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ABSTRACT
A Slurm simulator was used to study the potential benefits of using
multiple Slurm controllers and node-sharing on the TACC Stam-
pede 2 system. Splitting a large cluster into smaller sub-clusters
with separate Slurm controllers can offer better scheduling perfor-
mance and better responsiveness due to an increased computational
capability which increases the backfill scheduler efficiency. The
disadvantage is additional hardware, more maintenance and an
incapability to run jobs across the sub-clusters. Node sharing can
increase system throughput by allowing several sub-node jobs to
be executed on the same node. However, node sharing is more com-
putationally demanding and might not be advantageous on larger
systems. The Slurm simulator allows an estimation of the potential
benefits from these configurations and provides information on the
advantages to be expected from such a configuration deployment.
In this work, multiple Slurm controllers and node-sharing were
tested on a TACC Stampede 2 system consisting of two distinct
node types: 4,200 Intel Xeon Phi Knights Landing (KNL) nodes and
1,736 Intel Xeon Skylake-X (SLX) nodes. For this system utilization
of separate controllers for KNL and SLX nodes with node shar-
ing allowed on SLX nodes resulted in a 40% reduction in waiting
times for jobs executed on the SLX nodes. This improvement can
be attributed to the better performance of the backfill scheduler. It
scheduled 30% more SLX jobs, has a 30% reduction in the fraction of
cycles that hit the time-limit and nearly doubles the jobs scheduling
attempts.
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1 INTRODUCTION
Slurm is an open-source HPC resource management and job sched-
uling system [1, 8, 10]. It is highly configurable and it is used on
a large variety of HPC systems ranging from small group clusters
to large-scale supercomputers. A single controller is capable of
handling a heterogeneous resource comprised of multiple gener-
ations of compute nodes, GPU nodes, large memory nodes and
others resources. The Slurm scheduler is also capable of supporting
different priority policies including high priority users, deadline pri-
ority boosting and cycle scavengers. Such flexibility allows for the
accommodation of different requirements, however, an improper
configuration can lead to unintended results or subpar performance
such as long waiting times or the inability to allocate requested
resources. In order to facilitate the search for optimal parameters
while avoiding jeopardizing the actual system, we have developed
the Slurm simulator.
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Our Slurm simulator [6] is a modification to the actual Slurm
code. Due to this, the simulator supports most scheduling related
options and most importantly it inherits the actual Slurm behavior.
The simulator can perform a several months workload simulation
in several real days for a large HPC system. This way the simulator
allows the study of the actual Slurm scheduler on an accelerated
time frame.

In our previous work [6] we reported a simulator implementation
and vigorous testing on three different HPC systems including an
initial simulation of the TACC Stampede 2 system. Unfortunately,
due to the way the workload was set up, the simulated system con-
figurations had different job size (i.e. the number of cores) priority
factors than the values used in the job mix that was actually run.
This additional variability complicates the analysis and the attribu-
tion of effects to a particular change. Therefore in the present work,
we corrected for that problem, added a more detailed analysis of the
simulations and performed additional simulations to supplement
the findings in order to improve the statistical confidence.

Stampede 2 is a new supercomputer at the Texas Advanced Com-
puting Center (TACC) which is currently (as of March 2018) the
biggest HPC computing resource in the XSEDE organization. It con-
sists of 4,200 Intel Xeon Phi Knights Landing (KNL) compute nodes
(68 cores per node) and 1,736 Intel Xeon Skylake-X (SLX) compute
nodes (48 cores per node). The significant difference in KNL and
SLX architectures suggests a natural separation of the whole cluster
to KNL and SLX sub-clusters. Because it is unlikely that users would
run a single computational job across this partition it is possible
to dedicate a separate Slurm controller for each cluster section. It
is very important to realize that the Slurm backfill scheduler can
become a bottleneck for a large system. Hence dedicated controllers
for KNL and SLX sections can increase the computational power of
the backfill scheduler and lead to a more responsive and efficient
scheduler. However, an additional controller would require more
work from system administrators and can result in additional oper-
ational complexity. Therefore prior subscribing to this additional
work it is constructive to use the Slurm simulator to determine if
the potential benefits of separate controllers are justified for this
particular system.

In the past, because of the computational workload on the Slurm
backfill scheduler, node sharing was rarely used on large systems.
During node sharing, multiple jobs from the same or different users
are allowed to be executed on the same node where each job has its
own dedicated cores. Previous studies shows that such jobs have a
small influence on each other [2, 5, 9]. Node sharing can increase
the system throughput by placing serial and low-core count parallel
jobs on the same node. This, however, might not work out well in
reality because node-sharing enabled scheduling is a much more
computationally demanding task due to a significant increase in
allocatable resources. Cores and memory must be tracked now in-
stead of only nodes. This can render the whole system inefficient or
inoperable. For example, the Slurm controller might spend a lot of
time calculating potential scheduling rather than doing the actual
scheduling. For this reason, Slurm Large Cluster Administration
Guide [7] recommends avoiding node sharing for a large system.
However, computers are getting faster and Slurm is getting better
to the extent that it is worthwhile to consider if it is possible to take
advantage of the considerable increase in throughput that node

share potentially can provide. A full Slurm scheduling simulation
of the Stampede 2 workload will allow us to determine if node
sharing is feasible for this particular system, what will be the quan-
titative benefit and what will be the most optimal parameters for
the scheduler.

In this work we continued to study the potential benefits of the
multiple controller configurations with node sharing enabled for
KNL and SLX nodes. Our preliminary simulation showed [6] that
the waiting time improved by nearly a factor of two in comparison
with a single controller without node-sharing. Here we demon-
strate the reasons for this improvement and provide additional
simulations to improve the statistical power of the results.

2 METHODS
2.1 Slurm Simulator
In this section the Slurm simulator implementation is briefly de-
scribed; for more details refer to our initial Slurm Simulator arti-
cle [6]. The Slurm simulator is implemented within the actual Slurm
code and building Slurm in simulation mode is requested during
configuration by specifying the corresponding option. A number of
python and R utilities were developed in order to automate Slurm
launching, workload generation and for the analysis of the results.

The modifications to Slurm to create the can be largely split into
the following categories: simulating calls to timing functions to
allow the simulation of the desired time period, disabling unneces-
sary Slurm functionality, inputting workload and modifications to
allow the time accelerated simulations.

In order to facilitate the simulation of the desired time period,
time returning standard library functions, namely time and get-
timeofday, were re-implemented within the Slurm code. Because
in the case of name conflict the application implementation has a
higher priority than the shared library implementation, the simula-
tor versions of time and gettimeofday will be executed instead of
their namesakes from the standard library. In simulator mode the
re-implemented time and gettimeofday functions return a shifted
time value. The initial time shift is set in a manner such that the
initial simulation time will be a little bit earlier than the first job
submission time. This way Slurm operates in simulated time and
the simulated clock ticks at the same rate as the real clock. This
allows for the proper handling of all time-dependent functionality
of Slurm, including time-outs.

Slurm utilizes a multi-thread design to achieve high fault toler-
ance. For the simulator, there is no need for the high tolerance and
we only need the scheduling related part of Slurm. Therefore, in sim-
ulation mode, a large portion of Slurm is disabled or bypassed. This
includes health monitoring threads, state backup, communication
with compute nodes and many other functions. Most Slurm installa-
tions use two schedulers: a priority based main scheduler (MS) and
a backfill scheduler (BF). The priority-based main scheduler loops
through the priority ordered job list and attempts to schedule jobs,
it will quit from the loop at the first failure to schedule a job. The
backfill scheduler will allocate resources for jobs which would not
affect the scheduling of top priority jobs. In normal mode, MS and
BF schedulers would be executed by separate threads. In the simu-
lator mode, functions normally executed in separate threads, are
called from the main simulator event loop in a serial fashion. This
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Figure 1: A timing diagram of job scheduling by the two Slurm scheduler components the main, priority based, scheduler
(MS) and the backfill scheduler (BF). Although MS and BF schedulers are run by separate threads, due to the presence of the
scheduling thread lock, the corresponding scheduling cycles run pseudo sequentially, that is, only one scheduler can perform
job placement at a given time. After completing scheduling cycle both scheduler components go into a sleep cycle for a defined
period of time. This causes the beginning of the scheduling cycle to be quasi-periodic in a sense that it has an irregular period
which is equal to sleeping time plus scheduling time plus time waiting for the lock release. Here we show that such quasi-
periodicity, system jitter and a difference in initial starting time can result in different job placements. In A on the top, Job K
with a higher priority than Job J is scheduled first. However, in B on the bottom, even with the same submission timing and
the same priorities Job J is scheduled before Job K because of where they happened to occur in the scheduling cycle.

is not really a critical difference because the Slurm schedulers are
executed essentially serially (see the timing diagram in Figure 1).

In order to simulate a historical or synthetic workload a job trace
file is created which contains all necessary information about the
job. This includes: submission time, requested resources (nodes,
memory, GPUs, etc.), requested and actual wall time. Because can-
celed jobs do interferewith schedulingwe also include the capability
to model them. For the case of a canceled job, the cancellation time
is added. At the beginning of the simulation, the job trace file is
read in and list of events are created. At the time of the event, the
simulator performs the requested work, such as job submission or
job cancellation.

As we have described the simulator so far, it can only perform
simulations at a real-time rate, e.g. one day of simulated time would
take one real day to run. This is not very useful. To accelerate the
simulation, the Slurm simulator uses two approaches: time stepping
and real-time scaling. In the case that there are no events on the
system, the simulated time can be incremented by small time steps
(usually 0.5 to 1.0 seconds). On a system with few job submissions,
this could result in a significant acceleration. Unfortunately, on big-
ger systems, it would not help much because something is always
happening, like job retirement, new job submission, and job place-
ment. The backfill scheduler takes a significant amount of time to
run. On a real Slurm installation, a single backfill scheduling cycle
can often reach one minute or even more. Fortunately, the simula-
tor can perform the same calculation about ten times faster due to
several reasons: serial execution in simulator mode (to avoid thread

locks), compilation with optimization flags and without assertion
functions. Using these characteristics the backfill scheduler execu-
tion time can be scaled resulting in a much faster simulation. This
is implemented in following way: during the backfill scheduling
cycle, a simulated time is adjusted for each job scheduling attempt
so that the simulated execution time of this attempt is equal to the
real execution time multiplied by a scaling factor. The scaling factor
is defined based on a comparison between the backfill scheduler
performance in real and in simulated modes and is around ten. Such
a real-time scaling results in a simulation about ten times faster, i.e.
now 10 days of simulation time can be done in one day.

The result of using simulation time scaling with opportunistic
time stepping is the dependency on a particular hardware where the
simulation is run and on the background processes on the execution
host. On one hand, it is an obvious drawback of the simulator, on
the other hand, it is an essential feature of the Slurm scheduler itself.
That is, faster hardware can result in better scheduling. Because of
this feature, all calculations should be done on the same hardware
otherwise the results are not directly compatible.

2.2 Simulations Design
To study the effect of multiple controller configurations, we per-
formed a simulation with a single controller for the whole cluster
and one where the KNL and SLX subclusters had their own ded-
icated controller. For each controller layout, we tested different
configurations of node sharing on the SLX portion of the cluster.
Specifically, no node sharing, sharing by sockets and sharing by
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cores. Sharing by sockets means that jobs can share the same node
but all cores from the same socket (physical CPU) can be allocated
to only a single job at a time. Sharing by cores means that jobs can
run on the same node but have their own dedicated cores.

Because the Slurm workload simulation is a stochastic process
(Figure 1) the simulation results are not identical from run to run.
Therefore to improve the confidence in the simulation and to study
the variability of a large system on long workloads we performed
multiple simulations for the various configurations, that is for a
single controller with no node sharing and for separate controllers
with node sharing enabled on SLX nodes (shared by cores). For each
individual simulation, we randomize the time difference between
the controller boot time and initiation of the submission of the job
stream in order to determine the dependence of the job scheduling
on this variable. Due to the significant amount of computational
work required by these simulations, they were performed on an
HPC cluster. Because the HPC cluster has different processors than
the one used for the calculations described in the previous para-
graph, this difference should be taken into consideration when
these two sets are compared.

2.3 Slurm Configuration
The Slurm Configuration used was very similar to the one used
on the actual TACC Stampede2 cluster. The following parame-
ters were set differently. The time window for future job place-
ment (bf_window) was set to 4.5 days with granularity set to 1
minutebf_resolution. The number of jobs from the same user con-
sidered for scheduling by the backfill scheduler, bf_max_job_user,
was increased to 10 from 3. The sleeping interval between different
backfill scheduling cycles (bf_interval) was set 30 seconds while
the time limit for a single backfill scheduling cycle was set to 120
seconds (Currently Slurm has only a single parameter for these two
values).

2.4 Workload Generation
At the time that this article was written, Stampede2 was still in the
early production stage and thus there was little historical work-
load available. Furthermore, the available workload would not be
representative of the workload during the full production stage.
Therefore for the simulations, the workload was generated from
the historical workload of the TACC Stampede1 supercomputer.
Stampede1 has a similar total number of nodes as Stampede2 - 6400
but it has Sandy Bridge nodes with 16 CPUs per node.

The workload was generated as follows. First, a job bank was
created from stampede 1 historical jobs running after 2015-05-16
and submitted before 2015-08-08 (a 12 week period). All single node
jobs were converted to cores-requested jobs using average CPU
utilization rounded to the closest biggest core count of 1,2,4,6,8
and 12. Jobs with CPU utilization higher than 12 was considered as
requesting an entire node. The CPU utilization data was obtained
from XDMoD [4] using TACC-Stats data [3]. Jobs were randomly
selected from the job bank (without replacement). The number of
selected jobs was proportional to the node counts of Stampede 1
and 2. A portion of jobs was set to be executed on KNL nodes (the
fraction of jobs is proportional to the fraction of KNL nodes). The
final workload consists of 295 thousand jobs which would require

Table 1: Distribution of resulting workload over node count
groups.

Node Count Number of Jobs Node Hours
Jobs for Execution on KNL Nodes

Single-node jobs 91,004 380,159
Low Node Count, [2,64) 113,224 4,646,202
Mid Node Count,[64,512) 4,772 2,633,302
High Node Count, ⩾ 512 308 231,126
Jobs for Execution on SLX Nodes

Subnode jobs 25,243 81,247
Single-node jobs 12,117 77,524
Low Node Count, [2,64) 46,995 1,935,412
Mid Node Count,[64,512) 2,044 1,224,495
High Node Count, ⩾ 512 114 86,850
Total 295,821 11,296,316
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Figure 2: Distribution of jobs from workload over the re-
quested nodes.

11.3 million node hours. The distribution of the generated jobs over
the node counts are shown in Table 1 and Figure 2. Figures 3.A
and 3.B show the number of submitted jobs and requested node
hours. Both of them exhibit weekly periodicity as original Stampede
1 workload.

In the SLX partition, 29% of all jobs or 2.4 % of the total node-
hours are sub-node jobs requesting 12 or fewer cores. The assump-
tion was that all jobs which can fully utilize an entire Stampede 1
node would also be able to utilize all cores on an SLX node. How-
ever, there are 48 cores on SLX nodes which is far more than the 16
cores of a stampede 1 node and therefore it is likely that in reality
there are going to be more sub-nodal jobs than used in our test
workload.
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2.5 Execution Hardware
One of the simulator features is that its results depend on the
performance of the hardware on which it is computed, therefore
it is important to use the same hardware and software stack for
the calculations. In this work, we used compute nodes from the
UB-HPC academic cluster at Center for Computational Research,
SUNY University at Buffalo which were dual socket Intel Xeon
L5520 (2.27 GHz, totaling 8 cores) nodes with 24 GiB RAM and
2x160 GB RAID0 HDD storage. Because the simulation results are
sensitive to the performance of used hardware only one simulation
was done on a single node at a time.

2.6 Slurm Simulator Code Availability
Slurm simulator source code was forked from official Slurm reposi-
tory and is available at https://github.com/nsimakov/slurm_simulator.
To simplify further merges only the changes made to Slurm code
itself are stored in that repository. The documentation, developed
tools and examples are available at https://github.com/nsimakov/
slurm_sim_tools.

3 RESULTS AND DISCUSSION
In this work a series of Slurm simulations was done to study two
aspects of HPC resource management: utilization of multiple con-
trollers and node sharing using the TACC Stampede 2 system as an
example. Most modern HPC resources are heterogeneous, and if the
sub-clusters are sufficiently large, dedicating a separate controller
to each cluster can lead to better scheduling at the cost of maintain-
ing multiple Slurm controllers. Node sharing allows placing serial
and sub-node parallel jobs on the same node. This can increase the
throughput and produce more efficient scheduling, but only if the
number of additional resources to track (cores, memory, GPUs, etc.)
would not overwhelm the scheduler. One of the biggest benefits
of the Slurm simulator is that it uses same scheduling routings
as actual Slurm and thus was used here to estimate actual Slurm
performance.

The length of simulated workload is 12 weeks. Because simula-
tion of this workload on Stampede 2 system containing 5936 nodes
takes about 3-4 days in real time, first a single simulation was done
for each configuration of interest, followed by series of simulations
for the initial and final configuration of the system to study the
stochastic variability. In the following, results are often grouped
by node types, that is, into KNL and SLX jobs. Totally 19 separate
Slurm simulation was performed.

3.1 Job Waiting Time
From the user’s point of view job waiting time is one of the most im-
portant characteristics of the scheduler and HPC resource. Shorter
wait time would benefit the end users. To monitor change in this
important characteristic we used three different metrics for job
wait time. The first one is arithmetic mean of all job waiting time.
The second one is the mean of the average user waiting time, that
is first the average wait time for each user was calculated and then
these values were averaged. These two means characterize the
users befits, and show the average change in their waiting time
under different Slurm configurations. The third one is the node-
hour weighted mean of the job waiting time. This metric shows

Table 2: Mean wait time in different multi-controller and
node sharing. The results are grouped by node types. The
averaging was done over jobs longer than half an hour.

Cont-
roller

Node
Sharing

Mean
Wait Hours

Mean User
Average

Wait Hours

Wait Hours,
Weighted
Mean by

Node Hours
Jobs Executed on KNL Nodes

Single
No Sharing 9.8 ( 0%) 9.9 ( 0%) 9.3 ( 0%)
By Sockets 9.2 ( -5%) 9.3 ( -6%) 9.4 ( 0%)
By Cores 9.2 ( -5%) 9.3 ( -6%) 9.3 ( 0%)

Separate No Sharing 9.7 ( -0%) 9.6 ( -3%) 9.4 ( +0%)
Jobs Executed on SLX Nodes

Single
No Sharing 14.7 ( +0%) 13.6 ( +0%) 17.6 ( 0%)
By Sockets 12.3 ( -16%) 11.5 ( -16%) 16.2 ( -8%)
By Cores 12.8 ( -13%) 11.9 ( -12%) 16.7 ( -5%)

Separate
No Sharing 9.5 ( -35%) 9.1 ( -33%) 14.7 ( -16%)
By Sockets 8.8 ( -40%) 8.5 ( -38%) 14.2 ( -19%)
By Cores 9.1 ( -38%) 8.7 ( -36%) 14.7 ( -16%)

Table 3: Mean of mean wait time is averaged over 5 indepen-
dent simulations with same Slurm configuration. The num-
ber after plus-minus sign reports a population standard de-
viation of mean wait time

Cont-
roller

Node
Sharing

Mean of
Mean

Wait Hours

Mean of
Mean User

Average
Wait Hours

Mean of
Wait Hours,

Weighted
Mean by

Node Hours
Jobs Executed on KNL Nodes

Single No Sharing 9.76 ± 0.01 9.97 ± 0.02 9.30 ± 0.04
Separate No Sharing 9.78 ± 0.05 9.73 ± 0.07 9.37 ± 0.04
Jobs Executed on SLX Nodes

Single No Sharing 14.87 ± 0.27 13.79 ± 0.27 17.77 ± 0.27
Separate By Cores 8.89 ± 0.16 8.56 ± 0.10 14.32 ± 0.26

the average time needed to wait in the queue in order to produce
one node-hour of computation. This essentially characterizes the
efficiency of the job packing in the system.

The mean wait times for single-run simulations are shown in
Table 2. For the case of KNL nodes, the mean wait time was nearly
the same in all cases. This is not very surprising since the node
sharing only affects the SLX nodes and there is only a moderate
decrease in the number of KNK nodes handled when two separate
controllers are used. For the SLX nodes, the mean waiting time
decreased by 35% by switching to a separate controller and the
mean node-hours weighted wait time decreased by 16%. Turning
on node sharing has a smaller effect; it reduces the mean wait
time by 13-16% and the node-hours weighted mean by 5-8% for a
single controller. The effect of adding node sharing when separate
controllers are used is even smaller. The single simulation run of
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week and each tick corresponds to a Monday. A - Number of jobs submitted per day, note the weekly pattern. B - Total number
of node hours of jobs submitted each day, black horizontal line show maximum node hours deliverable by the system. C -
Daily mean wait time. D - Number of pending jobs along simulated time, node types are shown by line style: solid lines for
KNL nodes and dashed line for SLX, colors show controller and node sharing configuration. E -Number of running jobs along
simulated time. F - Nodes utilization along simulated time. G - daily averaged backfill scheduler iteration time.

Table 4: Distribution of mean wait time over node counts.

Cont-
roller

Node
Sharing

Subnode
Jobs

Single-node
Jobs

Low Node
Count,
[2,64)

Mid Node
Count,
[64,512)

High Node
Count,
⩾ 512

Jobs Executed on KNL Nodes

Single
No Sharing 9.4 ( +0%) 10.1 ( +0%) 9.1 ( +0%) 7.6 ( +0%)
By Sockets 8.8 ( -7%) 9.6 ( -5%) 9.0 ( -1%) 8.8 ( +16%)
By Cores 8.8 ( -7%) 9.6 ( -5%) 8.9 ( -2%) 8.8 ( +16%)

Separate No Sharing 9.3 ( -2%) 10.1 ( +1%) 8.8 ( -3%) 4.1 ( -46%)
Jobs Executed on SLX Nodes

Single
No Sharing 13.6 ( +0%) 14.9 ( +0%) 15.0 ( +0%) 16.7 ( +0%) 19.3 ( +0%)
By Sockets 11.3 ( -17%) 12.5 ( -16%) 12.6 ( -16%) 15.2 ( -9%) 23.2 ( +20%)
By Cores 11.6 ( -15%) 13.0 ( -13%) 13.1 ( -12%) 15.6 ( -7%) 21.3 ( +10%)

Separate
No Sharing 8.3 ( -39%) 9.3 ( -38%) 10.0 ( -33%) 12.9 ( -23%) 17.1 ( -11%)
By Sockets 7.7 ( -44%) 8.6 ( -42%) 9.2 ( -39%) 12.3 ( -26%) 20.9 ( +8%)
By Cores 7.8 ( -43%) 9.0 ( -40%) 9.5 ( -37%) 12.8 ( -24%) 19.9 ( +3%)

6



Slurm Simulator: Multiple Controllers and Node Sharing PEARC ’18, July 22–26, 2018, Pittsburgh, PA, USA

Table 5: Distribution of jobs between schedulers. Only jobs
longer than half an hour were used.

Cont-
roller

Node
Sharing

Main
Sceduler, %

Backfill
Scheduler, %

Jobs Executed on KNL Nodes
No Sharing 82 18

Single By Sockets 73 27
By Cores 73 27

Separate No Sharing 66 34
Jobs Executed on SLX Nodes

No Sharing 56 44
Single By Sockets 44 56

By Cores 42 58
No Sharing 49 51

Separate By Sockets 42 58
By Cores 42 58

Table 6: Backfill Scheduler Characteristics

Cont-
roller

Node
Sharing

Mean
Execution

Time,
seconds

Wall Time
Limit

Hit Rate, %

Mean Jobs
Attempted

to
Schedule

Single
No Sharing 101 77 134
By Sockets 88 64 176
By Cores 89 65 175

Separate, KNL No Sharing 74 54 148

Separate, SLX
No Sharing 78 51 131
By Sockets 81 50 126
By Cores 80 47 128

node sharing by socket is slightly better than of sharing by cores.
However, the value of sharing by socket is within one standard
deviation of the core sharing value averaged over 5 different runs
(Table 3). Switching to separate controllers improves waiting time
across all job sizes with a greater improvement at lower node counts
(Table 4). It is similar to node sharing, with an exception for jobs
with high node count.

Mean daily waiting time alone time is shown in Figure 3.C for a
subset of configuration. The wait time on KNL nodes is mostly the
same while on SLX it is smaller for separate controllers and node
sharing.

Because of the scheduler stochasticity, we perform five separate
calculations for the initial and final configurations of the system.
Namely, the initial configuration was single Slurm controller with-
out node sharing and the final configuration was separate Slurm
controllers for KNL and SLX nodes with node sharing enabled on
SLX nodes. For the node sharing a single core was a smallest allo-
catable unit. The results of these simulations are shown in Table 3.
The standard deviation of mean wait time is small: it is less than 1%
of mean value for KNL nodes and around 2% for SLX nodes. Using

results of these multiple runs, the overall effect of switching to mul-
tiple controllers and enabling node sharing can be 40% reduction
in mean wait time and 19% reduction in node-hours weighted wait
time mean.

3.2 Schedulers
The previous section shows that separate controllers and node
sharing improves waiting time on the system. The origin of this
performance improvement is based upon how Slurm functions.
Most Slurm installations utilize two schedulers: a main priority
based scheduler, which schedules only high priority jobs, and a
backfill scheduler, which attempts to place jobs in vacant intervals
between high priority jobs. The latter is more complicated and sig-
nificantly more computationally demanding. The backfill scheduler
computation on large systems is often a performance bottleneck.
In this section, we examine metrics which characterize the Slurm
scheduler’s performance.

Table 5 shows the percentage of jobs which were placed by each
scheduler type. Although the workload for KNL nodes and SLX
nodes is very similar and mainly differ by the number of jobs, on
the KNL partition most jobs were placed by the main scheduler
while on the SLX partition each scheduler placed roughly half of
jobs. One factor which helps to explain this difference is that while
the mix of job sizes is similar for the two clusters the SLX cluster is
substantially smaller. Hence, on the SLX partition, the ratio of max
job size node count to the total number of SLX nodes is 0.6 making
such a job a capability type job. For the KNL partition, this ratio is
only 0.2. Therefore, all of the jobs on the KNL nodes sub-cluster are
capacity jobs and a good portion of the SLX jobs are capability jobs.
As indicated by the simulation results and explained in further detail
below, it is more difficult and more computationally stressing to the
schedule such capability jobs. The SLX partition, therefore, benefits
more from increasing the computational capacity by implementing
separate controllers for each partition.

The configurations with shorter wait times have a higher portion
of jobs scheduled by backfill scheduler (Tables 2 and 5). This makes
sense because the main agenda of the backfill scheduler is to place
lower priority jobs without affecting the launch time of higher pri-
ority jobs. This manner a more efficient backfill scheduling results
in more jobs started earlier and thus smaller wait times.

In Slurm, the backfill scheduler has a time-limit on its execution.
During each scheduling cycle, the backfill scheduler goes through
a priority ordered job list and attempts to schedule each job. If
it reaches a time-limit, it stops execution and after a sleeping pe-
riod starts a new cycle from the beginning. Getting through the
whole list is important to execute efficiently the "fill the gaps" type
scheduling which the backfill scheduler does. Since typically the
backfill scheduler is not able to consider all of the potential jobs on
every cycle, see Figure 3, any scheduler modification which allows
increased consideration of queued jobs should be beneficial.

Table 6 shows the mean run time of the backfill scheduler, per-
cent of cycles hitting the run time limit and a mean number of
jobs that the backfill scheduler attempted to schedule. The single
controller without sharing hits the run time limit most often 77%
of all runs, while using separate controllers with node sharing hits
it on only between 47% and 54% of the runs. Figure 3.G) shows the
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daily average backfill cycle execution time along the time simula-
tion axis for a subset of configurations. As can be seen, although
separate controllers reach the time-limit less often it still is not
an uncommon occurrence. However, implementing separate con-
trollers reduces the number of managed resources and jobs per
controller thus resulting in better performance of the backfill sched-
uler. The combined mean attempts to schedule a job is about two
times larger than for a single controller.

A more difficult result to explain is that, even for a single con-
troller, enabling node sharing leads to a lower time limit hit rate
and a higher number of jobs attempted to be scheduled (Table 6).
Most likely this is because enabling node sharing results in more
jobs running on the system which in turn leads to a reduction of
jobs in the queue. Another possible contribution is that, because of
the smaller number of available spots in the system, job rejection
can occur more quickly. In any case, it is important that with node
sharing enabled backfill scheduler is not overwhelmed by extra
allocatable resources and work more efficiently.

Different workload and scheduling properties over the time are
shown in Figure 3 for the initial (single controller, no node sharing)
and final (separate controllers, node sharing by cores on SLX nodes)
configurations. The results of separate controllers and node sharing
are minimal on KNL nodes. But it is a different situation for SLX
nodes. The simulations show significant reduction in wait time
(Figure 3.C) and number of jobs in queue (Figure 3.D). Although
node utilization (Figure 3.F) and the number of jobs running (
(Figure 3.E)) look very similar for the various configurations, the
subtle differences translate into significant differences in thewaiting
times.

4 CONCLUSIONS
A Slurm simulator was used to study the applicability of implement-
ing multiple Slurm controllers and node sharing on large systems
and TACC Stampede 2 in particular. The objectives were to esti-
mate the potential benefits of multiple Slurm controllers and node
sharing, to check the performance of the backfill scheduler in node
sharing mode and to evaluate the combined benefits of multiple
Slurm controllers and node sharing.

It was found that separate Slurm controllers lead to 35% smaller
wait times on SLX jobs and nearly the same performance of KNL
nodes.

Node sharing did improve the scheduling performance even
when only a single controller was used. It should be noted that
node sharing was on only on the SLX nodes, which constitute only
1,736 nodes out of total 5,936 nodes. If the node sharing would be
on all 5,936 nodes, the results might be totally different.

The combination of node sharing and multiple controllers offer
the best performance, namely waiting time is reduced by 40%. In
this configuration, for the Stampede job mix, the backfill schedulers
have a greatly reduced rate of hitting the time limit and double the
number of attempts to do job placement. Therefore in the case of a
natural separation into sub-clusters, multiple Slurm controllers and
node-sharing utilization can offer substantially smaller wait-times
and should be considered by the HPC resource operator.

Slurm offers high configurability that can meet the needs of a
large range of HPC resources and the Slurm simulator which we

developed can help in the search for optimal parameters to ensure
high HPC resource utilization.
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