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ABSTRACT 
This paper presents a tool chain, based on the open source tool 
TACC_Stats, for systematic and comprehensive job level resource 
use measurement for large cluster computers, and its 
incorporation into XDMoD, a reporting and analytics framework 
for resource management that targets meeting the information 
needs of users, application developers, systems administrators, 
systems management and funding managers. Accounting, 
scheduler and event logs are integrated with system performance 
data from TACC_Stats.  TACC_Stats periodically records 
resource use including many hardware counters for each job 
running on each node.  Furthermore, system level metrics are 
obtained through aggregation of the node (job) level data. 
Analysis of this data generates many types of standard and custom 
reports and even a limited predictive capability that has not 
previously been available for open-source, Linux-based software 
systems.  This paper presents case studies of information that can 
be applied for effective resource management. We believe this 
system to be the first fully comprehensive system for supporting 
the information needs of all stakeholders in open-source software 
based HPC systems. 

1. INTRODUCTION 
The high cost (capital, power and manpower) of HPC resources 
requires us to optimize the usage – an outcome that is only 
possible if adequate data is collected and is used to drive systems 
management with good reporting and analysis/prediction at 
different granularities – job, application, user and system. While 
limited capabilities of this type [1] have been available in 
proprietary systems, there exists no complete solution for open 
systems. This paper presents a tool chain for systematic and 
comprehensive job level resource use measurement, and its 
incorporation into XDMoD, a reporting and analytics framework 
that targets meeting the information needs of users, application 
developers, systems administrators, systems management and 
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funding managers. Availability of such reporting will allow the 
identification of poor resource usage and guide improvements. 
1.1 Motivation 
A comprehensive system which addresses the information needs 
of users, application developers, systems administrators, resource 
managers, and program officers will enable all of the stakeholders 
to more efficiently and effectively utilize existing systems, plan  
for new systems, determine the overall efficiency with which a 
given resource is being used and the effectiveness with which it is 
meeting programmatic goals, and assess the return on investment.    
For example, with such a system, users will be able to see how 
their use of different types of system resources compares to the 
system-wide averages, either for the system as a whole or for 
users working in the same or similar fields of engineering and 
science.  Users will also be able to determine which systems their 
jobs will execute on with maximum efficiency.  Resource 
managers can identify if the applications are well tuned to the 
architecture and are making efficient use of the resource. Systems 
administrators will have support tools for diagnosing system faults 
and failures and for assessing the effectiveness with which the 
current scheduling and resource management policies and tactics 
are obtaining desired objectives and suggestions for possible 
improvements.  System planners will have a comprehensive basis 
for assessing trends in resource use and in designing systems to 
meet specific or general goals.  HPC systems are purchased based 
on performance on a projected job mix, which may in fact be 
significantly different from what is actually experienced. Thus 
operational efficiencies are often far lower than projections.  
 
Identification of problematic resource usage and guiding 
improvements will need a data driven framework. The XDMoD 
(XSEDE Metrics on Demand) tool is being developed to provide 
such a comprehensive resource management framework for 
XSEDE and high-performance computing centers [2].  To date the 
focus of XDMoD has been primarily on the development of 
usage, system performance, and scientific impact metrics.  
However, the ability to provide detailed information on the 
performance (CPU and memory usage, swapping/paging 
activities, network bandwidth, filesystem usage, and interconnect 
fabric traffic) of all applications running on these systems is 
necessary for effective systems management.  To achieve this 
capability, the SUPReMM (Integrated HPC Systems Usage and 
Performance of Resources Monitoring and Modeling) program 
integrates the TACC_Stats tool data into XDMoD. TACC_Stats 
periodically samples node and system state values and a wide 
spectrum of hardware counters to provide a rich (and extensive) 
dataset of performance data for every application run on each 
node in a given HPC cluster for analysis and reporting.    
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1.2 Challenges 
The tools for measurement and analysis of resource use that are 
available in the standard Linux environment are not 
comprehensive and do not address the information needs of many 
of the stakeholders described above. For example, the standard 
systat/SAR measurement system does not resolve resource use by 
job or by user. While total system vendors (eg. Cray, IBM and 
HP) use Linux based software stacks, they often enhance the 
default measurement and analysis tools with proprietary 
extensions that are not usable elsewhere. Another significant 
challenge is the sheer volume of the data that must be addressed 
when we deal with system information at the granularity of jobs 
sampled frequently. The use of standard Linux logs and 
measurement tools for data also comes with special challenges 
since they are gathered and reported in many different formats [3]. 

1.3 Approach 
Our approach is systematic integration of analysis tools and data 
acquisition. The measurements we utilize are combined data from 
event logs, schedulers, performance counters etc. gathered by 
several open source and customizable new tools.  These new tools 
address major deficiencies in the measurement capabilities 
provided in the open source Linux software stack.  The new tools 
include, TACC_Stats, the replacement of systat/SAR, which 
resolves resource use by processor core, by job, and by user.  
They also include a rationalized version of syslog that adds job ID 
information to each message and also maps all of the diverse 
message types generated by the software stack into a single 
uniform format.  Another tool called Lariat, generates unified 
summary data on the execution of a job such as which libraries are 
called.  
The function of the SUPReMM program is to integrate these data 
sources into XDMoD, thereby creating a comprehensive resource 
management framework for Linux-based HPC systems.  In fact, 
as far as we have found, this is the first attempt to systematically 
incorporate system and usage data to meet monitoring and 
management requirements of all stakeholders of large computer 
systems. Further the XDMoD/SUPReMM system is extensible to 
different system architectures.  
The rest of the paper includes a detailed description of the 
SUPReMM tools and reporting and analysis of generated data 
from two XSEDE resources Lonestar4 and Ranger.  Section 2 
discusses related work and Section 3 gives a brief overview of 
how TACC_Stats works.  Section 4 discusses the information 
needs of each stakeholder classes and gives examples of analyses 
and reports and the value generated for each stakeholder class. 
Finally, Section 5 gives conclusions and future work. 

2. RELATED WORK 
Del Vento et al. [1] adopted a similar approach to tackling 
inefficient HPC resource utilization. DeVento [1] primarily 
targeted optimization of user codes and applications. Supremm 
also generates reports on job and application resource use which 
identify jobs and applications codes which have anomalous levels 
of use of one or more resources, indicating a need for 
optimization. Supremm, however, has the much broader target of 
comprehensive support for all stakeholders in a large system.  
Also, the measurements of DeVento [1] are based on proprietary 
systems (IBM POWER/AIX) while SUPREMM is designed for 
open-source software based HPC clusters.   
Del Vento et al. [1] report that they were able, with user 
cooperation, to improve CPU usage (e.g. correct process 
affinity/CPU binding) and troubleshoot thorny issues (e.g. 

memory leak). Once a job or application with a pattern of 
inefficient use of one or more resources has been identified by the 
SUPREMM analyses and reports, we recommend that the user or 
application developer (with collaboration from consulting staff) 
apply one of the many performance optimization tools available 
for open source clusters: Tau[4,5,6], HPCToolkit[7,8], IPM[9], 
Open or SpeedShop[10], Scalasca[11]. VTune[12], Paradyn [13] 
and PerfExpert[14,15].   
There are, in addition to the Linux built-in monitors such as 
systat/SAR and ionstat, many open source and commercial 
monitoring resource management tools. The open source tools 
include: CLUMON [1], PCP [2], Ganglia [3], Nagios [4], NEWT 
[5], Lorenz [6], and SLURM [7].  Splunk [8] is a commonly used 
commercial system. Each of these tools tools has one or more 
serious deficiencies with respect to comprehensive job/core level 
resource management. None of these tools, with the exception of 
CLUMON, which gets its data from PCP, resolve the data by job 
at the core level which is critical for comprehensive resource 
management that includes researchers, application developers and 
policy makers. CLUMON/PCP and SLURM  do not monitor 
hardware performance counters. Ganglia and Nagios do not 
resolve by job or user.  
TACC_Stats, however, collects data from performance counters 
(per core and socket), block device statistics (per device), 
scheduler accounting (per CPU), InfiniBand usage, Lustre 
filesystem usage (per mount), Lustre network usage, memory 
usage (per socket), network device usage (per device), NUMA 
statistics (per socket), process statistics (ps), SysV shared memory 
segment usage, ram-backed filesystem usage (per mount), 
dentry/file/inode cache usage virtual memory statistics.  
In summary, while much of the data collected by TACC_Stats can 
be obtained by combining data from multiple sources and/or using 
the capabilities provided in some tools for adding measurement 
monitors, such an approach using multiple monitors with multiple 
data formats would greatly add to the overhead and complexity of 
measurement. Having a single job-oriented comprehensive source 
of data simplifies both collection and data analysis.  

3. RESOURCE MEASUREMENT 
The Linux systat package is a comprehensive collection of 
performance monitoring utilities, each of which reports resource 
statistics of specific components of a system in its own format. 
TACC_Stats enhances sysstat/sar for the open source software 
based HPC environment in many ways. It is a single executable 
binary that covers all performance measurement functions of 
sysstat and outputs in a unified, consistent, and self-describing 
plain-text format. It is batch job aware: Performance data are 
tagged with a batch job id to enable offline job-by-job profile 
analysis. It supports newer Linux counters and hardware devices. 
Its source code [24] is also highly modular and can be easily 
extended to gather new kinds of performance metrics. 
 
Currently TACC_Stats can gather core-level CPU usage (user 
time, system time, idle, etc.), socket-level memory usage (free, 
used, cached, etc.), swapping/paging activities, system load and 
process statistics, network and block device counters, interprocess 
communications (SysV IPC), software/hardware interrupt request 
(IRQ) count, filesystems usage (NFS, Lustre, Panasas), 
interconnect fabric traffic (InfiniBand and Myrinet), and CPU 
hardware performance counters. For a complete list of the data 
acquired by TACC_Stats, see the TACC_Stats web site [25]. 
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TACC_Stats executes at the beginning of a job, periodically 
during the job (currently every ten minutes) and at the end of the 
job. At this frequency of execution, TACC_Stats generates an 
overhead of approximately 0.1%.  Before beginning each job, 
TACC_Stats reprograms the performance counters it uses. On 
AMD Opteron, the events are FLOPS, memory accesses, data 
cache fills and SMP/NUMA traffic. On Intel Nehalem/Westmere, 
the events are FLOPS, SMP/NUMA traffic, and L1 data cache 
hits.  At the periodic invocations, TACC_Stats only reads values 
from performance registers without reprogramming them to avoid 
overriding measurements initiated by users while ignoring user set 
counters.  The work-flow chart, Figure 1, shows a schematic of 
how the collected data is analyzed organized, input into XDMoD 
and reported. 
 

 
 
Figure 1.  Work flow chart detailing integration of the 
TACC_Stats and other data sources, such as Lariat, into the 
XDMoD Framework for resource management.  
 
4. ANALYSES AND REPORTS 

This section describes how SUPReMM is applied, defines the 
metrics used in the example reports and illustrates the capabilities 
of the system and its potential use by all stakeholders.  
4.1 Data Sources  
The case studies given as examples in this paper were carried out 
on the Ranger and Lonestar4 supercomputers at the Texas 
Advanced Computing Center (TACC). Ranger (decommissioned 
as of February 2013) is a Linux cluster with 3936 compute nodes, 
each of which has four 2.3GHz AMD Opteron quad-core 
processors (16 cores in total) and 32 GB of memory. The 
filesystem is Lustre and the interconnect is InfiniBand.  Lonestar4 
is also a Linux cluster with 1088 Dell PowerEdgeM610 compute 
nodes. Each compute node has two Intel Xeon 5680 series 
3.33GHz hexa-core processors and 24 GB of memory. Lonestar4 
has two filesystems: Lustre and NFS and its interconnect is 
InfiniBand (NFS is connected via Ethernet). 
  
TACC_Stats has been deployed on Ranger for 20 months and on 
Lonestar4 since November of 2011. On Ranger, TACC_Stats 
generates a raw data file of 0.5 MB per node per day and 
collectively 60 GB (uncompressed) or 20 GB (compressed) for 
the entire cluster per month.  
 
We analyzed TACC_Stats data collected on Ranger during June 
2011 to January 2013 with a total of 521,010 jobs, and on 
Lonestar4 from November 2011 to January 2013 with a total of 
337,011 jobs. The jobs included in this study are those longer than 
the default TACC_Stats sampling interval of 10 minutes. The 
values were calculated by the job weighted by node*hour. The job 
pool for our analysis contains predominantly XSEDE jobs with a 
small proportion of non-XSEDE jobs (e.g. from TACC partners 
and Texas higher educational institutions). We ingested both the 
raw TACC_Stats output files and job accounting information into 
an IBM Netezza data warehouse appliance and a MySQL 
database, respectively.  
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Figure 2.  Sample user usage profiles based on 8 TACC_Stats 
metrics for 5 heavy users of Ranger.  The plots show normalized 
by the average value of each metric over all of the Value 

Proposition: Users are often unaware of the resource use 
characteristics of their jobs – in particular inefficient usage. These 
reports provide a simple way for users to determine their relative 
efficiency on different systems and enable them to choose the 
system best suited for their application. Anomalous resource use 
patterns may be an indicator of undetected bugs in a program. 
They are also commonly the precursors of job failures from 
exception conditions and may sometimes induce system hangups 
though soft lockups of compute nodes which eventually lead to 
job-wide node-level hangups. Importantly, inefficient resource 
use patterns by a job, such as high cpu idle fraction, call attention 
to potential opportunities to improve the performance of the 
application, and in so doing benefit the user who obtains greater 
throughput, and the user community by freeing up busy 
resources. 

usage on Ranger i.e. average user = 1.  Values above 1 indicate 
heavier resource usage; values below 1 indicate lighter usage.  
Note the variability in the usage profiles between users. 

 
4.2 Overview of Example Analyses and Reports 
The analyses and reports used as examples will be mainly 
concerned with eight key metrics and closely related quantities: 
cpu_idle, mem_used, mem_used_max, cpu_flops, 
io_scratch_write, io_work_write, net_ib_tx, and net_lnet_tx. We 
have chosen these eight based on a correlation analysis over all of 
the measured metrics. We found that there are many highly 
correlated or anti-correlated metrics, such as cpu_user is 
negatively correlated to cpu_idle, or net_ib_rx is positively 
correlated to net_ib_tx. Therefore, we have selected the smallest 
independent set of metrics that describe the execution behavior of 
the job mix on each system. The definitions of the eight metrics 
are as follows. Cpu_idle is that fraction of the CPU not utilized by 
the job in user space or by the system.  Mem_used refers to the 
per node memory used, including the disk buffer and cache 
managed by the Linux operating system Mem_used_max refers to 
the peak observed memory usage over all used nodes and all 
sampling intervals of a job.  Cpu_flops is the floating-point 
operations per second produced on a job.  Io_scratch_write and 
io_work_write refer to writing from the scratch and work file 
systems (Lustre).  The difference of these arises in the purge 
policy and quota size. “Scratch” is purged periodically and has a 
largish quota to the tune of hundreds of TB, and “work” is non-
purged space with a 200GB quota. Net_ib_tx, and net_lnet_tx 
refer to network data transmission rates.   
 
4.3 Analyses and Reports by Stakeholder 
The XDMOD system has a powerful and flexible analysis 
interface that has many analyses reports preprogrammed and also 
the option for stakeholders to define custom reports. The reports 
listed here for each stakeholder, are only a small subset of the 
analyses and reports that are possible.  
 
4.3.1 USER Analyses and Reports: Sample reports of interest 
are – resource use profile by job, comparative resource use by 
user, jobs with anomalous or inefficient resource use patterns, 
Bottleneck identification and performance optimization and job 
completion failure profiles.  
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Figure 3.  Resource usage profiles for eight TACC_Stats metrics 
for the three molecular dynamics (MD) applications, NAMD, 
AMBER, and GROMACS on Ranger (R-) and Lonestar4 (L-). 
Plots have been normalized by the average value of each metric 
calculated over all jobs (i.e. average =1) on Ranger and Lonestar4, 
respectively. Values above 1.0 indicate heavier resource usage; 
values below 1.0 indicate lighter usage. 
User usage profiling: The TACC_Stats data can be used to 
generate a profile of usage for each job, user, application or 
allocation/program/charge number.  Over the period studied, 
~2000 users submitted jobs to Ranger.  We have characterized this 
usage in terms of the 8 key metrics previously described. Other 
metrics could be added or substituted as desired.  Figure 2 shows 
a comparison of the usage profile of 5 heavy users of Ranger.  The 
profiles have been normalized by dividing by the average values 
for the particular metric calculated over all users.  Therefore, a 
typical user would have a value of one for each of the 8 metrics 
and this would appear as a perfect octagon with each vertex at 
unity in the radar chart.  Values above one indicate heavy usage: 
below one, light usage of the particular resource or performance 
metric.  There is a great variation in the usage profile of these 5 
users in spite of the fact that they were selected as the largest 
consumers of node-hours. User 1 has a high level of use of 
FLOPS and high network traffic use.  User 3 has a very high Cpu 
idle fraction and a high fraction of Lustre file system traffic, 
indicating jobs dominated by by IO.   
4.3.2 APPLICATION DEVELOPER Report(s): In addition to 
the user reports, developers will have reporting available on 
anomalous or inefficient resource use patterns, basic resource use 
profiles, comparative resource use profiles, and variability of 
resource use. 
Value Proposition: A steadily increasing fraction of scientific 
and engineering computation is being done with "community" 
application codes – a development likely to increase as agencies 
support more of these tools. Developers who know how 
efficiently their application executes on different platforms and 
how effectively (with respect to resource use) users apply the 
application can improve applications and user training. These 
reports enable the application developers to have both detailed 
knowledge at the level of each execution by each user and also 

cumulative comparative data on execution behaviors on each 
system and across systems. The reports can also enable the 
developers to identify the circumstances where the application has 
terminated abnormally. Figure 3 compares the resource use 
profiles of the three most used molecular dynamics codes on 
Ranger and Lonestar4, NAMD, AMBER, and GROMACS. In the 
plots in Figure 3 we compare the performance of NAMD, 
AMBER, and GROMACS, relative to the performance of the 
average job run on Ranger and Lonestar4. Note that the plots have 
different scales. If the metric of cpu idle fraction is used to 
determine efficiency, then NAMD and GROMACS run more 
efficiently than AMBER on both Ranger and Lonestar4. The 
NAMD usage pattern on Ranger and Lonestar4 is very similar 
whereas GROMACS and AMBER usage is different on the two 
clusters. These plots suggest examining AMBER to investigate 
the variation in the floating point and cpu idle metrics. 
 
4.3.3 SUPPORT STAFF Report(s): Primary reports of interest 
here are – jobs or user with anomalous or inefficient resource use 
patterns, jobs with abnormal termination condition, and major 
application resource use profiles. 
Value Proposition: These reports will enable facility-based 
support staff to identify jobs and applications which can benefit 
from attention or are in imminent danger of failure. They also 
provide information that can be used to assist in diagnosing and 
correcting job execution problems referred to them by users – a 
function that will often need the same reports that support staff 
will use.  In addition to giving support staff the information they 
need to respond to user queries, the reports enable a transition to a 
proactive role. If a major user has a resource use profile that has 
an anomalous value for a given metric, for example cpu_idle, then 
the computing center support staff may wish to contact that user 
to see if they can assist them in achieving better performance for 
their applications.  Figure 4 shows user resource use patterns for 
all jobs. Figure 4 is based on the usage from all users on Ranger 
or Lonestar4 for their respective study periods.  It shows “wasted” 
node-hours, that is, those spent with an idle CPU, vs total node-
hours consumed.  While in some cases the user could choose to 
run on only a fraction of the cores on each node in order to take 
advantage of more memory per core used, in fact very few of 
these cases were found and most idle node-hours are indeed 
wasted.  On the Ranger plot, the red line shows the 90% 
efficiency mark, that is, below this line less than 10% of the CPU 
hours consumed are spent in idle.  The 90% mark was chosen 
because this is the approximate average value over all Ranger 
users. For the Lonestar4 plot the 85% efficiency line is shown to 
reflect the average CPU idle % over all Lonestar4 usage.  While 
many large CPU-hour users have very efficient codes, as evident 
by the large number of users down near the bottom of the chart 
below the 90% or 85% efficiency line, many large users are 
spending 50% or more of their node-hours in CPU idle mode.  
Using this information, service providers could contact the users 
with poorly performing applications to determine whether their 
efficiency can be improved. For example, for the Ranger and 
Lonestar4 plots in Figure 4, the users circled have spent 87% and 
89% respectively of the consumed node hours in CPU idle.  
Figure 5 shows their usage profiles.  Note that other than the large 
CPU user idle which is 8 and 5 times larger than that for the 
average Ranger or Lonestar4 user, there is only normal to light 
usage of other resources such as memory, file systems and 
network, that is, nothing to explain the anomalously high CPU 
idle fraction. There are clearly outliers that may benefit from 
closer scrutiny. 
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Figure 4.  Plot of node-hour usage vs wasted node-hours.  Wasted 
node-hours are defined to be those spent with the CPU idle. The 
average efficiency of jobs on Ranger are 90% and Lonestar4 85%, 
where we define efficiency to be the percentage of time not spent 
in CPU idle.  We have marked the average efficiency lines on the 
Ranger and Lonestar4 plots with a red line. On each plot a single 
problematic user has been circled. 
 
4.3.4 SYSTEMS ADMINISTRATORS Reports(s): 
Administrators are likely to be interested in diagnostic reports for 
job/system faults/failures, system level resource use patterns and 
workload characterization, job/application characteristics, job 
completion failure profiles, and, fault/failure diagnostic reports.  
Value Proposition: Currently, most of the tasks of systems 
administration are accomplished using custom site specific scripts 
written independently at each installation with little sharing of 
approaches or reuse for solving common problems which include 
diagnosing system faults and failures, determining “optimal” 
settings for system software such as job schedulers and evaluating 
the efficiency and effectiveness of new versions of the system 
software stack. These reports will simplify and ease each of these 
tasks.  The ANCOR tool [26], which is not discussed in this 
paper, combines TACC_Stats data with rationalized logs [27] to 
generate analyses and reports which diagnose the possible causes 
of system faults and failures.  Reports based on job resource use 
patterns and workload characterization can assist in determining 
the effectiveness of software stack updates and optimizing job 
scheduling. 
The illustration used for potential value to systems administration 
is the persistence characteristics of resource use patterns over time 
i.e. how well can one predict future performance/usage on 
Ranger?  Starting from a given point in time can we predict what 
will occur 10 minutes, 100 minutes, 1000 minutes, or 10,000 

minutes into the future?  To a certain extent we can because there 
is a well-defined persistence of the performance metrics. 
 

 
 
Figure 5.  User usage profile for the users circled in Figure 4. The 
first chart is for Ranger, the second for Lonestar4.  These cases 
were selected for the high CPU idle fraction.  Other metrics 
indicate normal resource usage. For these cases there is no 
obvious other resource usage to explain the high idle fraction. 
The method that we used was to compute and examine the 
standard deviation of a given metric.  We can introduce an offset, 
for example X minutes, and take the difference between the offset 
values and the original values and look at the standard deviation 
of this difference.  This tells us how similar that metric is X 
minutes later.  If there is no tendency to persist, the standard 
deviation should be approximately equal to the original standard 
deviation of the metric.  If the value at X minutes is nearly 
identical to the original value, the standard deviation will 
approach 0, and we have a very good idea what value the metric 
will be.  As the offset is increased to very large values, eventually 
the standard deviation of the difference will approach the original 
standard deviation of the metric and we cannot predict the value 
any better than using the general statistics of the ensemble. 
We have applied this method for 5 metrics: cpu_flops, mem_used, 
io_scratch_write, net_ib_tx and cpu_idle.  Table 1 shows the 
results.  Each table entry is the offset standard deviation divided 
by the original standard deviation. Obviously the ability to predict 
the next value of the metric 10 minutes later is very good with the 
standard deviation decreasing almost by a factor of ten.  At 100 
minutes there is still a good memory of the original value but by 
1000 minutes there is little memory of the original value.  There 
are small differences in the persistence between the 5 metrics.  
The ability to predict the future value of the metric goes in 
increasing order: io_scratch_write < net_ib_tx ~ cpu_idle < 
mem_used ~ cpu_flops.  However, overall they are all well fit by 
a logarithmic model.  Aside from the reversal of net_ib_tx and 
io_scratch_write, the predictive ability order follows the 
descending value of the coefficient of variation of the metrics.  A 
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logarithmic model can be used to fit the data.  The last row in 
Table 1 shows the R2 values of the fit to each metric.   

 
Table 1.  Persistence data for 5 metrics 
 
All 5 metrics can be combined on a single fit when the standard 
deviations at the offset times are normalized by dividing by the 
standard deviation of the original metric as was done in Table 1.  
The upper plot in Figure 6 shows this fit.  The intercept is -0.17(6) 
p=0.016, the slope is 0.36(2) p=5 E-12, R2=0.87.  While it is 
obviously not quite as good as the original fits, indicating a real 
difference between the metrics, it still serves to show some 
similarity in the predictability of the various metrics.  A similar 
analysis can be done for Lonestar4, see the lower plot in Figure 6.  
The values for the Lonestar4 fit are very similar to the Ranger fit; 
the intercept is -0.28(5) p=2E-5, the slope is 0.42(2) p=9 E-15, 
R2=0.93.  One would expect the persistence to be related to the 
average job length.  The longer the jobs the longer we would 
expect the persistence to be and the easier it should be to predict 
the value of the metrics further into the future.  For Ranger the 
average weighted job length over this period was 549 minutes.  
The model agrees qualitatively with this value in that below 549 
minutes we can predict the future value of the metric with some 
accuracy, above this value there is relatively little predictive 
ability.  For Lonestar4 the average job length is slightly shorter 
446 minutes, in agreement with the fact that the slope of the 
Lonestar4 fit is slightly greater. 
Ultimately, modeling usage persistence could be a viable strategy 
to manage resource usage across an HPC cluster.  If the usage 
profile of various applications or users is established, the present 
usage could be assessed and jobs could be selected from the queue 
to complement the present resource usage e.g. add high I/O jobs 
when I/O is relatively free. 
4.3.5: RESOURCE MANAGERS Reports: Workload 
characterization; Job resource use characteristics; Job-level 
resource use trends; Major application use and resource use 
characteristics; System-wide resource use profiles; Major 
application use profiles; Resource use trends and predictions 
Value Proposition: System management tasks such as reporting 
to funding agencies, evaluating the effectiveness of resource 
operation, and planning for future systems are directly supported 
by the routine availability of the reports named above.  Almost 
any type of job or application level data (such as job profiles, 
application use, discipline area use, differences in job 
characteristics by discipline area, system efficiency measured by 
use of different types of resources, etc.) are available.  Support for 
planning is provided by workload type trends workload resource 
use trends, characterization of workloads in terms of use of 
different resource use patterns, etc.   

For illustrative purposes and to provide an indication of the wide 
range of job and application level data available to resource 
managers, we present here a broad set of systems level reports on 
resource use.  Figures 7 through 12 are a sample of the many 
analyses of resource use at the system level.  These system level 
reports are of the most use to system managers and funding 
agencies reviewing the machine performance and machine 
productivity. The discussions following each figure sketch the 
information content of these reports.  These reports, and similar 
reports showing trends in resource use over time, can be important 
not only in evaluating current performance but for planning 
enhancements to existing systems and planning for new systems. 
Figure 7 shows three sample reports produced by using the 
TACC_stats data collected from the Ranger machine.  In the 
remainder of this section we also will use the TACC_Stats data to 
analyze performance.  
 

 
Figure 6.  Persistence model fit of all 5 metrics.  The standard 
deviation of each metric normalized by the non-offset standard 
deviation has been fit against the time offset.  The upper chart is 
for Ranger, the lower chart is for Lonestar4.  The plots serve to 
show how long the value of metrics tends to persist with time. 
 

Offset(min) flops mem write ib_tx cpu_idle 
10 0.123 0.148 0.311 0.268 0.267 

30 0.211 0.217 0.494 0.431 0.375 

100 0.377 0.344 0.670 0.652 0.544 

500 0.705 0.638 0.999 0.911 0.849 
1000 0.889 0.814  0.999 1.009 

Fit R2 0.98 0.95 0.995 0.998 0.98 
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Figure 7. Sample reports based on the data collected by 
TACC_Stats, processed and published through XDMOD. a) 
Average memory usage per core for the Ranger machine 
(XSEDE) and broken up by parent science, b) CPU hours for 
Ranger (user, idle and system) c) Lustre file system performance 
on Ranger for scratch, share and work drives. 
 
The variation in the number of active nodes over time is useful to 
measure as it shows the up/down time of the CPU cluster and can 
provide a general indication of the efficiency of the scheduler. 
Although it is not unique to the TACC_Stats analysis, in Figure 8 
we present the number of active nodes as a function of time 
throughout the study period June 2011 to January 2013 on Ranger 
and November 2011 to January 2013 for Lonestar4.  Ranger has 
3936 nodes and Lonesatar4 has 1888 nodes, most of which were 
active throughout the study period with occasional scheduled and 
un-scheduled shut down periods.  
 
The long-term real-world flops performance of Ranger as 
measured by TACC_Stats in SSE flops is shown in Figure 9.  
Ranger was benchmarked to deliver a peak performance of 579 
TF.  Examination of Figure 9 shows that the actual performance 
was less than 20 TF, which in of itself is not a particularly 
surprising result as it is well know real-world performance is 
much less than peak performance for most applications.  Even 

peak values were less than 50 TF.  Lonestar4 flops measured were 
also quite variable and not comparable to the Ranger plot because 
they were not SSE flops. 
 

 
Figure 8: Number of nodes active as a function of time throughout 
the analysis period June 2011 to January 2013 for Ranger and 
November 2011 to January 2013 for Lonestar4.  The number of 
active nodes drops to zero during planned or unplanned 
shutdowns that are relatively infrequent.  The smaller variations 
occur as nodes finish jobs and await new assignment. 
Figure 10 shows the distribution of the flops data.  Figure 10 (and 
also Figure 12) show the kernel density [28] (produced by the R 
statistical software environment) rather than a histogram in order 
to avoid making binning choices.  Typically less than 20 TF were 
generated by the actual job mix run with very moderate peak 
values.  The small peak at zero is due to shutdown periods.  It 
should be noted that these values are integrated over the various 
job span and detected by TACC_Stats at 10-minute intervals.  The 
actual instantaneous peak values could be a bit greater. 
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Figure 9. Number of SSE FLOPS produced by Ranger as a 
function of time, throughout the analysis period June 2011 to 
January 2013. Note that the output is quite irregular and only a 
small fraction of the benchmarked peak performance.  
 

  
Figure 10. FLOPS distribution from the data shown in Figure 9 
for Ranger.  Over the course of the study period ranger averaged 
less than 20 TF, compared to its benchmarked peak performance 
value of 579 TF.   
 
Ranger has 32 GB of memory for the 16 cores per node.  The 
actual memory usage per node as a function of time is shown in 
Figure 11.  Note that typically less than 10 GB per node is in use 
at any given time.  Even peak values are less than 16 GB per 
node, that is, less than 50% of the available memory.  Figure 12 
shows the distribution of the memory usage.  It is easy to see the 
peak is less than 10 GB with negligible usage above 16 GB.  The 
red curve is based on the maximum usage during a job.  Even this 
value is only about 50% of the memory capacity.  The same 
caution that the instantaneous values might be greater made for 
flops also applies to memory usage. Lonestar4 has 24 GB of 
memory for the 12 cores per node. Lonestar4 memory usage was 
higher than that of Ranger.  Although average memory used per 
job per node was still only a bit above 50% of capacity (14/24 

GB), the maximum memory used during a job does approach the 
actual system capacity. 

 
 
Figure 11: Memory used per node as a function of time 
throughout the analysis period.  Ranger has 32 GB per node.  The 
average value is less than 10 GB, and even peak values are less 
than 16 GB.  Lonestar4 has 24 GB per node and the usage is 
relatively higher, ~15 GB on average peaking up to 20 GB.  
4.3.6 FUNDING AGENCIES Reports: Reports of interest here 
are system operation profiles; system resource use profiles; 
discipline area application workload characterization; resource use 
trends by application area. 
Value Proposition: The information needed by funding agencies 
is similar to the information requirements of systems managers 
but range across all of the systems for which a funding agency is 
responsible.  Reports illustrating value delivered to funding 
agencies include: (i) resource use by discipline domains and by 
widely used application codes, (ii) fractions of resources which 
are effectively applied by system, (iii) patterns of resource use by 
discipline and trends in resource use by applications and at the 
system level.  Examples of these reports, Figures 6 through 9, 
have been presented and discussed in the preceding section.  
These reports will meet the needs of funding agencies for 
accountability reporting, for determining the effectiveness of 
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different systems and approaches to system management and in 
planning for future procurements. 
 

 
 

 
Figure 12. Distribution of memory used per node on Ranger and 
Lonestar4.  The black line is based on the average usage during a 
job as shown in the data displayed in Figure 11, the red line is 
based on the maximum usage during a job.  Note that for Ranger 
the memory usage is low, less than 50% of capacity even for the 
maximum memory usage during the jobs.  For Lonestar4 the 
usage is significantly higher.  On average 50% is of the memory is 
used and nearly the full capacity is used at the job maximum. 

 
5. CONCLUSIONS & FUTURE WORK 
The primary focus of this paper has been to demonstrate the 
ability of combining the new data available from TACC_Stats 
with standard system data sources such as job scheduler logs to 
provide detailed job, user, application and system level 
information and enable analytics of the workload running on a 
given HPC resource.  While characterizing resource utilization at 
the job level and system levels is useful in its own right, the real 
power of comprehensive data based resource management lies in 
the ability to tune system and application performance based on 
this data to improve overall resource utilization.  Given the over-

request of most if not all HPC resources, this capability is 
particularly desirable. Accordingly, future work will center on a 
detailed investigation of some of the application and system 
inefficiencies uncovered by the studies carried out here.   
 
For example, we are contacting the owners of particularly poorly 
running jobs to better understand their workflow and determine if 
steps can be taken to mitigate the underperformance.  These steps 
are likely to include a wide range of remedies, some simple to 
implement and others requiring a more substantial effort. For 
example, the analysis has been done of key TACC_Stats metrics 
for many commonly run applications on Lonestar4 and Ranger, 
for one case see Figure 3. This analysis indicates that the NAMD 
molecular dynamics (MD) package is more efficient than other 
MD packages such as AMBER.  HPC centers might choose to 
encourage users to consider NAMD for their simulations.  
Furthermore, although it is hardly surprising to learn that some 
applications run considerably better on certain machine 
architectures, with the present tools we can easily identify those 
applications and provide incentives for users to run on 
architectures best suited for their application. Additionally, the 
analysis shown in Figures 2, 4 and 5 of can be used to determine 
which users are using the resources efficiently and which are not. 
Such quantitative information can be used to improve their usage 
and input for a more appropriate allocation for such users. 
 
The data, especially the comparative analysis across architectures 
and usage classes, raise interesting questions. For example one 
could argue that given the very different demands placed on 
machines by different applications and from users from different 
fields of science, XSEDE should consider providing a “bouquet” 
of machines tuned to different user groups rather than the 
monolithic general purpose machines of today.   
 
Although we only briefly alluded to the challenges of analyzing 
the data generated by a TACC_Stats, we are assessing various 
technologies (e.g. NoSQL, MONGOdb) to quickly process, store, 
and query massive TACC_Stats data.  This is critical, as it is a key 
step to developing a capability to rapidly import TACC_Stats data 
into XDMoD, which will greatly expand its access to end users, 
systems administrators, and center directors.  As a first step, we 
are presently incorporating the Lonestar4 and Ranger data into 
XDMoD; the next release at XSEDE13 will feature a TACC_Stats 
data realm and will therefore be widely available. 
 
TACC_Stats will soon be deployed on TACC’s Stampede and 
ultimately on all XSEDE resources.  Finally, in order to have a 
broad impact on the efficient operation of HPC resources 
throughout the U.S., including academic and industrial HPC 
centers, plans are underway to release an open source version of  
XDMoD by the end of 2013 that will ultimately have the full 
resource management capabilities described in this paper. 
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