Check for
Updates

Comprehensive Job Level Resource Usage Measurement
and Analysis for XSEDE HPC Systems

Charng-Da Lu*, James Browne t, Robert L. DeLeon*, John Hammond+, William Barth+,

Thomas R. Furlani*, Steven M. Gallo*, Matthew D Jones*, Abani K. Patra*
*Center for Computational Research, tDepartment of Computer Science, tTexas Advanced Computing Center,

SUNY at Buffalo, Buffalo, NY

clu2@fastmail.us, {rideleon, furlani,
smgallo, jonesm, abani}@buffalo.edu

ABSTRACT

This paper presents a methodology for comprehensive job level
resource use measurement and analysis and applications of the
analyses to planning for HPC systems and a case study
application of the methodology to the XSEDE Ranger and
Lonestar4 systems at the University of Texas. The steps in the
methodology are: System-wide collection of resource use and
performance statistics at the job and node levels, mapping and
storage of the resultant job-wise data to a relational database
which eases further implementation and transformation of data to
the formats required by specific statistical and analytical
algorithms. Analyses can be carried out at different levels of
granularity: job, user, or system-wide basis. Measurements are
based on a novel lightweight job-centric measurement tool
"TACC _Stats" [1], which gathers a comprehensive set of metrics
on all compute nodes. The data mapping and analysis tools will be
an extension to the XDMoD project [2] for the XSEDE
community. This paper also reports the preliminary results from
the analysis of measured data for Texas Advanced Computing
Center’s Lonestar4 and Ranger supercomputers. The case studies
presented indicate the level of detailed information that will be
available for all resources when TACC Stats is deployed
throughout the XSEDE system. The methodology can be applied
to any system that runs the TACC_Stats measurement tool.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Design studies, Fault
tolerance, Measurement techniques, Modeling techniques,
Performance attributes, Reliability, availability, and serviceability.

General Terms
Management, Measurement, Documentation, Performance,
Design, Reliability, Verification.

Keywords
TACC_Stats, XDMoD, XSEDE,
performance analysis, usage analysis

system management,

© 2013 Association for Computing Machinery. ACM
acknowledges that this contribution was authored or co-authored
by an employee, contractor or affiliate of the United States
government. As such, the United States Government retains a
nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for Government purposes
only.

XSEDE '13, July 22 - 25 2013, San Diego, CA, USA

Copyright 2013 ACM 978-1-4503-2170-9/13/07...815.00.

University of Texas, Austin, TX
browne@cs.utexas.edu

University of Texas, Austin, TX

john.hammond@intel.com,
bbarth@tacc.utexas.edu

1. INTRODUCTION

High-performance computing (HPC) systems are a complex
combination of software, processors, memory, networks, and
storage systems each of which is characterized by frequent
disruptive technological advances. In this environment, system
managers, users and sponsors find it difficult if not impossible to
know if optimal performance of the infrastructure is being
realized, or even if all subcomponents are functioning properly.
HPC centers and their users, at least those HPC centers with open
source software stacks, have been to some extent "flying blind",
without complete information on system behavior. Anomalous
behavior has to be manually diagnosed and remedied with
incomplete and sparse data. In addition, many if not most HPC
centers lack knowledge of the distribution and performance of the
applications running on their systems and therefore have no way
of knowing if the applications are well tuned to the architecture
and making efficient use of the resource. This is especially
worrisome since most HPC systems are purchased based on
performance on a projected job mix, which may in fact be
significantly different from what is actually experienced.
Furthermore, the information generated by this methodology is
useful not only to help ensure that the resources are being used
optimally but also for future system purchases, where this
information can aide in making design decisions.

It also has been effort-intensive for users to assess the
effectiveness with which they are using the available resources.
The data available for system level analyses appear from multiple
sources and in disparate formats (from Linux "sysstat" [3] and
accounting to scheduler/kernel logs). There are also many user-
oriented performance instrumentation and profiling tools but most
require extensive system knowledge, code changes and
recompilation, and thus are not widely used. This paper reports on
the use of the TACC_Stats tool to surmount these difficulties and
provides a system and user level audit of resource usage.

TACC Stats is a job-oriented and logically structured
enhancement to the conventional Linux "sysstat" system-wide
performance monitor. In addition to the information gathered by
systat, TACC_Stats records hardware performance counter values,
parallel filesystem metrics, and high-speed interconnect usage.
Additionally TACC_Stats resolves the measurements by job. The
core component is a collector executed on every compute node,
both at the beginning and end of each job (via batch scheduler
prolog and epilog scripts) and at periodic intervals (via cron).
Like the "sar" (System Activity Reporter) program in sysstat
package, the performance collection takes place in the
background, incurs very low overhead, and requires no user
intervention. TACC_Stats is open source and is available for
download at: https://github.com/TACCProjects/tacc_stats. The

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2484762.2484781&domain=pdf&date_stamp=2013-07-22

rest of the paper includes a detailed description of TACC_Stats
and results from a usage analysis on two XSEDE resources
Lonestar4 and Ranger.

2. RESOURCE MEASUREMENT

The Linux sysstat package is a comprehensive collection of
performance monitoring utilities, each of which reports resource
statistics of specific components of a system in its own format.
TACC _Stats enhances sysstat/sar for the open source software
based HPC environment in many ways. It is a single executable
binary that covers all performance measurement functions of
sysstat and outputs in a unified, consistent, and self-describing
plain-text format. It is batch job aware: Performance data are
tagged with batch job id to enable offline job-by-job profile
analysis. It supports newer Linux counters and hardware devices.
Its source code [4] is also highly modular and can be easily
extended to gather new kinds of performance metrics.

Currently TACC_Stats can gather core-level CPU usage (user
time, system time, idle, etc), socket-level memory usage (free,
used, cached, etc), swapping/paging activities, system load and
process statistics, network and block device counters, interprocess
communications (SysV IPC), software/hardware interrupt request
(IRQ) count, filesystems usage (NFS, Lustre, Panasas),
interconnect fabric traffic (InfiniBand and Myrinet), and CPU
hardware performance counters. For a complete list of the data
acquired by TACC_Stats, see the TACC_Stats web site [4].

TACC _Stats utilizes CPU performance counters as follows. At the
beginning of the job, TACC Stats is invoked by the batch
scheduler prolog to reprogram performance counters to record a
fixed set of events: On AMD Opteron, the events are FLOPS,
memory accesses, data cache fills, SMP/NUMA traffic. On Intel
Nehalem/Westmere, the events are FLOPS, SMP/NUMA traffic,
and L1 data cache hits. In order to not interfere with user's own
profiling and instrumentation activities, at periodic invocations
(currently every 10 minutes), TACC_Stats only reads values from
performance registers without reprogramming them to avoid
overriding measurements initiated by users.

3. USAGE ANALYSIS

The case studies reported in this paper were carried out on the
Ranger and Lonestar4 supercomputers at the Texas Advanced
Computing Center (TACC). Ranger (decommissioned as of
February 2013) is a Linux cluster comprising of 3936 nodes, each
of which has four 2.3GHz AMD Opteron quad-core processors
(16 cores in total) and 32 GB of memory. The filesystem is Lustre
and the interconnect is InfiniBand. Lonestar4 is also a Linux
cluster with 1088 Dell PowerEdgeM610 compute nodes. Each
compute node has two Intel Xeon 5680 series 3.33GHz hexa-core
processors and 24 GB of memory. The Lonestar4 has two
filesystems: Lustre and NFS and its interconnect is InfiniBand
(NFS is connected via Ethernet).

TACC Stats has been deployed on Ranger for 20 months and
Lonestar4 for 14 months. On Ranger it generates a raw data file of
0.5 MB per node per day and collectively 60 GB (uncompressed)
or 20 GB (compressed) for the entire cluster per month.

We analyzed TACC Stats data collected on Ranger during June
2011 to January 2013 with a total of 521,010 jobs and Lonestar4

data from November 2011 to January 2013 with a total of 337,011
jobs. The jobs included in this study are those longer than the
default TACC_Stats sampling interval of 10 minutes. The job
pool for our analysis also contains non-TeraGrid/XSEDE jobs
(e.g. from TACC partners and Texas higher educational
institutions). We ingested both the raw TACC_Stats output files
and job accounting information into IBM Netezza data warehouse
appliances and a MySQL database, respectively.

The following analysis will be mainly concerned with seven key
TACC_Stats metrics and closely related quantities: cpu_user,
mem_used, cpu_flops, io_scratch_read, io_ work read, net ib_rx,
and numa_hit. We have chosen these seven based on a correlation
analysis over all of the measured metrics. We found that there are
many highly correlated or anti-correlated metrics, such as
cpu_user is negatively correlated to cpu idle, or net ib rx is
positively correlated to net_ib_tx. Therefore, we have selected the
the smallest independent set of metrics that describe the execution
behavior of the job mix on each system.

The explanation of the seven metrics is as follows. Cpu_user is
that fraction of the CPU utilized by the job in user space. Aside
from some small overhead CPU usage in kernel space or in 10
wait state, 1-cpu_user gives the approximate fraction of the CPU
that is idle. Mem_ used refers to the per node memory used,
including the disk buffer and cache managed by the Linux
operating system Mem used max refers to the peak observed
memory usage over all used nodes and all sampling intervals of a
job. Cpu flops is the floating-point operations per second
produced on a job. Io scratch read and io_work read refer to
reading from the scratch and work file systems (Lustre). The
difference of these arises in the purge policy and quota size.
“Scratch” is purged periodically and has a largish quota to the
tune of hundreds of TB, and “work” is non-purged space with a
200GB quota. Net_ib_rx records the received messages in bytes
per second on the InfiniBand network, which includes both
application-induced packets and Lustre filesystem’s traffic.
NUMA hit (NUMA=Non-Uniform Memory Access) refers to the
successful access of main memory closest to a particular CPU
core by a process running on that core. In contrast, a NUMA miss
is where a process accessed memory from main memory
connected through another CPU socket/memory interface.

3.1 Lonestar4 and Ranger Job Duration and Job Size

Although not uniquely specific to TACC_Stats measurements, the
Lonstar4 and Ranger job duration distributions are given in
Figures 1 and 2. Figure 1 and 2 and several later figures show the
kernel density [5] (produced by the R statistical software
environment) rather than a histogram in order to avoid making
binning choices. On Lonestar4, most jobs fall into the short
category at less than 10,000 seconds. There is a distribution with
a secondary maximum at 86,400 seconds (24 hours). For Ranger
the distribution for the first 86,400 seconds is similar but the tail
is more prominent. There is also another set of jobs running out
to a final peak at 172,800 seconds (48 hours), and these jobs are
those run from Ranger’s special “long” job queue. The 24 and 48-
hour jobs are usually those that try to do as much work as possible
before the allotted time exceeds and can restart from checkpoint
data. Figures 3 and 4 show the distribution of the number of
nodes employed by the jobs on Lonestar4 and Ranger,
respectively. The great majority of the jobs use less than 10 nodes
with only a short tail out to larger job sizes. Clearly, the secondary
peaks are a result of policy. Since, most of the jobs are also small

in the number of nodes it raises the question of possible policy
adjustments to allow a few long jobs on smaller nodes to alleviate
this bottleneck in system usage.

Lonestar4 wall_time density all jobs

6e-05

Density
4e-05
l

2e-05

De+00
|

T T T T
0 50000 100000 150000

N =337011 Bandwidth = 2253

Figure 1: Distribution of Lonestar4 jobs by wall time. Units are
seconds. The rightmost peak at 86,400 seconds corresponds to 24
hour jobs.

Ranger wall_time density all jobs

Density
2e-05 3e-05 4de-05

1e-05

De+00
|

I I I I
0 50000 100000 150000 200000

N=521010 Bandwidth = 2874

Figure 2: Distribution of Ranger jobs by wall time. Units are
seconds. The two rightmost peaks correspond to jobs of 24 and 48
hours, respectively.

3.2 CPU and Memory usage and NUMA efficiency

Figures 5 and 6 show that most jobs on Lonestar4 and Ranger use
the CPU efficiently. Most jobs are clustered in the 0.95-1.00
fractional efficiency range. Note the clustering of jobs on vertical
lines corresponding to particular values of cpu user. These are
jobs that use only a fraction of the cores; each peak indicates a
specific number of cores used per node. For Ranger each node is
equipped with 16 cores. The peaks appear at 0.75 (12 cores), 0.50
(8 cores), 0.25 (4 cores), and 0.0625 (1 core). For Lonestar4 each
node is equipped with 12 cores. The peaks appear at 0.667 (8
cores), 0.50 (6 cores), 0.333 (4 cores) and 0.083 (1 core). For
Lonstar4 there is also a very strong cluster at 0.042 corresponding
to % core.

Lonestar4 nodes density all jobs

Density
02
l

00 O0f
£

I I I I I I I
0 50 100 150 200 250 300

N=337011 Bandwidth = 0.2634

Figure 3: Lonestar4 job size distribution in number of nodes.

Ranger nodes density all jobs

03
I

Density

0.1

I I I I I I I
0 50 100 150 200 250 300

N=521010 Bandwidth = 0.2897

Figure 4: Ranger job size distribution in number of nodes.

Memory usage varies greatly by job on both Lonstar4 and Ranger,
as shown in Figures 7 and 8. However, most jobs use only a
small fraction of the node’s available memory of 24 GB on
Lonestar4 and 32 GB on Ranger. Given the total cost of memory
for large clusters, information such as this would be useful during
the design phase of system purchase.

A NUMA efficiency can be defined as:
numa_eff =numa_hit/(numa_hit + numa_miss).

Using this definition, we can look at the distribution of numa_eff
of Lonestar4 and Ranger jobs. The Lonestar4 numa eff, see
Figure 9, is very sharply peaked near unity indicating generally
good NUMA performance. On Ranger, see Figure 10, most jobs
are also close to unit efficiency but the distribution is broader with
a small tail of less efficient jobs.

Lonestar4 cpu_user density all jobs

Density

0.0 02 04 06 0.8 1.0

N=337011 Bandwidth = 0.02694

Figure.5 Fraction of CPU used by Lonestar4 jobs.

Ranger cpu_user density all jobs

15

Density
10

0.0 02 04 06 0.8 1.0

N=521010 Bandwidth = 0.01054

Figure 6. Fraction of CPU used by Ranger jobs.
3.3 CPU and Memory usage by top applications

For Lonestar4 and Ranger we also analyzed the CPU and memory
efficiency for the most prominently used applications based on
node-hours. The application information is captured by the MPI
job launcher “ibrun” on the two systems. It records the job id, the
executable binary’s full path name, checksum of the binary, as
well as all of its dependent dynamic linked libraries. We map the
executable binaries to a list of well-known HPC applications
using simple regular expression matching on their full path names.
It should be noted that for most jobs the executable binaries are
the user’s own code and cannot be identified as known HPC
applications.

The top 15 applications by node-hour for Lonestar4 and Ranger
are shown in Figures 11 and 12, respectively. The memory
efficiency is calculated as the peak used memory divided by
available memory. Note, however, the used memory includes
Linux-managed disk buffers and cache, so there could be
overestimation. In general, the CPU usage efficiency is very high,

with the memory usage much lower as expected from Figures 7
and 8. Very few of the largest consumers of node-hours have low
CPU use fractions.

In general, the molecular dynamic codes show very good CPU
efficiency while requiring only moderate amounts of memory. On
Lonestar4, the only widely used codes with relatively low CPU
fractional use are CHARMM [6] and NWCHEM [7] both of
which use less than 0.7 of the CPU. On Ranger, SIESTA [8] and
CHARMM show the lowest CPU and memory use, each using
less than 2/3 of the CPU and less than 1/3 of the memory.

3.4 Seven key TACC _Stats metrics on Lonestar4 and Ranger

In this section the performance characteristics of the two machines
under real usage are compared. We have chosen to display seven
key metrics on radar charts. In general, the charts have been
formulated such that a comparison of these metrics for similar

Lonestar4 mem_used density all jobs

Density
006 008
l l

0.04
|

0.02
|

0.00
|

1 1 1 1 1
0 5 10 15 20 25

N=337011 Bandwidth = 0.3454

Figure 7. Distribution of memory used in Gbytes for Lonestar4
jobs.

Ranger mem_used density all jobs

Density

000 002 004 0068 008 010

N=521010 Bandwidth = 0.347

Figure 8. Distribution of memory used in Gbytes for Ranger jobs.

Lonestar4 numa_eff density all jobs

1000

Density

200 400 600 800

0
l

1 1 1 1 1 1
0.0 02 04 06 0.8 1.0

N=337011 Bandwidth = 0.0001457

Figure 9. NUMA efficiency of Lonestar4 jobs.

Ranger numa_eff density all jobs

30
I

20
I

Density
5

1 1 1 1 1 1
0.0 02 04 06 0.8 1.0

N=521010 Bandwidth = 0.01007

Figure 10. NUMA efficiency of Ranger jobs.

cases would produce a regular polygon with all metrics equal to
one. Numbers much greater than or less than one indicate a
sizable difference for that metric in the comparison. Figure 13 is
a radar chart comparing Lonestar4 and Ranger using six of the
seven TACC Stats metrics (cpu_user, io_scratch read,
io_work read, mem used max, net ib rx and numa hit) that
describe the CPU usage, network usage and memory usage on the
two systems. Unfortunately, FLOPS on Lonestar4 and Ranger
cannot be compared directly since the counters used record
different events on different architectures (Intel vs. AMD). Aside
from the much smaller InfiniBand usage and the slightly larger
io_scratch read and io_work read on Lonestar4, the two systems
are comparable for the other metrics. The remainder of the plots
in this section show the ratios of all seven metrics.

Figures 14 and 15 show a comparison of the short jobs (<10,000
seconds) on Ranger to the long and very long jobs. The long jobs
and very long jobs are very similar but differ significantly from

1 800000

03 - 700000

ml

08 —

AN
mEE

- 600000
07 —

s - 500000

0.5 — 400000

04 7 I l . I I - 300000
03
| W | 1A - 200000
02
o1 | IIlI I I I - 100000
o HMHHNNAAAAAR o
o b w5 ow s om o 0 £z
r E § 32 22 255 ¢ £ E 2 E G
5 & g E ¢ £ £ ¢ o © g £ =
2 g ® E g G z € o £ 5 3
S g v % 5 3 3 7 5 2
o 2 -t o o v <
@ ° T 2

Wavg_cpu_user Mavg_mem_used_max node_hours

Figure 11. Application’s CPU and memory efficiency on
Lonestar4 sorted by node-hour. The right Y axis is the

accumulated node-hours.
09 I
08 I
0.7
06
05
04
03
0.2
01
5 I A

1800000

1600000
1400000
1200000
1000000
800000
600000
400000
200000
- (o]

T Qg ¥ ¥ 8Bt L = ™ O E ¥ T O E
E 28 2 8 2 5 £ 8 % 2 § & 5 & E
8 3 §© E E E e ¢ § 8 - 2 § E
e 8 § E 5 W g5 ° @8 E B
=] @ = £
. @ b 5

) g L

o
mavgmem_eff mavgcpu_eff mtotal node-hours

Figure 12. Application’s CPU and memory efficiency on Ranger
sorted by node-hour. The right Y axis is the accumulated node-
hours.

Lonestar4/Ranger
cpu_user

numa_hit io_scratch_read

2
1.5
1
‘ ‘0

net_ib_rx io_work_read

mem used max

Figure 13 Comparison of Lonestar4 and Ranger using key
tacc_stats metrics. A value of 1.0 on the radar chart for a given
metric indicates identical performance for that metric on
Lonestar4 and Ranger.

the short jobs. Compared to the short jobs, they tend to produce
50% more FLOPS, be slightly more efficient on CPU usage, have
similar memory usage and have 50% less io_scratch usage,
io_work read and numa_hits. Comparing Figures 14 and 16,
showing long vs short jobs on Ranger and Lonestar4, shows a
substantial difference in FLOPS. Lonestar4 long jobs produce
significantly less FLOPS than the short jobs. Like Ranger, the

numa_hits are lower on the large jobs on Lonestar4 than the small
jobs.

Ranger long/short

cpu_flops
15

numa_hit cpu_user

net_ib_rx io_scratch_read

mem_used_max io_wark_read

Figure 14. Comparison of the short jobs (<10,000 seconds) to the
long jobs (10,000-84,600 seconds) on Ranger. Long jobs tend to
produce higher FLOPS and be slighly more efficient in CPU
usage.

Ranger vlong/short

cpu_flops
1.5

numa_hit cpu_user

net_ib_rx io_scratch_read

mem_used_max lo_work_read

Figure 15. Comparison of the short jobs (<10,000 seconds) to the
very long jobs (>84,600 seconds) on Ranger.

Lonestar4 long/short

cpu_flops
1.5

numa_hit 1 | cpu_user

net_ib_rx io_scratch_read

mem_used _max io_work_read

Figure 16. Comparison of the short jobs (<10,000 seconds) to the
long jobs (>10,000 seconds) on Lonestar4.

Figures 17 and 18 show a comparison of the large jobs (greater
than 20 nodes) with the small jobs (less than 20 nodes) on Ranger
and Lonestar4, respectively. The patterns are quite different on
the two systems with the large jobs on Lonestar4 doing much
more i0_work read, but this is more a reflection of the large
variance in io_work read caused by a few large 10 usage jobs
rather than a difference between the two systems. For both
systems the large jobs have more numa_hits, less FLOPS lower
CPU usage and comparable memory usage.

3.5 Field of Science comparison on Lonestar4 and Ranger
We have compared the Lonestar4 and Ranger usage for jobs in
different fields of science using the same set of seven key

Ranger large/small

cpu_flops

|
numa_hit 2 | cpu_user
-

net_ib_rx Yio_scratch_read

mem_used_max io_work_read

Figure 17. Comparison of the small jobs (<20 nodes) to the large
jobs (>20 nodes) on Ranger.

Lonestard large/small
cpu_flops
ool
>
2

6

numa_hit CpuU_user

net_ib_rx io_scratch_read

mem_used_max io_work_read

Figure 18. Comparison of the small jobs (<20 nodes) to the large
jobs (>20 nodes) on Lonestar4.

TACC Stats metrics. The field of science is based on the
allocation name of each job. On Ranger and Lonestar4,
TeraGrid/XSEDE jobs have a prefix of TG-XXX in the allocation
name, and XXX is the short code for NSF-designated field of
science. Figures 19 to 22 show the comparison of Physics,
Chemistry, Molecular Biology and Atmospheric Science with the
total all usage on Ranger. Figures 23 to 26 show comparable
plots for Lonestar4.

Ranger phy/all

cpu_flops
158

numa_hit cpu_user

net_ib_rx o_scratch_read

mem_used_max io_work_read

Figure 19. Comparison of Physics usage with total Ranger
XSEDE usage for seven metrics.

Physics usage is similar on the two systems showing lower flops,
low io work read, less IB network uasge and more memory
usage. They differ in that the CPU usage is very low on
Lonestar4 and the numa_ hits are lower on Ranger. Chemistry
usage is similar on both systems in that the outstanding feature is
the large IB network usage compared to all other jobs. Molecular
biology usage on Ranger and Lonestar both show low io_scratch
usage and low numa_hits. On Lonestar4 the io_work_read is also
low and the FLOPS are very much lower, in stark contrast to the
Ranger data. Atmospheric science usage on Lonestar4 and
Ranger share low FLOPS, low io_work read, low numa_hits and
low IB network usage. They only differ in that io_work read is
higher on Lonestar4 and lower on Ranger.

Ranger che/all

cpu_flops
4

3
‘ cpu_user
2 |

mem_used_max

numa_hit

net_ib_rx lo_scratch_read

io_work_read

Figure 20. Comparison of Chemistry usage with total Ranger
XSEDE usage for seven metrics.

Ranger mch/all

cpu_flops
1.2

numa_hit cpu_user

net_ib_rx io_scratch_read

mem_used_max io_wark_read

Figure 21. Comparison of Molecular Biology usage with total
Ranger XSEDE usage for seven metrics.
Ranger atm/all
cpu_flops
numa_hit

L CPU_user

net_ib_rx io_scratch_read

mem_used_max io_work_read

Figure 22. Comparison of Atmospheric Science usage with total
Ranger XSEDE usage for seven metrics.

Lonestar4 phy/all

cpu_flops
1.5

numa_hit 1 cpu_user

net_ib_rx io_scratch_read

mem_used_max io_work_read

Figure 23. Comparison of Physics usage with total Lonestar4
XSEDE usage for seven metrics.

4. RELATED WORK

Del Vento et al. [9] adopted a similar approach to tackling
inefficient HPC resource utilization. The goal in [9] was primarily
optimization of user codes and applications. The system reported
here does support identification of resource use anomalies, but it
has much broader goals and capabilities, targeting information [9]
reports, that once problems were identified by their monitoring
requirements of all stakeholders. Additionally, the monitoring
and analysis system in [9] is based on proprietary systems (IBM
POWER/AIX) while the system reported here is for HPC clusters

Lonestar4 che/all

cpu_flops

numa_hit 2 cpu_user

net_ib_rx io_scratch_read

mem_used_max io_work_read

Figure 24. Comparison of Chemistry usage with total Lonestar4
XSEDE usage for seven metrics.

Lonestard mcb/all

cpu_flops

o ia =

|
0.
numa_hit o cpu_user
ca
|

net_ib_rx io_scratch_read

mem_used_max io_work_read

Figure 25. Comparison of Molecular Biology usage with total
Lonestar4 XSEDE usage for seven metrics.

Lonestar4 atm/all

cpu_flops
2.5

numa_hit cpu_user

net_ib_rx io_scratch_read

mem_used_max lo_work_read

Figure 26. Comparison of Atmospheric Science usage with total
Lonestar4 XSEDE usage for seven metrics.

based Linux-based open source software. [9] reports, that once
problems were identified by their monitoring software, they were,
with collaboration for users, able to improve CPU usage (e.g.
correct process affinity/CPU binding) and troubleshoot thorny
issues (e.g. memory leak). Once a job or application with a
pattern of inefficient use of one or more resources has been
identified by our analyses and reports, we recommend that the
user or application developer (with collaboration from consulting
staff) apply one of the many performance optimization tools
available for open source cluster, for example: Tau[10,11,12],
HPCToolkit[13,14], Scalasca[15] and PerfExpert[16,17].

S. DISCUSSION & FUTURE WORK

The primary focus of this paper has been to demonstrate the
ability of a TACC Stats based resource analyses to provide
detailed job and system level information and analytics of the
workload running on a given HPC resource. While characterizing
resource utilization at the job level and system levels is useful in
its own right, the real power of the analyses based on TACC_Stats
lies in the ability to tune system and application performance
based on this data to improve overall resource utilization. Given
the oversubscription of most if not all HPC resources, this
capability is particularly desirable. Accordingly, future work will

center on a detailed investigation of some of the application and
system inefficiencies uncovered by the study carried out here.

For example, we are contacting the owners of particularly poorly
running jobs to better understand their workflow and determine if
steps can be taken to mitigate the underperformance. These steps
are likely to include a wide range of remedies, some simple to
implement and others requiring a more substantial effort. For
example, given the high operational efficiency of the molecular
dynamics package NAMD relative to other widely used MD
packages (as shown in Figures 11 and 12), HPC centers might
choose to encourage users to consider NAMD for their
simulations. Furthermore, although it is hardly surprising to learn
that some applications run considerably better on certain machine
architectures, with TACC Stats we can easily identify those
applications and provide incentives for users to run on
architectures best suited for their application. Additionally, a very
similar analysis to that shown in Figures 11 and 12 of CPU and
memory efficiency can be done for individual users, as opposed to
applications, to determine which users are using the resources
efficiently and which are not. Such quantitative information can
be input for a more appropriate allocation for such users.

The data, especially the comparative analysis across architectures
and usage classes raise interesting questions. For example one
could argue that given the very different demands placed on
machines by users from different fields of science (Fig. 19-26)
XSEDE should consider providing a “bouquet” of machines tuned
to different user groups rather than the monolithic general purpose
machines of today.

Although we only briefly alluded to the challenges of analyzing
the data generated by a TACC Stats, we are assessing various
technologies (e.g. NoSQL) to quickly process, store, and query
massive TACC_Stats data. This is critical, as it is a key step to
developing a capability to rapidly import TACC_Stats data into
XDMoD, which will greatly expand its access to end users,
systems administrators, and center directors. As a first step, we
are presently incorporating the Lonestar4 and Ranger data into
XDMoD; the next release at XSEDE13 will feature a TACC_Stats
data realm and will therefore be widely available.

TACC_Stats will soon be deployed on TACC’s Stampede and
ultimately on all XSEDE resources. This will require
identification of an “equivalent” set of performance counters on
each architecture and extraction of parameters from some software
systems such as the scheduler and file systems used in each
system. Finally, in order to have a broad impact on the efficient
operation of HPC resources throughout the U.S., including
academic and industrial HPC centers, plans are underway to
streamline the installation of TACC_Stats and the ingestion of its
data files into XDMoD.

6. ACKNOWLEGMENT

This research is supported by the National Science Foundation
under award numbers 1203560, 1203604, 0959870, and 1025159.

REFERENCES

[1] Hammond, J. "TACC_stats: I/O performance monitoring for
the intransigent" In 2011 Workshop for Interfaces and
Architectures for Scientific Data Storage (IASDS 2011)

[2] Furlani, T.R., Jones, M.D., Gallo, S.M., Bruno, A.E., Lu, C.-
D., Ghadersohi, A., Gentner, R.J., Patra, A., DeLeon, R.L.,
von Laszewski, G., Wang, F., and Zimmerman, A.,
“Performance metrics and auditing framework using
application kernels for high performance computer systems,”
Concurrency and Computation: Practice and Experience,
pp.n/a—n/a, 2012. [Online]. Available:
http://dx.doi.org/10.1002/cpe.2871

XDMoD: http://xdmod.ccr.buffalo.edu
[3] http://sebastien.godard.pagesperso-orange.fr
[4] http://github.com/TACCProjects/tacc_stats

[5] Scott, D. W. “Multivariate Density Estimation”. Wiley, New
York, 1992.

[6] Brooks, B., et al. “CHARMM: The biomolecular simulation
program.” J. Comput. Chem. Vol 30, pages 1545-1614, 2009

[7] Valiev, M., et al. "NWChem: a comprehensive, scalable
open-source solution for large scale molecular simulations."
Comput. Phys. Commun. Vol 181, page 1477, 2010

[8] Soler, J. M., et al. “The SIESTA method for ab initio order-
N materials simulation.” J. Physics: Condensed Matter. Vol
14, No 11, 2002

[9] Del Vento, D., Engel, T., Ghosh S., Hart, D., Kelly, R., Liu,
S. and Valent, R. "System-level monitoring of floating-point
performance to improve effective system utilization." In
2011 International Conference for High Performance
Computing, Networking, Storage and Analysis (SCI11)

[10] K. A. Huck, A. D. Malony, S. Shende, and A. Morris.
“Knowledge Support and Automation for
PerformanceAnalysis with PerfExplorer 2.0.” Large-Scale
ProgrammingTools and Environments, Special Issue of
Scientific Programming, vol. 16, no. 2-3, pp. 123-134. 2008.

[11] S. Shende and A. Malony. “The Tau Parallel Performance
System.” International Journal of High Performance
Computing Applications, 20(2): 287-311.

[12] Tau: http://www.cs.uoregon.edu/research/tau/home.php.

[13] N. R. Tallent, J. M. Mellor-Crummey, L. Adhianto, M.W.
Fagan, and M. Krentel. “HPCToolkit: performance tools for
scientific computing.” Journal of Physics: Conference Series,
125.2008.

[14] HPCToolkit: http://www.hpctoolkit.org/.

[15] M. Geimer, P. Saviankou, A. Strube, Z. Szebenyi, F. Wolf,
B. J. N. Wylie: Further improving the scalability of the
Scalasca toolset. In Proc. of PARA 2010: State of the Art in
Scientific and Parallel Computing, Part II: Minisymposium
Scalable tools for High Performance Computing, Reykjavik,
Iceland, June 6-9 2010, volume 7134 of Lecture Notes in
Computer Science, pages 463—474, Springer, 2012.

[16] M. Burtscher, B.D. Kim, J. Diamond, J. McCalpin, L.
Koesterke, and J. Browne. “PerfExpert: An Easy-to-Use
Performance Diagnosis Tool for HPC Applications.”
SC2010 Int. Conference for High-Performance Computing,
Networking, Storage and Analysis. November 2010.

[17] PerfExpert: http://www.tacc.utexas.edu/perfexpert/.

http://dx.doi.org/10.1002/cpe.2871
http://xdmod.ccr.buffalo.edu/
http://github.com/TACCProjects/tacc_stats

