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ABSTRACT

The XDMoD auditing tool provides, for the first time, a
comprehensive tool to measure both utilization and performance
of high-end cyberinfrastructure (CI), with initial focus on XSEDE.
Here, we demonstrate, through several case studies, its utility for
providing important metrics regarding resource utilization and
performance of TeraGrid/XSEDE that can be used for detailed
analysis and planning as well as improving operational efficiency
and performance.

Measuring the utilization of high-end cyberinfrastructure such as
XSEDE helps provide a detailed understanding of how a given CI
resource is being utilized and can lead to improved performance
of the resource in terms of job throughput or any number of
desired job characteristics. In the case studies considered here, a
detailed historical analysis of XSEDE usage data using XDMoD
clearly demonstrates the tremendous growth in the number of
users, overall usage, and scale of the simulations routinely carried
out. Not surprisingly, physics, chemistry, and the engineering
disciplines are shown to be heavy users of the resources.
However, as the data clearly show, molecular biosciences are now
a significant and growing user of XSEDE resources, accounting
for more than 20 percent of all SUs consumed in 2012. XDMoD
shows that the resources required by the various scientific
disciplines are very different. Physics, Astronomical sciences, and
Atmospheric sciences tend to solve large problems requiring
many cores. Molecular biosciences applications on the other hand,
require many cycles but do not employ core counts that are as
large. Such distinctions are important in guiding future
cyberinfrastructure design decisions.

XDMoD’s implementation of a novel application kernel-based
auditing system to measure overall CI system performance and
quality of service is shown, through several examples, to provide
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a useful means to automatically detect under performing hardware
and software. This capability is especially critical given the
complex composition of today’s advanced CI. Examples include
an application kernel based on a widely used quantum chemistry
program that uncovered a software bug in the I/O stack of a
commercial parallel file system, which was subsequently fixed by
the vendor in the form of a software patch that is now part of their
standard release. This error, which resulted in dramatically
increased execution times as well as outright job failure, would
likely have gone unnoticed for sometime and was only uncovered
as a result of implementation of XDMoD’s suite of application
kernels.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: [Performance of Systems]:
Reliability, availability, and serviceability; C.5.1 [Computer
System Implementation]: Large and Medium ("Mainframe")
Computers---Super (very large) computers; K.6.1 [Management
of Computing and Information Systems]: Project and People
Management---Strategic information systems planning; K.6.4
[Management of Computing and Information Systems]:
System Management---Quality Assurance.

General Terms
Management, Measurement,
Standardization, Verification.

Performance, Reliability,

Keywords
XSEDE, XDMoD, Technology Audit Service, HPC Metrics,
Application Kernels, CI performance metrics

1. INTRODUCTION

While individual tools to measure the utilization, performance,
and to a lesser extent the scientific impact of high-end
cyberinfrastructure (CI) have been developed over the years [1-
13], a comprehensive auditing framework that includes all three of
these important measures of the efficacy and operational
efficiency of CI had been lacking. The National Science
Foundation (NSF) recognized the value of this capability and
through the Technology Audit Service (TAS) of XSEDE made a
significant investment in developing tools and infrastructure to
make this capability easily accessible to a broad range of users
and resource managers.
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The National Science Foundation (NSF) recognized the value of
this capability and through the Technology Audit Service (TAS)
of XSEDE made a significant investment in developing tools and
infrastructure to make this capability easily accessible to a broad
range of users and resource managers. In this context, the
XDMoD (XSEDE Metrics on Demand) auditing tool provides a
comprehensive framework for auditing the utilization and
performance of high-end cyberinfrastructure [14]. It is designed

Figure 1 The XDMoD interface. Plot shows total CPU hours
provided for all of XSEDE broken down by job size in 2012.

to meet the following objectives: (1) provide the user community
with a tool to more effectively and efficiently use their allocations
and optimize their use of CI resources, (2) provide operational
staff with the ability to monitor and tune resource performance,
(3) provide management with a diagnostic tool to facilitate CI
planning and analysis as well as monitor resource utilization and
performance, and (4) provide metrics to help measure scientific
impact. Currently XDMoD is designed to function within the
XSEDE framework, although a future version will provide
academic and industrial HPC centers with similar functionality.
Application of XDMoD to other types of cyberinfrastructure are
also being investigated.

In this paper we present several XDMoD usage case studies to
demonstrate XDMoD’s utility to aid in analysis, planning, and
performance tuning as applied to the CI of XSEDE. The first case
study is an analysis of historical usage data from the TeraGrid and
the follow-on XSEDE program. The second case study
demonstrates the utility of the XDMoD framework for facilitating
system performance assessment through the implementation of
application kernels. The third and final case study shows, through
several examples, how, like most analysis tools, care must be
exercised in the interpretation of data generated by the XDMoD
tool. The final section covers conclusions and future work. We
begin with an overview of XDMoD to provide a context for the
discussions that follow.

2. XDMoD OVERVIEW

Here we present a brief overview of XDMoD, a more detailed
description can be found in Reference [14]. The XDMoD portal
[15] provides a rich set of features accessible through an intuitive
graphical interface, which is tailored to the role of the user.
Currently six roles are supported: Public, User, Principal
Investigator, Campus Champion, Center Director and Program
Officer. Metrics provided by XDMoD include: number of jobs,
service units (see next section for definition) charged, CPUs used,
wait time, and wall time, with minimum, maximum and the
average of these metrics, in addition to many others. These

metrics can be broken down by: field of science, institution, job
size, job wall time, NSF directorate, NSF user status, parent
science, person, principal investigator, and by resource.

A context-sensitive drill-down capability has been added to many
charts allowing users to access additional related information
simply by clicking inside a plot and then selecting the desired
metric. For example, in Figure 1, which is a plot of total CPU
hours in 2012 by job size for all XSEDE resources, one can select
any column in the plot and obtain additional information (such as
field of science) specific to the range of data represented by the
column. Another key feature is the Usage Data Explorer that
allows the user to make a custom plot of any metric or
combination of metrics filtered or aggregated as desired.

The XDMoD framework is also designed to preemptively identify

Figure 2 Total XSEDE usage in billions (G) of service units
(SUs) for the years 2005 - 2012. Note: For the purpose of
this paper, service units should be understood as core
hours with the caveat that the value of SU varies across
resources and over time as technology advances.

potential bottlenecks from user applications by deploying
customized, computationally lightweight “application kernels”
that continuously monitor CI system performance and reliability
from the application users’ point of view. The term “application
kernel” is used in this case to represent micro and standard
benchmarks that represent key performance features of modern
scientific and engineering applications, and small but
representative calculations carried out with popular open-source
high performance scientific and engineering software packages.
The term “computationally-lightweight” is used to indicate that
the application kernel runs for a short period (typically less than
10 min) on a small number of processors (less that 128 cores) and
therefore requires relatively modest resources for a given run
frequency (say once or twice per week). Accordingly, through
XDMoD, system managers have the ability to proactively monitor
system performance as opposed to having to rely on users to
report failures or underperforming hardware and software. The
detection of anomalous application kernel performance is being
automated through the implementation of process control
techniques. In addition, through this framework, new users can
determine which of the available systems are best suited to
address their computational needs.

Preliminary versions of metrics that focus on scientific impact,
such as publications, citations and external funding, are now being
incorporated into XDMoD to help quantify the important role
advanced cyberinfrastructure plays in advancing research and
scholarship.



3. XDMoD USAGE CASE STUDIES

3.1 Data History of TG/XD Usage: Providing

a Foundation for Data-driven CI Planning
Measuring the utilization of high end cyberinfrastructure such as
XSEDE is obviously important as it helps provide a basic
understanding of how CI resources are being utilized and can lead
to improved performance of the resource in terms of job
throughput or any number of desired job characteristics. Indeed,
as described by Katz et. al. [16], the ability to readily measure
usage modalities for cyberinfrastructure leads to a greater
understanding of the objectives of end users and accordingly
insight into the changes in CI to better support their usage.
Furthermore, given the rapid pace of hardware upgrades, access to
reliable, extensive data from past usage is also essential for
planning purposes.

Figure 3 Largest, average and total SU allocations over
time. The average and largest allocations have increased by
more than a factor of 10 over the time period above.

XSEDE is the most advanced, powerful, and robust collection of
integrated advanced digital resources and services in the world
[17]. Tt is a single virtual system that scientists can use to
interactively share computing resources, data, and expertise.
XDMoD, through the TeraGrid/XSEDE central database, provides
a rich repository of usage data. Here we demonstrate, through
several examples, the extent of the data as well as its utility for
planning. In what follows, the terminology Service Units (SUs) is
liberally used. It should be interpreted as core hours with the
caveat that an SU is defined locally in the context of a particular
machine. Thus, the value of an SU varies across resources
utilizing varying technologies and, by implication, varies over
time as technology advances. We begin with a historical look at
utilization. The data displayed in Figure 2 shows the total number
of service units (SUs) delivered to the community on a year-by-
year basis from 2005 through 2012.

The large increase in the number of delivered SUs beginning in
2008 is not surprising since it was during that period that the NSF
funded two very large computational resources, Ranger at TACC
and Kraken at UTK/ORNL, which provided more cycles than the
previous set of resources combined. Figure 3 is a plot which is
designed to provide an indication of the largest, average and total
usage on XSEDE resources, showing for example that the largest
XSEDE allocation has increased by more than an order of
magnitude since 2005 to more than 100M SUs. Remarkably, the
largest allocation of a single user today exceeds the total usage of
all users in 2005 and 2006.

The TeraGrid/XSEDE usage by parent science is shown in Figure
4. Parent Science is an aggregation of fields of science defined by
a previous (ca. 1995) organizational structure of the NSF and
corresponds to NSF divisions (or previous divisions). This
aggregation is used to categorize the TeraGrid/XSEDE allocations
and usage. Given the modest number of organizational changes at
NSF at the divisional level, the classifications in Figure 4 and
Figure 5 can easily be related to current NSF divisions. Physics
and molecular biosciences are the top consumer science fields
using between 600M-700M SUs per year after the Ranger and
Kraken resources were deployed. Usage by the molecular
biosciences has become comparable to physics in recent years as
the bioscientists become more dependent on simulation as a part
of their scientific arsenal. Materials research is also a significant
and growing consumer of CPU time.

Figure 4 Total SU Usage by Parent Science

However, as Figure 5 shows, the average core count by parent
science varies widely. Note, as shown in [18], [19] and Section
3.3 below, when examining the average core counts run on
XSEDE resources, it can be misleading to report only the average
core count for a particular metric or resource. Accordingly, we
find it more informative to compute the average core count by
weighting each job by the total SUs it consumes. Traditionally,
fields in the Mathematical and Physical Sciences (MPS)

Figure 5 Average Core Count (weighted by SUs)
by Parent Science

directorate of NSF have been thought to be the largest users of
XSEDE computational resources. While MPS users are still
significant, it is clear from Figure 4 that the molecular biosciences
community, which falls predominantly within the Biological
Sciences Directorate, has been on the rise for some time and has



harnessed the capabilities of these resources to advance the field.
Researchers in this area have passed their colleagues in all of the
divisions within MPS with the exception of Physics, which it is
clearly on par with at this point. However, from Figure 5 it is also
clear that the type of jobs that are typical of the molecular
biosciences use a relatively small number of compute nodes.
Physics and fluid dynamics (which dominates Chemical Thermal
Systems), fields long characterized by the need to solve complex
partial differential equations, typically require careful attention
being paid to parallelization and by default, large core count jobs.
Many of the biological applications are dominated by complex
workflows, involving many jobs but relatively few cores, often
with large memory per core. In general, the average number of
cores used is moderate in size. It is interesting to speculate on the
reasons that is the case. Certainly, it could be algorithmic. As we
know, the development of effective software is an extremely time
consuming and human intensive problem. Also, there are
practical issues of turnaround. Many users have learned to
structure their jobs for optimal turnaround and that often can be in
conflict with optimal core count use. In addition, the use of
average core count as a measure of the need for machines with
many processors, can be misleading. The job mix submitted by
most users ranges over core count. Often it is necessary to run a
significant number of smaller core count jobs as a preliminary to
the single large core count run. These all contribute to lowering
the average core count number.

Figure 6 Kraken Usage: Total SUs and Average Core Count
Weighted by SUs

In this section, three of the XSEDE resources, namely Kraken,
Lonestar4, and Steele, have been chosen as illustrative of what
appears in the current NSF portfolio and importantly, what each
brings to the mix that is unique and valuable to specific users. It
has been characteristic of the NSF program to try to provide a mix
of compute systems each designed to be optimal for specific types
of job flows. Figures 6 to 8 show total usage and average core
count (weighted by SUs) on each of these three resources. A
number of scientific disciplines are positioned to use systems
containing very large numbers of cores and requiring fast
communications. For such users, systems such as Kraken and to a
lesser extent Lonestar4 are ideal, and this is reflected in the
average core count. With the decommissioning of Ranger and the
near term future decommissioning of Kraken, Stampede and Blue
Waters will likely be the systems of choice for such users.
Lonestar4, a more recent addition to the portfolio, is a smaller
resource in terms of core count than Kraken but with its more
modern CPU (Westmere) has become the most highly requested
resource in XSEDE, perhaps as much as 10 times over-requested.
Clearly, users not needing many thousands of cores can make
very effective use of Lonestar4 (average SU weighted core usage

around 750 for NSF users), and since its performance is between 2
to 4 times faster than Kraken per core, it is preferred for those
types of jobs. For users that are primarily conducting high
throughput serial computations, the Purdue facilities such as
Steele are preferred, as shown in Figure 8. The PSC system,
Blacklight, (not shown) is a small core-count, very large shared
memory SGI system and also a very recent addition to the NSF
portfolio. It is ideal for users needing random access to very large
data sets and to problems involving the manipulation of large,
dense matrices which must be stored in central memory. So,
problems in graph theory, large data sorts, quantum chemistry,
etc., need such a resource to perform optimally. While the
resources are dominated by disciplines that can make effective use
of what was once called big iron” there are also many users that
fall outside that category. This has always been part of the mantra
of the TeraGrid/XSEDE program (deep and wide) and strong
efforts continue in these directions today with the Open Science
Grid (OSG), science gateways, campus champions and advanced
user support programs.

Figure 7 Lonestar4 Usage: Total SUs and Average Core
Count Weighted by SUs

An interesting observation looking at Figures 6 to 8 is the fact that
early on in the life of a resource, the average core count is larger
than in the later life period. In the initial phase, the resource tends
to have fewer users, and by design those users are chosen to push
the capability limits of the resource. As the machine ages and
particularly as newer resources are deployed, the profile of the
user base evolves: the capability users are moved to the newer
resources and the broader user community has prepared itself to
run on the machine. Thus, again by design, the average core count
decreases to accommodate the larger user base. The leveling off
of SU count in most resources is typical.

3.2 Facilitating System Operation and

Maintenance

Most modern multipurpose HPC centers mainly rely upon system
related diagnostics, such as network bandwidth utilized,
processing loads, number of jobs run, and local usage statistics in
order to characterize their workloads and audit infrastructure
performance. However, this is quite different from having the
means to determine how well the computing infrastructure is
operating with respect to the actual scientific and engineering
applications for which these HPC platforms are designed and
operated. Some of this is discernible by running benchmarks;
however in practice benchmarks are so intrusive that they are not
run very often (see, for example, Reference [20] in which the
application performance suite is run on a quarterly basis), and in
many cases only when the HPC platform is initially deployed. In
addition benchmarks are typically run by a systems administrator



Figure 8 Steele Usage: Total SUs and Average Core Count
Weighted by SUs.

on an idle system under preferred conditions and not as user in a
normal production operation scenario and therefore do not
necessarily reflect the performance that a user would experience.
Modern HPC infrastructure is a complex combination of hardware
and software environments that is continuously evolving, so it is
difficult at any one time to know if optimal performance of the
infrastructure is being realized. Indeed, as the examples below
illustrate, it is more likely than not that performance is less than
optimal, resulting in diminished productivity (CPU cycles, failed
jobs) on systems that are typically over subscribed. Accordingly,
the key to a successful and robust science and engineering-based
HPC technology audit capability lies in the development of a
diverse set of computationally lightweight application kernels that
will run continuously on HPC resources to monitor and measure
system performance, including critical components such as the
global filesystem performance, local processor and memory
performance, and network latency and bandwidth. The application
kernels are designed to address this deficiency, and to do so from
the perspective of the end-user applications.

We use the term “Kernel” in this case to represent micro and
standard benchmarks that represent key performance features of
modern scientific and engineering applications, as well as small
but representative calculations done with popular open-source
high-performance scientific and engineering software packages.
Details can be found in Reference [14]. We have distilled

Figure 9 Plot of execution time of NWChem application
kernel on 8 cores (blue line) and 16 cores (red line) over a
several month time period. Calculations on 16 cores show
wildly sporadic performance degradation until early June
when a patch to a bug in a parallel file system was installed.

lightweight benchmarking kernels from widely used open source
scientific applications that are designed to run quickly with an
initially targeted wall-clock time of less than 10 minutes.

However we also anticipate a need for more demanding kernels in
order to stress larger computing systems subject to the needs of
HPC resource providers to conduct more extensive testing. While
a single application kernel will not simultaneously test all of these
aspects of machine performance, the full suite of kernels will
stress all of the important performance-limiting subsystems and
components. Crucial to the success of the application kernel
testing strategy, is the inclusion of historical test data within the
XDMoD system. With this capability, site administrators can
easily monitor the results of application kernel runs for
troubleshooting performance issues at their site. Indeed, as the
cases below illustrate, early implementation of application kernels
have already proven invaluable in identifying underperforming
and sporadically failing infrastructure that would have likely gone
unnoticed, resulting in wasted CPU cycles on machines that are
already oversubscribed as well as frustrated end users.

While the majority of the cases presented here are the result of the
application kernels run on the large production cluster at the
Center for Computational Research (CCR) at the University at
Buffalo, SUNY, the suite of application kernels is currently
running on most XSEDE resources and will soon be running on
all XSEDE resources as part of the Technology Audit Service of
XSEDE. Application Kernels have already successfully detected
runtime errors on popular codes that are frequently run on XSEDE
resources. For example, Figure 9 shows the execution time over
the course of two months for an application kernel based on
NWChem [21], a widely used quantum chemistry program, that is
run daily on the large production cluster at CCR. While the
behavior for 8 cores is as expected, calculations on 16 cores in
May showed wildly sporadic behavior, with some jobs failing out
right and others taking as much as seven times longer to run. The
source of performance degradation was eventually traced to a
software bug in the I/O stack of a commercial parallel file system,
which was subsequently fixed by the vendor, as evidenced by the
normal behavior in the application kernel after June 4™, Indeed,
the software patch to fix this problem is now part of the vendor’s
standard operating system release. It is important to note that this
error was likely going on unnoticed by the administrators and user
community for sometime and was only uncovered as a result of
the suite of application kernels run at CCR.

As a further indication of the utility of application kernels,
consider Figure 10, which shows a performance increase of a
factor of two in MPI Tile IO after a system wide library upgrade
from Intel MPI 4.0 to Intel MPI 4.0.3, which supports Panasas file
system MPI I/O file hints. Since CCR employs a Panasas file
system for its scratch file system, this particular application kernel
alerted center staff to rebuild scientific applications that can
utilize MPI file hints to improve performance. This would have
gone unnoticed without the performance monitoring provided by
the application kernels.

Figure 11, shows a sudden decrease in file system performance on
Lonestar4 as measured by 3 different application kernels (IOR,
MPI-Tile-10, and IMB). The IOR and MPI-Tile-IO both show a
sudden decrease in the aggregate write throughput bandwidth,
while IMB, which measures latency, shows an equally sudden
increase in latency. Once again, without application kernels
periodically surveying this space, the loss in performance would
have gone unnoticed. We are currently working with TACC to
understand this file system performance deterioration.



Figure 10 Application kernels detect I/O performance
increase of a factor of 2 for MPI Tile 1O in a library upgrade
from Intel MPI 4.0 to Intel MPI 4.0.3, which supported
PanFS MPI I/O file hints (in this case for concurrent writes).

One of the most problematic scenarios entails a single node
posing a critical slowdown in which the cumulative resources for
a job (possibly running on thousands of processing elements) are
practically idled due to an unexpected load imbalance. It is very
difficult for system support personnel to preemptively catch such
problems, with the result that the end-users are the ”canaries” that

Figure 11 Application kernel data for IMB (blue), IOR (red)
and MPI-Tile-10 (black) on Lonestar4. The IOR and MPI-
Tile-IO data show a sudden drop of aggregate write
throughput bandwidth and the IMB data shows a sudden
increase in latency starting on 7/24-25/2012.

report damaged or underperforming resources, often after
investigations that are very expensive both in terms of
computational resources and personnel time. An active monitoring
capability designed to automatically detect such problems is

Figure 12 Plot of log file analysis for each node in CCR's
production cluster. Two nodes produce very large log files. One

node was found to have a loose cable and the other a job

scheduler error, both resulting in failed jobs.

therefore highly desirable. For example, Figure 12 shows the
results of a log file analysis of CCR’s large production cluster
consisting of more than 1000 nodes. By examining only the size
of the log files generated on each node (large log file size is
indicative of errors) we were able to detect a loose cable on one
node and a job scheduler error on another node, both of which
resulted in failed jobs. Without such analysis, the loose cable or
job scheduler error would have likely gone undetected, resulting

Figure 13 Distribution of job sizes for all parent science
Physics jobs in TeraGrid/XSEDE resources for the
period 2008-2012.

in many failed jobs, frustrated users, and underperformance of the
resource. While analysis of system log files is not currently
included within the XDMoD framework, it is anticipated that
future versions will, given its utility in identifying faulty
hardware.

3.3 Interpreting XDMoD Data

While XDMoD provides the user with access to extensive usage
data for TeraGrid/XSEDE, like most analysis tools, care must be
exercised in the interpretation of the generated data. This will be
especially true for XDMoD given its open nature, the ease at
which plots can be created, and the subtleties in the usage data
that can require a fairly detailed understanding of the operation of
TeraGrid/XSEDE [18], [19]. This is perhaps best understood
through the following examples. Consider, for example, the mean
core count across Physics parent science jobs on XSEDE
resources during the period 2008-2012, which can be misleading
given the distribution of job sizes as shown in Figure 13. The
distribution of jobs is highly skewed by the presence of large
numbers of serial (single-core) calculations, a situation
exacerbated by recent “high throughput” computing resources, as
we will show.

One should not be misled into thinking that the overall resources
are dominated by serial or small parallel jobs, a significant
fraction are still “capability” calculations requiring thousands of
cores, as shown in Figure 14, which shows the breakdown of core
count by quartile. While 75% of the jobs are for core counts of
100 or fewer processors, 25% of the jobs utilize very large core
counts (thousands to tens of thousands).

We can elaborate further on this point by considering the mean
core count on XSEDE resources for the field of physics
(considered as a parent science within the scope of the XSEDE
allocations). Figure 15 is a plot of mean job size (core count) from
2008-2012, showing both the naive mean calculated with all jobs
as well as the mean of all parallel jobs. Note the divergence in the



mean calculated for all jobs vs all parallel jobs that occurs in
2010. The mean job size in this case is highly skewed by a rapid
increase in the number of single core jobs. XDMoD can be used
to identify this contribution of serial calculations, and as can be
seen in Figure 16, the dramatic increase in serial jobs comes from
several physics allocations ramping up on the high-throughput

Figure 14 Average core count for all XSEDE resources
broken out in quartiles, showing a significant fraction
of very large core count jobs.

resources at Purdue during 2010-2012.

XDMoD puts a trove of data in the hands of the public and policy
makers in a relatively easy to use interface. This data has to be
used in the proper context, however, as it can be too easy to
rapidly draw misleading conclusions. Based solely on the mean
job size for all jobs in Figure 15, one might be tempted to wonder
why the Physics allocations started using fewer cores on average
in the latter half of 2010 - the answer is that they did not, rather an

Figure 15 Mean core count for Physics jobs in
TeraGrid/XSEDE resources for the period 2008-2012,
including (blue circles) and excluding (red squares)
serial runs.

enterprising subgroup of them started exploiting high throughput
systems on an unprecedented scale (for TeraGrid/XSEDE).

4. CONCLUSIONS AND FUTURE WORK

We have demonstrated, through several case studies, the utility of
XDMoD as a tool for providing metrics regarding both resource
utilization and performance of advanced cyberinfrastructure,
primarily TeraGrid/XSEDE. The XDMOD platform already
enables systematic data driven understanding of the current and
historical usage and planning for future usage. We believe that
this will lead to more appropriate resource management and
resource planning. Users will also benefit from the availability of
relevant benchmark performance data for their applications from

the kernels performance. Managers of CI resources will, through
XDMoD, be able to more readily identify underperforming
hardware, all to the benefit of the end user. Furthermore, as
additional data is captured and ingested it will also allow more
outcome centric measures of return on the national
cyberinfrastructure investment.

XDMoD'’s implementation of an application kernel-based auditing
system that utilizes performance kernels to measure overall
system performance was shown to provide a useful means to
detect under performing hardware and software. Examples
included an application kernel based on a widely used quantum
chemistry program that uncovered a software bug in the 1/O stack
of a commercial parallel file system, which was subsequently
fixed by the vendor in the form of a software patch that is now
part of their standard release. This error, which resulted in
dramatically increased execution times as well as outright job
failure, would likely have gone unnoticed for sometime and was
only uncovered as a result of implementation of a suite of
application kernels. Application kernels also detected a
performance increase of a factor of two in MPI Tile IO after a
system wide library upgrade from Intel MPI 4.0 to Intel MPI
4.0.3, alerting center staff to rebuild those applications which
utilize MPI 1/O file hints to improve performance. 1O application
kernels were also able to detect a deterioration of performance in
Lonestar4’s file system write throughput capacity. Many of the
more straight-forward usage metrics have already been
incorporated into XDMoD, however it should still be viewed as a
work in progress.

There are a number of features currently being added to enhance
the capabilities of XDMoD. One example is the addition of
TACC Stats data to XDMoD. TACC Stats records hardware
performance counter values, parallel file-system metrics, and
high-speed interconnect usage [22]. The core component is a
collector executed on all compute nodes, both at the beginning
and end of each job. With the addition of application script
recording, this will provide a fine grained job level performance
not currently available for HPC systems. Another example is the
addition of the PEAK  (Performance  Environment
Autoconfiguration framework) to automatically help developers,
system administrators, and users of scientific applications select
the optimal configuration for their application on a given platform
and to update that configuration when changes in the underlying
hardware and systems software occur [23]. The configuration
options considered for the performance optimization include the
compiler with its settings of compiling options, the numerical
libraries and settings of library parameters, and settings of other
environment variables. The PEAK framework has been
demonstrated to select the optimal configuration to achieve
significant speedup for scientific applications executed on
XSEDE platforms such as Kraken and Nautilus. In a different
direction but just as important, we are in the process of adding
metrics to assess scientific impact. While judging scientific
impact is difficult it is nonetheless important to quantify in order
to demonstrate the return on investment for HPC facilities. We
plan on adding publications, citations, external funding and other
metrics to establish the contribution that facilities such as XSEDE
have on science in the U.S.

In addition we are engaging with the NSF XD FutureGrid (FG)
project to bring forward a plan of how to integrate Cloud
resources. At this time XD FutureGrid’s data is available through
its own portal. In contrast to other efforts, FG has provided an



Figure 16 Number of serial (1 core) jobs by resource
for the parent science of physics.

integrated monitoring solution for multiple Clouds including
Nimbus, Eucalyptus, and Openstack [24]. It is important to note
that the data collected for clouds and their metrics is technically
significantly different from typical HPC data. Hence, it must be
dealt with through different mechanisms. Currently, FG is added
to the internal XSEDE backend databases as a special resource.
We intend to evaluate how to best integrate the FG’s Cloud-based
information within the XDMoD framework.
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