 3D data when error bound is high.
Furthermore, the adopted Unpred-aware Quantizer exhibits
higher compression ratios in low error bound, since it
provides near-lossless decompressed data that improves the
prediction efficiency of the Lorenzo predictor. In absolute
terms, when the decompression data is near lossless (i.e.,
error bound less than 0.5), the compression ratio gain of
the proposed compression pipeline is 18% on chip pillar
and 12% on flat chip compared with the second best one.
Note that SZ3-APS turns out to be lossless in this case,
which leads to infinity PSNR in the figure. This experiment
demonstrates that better rate-distortion can be achieved

TABLE 2
SZ2 contains more than 120 functions to support different data types,
data dimensions, and data-processing methods

Data FP32, FP64
Tvpe INTS, INT16, INT32, INT64
M UINTS, UINT16, UINT32, UINT64
Data 1D, 2D, 3D, 4D
Dimension
Compression
Functionality Decompression
Parameter Optimization

if the compression pipeline can be chosen based on the
characteristics of the data along with the specific error
requirements. By providing the flexibility to compose and
explore adaptive compression pipelines, SZ3 is expected to
deliver high compression quality for diverse datasets and
use cases.
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6 SUSTAINABILITY, QUALITY, AND PERFORMANCE
INVESTIGATION OF SZ3

In this section we first discuss the sustainability of SZ3, and
then leverage SZ3 to characterize the quality and perfor-
mance of diverse compression pipelines.

6.1 Sustainability

We design SZ3 with modularity in mind to allow for a com-
posable framework with high sustainability. Specially, we
compare the design of SZ3 with that of SZ2 [48], one of the
leading error-bounded lossy compressors with prediction-
based pipeline, to demonstrate its superiority.

6.1.1 The codebase of SZ2

SZ72 has a large codebase including more than 120 functions
with little code reuse, as shown in Table 2. For example, SZ2
has separate functions to handle the compression or decom-
pression on a dataset with a specific data type, although the
logic to compress and decompress different data types is
similar. As a result, SZ2 needs to maintain separate code for
each data type.

The lack of software architecture design makes it difficult
and time-consuming to modify and extend the functionality
of SZ2. With more than 120 functions to update, some of
them are likely to be missed when adding new features to
S72. Furthermore, the complexity of SZ2 brings challenges
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to fully validate the correctness of newly added features,
because it is time-consuming to write test code that achieves
high code coverage for so many functions of SZ2.

6.1.2 The Codebase of SZ3

We implement SZ3 using three key techniques widely used
in software development , namely compile-time polymor-
phism that avoids the overhead of virtual functions calls,
datatype abstraction that avoids separate implementations
for different data types, and multidimensional iterator that
unifies the interface for accessing data of arbitrary dimen-
sions. With these effort, SZ3 features high sustainability,
which allows for easy update and maintenance of the code-
base with high efficiency.

Compile Time Polymorphism: SZ constructs the com-
posed compression pipelines at compile time, because com-
pile time polymorphism provides an efficient way to switch
different implementations of modules to avoid runtime
performance downgrade. For implementation, the module
instances are placed as the template parameters of the
compressor (see Appendix A.6). A static assert is executed
during the construction of the compressor to ensure that
only classes that inherent from specific module interfaces
are allowed to be used to initialize template parameters.

Datatype Abstraction: We adopt datatype abstraction to
simplify the codebase of SZ3 significantly. Most module
interfaces, implementations, and compressor pipelines in
SZ3 are designed with datatypes as template parameters
for efficient code reuse. By comparison, SZ2 has separate
implementations for each datatype, which result in a large
code base without code reuse.

Multidimensional Iterator: A multidimensional iterator
is designed in SZ3 to support data access patterns of dif-
ferent dimensions. This is totally different from SZ2, where
independent implementations are required for each dimen-
sionality. The multidimensional iterator in SZ3 provides a
simple API to access the current and nearby data points
and move to another position. The boundary situations are
handled inside iterators. The iterator design eliminates the
need to write separate code based on the data dimensions.
The pseudocode of prediction and quantization using the
multidimensional iterator is presented in Appendix A.7.

With the multidimensional iterator, the complex nested-
loop to iterator through the data and the boundary con-
dition checking are hidden from the users. The multidi-
mensional iterator also supports arbitrary movement. For
example, to change a 3D iterator to its upper left neighbor,
developers can simply use iterator.move(-1, -1, -1) instead of
calculating the offset for three dimensions.

6.2 Pipeline integration, mapping, and evaluation

In this section, We integrate three compression pipelines
using SZ3, and propose a pipeline mapping technique to
improve their performance. Moreover, we reveal the suit-
able cases of the three pipelines in terms of quality and
performance.

6.2.1 Pipeline integration

We integrate three most important pipelines in SZ3, and the
details are described as follows.
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Compression pipeline SZ3-LR: SZ3-LR is the imple-
mentation of the classic compressor SZ2 [6] using SZ3’s
modular mechanism, which relies on a multialgorithm pre-
dictor for better data correlation. This predictor consists of
a Lorenzo predictor and a regression-based predictor and
predicts data using the better result in between based on
blockwise error estimation. As depicted in Figure 1, it uses
a linear-scaling quantizer and a Huffman encoder and the
ZSTD lossless compressor in the other stages.

Compression pipeline SZ3-Truncation: SZ3-Truncation
is a very fast compression pipeline designed for cases where
speed is more important than compression ratio. Given the
target bytes k as input parameter, it keeps k£ most-significant
bytes of each floating-point data while discarding the rest of
the bytes. To achieve high compression speed, it bypasses
the other stages, which in turn leads to low compression
ratios in general cases.

Compression pipeline SZ3-Interp: SZ3-Interp has
interpolation-based predictors [8] in its pipeline. Both linear
interpolation and cubic spline interpolation are included,
and they are better than Lorenzo and regression predictors
in many cases for the following reasons. On the one hand,
interpolation-based predictors suffer less from the error
accumulation effect that is normal in Lorenzo predictor
because of smaller coefficients in the prediction formula.
On the other hand, unlike linear regression, which has
an overhead to store coefficients, SZ3-Interp has constant
coefficients and therefore does not have storage overhead.
Similar to SZ3-LR, it uses a linear-scaling quantizer for
respecting error bounds, as well as a Huffman encoder and
the ZSTD lossless compressor for high compression ratios.

6.2.2 Pipeline mapping

The multidimensional iterator we proposed in Section 6.1.2
allows users to access the input data without writing any
dimension-specific logic, such that it dramatically improves
the code simplicity of the predictor module. However, one
drawback is that it does not have as good performance
as the dimension-specific implementation. To give users
the simplicity to develop new pipelines while guarantee-
ing the pipeline performance, the data access part of the
pipeline can be replaced from multidimensional iterator to
dimension-specific code when the development of a new
pipeline is completed. As a result, the predictor in the
pipeline will contain several codecs, each of which handles
data in a specific dimension. Note that the pipeline still
has a modular design and can be customized with different
quantizer, encoder, and lossless modules.

6.2.3 Pipeline evaluation

We use datasets from five scientific domains: cosmology,
climate, quantum structure, seismic wave, and turbulence.
The detailed information is shown in Table 3.

We demonstrate the compression quality of the three
pipelines using rate-distortion graph in Figure 9. Note that
the rate distortion of SZ2.1 is identical to that of SZ3-LR;
thus we do not show SZ2.1 in this figure. We observe from
Figure 9 that SZ3-Truncation has the lowest compression
quality, and this is consistent with its simple byte-truncation
design. SZ3-Interp is better than SZ3-LR on most of the
datasets, especially on cases with a high compression ratio
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TABLE 3
Dataset Information
Application Domain #Fields Dimensions Total Size
Hurricane Climate 13 100 x 500 x 500 1.2GB
NYX Cosmology 6 512 X 512 X 512 3GB
SCALE-LETKF Climate 6 98 x 1200 x 1200 3.2GB
QMCPack Quantum Structure 1 288 X 115 x 69 X 69 0.6GB
RTM Seismic Wave 3600 449 x 449 x 235 635GB
Miranda Turbulence 7 256 x 384 x 384 1GB
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Fig. 9. Compression quality evaluation (lower bit rate & higher PSNR —
better quality). Result for SZ2.1 is omitted since it is very similar to that
of SZ3-LR.

with a bit rate lower than 3. For example, on the Miranda
dataset, under the same PSNR of 90, the compression ratio
of SZ3-Interp is 47, and it is 56% higher than the compres-
sion ratio of SZ3-LR, which is 30. On the other hand, SZ3-LR
is still the best choice on the Scale and Hurricane datasets
when high compression accuracy is needed.

The performance evaluation is shown in Figure 10.
We include S72.1 as the baseline. SZ-LR-s is the pipeline
mapping optimized version of SZ-LR-s. We can see from
Figure 10 that SZ3-LR-s has comparable performance with
SZ2.1 on all datasets. SZ3-Truncation has the best perfor-
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Fig. 10. Compression/decompression throughput (MB/s) when relative
error bound (error bound normalized to value range) is 1E-3.

mance among all compressors including S72.1. Its 1GB/s
compression throughput is 4X higher than that of the
second-best compressor. SZ3-Interp is not as fast as others,
but its throughput is still higher than 100 MB/s in all cases.

The quality and performance evaluations reveal the suit-
able cases for the three built-in pipelines. Specifically, SZ3-
Trunction, as a high-speed compressor, is the best choice
when there are strict requirements on the compression time,
as with some in situ applications. SZ3-Interp would be the
first preference in cases where high compression ratio is
wanted under relaxed time constraints, such as scientific
applications that run for a long time and generate large
amounts of data. SZ3-LR has balanced quality and speed;
users could choose it as the default compressor in general
situations where both high compression ratio and short
compression time are needed.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose a modular, composable compres-
sion framework -SZ3— which allows users to customize on-
demand error-bounded lossy compressors in an adaptive
and extensible fashion with minimal effort. Using SZ3, we
develop efficient error-bounded lossy compressors for two
real-word application datasets based on the data characteris-
tic and user requirements, which improve the compression
ratios by nearly 20% when compared with other state-of-
the-art compressors with the same data distortion. We also
compare the sustainability of SZ3 with 572, and lever-
age SZ3 to integrate and evaluate different compression
pipelines. In the future, we will integrate more instances
to the framework for diverse use cases and provide support
for various hardware including GPUs and FPGAs.
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APPENDIX A

We demonstrate some representative interfaces and func-
tions in this appendix. Note that T is the template for data
type, N is the template for dimensionality, and X is the
template for quantized data type.

A.1 Snippet of Preprocess Interface

template<class T, uint N>
class PreprocessInterface {
virtual void preprocess(T * data, SZ::Config<T, N
>& conf);
virtual void postprocess(T = data, SZ::Config<T, N
>& conf);
}s

A.2 Snippet of Predictor Interface

template<class T, uint N>

class PredictorInterface {
virtual T predict(const iterator &iter);
virtual T estimate_error(const iterator &iter);
virtual uint save(uchar *&c);
virtual void load (uchar *&c);

};

A.3 Snippet of Quantizer Interface

template<class T, class X, uint N>

class QuantizerInterface {
virtual X quantize(T data, T pred);
virtual T recover (T pred, X quant_value);
virtual uint save(uchar *&c);
virtual void load (uchar *&c);

¥
A.4 Snippet of Encoder Interface

template<class T>
class EncoderInterface {
virtual size_t encode(vector<T> &bins, uchar =&
bytes);
virtual vector<I> decode(uchar *&bytes, size_t
length);
virtual uint save(uchar *&c);
virtual void load (uchar *&c);
+s
A.5 Snippet of Lossless Interface

class LosslessInterface {
virtual uchar scompress(uchar sdata, size_t
inSize, size_t &outSize);
virtual uchar :decompress(uchar =data, size_t&
outSize);
I¥
A.6 Snippet of Compressor Class

template<class T, size_t N, class Preprocessor,
class Predictor, class Quantizer, class Encoder,
class Lossless>

class SZ_Compressor {..}

A.7 Snippet of Prediction and Quantization

vector<int> predict_quantize (T =data) {
multidimensional_iter blocks(data)
for (auto block = blocks—begin(); block!=Dblocks
—end () ; ++block) {
for (auto element = block—>begin(); element
!= block—end () ; ++element) {
pred=predictor. predict(element);
quan=quantizer . quantize (xelement, pred);
quantization_results.push_back(quan);
}
}

return quantization_results;
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