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ABSTRACT 

This paper presents a methodology for comprehensive job level 

resource use measurement and analysis and applications of the 

analyses to planning  for HPC systems and a case study 

application of the methodology to the XSEDE Ranger and 

Lonestar4 systems at the University of Texas.  The steps in the 

methodology are: System-wide collection of resource use and 

performance statistics at the job and node levels, mapping and 

storage of the resultant job-wise data to a relational database 

which eases further implementation and transformation of data to 

the formats required by specific statistical and analytical 

algorithms. Analyses can be carried out at different levels of 

granularity: job, user, or system-wide basis.  Measurements are 

based on a novel lightweight job-centric measurement tool 

"TACC_Stats" [1], which gathers a comprehensive set of metrics 

on all compute nodes. The data mapping and analysis tools will be 

an extension to the XDMoD project [2] for the XSEDE 

community.  This paper also reports the preliminary results from 

the analysis of measured data for Texas Advanced Computing 

Center’s Lonestar4 and Ranger supercomputers. The case studies 

presented indicate the level of detailed information that will be 

available for all resources when TACC_Stats is deployed 

throughout the XSEDE system. The methodology can be applied 

to any system that runs the TACC_Stats measurement tool. 

 

Categories and Subject Descriptors 

C.4 [Performance of Systems]: Design studies, Fault 

tolerance, Measurement techniques, Modeling techniques, 

Performance attributes, Reliability, availability, and serviceability. 

General Terms 

Management, Measurement, Documentation, Performance, 

Design, Reliability, Verification. 

Keywords 

TACC_Stats, XDMoD, XSEDE, system management, 

performance analysis, usage analysis 

 

1. INTRODUCTION 

High-performance computing (HPC) systems are a complex 

combination of software, processors, memory, networks, and 

storage systems each of which is characterized by frequent 

disruptive technological advances. In this environment, system 

managers, users and sponsors find it difficult if not impossible to 

know if optimal performance of the infrastructure is being 

realized, or even if all subcomponents are functioning properly. 

HPC centers and their users, at least those HPC centers with open 

source software stacks, have been to some extent "flying blind", 

without complete information on system behavior. Anomalous 

behavior has to be manually diagnosed and remedied with 

incomplete and sparse data. In addition, many if not most HPC 

centers lack knowledge of the distribution and performance of the 

applications running on their systems and therefore have no way 

of knowing if the applications are well tuned to the architecture 

and making efficient use of the resource. This is especially 

worrisome since most HPC systems are purchased based on 

performance on a projected job mix, which may in fact be 

significantly different from what is actually experienced. 

Furthermore, the information generated by this methodology is 

useful not only to help ensure that the resources are being used 

optimally but also for future system purchases, where this 

information can aide in making design decisions.  

It also has been effort-intensive for users to assess the 

effectiveness with which they are using the available resources. 

The data available for system level analyses appear from multiple 

sources and in disparate formats (from Linux "sysstat" [3] and 

accounting to scheduler/kernel logs). There are also many user-

oriented performance instrumentation and profiling tools but most 

require extensive system knowledge, code changes and 

recompilation, and thus are not widely used. This paper reports on 

the use of the TACC_Stats tool to surmount these difficulties  and 

provides a system and user level audit of resource usage. 

TACC_Stats is a job-oriented and logically structured 

enhancement to the conventional Linux "sysstat" system-wide 

performance monitor.  In addition to the information gathered by 

systat, TACC_Stats records hardware performance counter values, 

parallel filesystem metrics, and high-speed interconnect usage. 

Additionally TACC_Stats resolves the measurements by job.  The 

core component is a collector executed on every compute node, 

both at the beginning and end of each job (via batch scheduler 

prolog and epilog scripts) and at periodic intervals (via cron). 

Like the "sar" (System Activity Reporter) program in sysstat 

package, the performance collection takes place in the 

background, incurs very low overhead, and requires no user 

intervention. TACC_Stats is open source and is available for 

download at: https://github.com/TACCProjects/tacc_stats. The 
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rest of the paper includes a detailed description of TACC_Stats 

and results from a usage analysis on two XSEDE resources 

Lonestar4 and Ranger. 

 

2. RESOURCE MEASUREMENT 
The Linux sysstat package is a comprehensive collection of 

performance monitoring utilities, each of which reports resource 

statistics of specific components of a system in its own format. 

TACC_Stats enhances sysstat/sar for the open source software 

based HPC environment in many ways. It is a single executable 

binary that covers all performance measurement functions of 

sysstat and outputs in a unified, consistent, and self-describing 

plain-text format. It is batch job aware: Performance data are 

tagged with batch job id to enable offline job-by-job profile 

analysis. It supports newer Linux counters and hardware devices. 

Its source code [4] is also highly modular and can be easily 

extended to gather new kinds of performance metrics. 

 

Currently TACC_Stats can gather core-level CPU usage (user 

time, system time, idle, etc), socket-level memory usage (free, 

used, cached, etc), swapping/paging activities, system load and 

process statistics, network and block device counters, interprocess 

communications (SysV IPC), software/hardware interrupt request 

(IRQ) count, filesystems usage (NFS, Lustre, Panasas), 

interconnect fabric traffic (InfiniBand and Myrinet), and CPU 

hardware performance counters. For a complete list of the data 

acquired by TACC_Stats, see the TACC_Stats web site [4]. 

 

TACC_Stats utilizes CPU performance counters as follows. At the 

beginning of the job, TACC_Stats is invoked by the batch 

scheduler prolog to reprogram performance counters to record a 

fixed set of events: On AMD Opteron, the events are FLOPS, 

memory accesses, data cache fills, SMP/NUMA traffic. On Intel 

Nehalem/Westmere, the events are FLOPS, SMP/NUMA traffic, 

and L1 data cache hits.  In order to not interfere with user's own 

profiling and instrumentation activities, at periodic invocations 

(currently every 10 minutes), TACC_Stats only reads values from 

performance registers without reprogramming them to avoid 

overriding measurements initiated by users. 

 

3. USAGE ANALYSIS 
The case studies reported in this paper were carried out on the 

Ranger and Lonestar4 supercomputers at the Texas Advanced 

Computing Center (TACC). Ranger (decommissioned as of 

February 2013) is a Linux cluster comprising of 3936 nodes, each 

of which has four 2.3GHz AMD Opteron quad-core processors 

(16 cores in total) and 32 GB of memory. The filesystem is Lustre 

and the interconnect is InfiniBand. Lonestar4 is also a Linux 

cluster with 1088 Dell PowerEdgeM610 compute nodes. Each 

compute node has two Intel Xeon 5680 series 3.33GHz hexa-core 

processors and 24 GB of memory. The Lonestar4 has two 

filesystems: Lustre and NFS and its interconnect is InfiniBand 

(NFS is connected via Ethernet). 

  

TACC_Stats has been deployed on Ranger for 20 months and 

Lonestar4 for 14 months. On Ranger it generates a raw data file of 

0.5 MB per node per day and collectively 60 GB (uncompressed) 

or 20 GB (compressed) for the entire cluster per month. 

 

We analyzed TACC_Stats data collected on Ranger during June 

2011 to January 2013 with a total of 521,010 jobs and Lonestar4 

data from November 2011 to January 2013 with a total of 337,011 

jobs. The jobs included in this study are those longer than the 

default TACC_Stats sampling interval of 10 minutes. The job 

pool for our analysis also contains non-TeraGrid/XSEDE jobs   

(e.g. from TACC partners and Texas higher educational 

institutions). We ingested both the raw TACC_Stats output files 

and job accounting information into IBM Netezza data warehouse 

appliances and a MySQL database, respectively.  

 

The following analysis will be mainly concerned with seven key 

TACC_Stats metrics and closely related quantities: cpu_user, 

mem_used, cpu_flops, io_scratch_read, io_work_read, net_ib_rx, 

and numa_hit. We have chosen these seven based on a correlation 

analysis over all of the measured metrics. We found that there are 

many highly correlated or anti-correlated metrics, such as 

cpu_user is negatively correlated to cpu_idle, or net_ib_rx is 

positively correlated to net_ib_tx. Therefore, we have selected the 

the smallest independent set of metrics that describe the execution 

behavior of the job mix on each system. 

 

The explanation of the seven metrics is as follows. Cpu_user is 

that fraction of the CPU utilized by the job in user space.  Aside 

from some small overhead CPU usage in kernel space or in IO 

wait state, 1-cpu_user gives the approximate fraction of the CPU 

that is idle.  Mem_used refers to the per node memory used, 

including the disk buffer and cache managed by the Linux 

operating system Mem_used_max refers to the peak observed 

memory usage over all used nodes and all sampling intervals of a 

job.  Cpu_flops is  the floating-point operations per second 

produced on a job.  Io_scratch_read and io_work_read refer to 

reading from the scratch and work file systems (Lustre). The 

difference of these arises in the purge policy and quota size. 

“Scratch” is purged periodically and has a largish quota to the 

tune of hundreds of TB, and “work” is non-purged space with a 

200GB quota. Net_ib_rx records the received messages in bytes 

per second on the InfiniBand network, which includes both 

application-induced packets and Lustre filesystem’s traffic.  

NUMA_hit (NUMA=Non-Uniform Memory Access) refers to the 

successful access of main memory closest to a particular CPU 

core by a process running on that core. In contrast, a NUMA_miss 

is where a process accessed memory from main memory 

connected through another CPU socket/memory interface. 

 

3.1 Lonestar4 and Ranger Job Duration and Job Size 

Although not uniquely specific to TACC_Stats measurements, the 

Lonstar4 and Ranger job duration distributions are given in 

Figures 1 and 2.  Figure 1 and 2 and several later figures show the 

kernel density [5] (produced by the R statistical software 

environment) rather than a histogram in order to avoid making 

binning choices.  On Lonestar4, most jobs fall into the short 

category at less than 10,000 seconds.  There is a distribution with 

a secondary maximum at 86,400 seconds (24 hours).  For Ranger 

the distribution for the first 86,400 seconds is similar but the tail 

is more prominent.  There is also another set of jobs running out 

to a final peak at 172,800 seconds (48 hours), and these jobs are 

those run from Ranger’s special “long” job queue. The 24 and 48-

hour jobs are usually those that try to do as much work as possible 

before the allotted time exceeds and can restart from checkpoint 

data. Figures 3 and 4 show the distribution of the number of 

nodes employed by the jobs on Lonestar4 and Ranger, 

respectively.  The great majority of the jobs use less than 10 nodes 

with only a short tail out to larger job sizes. Clearly, the secondary 

peaks are a result of policy. Since, most of the jobs are also small 
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in the number of nodes it raises the question of possible policy 

adjustments to allow a few long jobs on smaller nodes to alleviate 

this bottleneck in system usage.  

 
Figure 1: Distribution of Lonestar4 jobs by wall time.  Units are 

seconds. The rightmost peak at 86,400 seconds corresponds to 24 

hour jobs. 

 

Figure 2: Distribution of Ranger jobs by wall time.  Units are 

seconds. The two rightmost peaks correspond to jobs of 24 and 48 

hours, respectively.  

3.2 CPU and Memory usage and NUMA efficiency 

Figures 5 and 6 show that most jobs on Lonestar4 and Ranger use 

the CPU efficiently.  Most jobs are clustered in the 0.95-1.00 

fractional efficiency range.  Note the clustering of jobs on vertical 

lines corresponding to particular values of cpu_user.  These are 

jobs that use only a fraction of the cores; each peak indicates a 

specific number of cores used per node.  For Ranger each node is 

equipped with 16 cores.  The peaks appear at 0.75 (12 cores), 0.50 

(8 cores), 0.25 (4 cores), and 0.0625 (1 core).  For Lonestar4 each 

node is equipped with 12 cores.  The peaks appear at 0.667 (8 

cores), 0.50 (6 cores), 0.333 (4 cores) and 0.083 (1 core).  For 

Lonstar4 there is also a very strong cluster at 0.042 corresponding 

to ½ core. 

 

 Figure 3: Lonestar4 job size distribution in number of nodes. 

Figure 4: Ranger job size distribution in number of nodes. 

 

Memory usage varies greatly by job on both Lonstar4 and Ranger, 

as shown in Figures 7 and 8.  However, most jobs use only a 

small fraction of the node’s available memory of 24 GB on 

Lonestar4 and 32 GB on Ranger.  Given the total cost of memory 

for large clusters, information such as this would be useful during 

the design phase of system purchase. 

 

A NUMA efficiency can be defined as: 

numa_eff = numa_hit/(numa_hit + numa_miss). 

 

Using this definition, we can look at the distribution of numa_eff 

of Lonestar4 and Ranger jobs.  The Lonestar4 numa_eff, see 

Figure 9, is very sharply peaked near unity indicating generally 

good NUMA performance.  On Ranger, see Figure 10, most jobs 

are also close to unit efficiency but the distribution is broader with 

a small tail of less efficient jobs. 
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Figure.5 Fraction of CPU used by Lonestar4 jobs. 

 

Figure 6. Fraction of CPU used by Ranger jobs.  

3.3 CPU and Memory usage by top applications 

For Lonestar4 and Ranger we also analyzed the CPU and memory 

efficiency for the most prominently used applications based on 

node-hours. The application information is captured by the MPI 

job launcher “ibrun” on the two systems. It records the job id, the 

executable binary’s full path name, checksum of the binary, as 

well as all of its dependent dynamic linked libraries. We map the 

executable binaries to a list of well-known HPC applications 

using simple regular expression matching on their full path names. 

It should be noted that for most jobs the executable binaries are 

the user’s own code and cannot be identified as known HPC 

applications. 

The top 15 applications by node-hour for Lonestar4 and Ranger 

are shown in Figures 11 and 12, respectively. The memory 

efficiency is calculated as the peak used memory divided by 

available memory. Note, however, the used memory includes 

Linux-managed disk buffers and cache, so there could be 

overestimation. In general, the CPU usage efficiency is very high, 

with the memory usage much lower as expected from Figures 7 

and 8.  Very few of the largest consumers of node-hours have low 

CPU use fractions.   

In general, the molecular dynamic codes show very good CPU 

efficiency while requiring only moderate amounts of memory.  On 

Lonestar4, the only widely used codes with relatively low CPU 

fractional use are CHARMM [6] and NWCHEM [7] both of 

which use less than 0.7 of the CPU.  On Ranger, SIESTA [8] and 

CHARMM show the lowest CPU and memory use, each using 

less than 2/3 of the CPU and less than 1/3 of the memory.  

 

3.4 Seven key TACC_Stats metrics on Lonestar4 and Ranger 

In this section the performance characteristics of the two machines 

under real usage are compared. We have chosen to display seven 

key metrics on radar charts.  In general, the charts have been 

formulated such that a comparison of these metrics for similar  

 

Figure 7. Distribution of memory used in Gbytes for Lonestar4 

jobs. 

 

Figure 8. Distribution of memory used in Gbytes for Ranger jobs. 
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Figure 9.  NUMA efficiency of Lonestar4 jobs. 

 

Figure 10.  NUMA efficiency of Ranger jobs. 

cases would produce a regular polygon with all metrics equal to 

one.  Numbers much greater than or less than one indicate a 

sizable difference for that metric in the comparison.  Figure 13 is 

a radar chart comparing Lonestar4 and Ranger using six of the 

seven TACC_Stats metrics (cpu_user, io_scratch_read, 

io_work_read, mem_used_max, net_ib_rx and numa_hit) that 

describe the CPU usage, network usage and memory usage on the 

two systems. Unfortunately, FLOPS on Lonestar4 and Ranger 

cannot be compared directly since the counters used record 

different events on different architectures (Intel vs. AMD).  Aside 

from the much smaller InfiniBand usage and the slightly larger 

io_scratch read and io_work_read on Lonestar4, the two systems 

are comparable for the other metrics.  The remainder of the plots 

in this section show the ratios of all seven metrics.  

Figures 14 and 15 show a comparison of the short jobs (<10,000 

seconds) on Ranger to the long and very long jobs.  The long jobs 

and very long jobs are very similar but differ significantly from 

 

 

 

Figure 11. Application’s CPU and memory efficiency on 

Lonestar4 sorted by node-hour. The right Y axis is the 

accumulated node-hours. 

 

 

Figure 12. Application’s CPU and memory efficiency on Ranger 

sorted by node-hour. The right Y axis is the accumulated node-

hours. 

  
 

Figure 13 Comparison of Lonestar4 and Ranger using key 

tacc_stats metrics.  A value of 1.0 on the radar chart for a given 

metric indicates identical performance for that metric on 

Lonestar4 and Ranger. 

 

the short jobs.  Compared to the short jobs, they tend to produce 

50% more FLOPS, be slightly more efficient on CPU usage, have 

similar memory usage and have 50% less io_scratch usage, 

io_work read and numa_hits.  Comparing Figures 14 and 16, 

showing long vs short jobs on Ranger and Lonestar4, shows a 

substantial difference in FLOPS.  Lonestar4 long jobs produce 

significantly less FLOPS than the short jobs. Like Ranger, the 
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numa_hits are lower on the large jobs on Lonestar4 than the small 

jobs. 

 

 
Figure 14.  Comparison of the short jobs (<10,000 seconds) to the 

long jobs (10,000-84,600 seconds) on Ranger. Long jobs tend to 

produce higher FLOPS and be slighly more efficient in CPU 

usage. 

 

 
Figure 15.  Comparison of the short jobs (<10,000 seconds) to the 

very long jobs (>84,600 seconds) on Ranger. 

 

 
Figure 16.  Comparison of the short jobs (<10,000 seconds) to the 

long jobs (>10,000 seconds) on Lonestar4. 

 

Figures 17 and 18 show a comparison of the large jobs (greater 

than 20 nodes) with the small jobs (less than 20 nodes) on Ranger 

and Lonestar4, respectively.  The patterns are quite different on 

the two systems with the large jobs on Lonestar4 doing much 

more io_work_read, but this is more a reflection of the large 

variance in io_work_read caused by a few large IO usage jobs 

rather than a difference between the two systems.  For both 

systems the large jobs have more numa_hits, less FLOPS lower 

CPU usage and comparable memory usage. 

 

3.5 Field of Science comparison on Lonestar4 and Ranger 

We have compared the Lonestar4 and Ranger usage for jobs in 

different fields of science using the same set of seven key 

 
Figure 17.  Comparison of the small jobs (≤20 nodes) to the large 

jobs (>20 nodes) on Ranger. 

 

 
Figure 18.  Comparison of the small jobs (≤20 nodes) to the large 

jobs (>20 nodes) on Lonestar4. 

 

TACC_Stats metrics. The field of science is based on the 

allocation name of each job. On Ranger and Lonestar4, 

TeraGrid/XSEDE jobs have a prefix of TG-XXX in the allocation 

name, and XXX is the short code for NSF-designated field of 

science. Figures 19 to 22 show the comparison of Physics, 

Chemistry, Molecular Biology and Atmospheric Science with the 

total all usage on Ranger.  Figures 23 to 26 show comparable 

plots for Lonestar4. 

 

 
Figure 19.  Comparison of Physics usage with total Ranger 

XSEDE usage for seven metrics. 

 

Physics usage is similar on the two systems showing lower flops, 

low io_work_read, less IB network uasge and more memory 

usage.  They differ in that the CPU usage is very low on 

Lonestar4 and the numa_hits are lower on Ranger.  Chemistry 

usage is similar on both systems in that the outstanding feature is 

the large IB network usage compared to all other jobs.  Molecular 

biology usage on Ranger and Lonestar both show low io_scratch 

usage and low numa_hits.  On Lonestar4 the io_work_read is also 

low and the FLOPS are very much lower, in stark contrast to the 

Ranger data.  Atmospheric science usage on Lonestar4 and 

Ranger share low FLOPS, low io_work_read, low numa_hits and 

low IB network usage.  They only differ in that io_work_read is 

higher on Lonestar4 and lower on Ranger. 
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Figure 20.  Comparison of Chemistry usage with total Ranger 

XSEDE usage for seven metrics. 

 

 
Figure 21.  Comparison of Molecular Biology usage with total 

Ranger XSEDE usage for seven metrics. 

 

 
Figure 22.  Comparison of Atmospheric Science usage with total 

Ranger XSEDE usage for seven metrics. 

 

 
Figure 23.  Comparison of Physics usage with total Lonestar4 

XSEDE usage for seven metrics. 

4. RELATED WORK 
Del Vento et al. [9] adopted a similar approach to tackling 

inefficient HPC resource utilization. The goal in [9] was primarily 

optimization of user codes and applications. The system reported 

here does support identification of resource use anomalies, but it 

has much broader goals and capabilities, targeting information [9] 

reports, that once problems were identified by their monitoring 

requirements of all stakeholders.  Additionally, the monitoring 

and analysis system in [9] is based on proprietary systems (IBM 

POWER/AIX) while the system reported here is for HPC clusters 

 
Figure 24.  Comparison of Chemistry usage with total Lonestar4 

XSEDE usage for seven metrics. 

 

 
Figure 25.  Comparison of Molecular Biology usage with total 

Lonestar4 XSEDE usage for seven metrics. 

 

 
Figure 26.  Comparison of Atmospheric Science usage with total 

Lonestar4 XSEDE usage for seven metrics. 

 

based Linux-based open source software.  [9] reports, that once 

problems were identified by their monitoring software, they were, 

with collaboration for users, able to improve CPU usage (e.g. 

correct process affinity/CPU binding) and troubleshoot thorny 

issues (e.g. memory leak).  Once a job or application with a 

pattern of inefficient use of one or more resources has been 

identified by our analyses and reports, we recommend that the 

user or application developer (with collaboration from consulting 

staff) apply one of the many performance optimization tools 

available for open source cluster, for example: Tau[10,11,12], 

HPCToolkit[13,14],  Scalasca[15] and PerfExpert[16,17]. 

 

5. DISCUSSION & FUTURE WORK 
The primary focus of this paper has been to demonstrate the 

ability of a TACC_Stats based resource analyses to provide 

detailed job and system level information and analytics of the 

workload running on a given HPC resource.  While characterizing 

resource utilization at the job level and system levels is useful in 

its own right, the real power of the analyses based on TACC_Stats 

lies in the ability to tune system and application performance 

based on this data to improve overall resource utilization.  Given 

the oversubscription of most if not all HPC resources, this 

capability is particularly desirable. Accordingly, future work will 
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center on a detailed investigation of some of the application and 

system inefficiencies uncovered by the study carried out here.   

 

For example, we are contacting the owners of particularly poorly 

running jobs to better understand their workflow and determine if 

steps can be taken to mitigate the underperformance.  These steps 

are likely to include a wide range of remedies, some simple to 

implement and others requiring a more substantial effort. For 

example, given the high operational efficiency of the molecular 

dynamics package NAMD relative to other widely used MD 

packages (as shown in Figures 11 and 12), HPC centers might 

choose to encourage users to consider NAMD for their 

simulations.  Furthermore, although it is hardly surprising to learn 

that some applications run considerably better on certain machine 

architectures, with TACC_Stats we can easily identify those 

applications and provide incentives for users to run on 

architectures best suited for their application. Additionally, a very 

similar analysis to that shown in Figures 11 and 12 of CPU and 

memory efficiency can be done for individual users, as opposed to 

applications, to determine which users are using the resources 

efficiently and which are not. Such quantitative information can 

be input for a more appropriate allocation for such users. 

 

The data, especially the comparative analysis across architectures 

and usage classes raise interesting questions. For example one 

could argue that given the very different demands placed on 

machines by users from different fields of science (Fig. 19-26) 

XSEDE should consider providing a “bouquet” of machines tuned 

to different user groups rather than the monolithic general purpose 

machines of today.   

 

Although we only briefly alluded to the challenges of analyzing 

the data generated by a TACC_Stats, we are assessing various 

technologies (e.g. NoSQL) to quickly process, store, and query 

massive TACC_Stats data.  This is critical, as it is a key step to 

developing a capability to rapidly import TACC_Stats data into 

XDMoD, which will greatly expand its access to end users, 

systems administrators, and center directors.  As a first step, we 

are presently incorporating the Lonestar4 and Ranger data into 

XDMoD; the next release at XSEDE13 will feature a TACC_Stats 

data realm and will therefore be widely available.    

 

TACC_Stats will soon be deployed on TACC’s Stampede and 

ultimately on all XSEDE resources.  This will require 

identification of an “equivalent” set of performance counters on 

each architecture and extraction of parameters from some software 

systems such as the scheduler and file systems used in each 

system. Finally, in order to have a broad impact on the efficient 

operation of HPC resources throughout the U.S., including 

academic and industrial HPC centers, plans are underway to 

streamline the installation of TACC_Stats and the ingestion of its 

data files into XDMoD. 
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