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ABSTRACT KEYWORDS

Blue Waters [4] is a petascale-level supercomputer whose mission is
to greatly accelerate insight to the most challenging computational
and data analysis problems. We performed a detailed workload
analysis of Blue Waters [8] using Open XDMoD [10]. The analysis
used approximately 35,000 node hours to process the roughly 95 TB
of input data from over 4.5M jobs that ran on Blue Waters during
the period that was studied (April 1, 2013 - September 30, 2016).

This paper describes the work that was done to collate, process
and analyze the data that was collected on Blue Waters, the design
decisions that were made, tools that we created and the various
software engineering problems that we encountered and solved. In
particular, we describe the challenges to data processing unique to
Blue Waters engendered by the extremely large jobs that it typically
executed.

CCS CONCEPTS

«General and reference —Performance; -Software and its en-
gineering —Software design engineering;
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Measurement techniques, Modeling techniques, Performance at-
tributes, Reliability, availability, and serviceability.

1 INTRODUCTION

Blue Waters [4] is a petascale-level supercomputer whose mission
is to enable the U.S. scientific and research community to solve
“grand challenge” problems that are orders of magnitude more com-
plex than can be carried out on other high performance computing
systems. Given the important and unique role that Blue Waters
plays in the U.S. research portfolio, it is important to have a de-
tailed understanding of its workload in order to guide performance
optimization both at the software and system configuration level as
well as inform architectural design decisions. Furthermore, under-
standing the computing requirements of the Blue Water’s workload
(memory access, IO, communication, etc.), which is comprised of
some of the most computationally demanding scientific problems,
will help guide changes in future computing architectures, espe-
cially at the leading edge. With these objectives in mind, we carried
out a detailed workload analysis of Blue Waters [8].

The workload analysis used various data, such as compute node
performance metrics [11], that had been previously collected on
Blue Waters. These node-level data were converted to job-level
data which were then analyzed using Open XDMoD [10]. The
data conversion itself was a challenging computational problem —
requiring more than 35,000 node hours (over 1.1 million core hours)
on Blue Waters. We analyzed roughly 95 TB of input data from over
4.5M jobs that ran on Blue Waters during the period of our analysis
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(April 1, 2013 - September 30, 2016) spanning the beginning of Full
Service Operations for Blue Waters to the recent past. In the process,
approximately 250 TB of temporary data across 100M files were
generated. The output data were subsequently stored in MongoDB
and a MySQL datawarehouse to allow rapid searching, analysis
and display in Open XDMoD. A workflow pipeline was established
so that data from all future Blue Waters jobs will be automatically
ingested into the Open XDMoD datawarehouse, making future
analyses much easier. It is important to note that a significant
challenge of the analysis was our requirement to process a backlog
of more than three years of performance data as opposed to having
it ingested daily by Open XDMoD, which is more than capable of
processing the daily volume of Blue Water’s data.

2 BACKGROUND

In this section we describe the source data that was available on
Blue Waters for the workload analysis. We also list the tools that
were used to process the data and discuss the reason for our tool
choices.

2.1 Source Data

The workload analysis relied on data that had previously been col-
lected on Blue Waters. This included accounting logs, metrics from
the compute nodes (such as OS and driver metrics and hardware
performance counters), application launch information, I/O metrics
from instrumented software and library usage data. It also used in-
formation about the project allocations, such as the field of science.
The various data sources are summarized below.

2.1.1  System Accounting Logs. Job information was provided by
the Torque resource manager, which operates in coordination with
the Cray ALPS placement scheduler and the MOAB job scheduler.
Log entries are created when a job on Blue Waters passes through
various states of execution. This includes job submission, changes
of scheduler status (queued, eligible to run, start/running, etc.),
and completion. The log entry for job completion includes various
information about the job including the exit status, the project
allocation and assigned compute nodes.

The log data were in text files with one log file per day. Each file
was approximately 10 MB in size.

2.1.2  Compute node metrics. The Blue Waters system is a Cray
XE/XK hybrid machine composed of AMD 6276 “Interlagos” pro-
cessors all connected by the Cray Gemini torus interconnect. There
are 22,640 Cray XE6 compute nodes. The 4,228 Cray XK7 compute
nodes also include NVIDIA GK110 (K20X) “Kepler” GPUs.

The Lightweight Distributed Metric Service (LDMS) is software
that provides data collection and transport of metrics from the
compute nodes [1]. The implementation of LDMS on Blue Waters
is described in detail in [11]. The LDMS data collection provides
information on several subsystems of the compute nodes including
load average, memory usage, limited filesystem data transfers and
network utilization. Data are collected every minute on every
compute node. For the XK nodes, GPU utilization and GPU memory
utilization are also collected.

The CPUs on the compute nodes have programmable hardware
performance counters. These counters are configured to count
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various events within the CPU such as the number of clock ticks,
the number of instructions retired and the number of floating point
operations performed. The hardware counters are accessed via
machine-specific registers (MSRs). Throughout this document we
use the abbreviation MSR to refer to the information read from the
hardware performance counters on the compute nodes.

LDMS data was exported from the data store in CSV-format files
with one file per day. Each file contained data for all the compute
nodes, but due to the way the data were exported, the order of the
compute node data between different files was not deterministic.
The file sizes varied, but were each approximately 56 GB.

The MSR data was stored in CSV-format files with each file con-
taining the hardware performance counter measurements from
approximately one quarter of the compute nodes covering an ap-
proximately 45 day period. The file sizes varied, but were each
approximately 900 GB.

2.1.3  I/O metrics. Darshan [5] is a low overhead HPC I/O char-
acterization tool that is designed to capture an accurate picture of
application MPI I/O behavior, including properties such as patterns
of access within files. It is implemented as a set of user space li-
braries. These libraries require no source code modification and
can be added transparently during the link phase of MPI compiler
scripts. Darshan provides very detailed reports for file-system ac-
cess for each executable linked with Darshan support.

Darshan output files were stored in the Darshan binary log
format with one file per job. The log files were stored in a nested
directory structure with one directory per job. The job directories
were stored in month directories.

2.1.4 Library information. ALTD and XALT tools [2] provide
tracking capabilities for utilization of statically and dynamically
linked libraries. XALT is a more recent enhancement of the ALTD
software. ALTD and XALT allow one to analyze which libraries
and modules were used by each job.

The ALTD and XALT data were stored in a MySQL database.

2.1.5 Application information. The ALPS aprun command is
used to launch applications on the Blue Waters compute nodes.
The aprun logs provide the primary means to determine what
application(s) was executed during the job. In most cases, this
information includes the executable path, the number of nodes
requested and the requested layout of the tasks on the cores of the
nodes.

The aprun logs were collected and stored in a relational database.
For the workload analysis, we used a CSV-format dump of the
data that contained the job id, aprun command line, aprun unique
identifier and the timestamps of the start and end of the execution
of each command. The entire aprun data set was stored in a 1 GB
gzip compressed file.

2.2 Analysis tools

The primary software used for the analysis was the comprehensive
HPC system management tool Open XDMoD [10]. Open XDMoD
is designed to be able to store, analyze and display information
for hundreds of millions of HPC jobs. For example, the XDMoD
instance that contains the accounting data for the NSF funded
XSEDE program has approximately 150 million job records for
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jobs that consumed over 11 billion core hours [6]. An important
capability of Open XDMoD, particularly for the workload analysis,
is its ability to analyze detailed job level performance data. The
default install includes support for comprehensive statistics on:
number and type of computational jobs run, resources (computation,
memory, disk, network, etc.) consumed, job wait times, and quality
of service. The web interface is intuitive, allowing one to chart
various metrics and interactively drill down to access additional
related information.

Another key feature of Open XDMoD is its ability to combine
and compare data across multiple data sources. For example, it
provides easy tools to be able to break down resource usage by the
field of science of a job’s allocation and analyze the performance
data for jobs by various categories.

The Open XDMoD software suite provides tools for processing,
analysis and display of job level performance data, and uses exist-
ing tools to collect the raw data. The recommended data collection
software is Performance Co-Pilot (PCP), which is an open source
toolkit designed for monitoring and managing system-level perfor-
mance. However, there is no requirement to use PCP, for example,
the XSEDE implementation of XDMoD uses data collected by the
open source TACC_Stats software [7] it also supports the ingestion
of performance data from Cray’s RUR tool [3] and Ganglia [9].

Open XDMoD has a flexible configuration system, which makes
it straightforward to modify the data schema to add new metrics.
This capability was useful for the workload analysis as it allowed
us easily to add required data filters and dimensions. For example,
we wanted to be able to filter data based on the type of the compute
node that the job was assigned or by the concurrency type.

3 IMPLEMENTATION

This section gives an overview of the design and implementation of
the data processing workflow that produced job level information
from the raw source data.

The main Open XDMoD software was installed on a dedicated
server, which was not part of Blue Waters. The install included the
Open XDMoD portal software, web-server, the MySQL database
that contained the Open XDMoD datawarehouse and the MongoDB
document database. The Open XDMoD server had IP network
connectivity to the Blue Waters compute nodes and the web-server
was accessible to the Internet. The various data conversion and
summarization software was installed in the /projects filesystem
on Blue Waters. The majority of the data processing was run in
batch jobs on Blue Waters.

There were two plausible designs for the data processing archi-
tecture. We could have modified the Open XDMoD summarization
software to process the CSV format metric data directly, or we could
convert the CSV data into PCP format archives and then use the
existing summarization software with no modifications. We chose
the latter option, that is, convert the existing metric data into PCP
format archives and process them using the existing Open XDMoD
software suite. The main reasons for this decision were that it al-
lowed us to use the existing, production-tested release software,
we already had experience with writing conversion scripts from a
different project where we converted metric data from Ganglia to
PCP and we anticipated that it would require less developer effort.
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The main disadvantage of this approach was that it necessitated the
creation of a large numbers of temporary files (between three and
six files per compute node per day). These files were stored on the
/scratch Lustre filesystem on Blue Waters. Lustre was designed
for large sequential I/O workloads and typically performs very well
with large files but does not perform well with many small files.
Another disadvantage is that it required extra time for the conver-
sion step to run before the summarization step could start. This
slowed down the software development process somewhat, but had
only a minor impact once the dataflow was up and running.
The overall data processing workflow was as follows:

(1) Ingestion of the accounting data into Open XDMoD.

(2) Conversion of the compute node metric data from CSV
format to the PCP archive format.

(3) Summarization of the node-level PCP archive data to cre-
ate job-level records that contain overall statistics of the
performance metrics collected during each job.

(4) Appending additional data to the job summary records,
such as application information and I/O metrics.

(5) Ingestion of the job-level summary record data into Open
XDMoD.

Each of these steps is described in more detail below.

3.1 Accounting data ingestion

Open XDMoD has native support for the Torque accounting log
format so the standard ingest procedure was used. The accounting
data were loaded into the database by the xdmod-shredder script
and the data are post-processed by the xdmod-ingestor script.

The xdmod-shredder and xdmod-ingestor scripts store all of
the job data in memory before it is loaded into the database. The
consequence of this is that there is a limit on the number of jobs
that can be ingested for each run of the script. This upper limit is
defined by the memory available on the Open XDMoD server. To
bulk load the historical data we created a simple shell script that ran
the shredder and ingestor scripts multiple times, each processing
one day’s worth of data at a time.

3.2 Data format conversion

The metric data format conversion workflow is shown in Figure 1
below. A python script 1dms2pcp was written to convert the CSV
files from the LDMS collector into PCP archive files. The 1dms2pcp
script parsed each input file and wrote one PCP archive for each
compute node containing one day of data. The ldms2pcp script
also wrote metadata about each created PCP archive to the XDMoD
datawarehouse'. This metadata includes the timestamps of the first
and last record in the archive and its location on the filesystem.
This metadata is used subsequently in the summarization step.
The LDMS collection was configured so that all nodes had a
common metric set which was a superset of all metrics available
on the compute nodes and service nodes [11]. The values are set to
zero for nodes where the raw data does not exist. The Open XDMoD
summarization software, however, does distinguish between the

1A utility indexarchives is provided with the Open XDMoD software to generate the
archive metadata. It traverses the filesystem and records the metadata from existing
PCP archives. Incorporating the metadata generation into the 1ldms2pcp eliminated
the need to run this I/O intensive process.
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Figure 1: The Data flow diagram for the data conversion step.
The gray shading indicates data stored in files on the filesys-
tem (Lustre). Green shading indicates data stored in a re-
lational database (MySQL). Note that the various configura-
tion files for the 1dms2pcp script are not shown here.

absence of a metric and a metric with value of zero. The 1dms2pcp
software therefore had to have a database with the node capabilities
so that it would output PCP archives with the correct content.

The MSR data was stored in separate CSV files from the other
LDMS metric files. The 1dms2pcp script was also used to convert
this data into PCP archives. We did not need to merge the two PCP
archives during the conversion process because the summarization
software automatically merges all of the PCP archives for each job.

The 1dms2pcp script was designed to be able to handle data from
an HPC system that has a variety of performance data sources and
that changes over time. The bulk of the script is an engine that takes
input data in CSV format and converts it to PCP archives according
to a set of rules. These rules are defined in a configuration file,
where each set of rules can have an associated date range. This
was important in analyzing the Blue Waters data since the LDMS
and MSR collection parameters changed several times over the four
years of operation. The 1dms2pcp code was able to automatically
choose the correct set of rules based on the timestamps of the
metrics to be converted.

This script was run in HPC batch jobs on Blue Waters XE nodes.
Overall, the data format conversion consumed 10,000 node hours
and generated approximately 250 TB of PCP archives spread over
100M files. Due to the size and number of the files it was necessary
to find any strategy that would increase the performance of this
processing step. We investigated parallel I/O patterns and found
that parallel reads of the raw LDMS files did not help performance.
However, we did find a significant gain by writing the PCP archives
in parallel. We were able to utilize all 32 cores in an XE node during
the conversion and write steps of this process.

The aprun data and Darshan data were each converted to files
in json format by dedicated scripts. The Darshan conversion script
was written in python and called the darshan-parser software
to read the binary-format Darshan output files into a json for-
mat. The aprun-parser script also was written in python. The
aprun-parser script generated multiple json files with 100,000
jobs per file.
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Figure 2: The data flow for the summarization step. The gray
shading indicates data stored in files on the filesystem (Lus-
tre). Green shading indicates data stored in a relational data-
base (MySQL). Blue shading indicates data stored in a docu-
ment database (MongoDB). Note the various configuration
files for the scripts are not shown in this diagram.

3.3 Summarization Step

The Open XDMoD performance data summarization software con-
verts the compute node-level metric data into job-level metric data.
The software has a plugin-based architecture and generates a wide
range of statistics on the various job-level metrics, generates time-
series summaries and runs anomaly detection algorithms. Figure 2
shows the data flow diagram for this step. The summarize_jobs.py
script queries the Open XDMoD datawarehouse to get a list of jobs
to summarize and then uses the node-level data (in PCP archive
format) to create job level summary documents that are stored in
the document database. The script also stores metadata about the
job summarization progress in the Open XDMoD datawarehouse
(shown as the dotted line in the figure). This metadata is used to
track which jobs have been processed.

The original design was to use the existing summarization code
without modification. However, the semantics of the LDMS data
were sufficiently different to require some modifications to the
summarization code. The summarization code had support for pro-
cessing the per-numa node memory metrics, but the per-compute
node memory metrics had been recorded on Blue Waters. The MSR
data recorded the raw values from the 48 bit wide hardware coun-
ters. However, the summarization code was written to process 64
bit wide counters?. The operating system CPU usage metrics were
not collected on Blue Waters, however the Open XDMoD software
assumes that they are present.

Fortunately the summarization software was designed with a
plugin-based architecture, so it was easy to add new components
to process the new metrics. We added a memory usage plugin that
used the node-level memory metrics and a CPU usage plugin that
used the hardware counter clock tick metric to estimate the CPU

2The PCP hardware counter data collector uses the Linux kernel perf events interface
which handles the 48 bit counter overflow within the kernel and reports the data in a
64 bit wide counter.
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usage. We also added plugins to process the load average metrics
and the metrics from the Cray Gemini interconnect.

The code to convert metrics from 48 bit to 64 bit counters was
implemented in the summarization software framework. The new
functionality was configurable and allowed the metrics to be range
converted to be specified in the configuration file.

We also made some other changes to the summarization software
framework to make best use of the Blue Waters batch environment.
We added full support for running the software in parallel using the
python MPI bindings mpi4py. This allowed us to submit multi-node
batch jobs to summarize large numbers of jobs at a time. We found
that running on 8-12 nodes at a time to process 1 month worth of
jobs was an ideal job size. The summarization step generated the
4.5M job records that were stored in the MongoDB and required
20,000 node hours. We added several new configuration options
that allow more fine-grained control over which jobs are processed.
One example of this is restricting the jobs to be processed by their
size. We discuss job size and processing constraints in section 4.1
below.

3.4 Additional data

The default Open XDMoD data flow uses information about the
running processes that is gathered by PCP on the compute nodes.
This information was not recorded on Blue Waters, so instead we
used the information from the aprun and Darshan logs. Rather
than modify the summarization software, we opted to append the
aprun and Darshan log data to the job summary documents using
a separate script.

The aprun and Darshan processing scripts update the job doc-
uments in the document database with the aprun and Darshan
information. Each script will only update an existing job record
therefore the script should be run after the summarization script
execution has completed and the job record created. The scripts
will never delete data and therefore may be safely run multiple
times with the same input.

The Open XDMoD ingestion software for the summary docu-
ments marks each job document when it is ingested into the Open
XDMoD datawarehouse. This marker is checked by the ingestion
software so that it does not ingest the same data again on sub-
sequent invocations. The aprun and Darshan processing scripts
cleared this marker for job documents that were modified. This
ensured that the ingestion script would pull in the correct updated
data on the next run.

3.5 Performance data ingestion

Before we started the workload analysis project, we identified a set
of metrics to include in the analysis. Many of these were already
supported in the main Open XDMoD release, but some were not.
We chose to add the missing information as new statistics and
dimensions to the Open XDMoD instance. The performance data
realm in Open XDMoD uses a set of configuration files to define the
statistics and dimensions and a mapping file for each different HPC
resource that defines how the source data (from the job summary
document in MongoDB) is transformed into the representation of
the data to be loaded into the datawarehouse.
The new dimensions included:
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e A “Job Type” dimension that categorizes jobs based on the
concurrency type (MPI, threaded or serial);

e An “Active Cores” dimension that categorizes jobs based
on the number of CPU cores that were active during the
job;

o A “Node Type” dimension that categorizes jobs based on
the type of the compute node that the job was assigned
(XE or XK);

o An “Application Science Area” dimension that categorizes
jobs based on the science area of the application executed.

We also added an additional job size dimension based on the node
count of the jobs (the default uses the job core count) since Blue
Waters allocates full nodes to a job. All of our analyses were done
with respect to node count as opposed to core count. Another extra
dimension categorizes jobs based on the amount of data transferred
to the filesystem and over the interconnect.

The additional statistics included:

e An “Effective CPU Usage” statistic which gives the CPU
usage of the cores that were active each the job;

o A “Load Average” statistic which gives the mean value of
the system load average during each job;

o A “GPU usage” statistic which gives the value of the GPU
usage reported by the GPU driver.

We also added new memory statistics that reported the memory
usage per node in addition to the existing memory usage per core
value.

We modified the appropriate configuration files and dataset map-
ping file and then used the standard procedure to ingest the data
into the Open XDMoD instance.

3.6 Data coverage

Figure 3 and Table 1 present an overview of the availability of
source data. aprun data coverage is fairly complete for the life of
the Blue Waters system, both in terms of node hours and number
of jobs run. This allowed for a fairly comprehensive analysis of the
applications being run on the system.

As seen in Figure 3, Darshan data was available for a fairly small
percentage of jobs and much of it concentrated during a relatively
short time period at the end of 2015. This limited the amount of
analysis that could be done on individual I/O operations performed
by the applications since the Darshan data was the only source
of discrete I/O operations. The LDMS data provided a time series
representation of aggregate I/0.

Compute node performance metrics were collected starting ap-
proximately one year after the Blue Waters system went into service.
Excluding this initial time period, coverage for LDMS data is fairly
complete. Data is missing sporadically for a variety of reasons
including downtimes and collection errors. Information about the
GPUs on the XK nodes is available for a shorter time. There are two
main reasons for this: GPU data collection was not implemented
until January 2015 and there was a gap in data availability at the
end of 2015 due to a graphics driver issue.

MSR data exists for roughly 12 months of the analysis period.
As the MSR data provides information on the state of the CPU
performance counters, analysis that requires these metrics could not
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Figure 3: The ratio of node hours with data to total node
hours for jobs running on Blue Waters over time.

be performed for the time period where this was not available. This
includes, CPU utilization, concurrency, and operations performed.

4 DISCUSSION

The Open XDMoD software was designed to scale to large numbers
of jobs and we had no difficulty ingesting the 4.6 million job records.
However, it was originally only designed to process data from HPC
resources with thousands of compute nodes. We encountered some
scalability problems when processing the job data from Blue Waters,
which had jobs with an order of magnitude more compute nodes
than was previously processed. We also spent a large amount of
time diagnosing and fixing issues with corrupt and invalid input
data. In this section, we discuss some of the problems that we
encountered in the project and how we overcame them.

4.1 Scalability problems

We encountered several issues caused by jobs with large numbers
of compute nodes (>20,000 nodes). We also ran into problems when
we tried to increase the size of our HPC batch jobs that performed
the data conversion and summarization steps.

Some of the job-size related issues had very simple solutions. For
example, some jobs were so large that the column in the database
that stored the node list data from the accounting logs was not
large enough to hold the data®. The simple fix was to change the
column type to be able to store more data. The node list parsing
algorithm in the xdmod-shredder command exhibited relatively
poor performance processing long node lists. We made a small im-
provement to the string parsing but did not spend much developer
effort on the problem, since the bulk accounting data ingest was
a single run that completed overnight. Another minor issue was
that job summary record size was large enough that the nodejs
based ingestion process hit the maximum heap size when we ran
bulk ingests of large numbers of jobs. This issue was mitigated by
increasing the heap limit for the v8 engine in nodejs.

One more complex problem was seen in the job summary in-
gestion process (ETL process). The ETL process had an optimiza-
tion where multiple insert queries were batched together, which

3The unparsed node list data from the accounting log is stored in staging tables in the
Open XDMoD datawarehouse before being parsed and stored in tables in normalized
form.
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results in a significant performance improvement especially for
small queries. The algorithm batched all dimension inserts together
for each job. This caused a problem for the jobs with very large
numbers of nodes as the batched inserts exceeded the maximum
datagram size in the MySQL driver. We changed the software to
split the batch inserts into to smaller chunks so that large jobs could
be inserted with minimal overhead.

Increasing the number of parallel processes in the HPC batch
jobs lead to some minor problems. The summarization software
created one connection to the MySQL database per process. As we
scaled up the number of processes we hit the limit of the maximum
allowed simultaneous connections on the database. The simple fix
in this case was to increase the threshold.

There was a small subset of jobs that had many thousands of
aprun calls and some individual jobs had over 10,000 individual
job steps. This caused problems in parsing and storing the large
amounts of aprun and Darshan data generated by these types of
jobs. The first issue was due to data storage since the data generated
for each job was greater than the 16 MB document size limit in
the MongoDB database. Overcoming this problem would have
required a re-architecting of the database so that we could store
and fetch records over multiple documents. The second issue was
that of processing time. The Darshan data was stored in a gzipped
binary format with one file per step. Each of these files needed to be
individually opened and parsed. This process quickly became I/O
bound and likely would not have been able to be completed if we
attempted to parse all of the job steps. In light of these issues, the
number of steps that were populated with Darshan and aprun data
was limited to 100. Note that this artificial truncation of data did not
impact the workload analysis, since the jobs with large numbers of
aprun commands were typically parameter sweeps where the same
command is executed multiple times with different input data.

In addition, due to the large numbers of files being processed, we
discovered and fixed several bugs in the underlying software used
as part of the workflow. Very early on we found that processing
thousands of files would lead to our analysis crashing due to an
exhaustion of file descriptors. This was tracked down to a file
descriptor leak in the underlying PCP libraries. This problem was
fixed and submitted back to the PCP maintainers.

We made improvements to the speed of the aggregation queries
for bulk ingest of large amounts of job performance data. The sum-
mary information displayed in Open XDMoD must be generated
whenever new job data is added. There is a database query that is
run to determine the time periods where the data must be regen-
erated. The original query was chosen to be optimal when a small
number of jobs are added to the database. This is ideal for the main
use case where new job data are added daily, however it has very
poor performance when multiple years of data are bulk loaded. We
changed the code to run a different, much faster, query when large
number of jobs are bulk ingested.

A subset of the jobs had to be handled separately because of their
size. We found that the jobs that ran on more than 20,000 compute
nodes could not be summarized by the normal batch process be-
cause of the memory usage and the amount of time needed to read
the PCP archive data from the parallel filesystem. Since there were
only a few tens of jobs in this category, we chose to process them
using one summarization task per compute node so that there was
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Table 1: Data coverage estimates.

Metric  Total Jobs Jobs Covered % Jobs Total Hours Hours Covered % Hours
aprun 4,646,659 4,410,785 95 547,809,848 543,197,000 99
Darshan 4,646,659 657,422 14 547,809,848 75,169,985 14
LDMS 4,646,659 3,304,285 71 547,809.848 382,280,591 70
MSR 4,646,659 2,032,068 44 547,809,848 153,723,022 28

sufficient memory available and to minimize I/O contention. These
summarization tasks still took 90 hours to complete, much longer
that the default 48 hour job time limit.

4.2 1/0 issues

We also encountered scaling problems with I/O infrastructure. The
PCP archive format comprises at least three files: an index file, a
metadata file and one or more files that contain the metric data. I/O
problems were caused by opening many files with relatively small
amounts of data per file. This problem affects all implementations,
but is exacerbated by the large jobs.

We modified the PCP library to reduce the number of I/O system
calls needed to open an archive. This modification uses the fact
that the archive layout is known because it was generated by the
ldms2pcp script and we know the exact name of the archive to
process. This optimization is not generally applicable to an arbitrary
PCP archive since in general the PCP software stack tries to deal
with a variety of archives names to prevent filename collisions and
issues with archive size.

4.3 Data quality issues

Monitoring an HPC system is a complex problem involving multiple
interacting software and hardware systems. Since it is impossible
to foresee all possible contingencies when the software is originally
written and there will always be occasional hardware failures, data
problems abound.

One method to diagnose problems with the data is to check
whether the values are physically realistic. For example, the maxi-
mum clock tick rate for the CPUs is known so any measurements
that report a significantly larger value is suspect.

We observed that the accounting logs contained job records with
impossible, or contradictory data. For example, there were jobs
where the difference between the recorded start and end times was
many months. There were also jobs with impossible start and end
times (in the 1970s). The xdmod-shredder software was modified
to log these kinds of records. The default behavior for the Torque
shredder script is to use the elapsed time between the start and
end timestamps as the job duration. We observed unrealistic job
duration values. The software was modified so that if there was
a large discrepancy between the job duration as measured by the
difference between start and end and the reported job walltime
then the job walltime value was used.

We also found job records in the accounting logs that were miss-
ing the account field. To handle this case, we made a configuration
change to Open XDMoD to use the contents of the group field
to populate the account information if the account field was not
present.

The LDMS files had several issues with data corruption. Being
basically a CSV format, an error that occurs while storing the data
can cause many issues during later parsing. We found truncated
lines, binary data in what should be string fields, and impossible
timestamps in the time fields. The solution in these cases was to
skip the corrupt or unparsable lines.

As part of our data validation step, we found several cases with
impossible or improbable data, even though it appeared to be parsed
correctly. The first of these was in the Lustre storage metrics. It was
found that for a time period, the metrics as reported by the Lustre
data collector were either physically impossible or did not match
the data reported by the Darshan data when it was available. This
was discovered to be a bug in the Lustre collection infrastructure. In
these cases the Lustre data was ignored. Also, some outlier values
from the Cray Gemini interconnect metrics recorded values that
were physically impossible. Again, these values were discarded.

We found aprun records where the timestamps in the data were
very different from the timestamps in the accounting data. Some
of these discrepancies were explained because there was a brief
period where the job scheduler software was updated and there
was an overlap in the job ids between the old and new instances
which meant that two different jobs had the same job id.

There were some periods where the node names changed — this
data was not reliably recorded at the time, which meant that we
had no easy way of determining the node type.

4.4 Miscellaneous issues

The summarization software uses PCP’s pmlogextract command
to select records from the PCP archives. The original software
simply forked a subprocess to execute the command. The mpi4py
implementation on Blue Waters does not support the system() call
so we added the ability to launch the pmlogextract code without
forking a sub-process.

The application identification algorithm in Open XDMoD used a
simple glob-based pattern matching algorithm to classify jobs based
on the executable name. On a typical academic HPC system we are
able to use the executable name to categorize approximately 60%
of jobs (by node hours). The majority of the uncategorized jobs are
user written custom software and scripts. Whereas on Blue Waters
we were able to categorize 92% of jobs (by node hours). The main
reason for this high categorization ratio is that the Blue Waters staff
have good knowledge of the software that their users run. We did
find, however that the glob-based pattern matching was inadequate
and so we made several improvements including adding regular
expression support and allowing matching on the full executable
path.
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During the data analysis part we identified and fixed several
minor bugs in the Open XDMoD software itself. For example, there
was an issue with displaying the measurement units in the Job
Viewer’s detailed metric pane. The various fixes were incorporated
into the Open XDMoD software and will be available in the next
release.

A typical install of the performance collection on the compute
nodes includes adding hooks in the job prologue and epilogue

scripts to record metrics as well as making periodic measurements.

The metric data collection on Blue Waters only recorded the periodic
measurement every 60 seconds therefore very short jobs typically
did not have sufficient data to run the summarization analysis. The
absence of data for short jobs was not a major concern since the
short job usage was negligible compared to the overall machine
usage (jobs shorter than 30 seconds used approximately 70 thousand
node hours out of over 5 billion).

The very large jobs took so long to process that the database
connection timed out. This revealed a bug in the software in that
did not attempt to reconnect after a timeout, which we fixed.

5 CONCLUSIONS

The workload analysis of Blue Waters was highly successful. It
accomplished the short term goal of understanding the Blue Waters
workload and the longer term goal of establishing a robust instance
of Open XDMoD to monitor Blue Waters in the future. It also
provided a great deal of insight into HPC monitoring on a large scale
that has been the subject of this paper. The total number of jobs on
Blue Waters, while large, is comparable to other HPC systems and
well within the capabilities of Open XDMoD to process and present
in an intuitive manner. The problems that were encountered with
this project were largely due to three main issues: the requirement
to process a multi-year backlog of data in a short space of time,
missing and erroneous source data, and a large number of compute
nodes and the subsequent size of the jobs.

The performance data from Blue Waters was in a format that was
not supported by Open XDMoD. However, the Open XDMoD data
processing infrastructure was designed to be able to handle multiple
different data formats and data schemas. We were able easily to
modify the Open XDMoD configuration to handle the different
input data. The ability to ingest, analyze and display: LDMS, aprun,
and Darshan data added new functionality to XDMoD and is a
positive outcome for the XDMoD infrastructure in general. We
expect that other users of Open XDMoD will be able to make use
of this functionality. In addition, many of the bug fixes and new
features that were added during the project will be incorporated
into the next Open XDMoD release. This includes the enhancements
to the application identification algorithm as well as the various
performance improvements.

Finding errors in the source data is expected anytime you are
trying to analyze an extremely large number of metrics collected by
a diverse software stack. Dealing with these errors adds robustness
to XDMoD and also provides system administrators information
on better data collection policies.

Finally, while Open XDMoD has proven to be well suited to
handle a large number of jobs to analyze, this project was a good
test of the infrastructure and lead to many gains in demonstrating
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and improving the scalability of the whole system. By leveraging
parallel processing in the summarization stage and implementing
algorithmic improvements in the internal pipeline, we were able to
increase the efficiency of the end to end process.
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