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ABSTRACT

This paper presents a tool chain, based on the open source tool
TACC_Stats, for systematic and comprehensive job level resource
use measurement for large cluster computers, and its
incorporation into XDMoD, a reporting and analytics framework
for resource management that targets meeting the information
needs of users, application developers, systems administrators,
systems management and funding managers. Accounting,
scheduler and event logs are integrated with system performance
data from TACC Stats. TACC Stats periodically records
resource use including many hardware counters for each job
running on each node. Furthermore, system level metrics are
obtained through aggregation of the node (job) level data.
Analysis of this data generates many types of standard and custom
reports and even a limited predictive capability that has not
previously been available for open-source, Linux-based software
systems. This paper presents case studies of information that can
be applied for effective resource management. We believe this
system to be the first fully comprehensive system for supporting
the information needs of all stakeholders in open-source software
based HPC systems.

1. INTRODUCTION

The high cost (capital, power and manpower) of HPC resources
requires us to optimize the usage — an outcome that is only
possible if adequate data is collected and is used to drive systems
management with good reporting and analysis/prediction at
different granularities — job, application, user and system. While
limited capabilities of this type [1] have been available in
proprietary systems, there exists no complete solution for open
systems. This paper presents a tool chain for systematic and
comprehensive job level resource use measurement, and its
incorporation into XDMoD, a reporting and analytics framework
that targets meeting the information needs of users, application
developers, systems administrators, systems management and

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. Copyrights for components of this work owned by
others than the author(s) must be honored. Abstracting with credit
is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

SC13 November 17-21, 2013, Denver, CO, USA

Copyright is held by the owner/author(s). Publication rights
licensed to ACM.

ACM 978-1-4503-2378-9/13/11...815.00.
http://dx.doi.org/10.1145/2503210.2503230

University of Texas, Austin, TX

{rideleon, furlani, smgallo, jonesm,
ag28, abani}@buffalo.edu

funding managers. Availability of such reporting will allow the

University of Texas, Austin, TX

john.hammond@intel.com,
bbarth@tacc.utexas.edu

identification of poor resource usage and guide improvements.

1.1 Motivation

A comprehensive system which addresses the information needs
of users, application developers, systems administrators, resource
managers, and program officers will enable all of the stakeholders
to more efficiently and effectively utilize existing systems, plan
for new systems, determine the overall efficiency with which a
given resource is being used and the effectiveness with which it is
meeting programmatic goals, and assess the return on investment.
For example, with such a system, users will be able to see how
their use of different types of system resources compares to the
system-wide averages, either for the system as a whole or for
users working in the same or similar fields of engineering and
science. Users will also be able to determine which systems their
jobs will execute on with maximum efficiency. Resource
managers can identify if the applications are well tuned to the
architecture and are making efficient use of the resource. Systems
administrators will have support tools for diagnosing system faults
and failures and for assessing the effectiveness with which the
current scheduling and resource management policies and tactics
are obtaining desired objectives and suggestions for possible
improvements. System planners will have a comprehensive basis
for assessing trends in resource use and in designing systems to
meet specific or general goals. HPC systems are purchased based
on performance on a projected job mix, which may in fact be
significantly different from what is actually experienced. Thus
operational efficiencies are often far lower than projections.

Identification of problematic resource usage and guiding
improvements will need a data driven framework. The XDMoD
(XSEDE Metrics on Demand) tool is being developed to provide
such a comprehensive resource management framework for
XSEDE and high-performance computing centers [2]. To date the
focus of XDMoD has been primarily on the development of
usage, system performance, and scientific impact metrics.
However, the ability to provide detailed information on the
performance (CPU and memory usage, swapping/paging
activities, network bandwidth, filesystem usage, and interconnect
fabric traffic) of all applications running on these systems is
necessary for effective systems management. To achieve this
capability, the SUPReMM (Integrated HPC Systems Usage and
Performance of Resources Monitoring and Modeling) program
integrates the TACC_Stats tool data into XDMoD. TACC_Stats
periodically samples node and system state values and a wide
spectrum of hardware counters to provide a rich (and extensive)
dataset of performance data for every application run on each
node in a given HPC cluster for analysis and reporting.
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1.2 Challenges

The tools for measurement and analysis of resource use that are
available in the standard Linux environment are not
comprehensive and do not address the information needs of many
of the stakeholders described above. For example, the standard
systat/SAR measurement system does not resolve resource use by
job or by user. While total system vendors (eg. Cray, IBM and
HP) use Linux based software stacks, they often enhance the
default measurement and analysis tools with proprietary
extensions that are not usable elsewhere. Another significant
challenge is the sheer volume of the data that must be addressed
when we deal with system information at the granularity of jobs
sampled frequently. The use of standard Linux logs and
measurement tools for data also comes with special challenges
since they are gathered and reported in many different formats [3].

1.3 Approach

Our approach is systematic integration of analysis tools and data
acquisition. The measurements we utilize are combined data from
event logs, schedulers, performance counters etc. gathered by
several open source and customizable new tools. These new tools
address major deficiencies in the measurement capabilities
provided in the open source Linux software stack. The new tools
include, TACC_ Stats, the replacement of systat/SAR, which
resolves resource use by processor core, by job, and by user.
They also include a rationalized version of syslog that adds job ID
information to each message and also maps all of the diverse
message types generated by the software stack into a single
uniform format. Another tool called Lariat, generates unified
summary data on the execution of a job such as which libraries are
called.

The function of the SUPReMM program is to integrate these data
sources into XDMoD, thereby creating a comprehensive resource
management framework for Linux-based HPC systems. In fact,
as far as we have found, this is the first attempt to systematically
incorporate system and usage data to meet monitoring and
management requirements of all stakeholders of large computer
systems. Further the XDMoD/SUPReMM system is extensible to
different system architectures.

The rest of the paper includes a detailed description of the
SUPReMM tools and reporting and analysis of generated data
from two XSEDE resources Lonestar4 and Ranger. Section 2
discusses related work and Section 3 gives a brief overview of
how TACC_ Stats works. Section 4 discusses the information
needs of each stakeholder classes and gives examples of analyses
and reports and the value generated for each stakeholder class.
Finally, Section 5 gives conclusions and future work.

2. RELATED WORK

Del Vento et al. [1] adopted a similar approach to tackling
inefficient HPC resource utilization. DeVento [1] primarily
targeted optimization of user codes and applications. Supremm
also generates reports on job and application resource use which
identify jobs and applications codes which have anomalous levels
of use of one or more resources, indicating a need for
optimization. Supremm, however, has the much broader target of
comprehensive support for all stakeholders in a large system.
Also, the measurements of DeVento [1] are based on proprietary
systems (IBM POWER/AIX) while SUPREMM is designed for
open-source software based HPC clusters.

Del Vento et al. [1] report that they were able, with user
cooperation, to improve CPU wusage (e.g. correct process
affinity/CPU binding) and troubleshoot thorny issues (e.g.

memory leak). Once a job or application with a pattern of
inefficient use of one or more resources has been identified by the
SUPREMM analyses and reports, we recommend that the user or
application developer (with collaboration from consulting staff)
apply one of the many performance optimization tools available
for open source clusters: Tau[4,5,6], HPCToolkit[7,8], IPM[9],
Open or SpeedShop[10], Scalasca[11]. VTune[12], Paradyn [13]
and PerfExpert[14,15].

There are, in addition to the Linux built-in monitors such as
systat/SAR and ionstat, many open source and commercial
monitoring resource management tools. The open source tools
include: CLUMON [1], PCP [2], Ganglia [3], Nagios [4], NEWT
[5], Lorenz [6], and SLURM [7]. Splunk [8] is a commonly used
commercial system. Each of these tools tools has one or more
serious deficiencies with respect to comprehensive job/core level
resource management. None of these tools, with the exception of
CLUMON, which gets its data from PCP, resolve the data by job
at the core level which is critical for comprehensive resource
management that includes researchers, application developers and
policy makers. CLUMON/PCP and SLURM do not monitor
hardware performance counters. Ganglia and Nagios do not
resolve by job or user.

TACC _Stats, however, collects data from performance counters
(per core and socket), block device statistics (per device),
scheduler accounting (per CPU), InfiniBand wusage, Lustre
filesystem usage (per mount), Lustre network usage, memory
usage (per socket), network device usage (per device), NUMA
statistics (per socket), process statistics (ps), SysV shared memory
segment usage, ram-backed filesystem usage (per mount),
dentry/file/inode cache usage virtual memory statistics.

In summary, while much of the data collected by TACC_Stats can
be obtained by combining data from multiple sources and/or using
the capabilities provided in some tools for adding measurement
monitors, such an approach using multiple monitors with multiple
data formats would greatly add to the overhead and complexity of
measurement. Having a single job-oriented comprehensive source
of data simplifies both collection and data analysis.

3. RESOURCE MEASUREMENT

The Linux systat package is a comprehensive collection of
performance monitoring utilities, each of which reports resource
statistics of specific components of a system in its own format.
TACC _Stats enhances sysstat/sar for the open source software
based HPC environment in many ways. It is a single executable
binary that covers all performance measurement functions of
sysstat and outputs in a unified, consistent, and self-describing
plain-text format. It is batch job aware: Performance data are
tagged with a batch job id to enable offline job-by-job profile
analysis. It supports newer Linux counters and hardware devices.
Its source code [24] is also highly modular and can be easily
extended to gather new kinds of performance metrics.

Currently TACC_Stats can gather core-level CPU usage (user
time, system time, idle, efc.), socket-level memory usage (free,
used, cached, efc.), swapping/paging activities, system load and
process statistics, network and block device counters, interprocess
communications (SysV IPC), software/hardware interrupt request
(IRQ) count, filesystems wusage (NFS, Lustre, Panasas),
interconnect fabric traffic (InfiniBand and Myrinet), and CPU
hardware performance counters. For a complete list of the data
acquired by TACC_Stats, see the TACC_Stats web site [25].



TACC Stats executes at the beginning of a job, periodically
during the job (currently every ten minutes) and at the end of the
job. At this frequency of execution, TACC Stats generates an
overhead of approximately 0.1%. Before beginning each job,
TACC Stats reprograms the performance counters it uses. On
AMD Opteron, the events are FLOPS, memory accesses, data
cache fills and SMP/NUMA traffic. On Intel Nehalem/Westmere,
the events are FLOPS, SMP/NUMA traffic, and L1 data cache
hits. At the periodic invocations, TACC_Stats only reads values
from performance registers without reprogramming them to avoid
overriding measurements initiated by users while ignoring user set
counters. The work-flow chart, Figure 1, shows a schematic of
how the collected data is analyzed organized, input into XDMoD
and reported.
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Figure 1. Work flow chart detailing integration of the
TACC Stats and other data sources, such as Lariat, into the
XDMoD Framework for resource management.

4. ANALYSES AND REPORTS

This section describes how SUPReMM is applied, defines the
metrics used in the example reports and illustrates the capabilities
of the system and its potential use by all stakeholders.

4.1 Data Sources

The case studies given as examples in this paper were carried out
on the Ranger and Lonestar4 supercomputers at the Texas
Advanced Computing Center (TACC). Ranger (decommissioned
as of February 2013) is a Linux cluster with 3936 compute nodes,
each of which has four 2.3GHz AMD Opteron quad-core
processors (16 cores in total) and 32 GB of memory. The
filesystem is Lustre and the interconnect is InfiniBand. Lonestar4
is also a Linux cluster with 1088 Dell PowerEdgeM610 compute
nodes. Each compute node has two Intel Xeon 5680 series
3.33GHz hexa-core processors and 24 GB of memory. Lonestar4
has two filesystems: Lustre and NFS and its interconnect is
InfiniBand (NFS is connected via Ethernet).

TACC _Stats has been deployed on Ranger for 20 months and on
Lonestar4 since November of 2011. On Ranger, TACC Stats
generates a raw data file of 0.5 MB per node per day and
collectively 60 GB (uncompressed) or 20 GB (compressed) for
the entire cluster per month.

We analyzed TACC_Stats data collected on Ranger during June
2011 to January 2013 with a total of 521,010 jobs, and on
Lonestar4 from November 2011 to January 2013 with a total of
337,011 jobs. The jobs included in this study are those longer than
the default TACC_ Stats sampling interval of 10 minutes. The
values were calculated by the job weighted by node*hour. The job
pool for our analysis contains predominantly XSEDE jobs with a
small proportion of non-XSEDE jobs (e.g. from TACC partners
and Texas higher educational institutions). We ingested both the
raw TACC_Stats output files and job accounting information into
an IBM Netezza data warehouse appliance and a MySQL
database, respectively.



Figure 2. Sample user usage profiles based on 8 TACC Stats
metrics for 5 heavy users of Ranger. The plots show normalized
by the average value of each metric over all of the Value
usage on Ranger i.e. average user = 1. Values above 1 indicate
heavier resource usage; values below 1 indicate lighter usage.
Note the variability in the usage profiles between users.

4.2 Overview of Example Analyses and Reports

The analyses and reports used as examples will be mainly
concerned with eight key metrics and closely related quantities:
cpu_idle, mem_used, mem_used max, cpu_flops,
io_scratch_write, io_work write, net ib_tx, and net Inet tx. We
have chosen these eight based on a correlation analysis over a// of
the measured metrics. We found that there are many highly
correlated or anti-correlated metrics, such as cpu user is
negatively correlated to cpu_idle, or net ib rx is positively
correlated to net ib_tx. Therefore, we have selected the smallest
independent set of metrics that describe the execution behavior of
the job mix on each system. The definitions of the eight metrics
are as follows. Cpu_idle is that fraction of the CPU not utilized by
the job in user space or by the system. Mem used refers to the
per node memory used, including the disk buffer and cache
managed by the Linux operating system Mem_used_max refers to
the peak observed memory usage over all used nodes and all
sampling intervals of a job. Cpu flops is the floating-point
operations per second produced on a job. lo_scratch write and
io_work write refer to writing from the scratch and work file
systems (Lustre). The difference of these arises in the purge
policy and quota size. “Scratch” is purged periodically and has a
largish quota to the tune of hundreds of TB, and “work” is non-
purged space with a 200GB quota. Net ib _tx, and net Inet tx
refer to network data transmission rates.

4.3 Analyses and Reports by Stakeholder

The XDMOD system has a powerful and flexible analysis
interface that has many analyses reports preprogrammed and also
the option for stakeholders to define custom reports. The reports
listed here for each stakeholder, are only a small subset of the
analyses and reports that are possible.

4.3.1 USER Analyses and Reports: Sample reports of interest
are — resource use profile by job, comparative resource use by
user, jobs with anomalous or inefficient resource use patterns,
Bottleneck identification and performance optimization and job
completion failure profiles.

Proposition: Users are often unaware of the resource use
characteristics of their jobs — in particular inefficient usage. These
reports provide a simple way for users to determine their relative
efficiency on different systems and enable them to choose the
system best suited for their application. Anomalous resource use
patterns may be an indicator of undetected bugs in a program.
They are also commonly the precursors of job failures from
exception conditions and may sometimes induce system hangups
though soft lockups of compute nodes which eventually lead to
job-wide node-level hangups. Importantly, inefficient resource
use patterns by a job, such as high cpu idle fraction, call attention
to potential opportunities to improve the performance of the
application, and in so doing benefit the user who obtains greater
throughput, and the user community by freeing up busy
resources.



Figure 3. Resource usage profiles for eight TACC_Stats metrics
for the three molecular dynamics (MD) applications, NAMD,
AMBER, and GROMACS on Ranger (R-) and Lonestar4 (L-).
Plots have been normalized by the average value of each metric
calculated over all jobs (i.e. average =1) on Ranger and Lonestar4,
respectively. Values above 1.0 indicate heavier resource usage;
values below 1.0 indicate lighter usage.

User usage profiling: The TACC Stats data can be used to
generate a profile of usage for each job, user, application or
allocation/program/charge number. Over the period studied,
~2000 users submitted jobs to Ranger. We have characterized this
usage in terms of the 8 key metrics previously described. Other
metrics could be added or substituted as desired. Figure 2 shows
a comparison of the usage profile of 5 heavy users of Ranger. The
profiles have been normalized by dividing by the average values
for the particular metric calculated over all users. Therefore, a
typical user would have a value of one for each of the 8 metrics
and this would appear as a perfect octagon with each vertex at
unity in the radar chart. Values above one indicate heavy usage:
below one, light usage of the particular resource or performance
metric. There is a great variation in the usage profile of these 5
users in spite of the fact that they were selected as the largest
consumers of node-hours. User 1 has a high level of use of
FLOPS and high network traffic use. User 3 has a very high Cpu
idle fraction and a high fraction of Lustre file system traffic,
indicating jobs dominated by by IO.

4.3.2 APPLICATION DEVELOPER Report(s): In addition to
the user reports, developers will have reporting available on
anomalous or inefficient resource use patterns, basic resource use
profiles, comparative resource use profiles, and variability of
resource use.

Value Proposition: A steadily increasing fraction of scientific
and engineering computation is being done with "community"
application codes — a development likely to increase as agencies
support more of these tools. Developers who know how
efficiently their application executes on different platforms and
how effectively (with respect to resource use) users apply the
application can improve applications and user training. These
reports enable the application developers to have both detailed
knowledge at the level of each execution by each user and also

cumulative comparative data on execution behaviors on each
system and across systems. The reports can also enable the
developers to identify the circumstances where the application has
terminated abnormally. Figure 3 compares the resource use
profiles of the three most used molecular dynamics codes on
Ranger and Lonestar4, NAMD, AMBER, and GROMACS. In the
plots in Figure 3 we compare the performance of NAMD,
AMBER, and GROMACS, relative to the performance of the
average job run on Ranger and Lonestar4. Note that the plots have
different scales. If the metric of cpu idle fraction is used to
determine efficiency, then NAMD and GROMACS run more
efficiently than AMBER on both Ranger and Lonestar4. The
NAMD usage pattern on Ranger and Lonestar4 is very similar
whereas GROMACS and AMBER usage is different on the two
clusters. These plots suggest examining AMBER to investigate
the variation in the floating point and cpu idle metrics.

4.3.3 SUPPORT STAFF Report(s): Primary reports of interest
here are — jobs or user with anomalous or inefficient resource use
patterns, jobs with abnormal termination condition, and major
application resource use profiles.

Value Proposition: These reports will enable facility-based
support staff to identify jobs and applications which can benefit
from attention or are in imminent danger of failure. They also
provide information that can be used to assist in diagnosing and
correcting job execution problems referred to them by users — a
function that will often need the same reports that support staff
will use. In addition to giving support staff the information they
need to respond to user queries, the reports enable a transition to a
proactive role. If a major user has a resource use profile that has
an anomalous value for a given metric, for example cpu_idle, then
the computing center support staff may wish to contact that user
to see if they can assist them in achieving better performance for
their applications. Figure 4 shows user resource use patterns for
all jobs. Figure 4 is based on the usage from all users on Ranger
or Lonestar4 for their respective study periods. It shows “wasted”
node-hours, that is, those spent with an idle CPU, vs total node-
hours consumed. While in some cases the user could choose to
run on only a fraction of the cores on each node in order to take
advantage of more memory per core used, in fact very few of
these cases were found and most idle node-hours are indeed
wasted. On the Ranger plot, the red line shows the 90%
efficiency mark, that is, below this line less than 10% of the CPU
hours consumed are spent in idle. The 90% mark was chosen
because this is the approximate average value over all Ranger
users. For the Lonestar4 plot the 85% efficiency line is shown to
reflect the average CPU idle % over all Lonestar4 usage. While
many large CPU-hour users have very efficient codes, as evident
by the large number of users down near the bottom of the chart
below the 90% or 85% efficiency line, many large users are
spending 50% or more of their node-hours in CPU idle mode.
Using this information, service providers could contact the users
with poorly performing applications to determine whether their
efficiency can be improved. For example, for the Ranger and
Lonestar4 plots in Figure 4, the users circled have spent 87% and
89% respectively of the consumed node hours in CPU idle.
Figure 5 shows their usage profiles. Note that other than the large
CPU user idle which is 8 and 5 times larger than that for the
average Ranger or Lonestar4 user, there is only normal to light
usage of other resources such as memory, file systems and
network, that is, nothing to explain the anomalously high CPU
idle fraction. There are clearly outliers that may benefit from
closer scrutiny.



Figure 4. Plot of node-hour usage vs wasted node-hours. Wasted
node-hours are defined to be those spent with the CPU idle. The
average efficiency of jobs on Ranger are 90% and Lonestar4 85%,
where we define efficiency to be the percentage of time not spent
in CPU idle. We have marked the average efficiency lines on the
Ranger and Lonestar4 plots with a red line. On each plot a single
problematic user has been circled.

4.34 SYSTEMS ADMINISTRATORS Reports(s):
Administrators are likely to be interested in diagnostic reports for
job/system faults/failures, system level resource use patterns and
workload characterization, job/application characteristics, job
completion failure profiles, and, fault/failure diagnostic reports.

Value Proposition: Currently, most of the tasks of systems
administration are accomplished using custom site specific scripts
written independently at each installation with little sharing of
approaches or reuse for solving common problems which include
diagnosing system faults and failures, determining “optimal”
settings for system software such as job schedulers and evaluating
the efficiency and effectiveness of new versions of the system
software stack. These reports will simplify and ease each of these
tasks. The ANCOR tool [26], which is not discussed in this
paper, combines TACC_Stats data with rationalized logs [27] to
generate analyses and reports which diagnose the possible causes
of system faults and failures. Reports based on job resource use
patterns and workload characterization can assist in determining
the effectiveness of software stack updates and optimizing job
scheduling.

The illustration used for potential value to systems administration
is the persistence characteristics of resource use patterns over time
ie. how well can one predict future performance/usage on
Ranger? Starting from a given point in time can we predict what
will occur 10 minutes, 100 minutes, 1000 minutes, or 10,000

minutes into the future? To a certain extent we can because there
is a well-defined persistence of the performance metrics.

Figure 5. User usage profile for the users circled in Figure 4. The
first chart is for Ranger, the second for Lonestar4. These cases
were selected for the high CPU idle fraction. Other metrics
indicate normal resource usage. For these cases there is no
obvious other resource usage to explain the high idle fraction.

The method that we used was to compute and examine the
standard deviation of a given metric. We can introduce an offset,
for example X minutes, and take the difference between the offset
values and the original values and look at the standard deviation
of this difference. This tells us how similar that metric is X
minutes later. If there is no tendency to persist, the standard
deviation should be approximately equal to the original standard
deviation of the metric. If the value at X minutes is nearly
identical to the original value, the standard deviation will
approach 0, and we have a very good idea what value the metric
will be. As the offset is increased to very large values, eventually
the standard deviation of the difference will approach the original
standard deviation of the metric and we cannot predict the value
any better than using the general statistics of the ensemble.

We have applied this method for 5 metrics: cpu_flops, mem_used,
io_scratch_write, net ib tx and cpu_idle. Table 1 shows the
results. Each table entry is the offset standard deviation divided
by the original standard deviation. Obviously the ability to predict
the next value of the metric 10 minutes later is very good with the
standard deviation decreasing almost by a factor of ten. At 100
minutes there is still a good memory of the original value but by
1000 minutes there is little memory of the original value. There
are small differences in the persistence between the 5 metrics.
The ability to predict the future value of the metric goes in
increasing order: io_scratch write < net ib tx ~ cpu_idle <
mem_used ~ cpu_flops. However, overall they are all well fit by
a logarithmic model. Aside from the reversal of net ib_tx and
io_scratch_write, the predictive ability order follows the
descending value of the coefficient of variation of the metrics. A



logarithmic model can be used to fit the data. The last row in
Table 1 shows the R? values of the fit to each metric.

Offset(min) flops mem write ib_tx | cpu_idle

10 0.123 0.148 0.311 0.268 0.267

30 0.211 0.217 0.494 0.431 0.375

100 0.377 0.344 0.670 0.652 0.544

500 0.705 0.638 0.999 0.911 0.849

1000 0.889 0.814 0.999 1.009

Fit R® 0.98 0.95 0.995 0.998 0.98

Table 1. Persistence data for 5 metrics

All 5 metrics can be combined on a single fit when the standard
deviations at the offset times are normalized by dividing by the
standard deviation of the original metric as was done in Table 1.
The upper plot in Figure 6 shows this fit. The intercept is -0.17(6)
p=0.016, the slope is 0.36(2) p=5 E-12, R?>=0.87. While it is
obviously not quite as good as the original fits, indicating a real
difference between the metrics, it still serves to show some
similarity in the predictability of the various metrics. A similar
analysis can be done for Lonestar4, see the lower plot in Figure 6.
The values for the Lonestar4 fit are very similar to the Ranger fit;
the intercept is -0.28(5) p=2E-5, the slope is 0.42(2) p=9 E-15,
R?=0.93. One would expect the persistence to be related to the
average job length. The longer the jobs the longer we would
expect the persistence to be and the easier it should be to predict
the value of the metrics further into the future. For Ranger the
average weighted job length over this period was 549 minutes.
The model agrees qualitatively with this value in that below 549
minutes we can predict the future value of the metric with some
accuracy, above this value there is relatively little predictive
ability. For Lonestar4 the average job length is slightly shorter
446 minutes, in agreement with the fact that the slope of the
Lonestar4 fit is slightly greater.

Ultimately, modeling usage persistence could be a viable strategy
to manage resource usage across an HPC cluster. If the usage
profile of various applications or users is established, the present
usage could be assessed and jobs could be selected from the queue
to complement the present resource usage e.g. add high I/O jobs
when 1/O is relatively free.

4.3.5: RESOURCE MANAGERS Reports: Workload
characterization; Job resource use characteristics; Job-level
resource use trends; Major application use and resource use
characteristics; System-wide resource use profiles; Major
application use profiles; Resource use trends and predictions

Value Proposition: System management tasks such as reporting
to funding agencies, evaluating the effectiveness of resource
operation, and planning for future systems are directly supported
by the routine availability of the reports named above. Almost
any type of job or application level data (such as job profiles,
application use, discipline area use, differences in job
characteristics by discipline area, system efficiency measured by
use of different types of resources, etc.) are available. Support for
planning is provided by workload type trends workload resource
use trends, characterization of workloads in terms of use of
different resource use patterns, etc.

For illustrative purposes and to provide an indication of the wide
range of job and application level data available to resource
managers, we present here a broad set of systems level reports on
resource use. Figures 7 through 12 are a sample of the many
analyses of resource use at the system level. These system level
reports are of the most use to system managers and funding
agencies reviewing the machine performance and machine
productivity. The discussions following each figure sketch the
information content of these reports. These reports, and similar
reports showing trends in resource use over time, can be important
not only in evaluating current performance but for planning
enhancements to existing systems and planning for new systems.

Figure 7 shows three sample reports produced by using the
TACC _stats data collected from the Ranger machine. In the
remainder of this section we also will use the TACC_Stats data to
analyze performance.

Figure 6. Persistence model fit of all 5 metrics. The standard
deviation of each metric normalized by the non-offset standard
deviation has been fit against the time offset. The upper chart is
for Ranger, the lower chart is for Lonestar4. The plots serve to
show how long the value of metrics tends to persist with time.



Figure 7. Sample reports based on the data collected by
TACC Stats, processed and published through XDMOD. a)
Average memory usage per core for the Ranger machine
(XSEDE) and broken up by parent science, b) CPU hours for
Ranger (user, idle and system) c) Lustre file system performance
on Ranger for scratch, share and work drives.

The variation in the number of active nodes over time is useful to
measure as it shows the up/down time of the CPU cluster and can
provide a general indication of the efficiency of the scheduler.
Although it is not unique to the TACC_Stats analysis, in Figure 8
we present the number of active nodes as a function of time
throughout the study period June 2011 to January 2013 on Ranger
and November 2011 to January 2013 for Lonestar4. Ranger has
3936 nodes and Lonesatar4 has 1888 nodes, most of which were
active throughout the study period with occasional scheduled and
un-scheduled shut down periods.

The long-term real-world flops performance of Ranger as
measured by TACC Stats in SSE flops is shown in Figure 9.
Ranger was benchmarked to deliver a peak performance of 579
TF. Examination of Figure 9 shows that the actual performance
was less than 20 TF, which in of itself is not a particularly
surprising result as it is well know real-world performance is
much less than peak performance for most applications. Even

peak values were less than 50 TF. Lonestar4 flops measured were
also quite variable and not comparable to the Ranger plot because
they were not SSE flops.

Figure 8: Number of nodes active as a function of time throughout
the analysis period June 2011 to January 2013 for Ranger and
November 2011 to January 2013 for Lonestar4. The number of
active nodes drops to zero during planned or unplanned
shutdowns that are relatively infrequent. The smaller variations
occur as nodes finish jobs and await new assignment.

Figure 10 shows the distribution of the flops data. Figure 10 (and
also Figure 12) show the kernel density [28] (produced by the R
statistical software environment) rather than a histogram in order
to avoid making binning choices. Typically less than 20 TF were
generated by the actual job mix run with very moderate peak
values. The small peak at zero is due to shutdown periods. It
should be noted that these values are integrated over the various
job span and detected by TACC_Stats at 10-minute intervals. The
actual instantaneous peak values could be a bit greater.



Figure 9. Number of SSE FLOPS produced by Ranger as a
function of time, throughout the analysis period June 2011 to
January 2013. Note that the output is quite irregular and only a
small fraction of the benchmarked peak performance.

Figure 10. FLOPS distribution from the data shown in Figure 9
for Ranger. Over the course of the study period ranger averaged
less than 20 TF, compared to its benchmarked peak performance
value of 579 TF.

Ranger has 32 GB of memory for the 16 cores per node. The
actual memory usage per node as a function of time is shown in
Figure 11. Note that typically less than 10 GB per node is in use
at any given time. Even peak values are less than 16 GB per
node, that is, less than 50% of the available memory. Figure 12
shows the distribution of the memory usage. It is easy to see the
peak is less than 10 GB with negligible usage above 16 GB. The
red curve is based on the maximum usage during a job. Even this
value is only about 50% of the memory capacity. The same
caution that the instantaneous values might be greater made for
flops also applies to memory usage. Lonestar4 has 24 GB of
memory for the 12 cores per node. Lonestar4 memory usage was
higher than that of Ranger. Although average memory used per
job per node was still only a bit above 50% of capacity (14/24

GB), the maximum memory used during a job does approach the
actual system capacity.

Figure 11: Memory used per node as a function of time
throughout the analysis period. Ranger has 32 GB per node. The
average value is less than 10 GB, and even peak values are less
than 16 GB. Lonestar4 has 24 GB per node and the usage is
relatively higher, ~15 GB on average peaking up to 20 GB.

4.3.6 FUNDING AGENCIES Reports: Reports of interest here
are system operation profiles; system resource use profiles;
discipline area application workload characterization; resource use
trends by application area.

Value Proposition: The information needed by funding agencies
is similar to the information requirements of systems managers
but range across all of the systems for which a funding agency is
responsible.  Reports illustrating value delivered to funding
agencies include: (i) resource use by discipline domains and by
widely used application codes, (ii) fractions of resources which
are effectively applied by system, (iii) patterns of resource use by
discipline and trends in resource use by applications and at the
system level. Examples of these reports, Figures 6 through 9,
have been presented and discussed in the preceding section.
These reports will meet the needs of funding agencies for
accountability reporting, for determining the effectiveness of



different systems and approaches to system management and in
planning for future procurements.

Figure 12. Distribution of memory used per node on Ranger and
Lonestar4. The black line is based on the average usage during a
job as shown in the data displayed in Figure 11, the red line is
based on the maximum usage during a job. Note that for Ranger
the memory usage is low, less than 50% of capacity even for the
maximum memory usage during the jobs. For Lonestar4 the
usage is significantly higher. On average 50% is of the memory is
used and nearly the full capacity is used at the job maximum.

5. CONCLUSIONS & FUTURE WORK

The primary focus of this paper has been to demonstrate the
ability of combining the new data available from TACC_Stats
with standard system data sources such as job scheduler logs to
provide detailed job, user, application and system level
information and enable analytics of the workload running on a
given HPC resource. While characterizing resource utilization at
the job level and system levels is useful in its own right, the real
power of comprehensive data based resource management lies in
the ability to tune system and application performance based on
this data to improve overall resource utilization. Given the over-
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request of most if not all HPC resources, this capability is
particularly desirable. Accordingly, future work will center on a
detailed investigation of some of the application and system
inefficiencies uncovered by the studies carried out here.

For example, we are contacting the owners of particularly poorly
running jobs to better understand their workflow and determine if
steps can be taken to mitigate the underperformance. These steps
are likely to include a wide range of remedies, some simple to
implement and others requiring a more substantial effort. For
example, the analysis has been done of key TACC_Stats metrics
for many commonly run applications on Lonestar4 and Ranger,
for one case see Figure 3. This analysis indicates that the NAMD
molecular dynamics (MD) package is more efficient than other
MD packages such as AMBER. HPC centers might choose to
encourage users to consider NAMD for their simulations.
Furthermore, although it is hardly surprising to learn that some
applications run considerably better on certain machine
architectures, with the present tools we can easily identify those
applications and provide incentives for users to run on
architectures best suited for their application. Additionally, the
analysis shown in Figures 2, 4 and 5 of can be used to determine
which users are using the resources efficiently and which are not.
Such quantitative information can be used to improve their usage
and input for a more appropriate allocation for such users.

The data, especially the comparative analysis across architectures
and usage classes, raise interesting questions. For example one
could argue that given the very different demands placed on
machines by different applications and from users from different
fields of science, XSEDE should consider providing a “bouquet”
of machines tuned to different user groups rather than the
monolithic general purpose machines of today.

Although we only briefly alluded to the challenges of analyzing
the data generated by a TACC Stats, we are assessing various
technologies (e.g. NoSQL, MONGOdb) to quickly process, store,
and query massive TACC_Stats data. This is critical, as it is a key
step to developing a capability to rapidly import TACC_Stats data
into XDMoD, which will greatly expand its access to end users,
systems administrators, and center directors. As a first step, we
are presently incorporating the Lonestar4 and Ranger data into
XDMoD; the next release at XSEDE13 will feature a TACC_Stats
data realm and will therefore be widely available.

TACC Stats will soon be deployed on TACC’s Stampede and
ultimately on all XSEDE resources. Finally, in order to have a
broad impact on the efficient operation of HPC resources
throughout the U.S., including academic and industrial HPC
centers, plans are underway to release an open source version of
XDMoD by the end of 2013 that will ultimately have the full
resource management capabilities described in this paper.
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