
1

Comprehensive Job Level Resource Usage Measurement

and Analysis for XSEDE HPC Systems
Charng-Da Lu*, James Browne ‡, Robert L. DeLeon*, John Hammond†, William Barth†,

Thomas R. Furlani*, Steven M. Gallo*, Matthew D Jones*, Abani K. Patra*
*Center for Computational Research,

SUNY at Buffalo, Buffalo, NY

clu2@fastmail.us, {rldeleon, furlani,
smgallo, jonesm, abani}@buffalo.edu

‡Department of Computer Science,
University of Texas, Austin, TX

browne@cs.utexas.edu

†Texas Advanced Computing Center,
University of Texas, Austin, TX

john.hammond@intel.com,
bbarth@tacc.utexas.edu

ABSTRACT

This paper presents a methodology for comprehensive job level

resource use measurement and analysis and applications of the

analyses to planning for HPC systems and a case study

application of the methodology to the XSEDE Ranger and

Lonestar4 systems at the University of Texas. The steps in the

methodology are: System-wide collection of resource use and

performance statistics at the job and node levels, mapping and

storage of the resultant job-wise data to a relational database

which eases further implementation and transformation of data to

the formats required by specific statistical and analytical

algorithms. Analyses can be carried out at different levels of

granularity: job, user, or system-wide basis. Measurements are

based on a novel lightweight job-centric measurement tool

"TACC_Stats" [1], which gathers a comprehensive set of metrics

on all compute nodes. The data mapping and analysis tools will be

an extension to the XDMoD project [2] for the XSEDE

community. This paper also reports the preliminary results from

the analysis of measured data for Texas Advanced Computing

Center’s Lonestar4 and Ranger supercomputers. The case studies

presented indicate the level of detailed information that will be

available for all resources when TACC_Stats is deployed

throughout the XSEDE system. The methodology can be applied

to any system that runs the TACC_Stats measurement tool.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Design studies, Fault

tolerance, Measurement techniques, Modeling techniques,

Performance attributes, Reliability, availability, and serviceability.

General Terms

Management, Measurement, Documentation, Performance,

Design, Reliability, Verification.

Keywords

TACC_Stats, XDMoD, XSEDE, system management,

performance analysis, usage analysis

1. INTRODUCTION

High-performance computing (HPC) systems are a complex

combination of software, processors, memory, networks, and

storage systems each of which is characterized by frequent

disruptive technological advances. In this environment, system

managers, users and sponsors find it difficult if not impossible to

know if optimal performance of the infrastructure is being

realized, or even if all subcomponents are functioning properly.

HPC centers and their users, at least those HPC centers with open

source software stacks, have been to some extent "flying blind",

without complete information on system behavior. Anomalous

behavior has to be manually diagnosed and remedied with

incomplete and sparse data. In addition, many if not most HPC

centers lack knowledge of the distribution and performance of the

applications running on their systems and therefore have no way

of knowing if the applications are well tuned to the architecture

and making efficient use of the resource. This is especially

worrisome since most HPC systems are purchased based on

performance on a projected job mix, which may in fact be

significantly different from what is actually experienced.

Furthermore, the information generated by this methodology is

useful not only to help ensure that the resources are being used

optimally but also for future system purchases, where this

information can aide in making design decisions.

It also has been effort-intensive for users to assess the

effectiveness with which they are using the available resources.

The data available for system level analyses appear from multiple

sources and in disparate formats (from Linux "sysstat" [3] and

accounting to scheduler/kernel logs). There are also many user-

oriented performance instrumentation and profiling tools but most

require extensive system knowledge, code changes and

recompilation, and thus are not widely used. This paper reports on

the use of the TACC_Stats tool to surmount these difficulties and

provides a system and user level audit of resource usage.

TACC_Stats is a job-oriented and logically structured

enhancement to the conventional Linux "sysstat" system-wide

performance monitor. In addition to the information gathered by

systat, TACC_Stats records hardware performance counter values,

parallel filesystem metrics, and high-speed interconnect usage.

Additionally TACC_Stats resolves the measurements by job. The

core component is a collector executed on every compute node,

both at the beginning and end of each job (via batch scheduler

prolog and epilog scripts) and at periodic intervals (via cron).

Like the "sar" (System Activity Reporter) program in sysstat

package, the performance collection takes place in the

background, incurs very low overhead, and requires no user

intervention. TACC_Stats is open source and is available for

download at: https://github.com/TACCProjects/tacc_stats. The

© 2013 Association for Computing Machinery. ACM

acknowledges that this contribution was authored or co-authored

by an employee, contractor or affiliate of the United States

government. As such, the United States Government retains a

nonexclusive, royalty-free right to publish or reproduce this

article, or to allow others to do so, for Government purposes

only.

XSEDE '13, July 22 - 25 2013, San Diego, CA, USA

Copyright 2013 ACM 978-1-4503-2170-9/13/07…$15.00.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2484762.2484781&domain=pdf&date_stamp=2013-07-22

2

rest of the paper includes a detailed description of TACC_Stats

and results from a usage analysis on two XSEDE resources

Lonestar4 and Ranger.

2. RESOURCE MEASUREMENT
The Linux sysstat package is a comprehensive collection of

performance monitoring utilities, each of which reports resource

statistics of specific components of a system in its own format.

TACC_Stats enhances sysstat/sar for the open source software

based HPC environment in many ways. It is a single executable

binary that covers all performance measurement functions of

sysstat and outputs in a unified, consistent, and self-describing

plain-text format. It is batch job aware: Performance data are

tagged with batch job id to enable offline job-by-job profile

analysis. It supports newer Linux counters and hardware devices.

Its source code [4] is also highly modular and can be easily

extended to gather new kinds of performance metrics.

Currently TACC_Stats can gather core-level CPU usage (user

time, system time, idle, etc), socket-level memory usage (free,

used, cached, etc), swapping/paging activities, system load and

process statistics, network and block device counters, interprocess

communications (SysV IPC), software/hardware interrupt request

(IRQ) count, filesystems usage (NFS, Lustre, Panasas),

interconnect fabric traffic (InfiniBand and Myrinet), and CPU

hardware performance counters. For a complete list of the data

acquired by TACC_Stats, see the TACC_Stats web site [4].

TACC_Stats utilizes CPU performance counters as follows. At the

beginning of the job, TACC_Stats is invoked by the batch

scheduler prolog to reprogram performance counters to record a

fixed set of events: On AMD Opteron, the events are FLOPS,

memory accesses, data cache fills, SMP/NUMA traffic. On Intel

Nehalem/Westmere, the events are FLOPS, SMP/NUMA traffic,

and L1 data cache hits. In order to not interfere with user's own

profiling and instrumentation activities, at periodic invocations

(currently every 10 minutes), TACC_Stats only reads values from

performance registers without reprogramming them to avoid

overriding measurements initiated by users.

3. USAGE ANALYSIS
The case studies reported in this paper were carried out on the

Ranger and Lonestar4 supercomputers at the Texas Advanced

Computing Center (TACC). Ranger (decommissioned as of

February 2013) is a Linux cluster comprising of 3936 nodes, each

of which has four 2.3GHz AMD Opteron quad-core processors

(16 cores in total) and 32 GB of memory. The filesystem is Lustre

and the interconnect is InfiniBand. Lonestar4 is also a Linux

cluster with 1088 Dell PowerEdgeM610 compute nodes. Each

compute node has two Intel Xeon 5680 series 3.33GHz hexa-core

processors and 24 GB of memory. The Lonestar4 has two

filesystems: Lustre and NFS and its interconnect is InfiniBand

(NFS is connected via Ethernet).

TACC_Stats has been deployed on Ranger for 20 months and

Lonestar4 for 14 months. On Ranger it generates a raw data file of

0.5 MB per node per day and collectively 60 GB (uncompressed)

or 20 GB (compressed) for the entire cluster per month.

We analyzed TACC_Stats data collected on Ranger during June

2011 to January 2013 with a total of 521,010 jobs and Lonestar4

data from November 2011 to January 2013 with a total of 337,011

jobs. The jobs included in this study are those longer than the

default TACC_Stats sampling interval of 10 minutes. The job

pool for our analysis also contains non-TeraGrid/XSEDE jobs

(e.g. from TACC partners and Texas higher educational

institutions). We ingested both the raw TACC_Stats output files

and job accounting information into IBM Netezza data warehouse

appliances and a MySQL database, respectively.

The following analysis will be mainly concerned with seven key

TACC_Stats metrics and closely related quantities: cpu_user,

mem_used, cpu_flops, io_scratch_read, io_work_read, net_ib_rx,

and numa_hit. We have chosen these seven based on a correlation

analysis over all of the measured metrics. We found that there are

many highly correlated or anti-correlated metrics, such as

cpu_user is negatively correlated to cpu_idle, or net_ib_rx is

positively correlated to net_ib_tx. Therefore, we have selected the

the smallest independent set of metrics that describe the execution

behavior of the job mix on each system.

The explanation of the seven metrics is as follows. Cpu_user is

that fraction of the CPU utilized by the job in user space. Aside

from some small overhead CPU usage in kernel space or in IO

wait state, 1-cpu_user gives the approximate fraction of the CPU

that is idle. Mem_used refers to the per node memory used,

including the disk buffer and cache managed by the Linux

operating system Mem_used_max refers to the peak observed

memory usage over all used nodes and all sampling intervals of a

job. Cpu_flops is the floating-point operations per second

produced on a job. Io_scratch_read and io_work_read refer to

reading from the scratch and work file systems (Lustre). The

difference of these arises in the purge policy and quota size.

“Scratch” is purged periodically and has a largish quota to the

tune of hundreds of TB, and “work” is non-purged space with a

200GB quota. Net_ib_rx records the received messages in bytes

per second on the InfiniBand network, which includes both

application-induced packets and Lustre filesystem’s traffic.

NUMA_hit (NUMA=Non-Uniform Memory Access) refers to the

successful access of main memory closest to a particular CPU

core by a process running on that core. In contrast, a NUMA_miss

is where a process accessed memory from main memory

connected through another CPU socket/memory interface.

3.1 Lonestar4 and Ranger Job Duration and Job Size

Although not uniquely specific to TACC_Stats measurements, the

Lonstar4 and Ranger job duration distributions are given in

Figures 1 and 2. Figure 1 and 2 and several later figures show the

kernel density [5] (produced by the R statistical software

environment) rather than a histogram in order to avoid making

binning choices. On Lonestar4, most jobs fall into the short

category at less than 10,000 seconds. There is a distribution with

a secondary maximum at 86,400 seconds (24 hours). For Ranger

the distribution for the first 86,400 seconds is similar but the tail

is more prominent. There is also another set of jobs running out

to a final peak at 172,800 seconds (48 hours), and these jobs are

those run from Ranger’s special “long” job queue. The 24 and 48-

hour jobs are usually those that try to do as much work as possible

before the allotted time exceeds and can restart from checkpoint

data. Figures 3 and 4 show the distribution of the number of

nodes employed by the jobs on Lonestar4 and Ranger,

respectively. The great majority of the jobs use less than 10 nodes

with only a short tail out to larger job sizes. Clearly, the secondary

peaks are a result of policy. Since, most of the jobs are also small

3

in the number of nodes it raises the question of possible policy

adjustments to allow a few long jobs on smaller nodes to alleviate

this bottleneck in system usage.

Figure 1: Distribution of Lonestar4 jobs by wall time. Units are

seconds. The rightmost peak at 86,400 seconds corresponds to 24

hour jobs.

Figure 2: Distribution of Ranger jobs by wall time. Units are

seconds. The two rightmost peaks correspond to jobs of 24 and 48

hours, respectively.

3.2 CPU and Memory usage and NUMA efficiency

Figures 5 and 6 show that most jobs on Lonestar4 and Ranger use

the CPU efficiently. Most jobs are clustered in the 0.95-1.00

fractional efficiency range. Note the clustering of jobs on vertical

lines corresponding to particular values of cpu_user. These are

jobs that use only a fraction of the cores; each peak indicates a

specific number of cores used per node. For Ranger each node is

equipped with 16 cores. The peaks appear at 0.75 (12 cores), 0.50

(8 cores), 0.25 (4 cores), and 0.0625 (1 core). For Lonestar4 each

node is equipped with 12 cores. The peaks appear at 0.667 (8

cores), 0.50 (6 cores), 0.333 (4 cores) and 0.083 (1 core). For

Lonstar4 there is also a very strong cluster at 0.042 corresponding

to ½ core.

 Figure 3: Lonestar4 job size distribution in number of nodes.

Figure 4: Ranger job size distribution in number of nodes.

Memory usage varies greatly by job on both Lonstar4 and Ranger,

as shown in Figures 7 and 8. However, most jobs use only a

small fraction of the node’s available memory of 24 GB on

Lonestar4 and 32 GB on Ranger. Given the total cost of memory

for large clusters, information such as this would be useful during

the design phase of system purchase.

A NUMA efficiency can be defined as:

numa_eff = numa_hit/(numa_hit + numa_miss).

Using this definition, we can look at the distribution of numa_eff

of Lonestar4 and Ranger jobs. The Lonestar4 numa_eff, see

Figure 9, is very sharply peaked near unity indicating generally

good NUMA performance. On Ranger, see Figure 10, most jobs

are also close to unit efficiency but the distribution is broader with

a small tail of less efficient jobs.

4

Figure.5 Fraction of CPU used by Lonestar4 jobs.

Figure 6. Fraction of CPU used by Ranger jobs.

3.3 CPU and Memory usage by top applications

For Lonestar4 and Ranger we also analyzed the CPU and memory

efficiency for the most prominently used applications based on

node-hours. The application information is captured by the MPI

job launcher “ibrun” on the two systems. It records the job id, the

executable binary’s full path name, checksum of the binary, as

well as all of its dependent dynamic linked libraries. We map the

executable binaries to a list of well-known HPC applications

using simple regular expression matching on their full path names.

It should be noted that for most jobs the executable binaries are

the user’s own code and cannot be identified as known HPC

applications.

The top 15 applications by node-hour for Lonestar4 and Ranger

are shown in Figures 11 and 12, respectively. The memory

efficiency is calculated as the peak used memory divided by

available memory. Note, however, the used memory includes

Linux-managed disk buffers and cache, so there could be

overestimation. In general, the CPU usage efficiency is very high,

with the memory usage much lower as expected from Figures 7

and 8. Very few of the largest consumers of node-hours have low

CPU use fractions.

In general, the molecular dynamic codes show very good CPU

efficiency while requiring only moderate amounts of memory. On

Lonestar4, the only widely used codes with relatively low CPU

fractional use are CHARMM [6] and NWCHEM [7] both of

which use less than 0.7 of the CPU. On Ranger, SIESTA [8] and

CHARMM show the lowest CPU and memory use, each using

less than 2/3 of the CPU and less than 1/3 of the memory.

3.4 Seven key TACC_Stats metrics on Lonestar4 and Ranger

In this section the performance characteristics of the two machines

under real usage are compared. We have chosen to display seven

key metrics on radar charts. In general, the charts have been

formulated such that a comparison of these metrics for similar

Figure 7. Distribution of memory used in Gbytes for Lonestar4

jobs.

Figure 8. Distribution of memory used in Gbytes for Ranger jobs.

5

Figure 9. NUMA efficiency of Lonestar4 jobs.

Figure 10. NUMA efficiency of Ranger jobs.

cases would produce a regular polygon with all metrics equal to

one. Numbers much greater than or less than one indicate a

sizable difference for that metric in the comparison. Figure 13 is

a radar chart comparing Lonestar4 and Ranger using six of the

seven TACC_Stats metrics (cpu_user, io_scratch_read,

io_work_read, mem_used_max, net_ib_rx and numa_hit) that

describe the CPU usage, network usage and memory usage on the

two systems. Unfortunately, FLOPS on Lonestar4 and Ranger

cannot be compared directly since the counters used record

different events on different architectures (Intel vs. AMD). Aside

from the much smaller InfiniBand usage and the slightly larger

io_scratch read and io_work_read on Lonestar4, the two systems

are comparable for the other metrics. The remainder of the plots

in this section show the ratios of all seven metrics.

Figures 14 and 15 show a comparison of the short jobs (<10,000

seconds) on Ranger to the long and very long jobs. The long jobs

and very long jobs are very similar but differ significantly from

Figure 11. Application’s CPU and memory efficiency on

Lonestar4 sorted by node-hour. The right Y axis is the

accumulated node-hours.

Figure 12. Application’s CPU and memory efficiency on Ranger

sorted by node-hour. The right Y axis is the accumulated node-

hours.

Figure 13 Comparison of Lonestar4 and Ranger using key

tacc_stats metrics. A value of 1.0 on the radar chart for a given

metric indicates identical performance for that metric on

Lonestar4 and Ranger.

the short jobs. Compared to the short jobs, they tend to produce

50% more FLOPS, be slightly more efficient on CPU usage, have

similar memory usage and have 50% less io_scratch usage,

io_work read and numa_hits. Comparing Figures 14 and 16,

showing long vs short jobs on Ranger and Lonestar4, shows a

substantial difference in FLOPS. Lonestar4 long jobs produce

significantly less FLOPS than the short jobs. Like Ranger, the

6

numa_hits are lower on the large jobs on Lonestar4 than the small

jobs.

Figure 14. Comparison of the short jobs (<10,000 seconds) to the

long jobs (10,000-84,600 seconds) on Ranger. Long jobs tend to

produce higher FLOPS and be slighly more efficient in CPU

usage.

Figure 15. Comparison of the short jobs (<10,000 seconds) to the

very long jobs (>84,600 seconds) on Ranger.

Figure 16. Comparison of the short jobs (<10,000 seconds) to the

long jobs (>10,000 seconds) on Lonestar4.

Figures 17 and 18 show a comparison of the large jobs (greater

than 20 nodes) with the small jobs (less than 20 nodes) on Ranger

and Lonestar4, respectively. The patterns are quite different on

the two systems with the large jobs on Lonestar4 doing much

more io_work_read, but this is more a reflection of the large

variance in io_work_read caused by a few large IO usage jobs

rather than a difference between the two systems. For both

systems the large jobs have more numa_hits, less FLOPS lower

CPU usage and comparable memory usage.

3.5 Field of Science comparison on Lonestar4 and Ranger

We have compared the Lonestar4 and Ranger usage for jobs in

different fields of science using the same set of seven key

Figure 17. Comparison of the small jobs (≤20 nodes) to the large

jobs (>20 nodes) on Ranger.

Figure 18. Comparison of the small jobs (≤20 nodes) to the large

jobs (>20 nodes) on Lonestar4.

TACC_Stats metrics. The field of science is based on the

allocation name of each job. On Ranger and Lonestar4,

TeraGrid/XSEDE jobs have a prefix of TG-XXX in the allocation

name, and XXX is the short code for NSF-designated field of

science. Figures 19 to 22 show the comparison of Physics,

Chemistry, Molecular Biology and Atmospheric Science with the

total all usage on Ranger. Figures 23 to 26 show comparable

plots for Lonestar4.

Figure 19. Comparison of Physics usage with total Ranger

XSEDE usage for seven metrics.

Physics usage is similar on the two systems showing lower flops,

low io_work_read, less IB network uasge and more memory

usage. They differ in that the CPU usage is very low on

Lonestar4 and the numa_hits are lower on Ranger. Chemistry

usage is similar on both systems in that the outstanding feature is

the large IB network usage compared to all other jobs. Molecular

biology usage on Ranger and Lonestar both show low io_scratch

usage and low numa_hits. On Lonestar4 the io_work_read is also

low and the FLOPS are very much lower, in stark contrast to the

Ranger data. Atmospheric science usage on Lonestar4 and

Ranger share low FLOPS, low io_work_read, low numa_hits and

low IB network usage. They only differ in that io_work_read is

higher on Lonestar4 and lower on Ranger.

7

Figure 20. Comparison of Chemistry usage with total Ranger

XSEDE usage for seven metrics.

Figure 21. Comparison of Molecular Biology usage with total

Ranger XSEDE usage for seven metrics.

Figure 22. Comparison of Atmospheric Science usage with total

Ranger XSEDE usage for seven metrics.

Figure 23. Comparison of Physics usage with total Lonestar4

XSEDE usage for seven metrics.

4. RELATED WORK
Del Vento et al. [9] adopted a similar approach to tackling

inefficient HPC resource utilization. The goal in [9] was primarily

optimization of user codes and applications. The system reported

here does support identification of resource use anomalies, but it

has much broader goals and capabilities, targeting information [9]

reports, that once problems were identified by their monitoring

requirements of all stakeholders. Additionally, the monitoring

and analysis system in [9] is based on proprietary systems (IBM

POWER/AIX) while the system reported here is for HPC clusters

Figure 24. Comparison of Chemistry usage with total Lonestar4

XSEDE usage for seven metrics.

Figure 25. Comparison of Molecular Biology usage with total

Lonestar4 XSEDE usage for seven metrics.

Figure 26. Comparison of Atmospheric Science usage with total

Lonestar4 XSEDE usage for seven metrics.

based Linux-based open source software. [9] reports, that once

problems were identified by their monitoring software, they were,

with collaboration for users, able to improve CPU usage (e.g.

correct process affinity/CPU binding) and troubleshoot thorny

issues (e.g. memory leak). Once a job or application with a

pattern of inefficient use of one or more resources has been

identified by our analyses and reports, we recommend that the

user or application developer (with collaboration from consulting

staff) apply one of the many performance optimization tools

available for open source cluster, for example: Tau[10,11,12],

HPCToolkit[13,14], Scalasca[15] and PerfExpert[16,17].

5. DISCUSSION & FUTURE WORK
The primary focus of this paper has been to demonstrate the

ability of a TACC_Stats based resource analyses to provide

detailed job and system level information and analytics of the

workload running on a given HPC resource. While characterizing

resource utilization at the job level and system levels is useful in

its own right, the real power of the analyses based on TACC_Stats

lies in the ability to tune system and application performance

based on this data to improve overall resource utilization. Given

the oversubscription of most if not all HPC resources, this

capability is particularly desirable. Accordingly, future work will

8

center on a detailed investigation of some of the application and

system inefficiencies uncovered by the study carried out here.

For example, we are contacting the owners of particularly poorly

running jobs to better understand their workflow and determine if

steps can be taken to mitigate the underperformance. These steps

are likely to include a wide range of remedies, some simple to

implement and others requiring a more substantial effort. For

example, given the high operational efficiency of the molecular

dynamics package NAMD relative to other widely used MD

packages (as shown in Figures 11 and 12), HPC centers might

choose to encourage users to consider NAMD for their

simulations. Furthermore, although it is hardly surprising to learn

that some applications run considerably better on certain machine

architectures, with TACC_Stats we can easily identify those

applications and provide incentives for users to run on

architectures best suited for their application. Additionally, a very

similar analysis to that shown in Figures 11 and 12 of CPU and

memory efficiency can be done for individual users, as opposed to

applications, to determine which users are using the resources

efficiently and which are not. Such quantitative information can

be input for a more appropriate allocation for such users.

The data, especially the comparative analysis across architectures

and usage classes raise interesting questions. For example one

could argue that given the very different demands placed on

machines by users from different fields of science (Fig. 19-26)

XSEDE should consider providing a “bouquet” of machines tuned

to different user groups rather than the monolithic general purpose

machines of today.

Although we only briefly alluded to the challenges of analyzing

the data generated by a TACC_Stats, we are assessing various

technologies (e.g. NoSQL) to quickly process, store, and query

massive TACC_Stats data. This is critical, as it is a key step to

developing a capability to rapidly import TACC_Stats data into

XDMoD, which will greatly expand its access to end users,

systems administrators, and center directors. As a first step, we

are presently incorporating the Lonestar4 and Ranger data into

XDMoD; the next release at XSEDE13 will feature a TACC_Stats

data realm and will therefore be widely available.

TACC_Stats will soon be deployed on TACC’s Stampede and

ultimately on all XSEDE resources. This will require

identification of an “equivalent” set of performance counters on

each architecture and extraction of parameters from some software

systems such as the scheduler and file systems used in each

system. Finally, in order to have a broad impact on the efficient

operation of HPC resources throughout the U.S., including

academic and industrial HPC centers, plans are underway to

streamline the installation of TACC_Stats and the ingestion of its

data files into XDMoD.

6. ACKNOWLEGMENT

This research is supported by the National Science Foundation

under award numbers 1203560, 1203604, 0959870, and 1025159.

REFERENCES
[1] Hammond, J. "TACC_stats: I/O performance monitoring for

the intransigent" In 2011 Workshop for Interfaces and

Architectures for Scientific Data Storage (IASDS 2011)

[2] Furlani, T.R., Jones, M.D., Gallo, S.M., Bruno, A.E., Lu, C.-

D., Ghadersohi, A., Gentner, R.J., Patra, A., DeLeon, R.L.,

von Laszewski, G., Wang, F., and Zimmerman, A.,

“Performance metrics and auditing framework using

application kernels for high performance computer systems,”

Concurrency and Computation: Practice and Experience,

pp.n/a–n/a, 2012. [Online]. Available:

http://dx.doi.org/10.1002/cpe.2871

XDMoD: http://xdmod.ccr.buffalo.edu

[3] http://sebastien.godard.pagesperso-orange.fr

[4] http://github.com/TACCProjects/tacc_stats

[5] Scott, D. W. “Multivariate Density Estimation”. Wiley, New

York, 1992.

[6] Brooks, B., et al. “CHARMM: The biomolecular simulation

program.” J. Comput. Chem. Vol 30, pages 1545-1614, 2009

[7] Valiev, M., et al. "NWChem: a comprehensive, scalable

open-source solution for large scale molecular simulations."

Comput. Phys. Commun. Vol 181, page 1477, 2010

[8] Soler, J. M., et al. “The SIESTA method for ab initio order-

N materials simulation.” J. Physics: Condensed Matter. Vol

14, No 11, 2002

[9] Del Vento, D., Engel, T., Ghosh S., Hart, D., Kelly, R., Liu,

S. and Valent, R. "System-level monitoring of floating-point

performance to improve effective system utilization." In

2011 International Conference for High Performance

Computing, Networking, Storage and Analysis (SC11)

[10] K. A. Huck, A. D. Malony, S. Shende, and A. Morris.

“Knowledge Support and Automation for

PerformanceAnalysis with PerfExplorer 2.0.” Large-Scale

ProgrammingTools and Environments, Special Issue of

Scientific Programming, vol. 16, no. 2-3, pp. 123-134. 2008.

[11] S. Shende and A. Malony. “The Tau Parallel Performance

System.” International Journal of High Performance

Computing Applications, 20(2): 287-311.

[12] Tau: http://www.cs.uoregon.edu/research/tau/home.php.

[13] N. R. Tallent, J. M. Mellor-Crummey, L. Adhianto, M.W.

Fagan, and M. Krentel. “HPCToolkit: performance tools for

scientific computing.” Journal of Physics: Conference Series,

125. 2008.

[14] HPCToolkit: http://www.hpctoolkit.org/.

[15] M. Geimer, P. Saviankou, A. Strube, Z. Szebenyi, F. Wolf,

B. J. N. Wylie: Further improving the scalability of the

Scalasca toolset. In Proc. of PARA 2010: State of the Art in

Scientific and Parallel Computing, Part II: Minisymposium

Scalable tools for High Performance Computing, Reykjavik,

Iceland, June 6–9 2010, volume 7134 of Lecture Notes in

Computer Science, pages 463–474, Springer, 2012.

 [16] M. Burtscher, B.D. Kim, J. Diamond, J. McCalpin, L.

Koesterke, and J. Browne. “PerfExpert: An Easy-to-Use

Performance Diagnosis Tool for HPC Applications.”

SC2010 Int. Conference for High-Performance Computing,

Networking, Storage and Analysis. November 2010.

[17] PerfExpert: http://www.tacc.utexas.edu/perfexpert/.

http://dx.doi.org/10.1002/cpe.2871
http://xdmod.ccr.buffalo.edu/
http://github.com/TACCProjects/tacc_stats

