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ABSTRACT

HPC resources provided by XSEDE give researchers unique
opportunities to carry out scientic studies. As of 2013
XSEDE consists of 16 systems with varied architectural de-
signs and capabilities. The hardware heterogeneity and soft-
ware diversity make e+ cient utilization of such a federa-
tion of computing resources very challenging. For exam-
ple, users are constantly faced with a myriad of possibilities
to build and run an application: compilers, numerical li-
braries, and runtime parameters. In this paper we report
performance data of several popular scientic applications
built with di* erent compilers and numerical libraries avail-
able on two XSEDE systems: Kraken and Gordon, and sug-
gest the best way to compile applications for optimal perfor-
mance. By comparison, we validate SU conversion factors
between the aforementioned XSEDE systems from applica-
tions viewpoint.

Categories and Subject Descriptors

H.3.4 [Performance evaluation (e* ciency and e+ ec-
tiveness)]:

General Terms

Performance

Keywords

Performance; Benchmarking; Compilers; Numerical Libraries

1. INTRODUCTION

XSEDE is a leading distributed cyberinfrastructure for
open scientic research in the United States. Users new
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to XSEDE, especially those at allocation proposal writing
stage, are often overwhelmed by the large number of re-
sources at their choice, the allocation policies, and the SU
conversion factors. XSEDE consists of sixteen systems with
di* erent designs and capabilities: High Performance Com-
puting (HPC), which emphasizes oating-point computa-
tion, High Throughput Computing (HTC), which lends it-
self to executing loosely coupled distributed applications on
idle computers opportunistically, and Visualization, which
enables remote interactive visualization and data analysis.
As the workhorse of XSEDE, the HPC platforms range from
traditional CPU centric (Kraken, Lonestar) and large coher-
ent shared memory (Blacklight) to data intensive (Gordon,
Trestles) and GPU/accelerator-assisted (Keeneland, Stam-
pede) PC clusters.

XSEDE jobs are formally charged in XSEDE Service Units
(XD SUs). In light of the di* erences in the computing speed,
an SU conversion rule among resources is implemented to
level the playing eld. A Local SU is dened as one core-
hour on a platform, and an XD SU is one core-hour on
a TeraGrid Phase-1 Distributed TeraScale Facility (DTF)
platform, which serves as the gold standard and was a 1.3-
GHz Intel ltanium2-based cluster in 2001. The conversion
rate between SUs (Local to Local, and Local to XD) is the
performance ratio of the core-count-normalized High Perfor-
mance LINPACK (HPL) benchmark result on both systems
using all of available computing resources. See Table 1.

System XD SUs
Blacklight 1.8
Gordon 4.93
Keeneland 34.0
Kraken 2.04
Lonestar 2.09
Longhorn 1.94
Nautilus 1.57
Stampede 4.6
Steele 1.61
Trestles 2.3

Table 1: Local SU to XD SU Conversion as of February
2013.


http://crossmark.crossref.org/dialog/?doi=10.1145%2F2484762.2484778&domain=pdf&date_stamp=2013-07-22

However, there are two issues with the current practice of
SU conversion. First, in pursuit of fastest possible oating-
point computation, HPL ignores storage capacity, bandwidth,
and memory capacity, which are equally important for a bal-
anced system. HPL has also been criticized for being a mis-
leading metric because it rarely reects the actual achievable
sustained performance of real scientic application work-
loads or makes the best use of the latest hardware technolo-
gies such as GPUs & coprocessors [12]. From a practical
point of view, if a system does not submit HPL result to
TOP500, such as NCSA Blue Waters, its SU conversion cal-
culation would be a problem. Secondly, the HPL result is
based on full system run, but very few XD users are able
to use even half of a system [10]. In addition, the o* cial
SU conversion rule does not take issues such as application
scalability and problem size into consideration’.

Aggravating the complexity of hardware heterogeneity is
the plenitude of software and tools available to achieve the
same goal. Take the routine task of building a scientic ap-
plication as an example, the XSEDE software stack provides
four compiler avors: the standard GNU compilers supplied
with Linux, the Intel compiler suite, the Portland Group
(PGI) compilers, and the Cray compilers (only available on
Kraken). If an application uses linear algebra libraries such
as BLAS or LAPACK, one has hardware-optimized Intel
MKL (Math Kernel Library), ACML (AMD Core Math Li-
brary), ATLAS (Automatically Tuned Linear Algebra Soft-
ware) [14], GotoBLAS, and GotoBLAS-derived Cray LibSci
(only available on Kraken) to choose from. Standard fast
Fourier transform APIs add another dimension of alterna-
tives, as there are FFTW2 and FFTW3 [7]. Each of the
factors has further ramications: di *erent versions, tunable
ags, and runtime parameters such as serial or threaded,
processor a* nity, and NUMA/data placement. An exhaus-
tive search of all possible build and run options to achieve
the optimal application performance on every XSEDE re-
source could be daunting and could consume considerable
allocation SUs. In reality, users and supercomputer sup-
port sta* can only rely on anecdotal experience or word of
mouth, such as using Intel compilers & libraries on Intel
processors and PG| compiler & ACML on AMD processors,
but a thorough study is lacking.

This paper attempts to address the above questions. We
report comprehensive performance measurements of popular
parallel HPC applications [8] built with three compilers and
numerical libraries on two XSEDE platforms. The cross-
platform comparison of the application performance enables
us to derive more realistic, application-based SU conversion
factors. This work extends our prior PEAK project [9] which
focuses on benchmarking seven key routines of BLAS & LA-
PACK libraries from three vendors in the single-node envi-
ronment.

A related e+ ort in this area is SPEC MPI 2007 [13], a com-
mercial benchmark suite comprising 18 MPI-parallel oating-
point intensive scientic codes and kernels. It also hosts a
public repository of submitted data. However, obtaining the
benchmark software and publishing the results both require
hefty fees. The available results are sporadic in terms of
build options and MPI rank sizes, and its application selec-
tion or tested machines do not necessarily align closely with

TXSEDE does accept custom SU transfer rules using re-
questers own benchmark results instead of the default HPL
criteria, but this needs special request.

the interests of XSEDE community.

The rest of the paper is organized as follows. In section
2 we describe the experiment setup, including the compil-
ers and libraries, the benchmark codes, and the hardware
systems. Section 3 presents the our experimental evaluation
and interprets the benchmark results. We discuss the SU
conversions based on these results in Section 4 and conclude
our work and future directions in Section 5.

2. EXPERIMENTAL ENVIRONMENT

2.1 Hardware

We conducted experiments on Kraken and Gordon. We
chose them because they have representative distinct fea-
tures, such as di* erent processor vendors (AMD vs. Intel)
and di* erent interconnects (proprietary vs. commodity.) In
general, after normalization Gordon is at least twice as pow-
erful and e+ cient as Kraken, as in Table 3.

2.1.1 Kraken

Kraken is a Cray XT5 supercomputer managed by the Na-
tional Institute for Computational Sciences (NICS) located
at the Oak Ridge National Laboratory. Kraken has a to-
tal of 9,408 compute nodes, each of which has two 2.6 GHz
hexa-core AMD Opteron 2435 processors. There are 112,896
cores in total with a peak performance of 1.17 PetaF LOPS.
Each compute node has 16 GB memory and is attached to a
Lustre parallel le system. Krakens high-speed low-latency
network is made of Cray SeaStar2+ chips on board plus a
scalable 3D torus interconnect fabric.

2.1.2 Gordon

Located at San Diego Supercomputer Center, Gordon is
an 1024-node large-memory PC cluster designed for data-
intensive jobs. Each compute node has two 2.6 GHz octa-
core Intel Xeon E5-2670 processors, 64 GB memory, and 80
GB solid-state disk. There are 16,384 cores in total with
a peak performance of 341 TeraFLOPS. Gordon also uses
Lustre le system and has a dual-rail 3D torus InniBand
QDR (40 Gbit/s) network.

2.2 Application Build Environment

We used the following compilers, BLAS & LAPACK li-
braries, and FFTW libraries.

On Kraken, the compiler options are: GNU compiler col-
lection version 4.6.2, Intel compiler 12.1.2, PG| compiler
11.9.0. All of these compiler suites support C, C++, and
Fortran. The BLAS & LAPACK implementations are ACML
version 4.4.0, Cray LibSci 11.0.4, Intel MKL version 11.1.038.
The FFTW libraries are versions 2.1.5.3 and 3.3. The MPI
library is Cray MPT version 5.3.5.

On Gordon, the compiler options are: GNU 4.6.1, Intel
12.1.0, and PGI 12.8.1. The BLAS & LAPACK implemen-
tations are ACML version 5.3 and Intel MKL version 10.3.7.
The FFTW libraries are versions 2.1.5 and 3.3. The MPI
library is MVVAPICH2 version 1.8a1p1.

It should be noted that FFTW2 and FFTW3 are two in-
compatible application programming interfaces [7]. FFTW
works in two stages: Planning, in which FFTW auto-tunes
itself by adapting to the hardware, and Execution, which
is the actual computation. In FFTW?2, once the one-time
planning is done, the result is applied to any arrays and



any multiplicity/stride parameters. FFTW3 shifts the Plan-
ning/Execution division of labor more towards Planning, so
the planner now also adapts to the input problem and pa-
rameters. Understandably, not all benchmark codes in our
test can support both FFTW2 and FFTW3.

2.3 Benchmark Codes

\We selected popular scientic applications based on Hadris
report [8] , source code availability, and license agreementz.
All of them happened to be Molecular Dynamics (MD) [11]
simulation codes. Their main di+erences lie in the force
eld of choice, long-range potential computation algorithm,
neighbor list cuto* radius, and temperature control scheme.

Amber [1] (Assisted Model Building Energy Renement)
is a suite of MD codes designed specically for biomolecular
systems. We used Amber version 12 and its PMEMD (par-
ticle mesh Ewald for MD) program in our benchmarking.
PMEMD is written in Fortran 90 and parallelized using a
master/slave data replication programming model.

Gromacs [2] (GROningen MAchine for Chemical Simula-
tions) is another MD code written in C/C+ + with emphasis
on algorithmic and processor-specic optimization. Its non-
bonded potential computational kernels contain manually
tuned assembly code and therefore is able to achieve the
fastest single CPU performance compared to other compet-
ing MD programs. We used Gromacs version 4.5.3.

LAMMPS [3] (Large-scale Atomic/Molecular Massively
Parallel Simulator) is a C++ based MD code. It features a
highly modular and extensible design and 80% of its code
base is contributed by developers and users all over the
world. We used October 2012 version of LAMMPS.

NAMD [4] (Not Another MD) is a peta-scale MD code
written using the object-oriented Charm++ parallel pro-
gramming model. NAMD implements load balancing and
can assign certain computation to any processor, thus achiev-
ing ultra scalability to the tune of 300,000 processor cores on
a 100-million-atom input problem. We used NAMD version
2.9

Written in Fortran, CPMD [5] (Car-Parrinello MD) is
a plane wave/pseudo-potential implementation of Density
Functional Theory for ab-initio MD. That is, unlike previous
software packages which use phenomenological interatomic
and intermolecular potentials (classical MD), CPMD cal-
culates the potential energy surface directly from the rst
quantum chemistry principles. Therefore, it can model un-
usual bond breaking/making and electronic structure changes.
Its drawback is the problem size is limited to hundreds of
atoms. We used CPMD version 3.15.3.

2.4 Compiling and Executing Framework

Building modern HPC applications using di* erent com-
pilers presents a great challenge. This is especially true for
C++ and Fortran 9x, which have complex feature sets and
rich non-standard extensions. In the course of this research,
for example, we have experienced compiler crash when com-
piling certain source le using specic optimization ags, or
compilation error because the new version of the compiler
complains certain syntax as error while the old version com-
piles just ne.

As in our previous work [9], for each application we wrote

2Certain most-used codes such as VASP are not open-source
and have restrictive user license agreements, so we do not
include them in this study.

Python scripts to automate the build process using di* erent
combinations of compilers and numerical libraries. We also
had scripts to automatically create and submit batch job
scripts, collect data, and plot results.

On both Kraken and Gordon, an application-build script
generates a series of shell scripts from a given list of compil-
ers and libraries and execute them. A typical shell script
rst cleans up the default programming environment via
module unload commands, loads the target compilers and
libraries, sets up necessary environment variables (e.g. CC,
F77, CFLAGS, MPICC), and executes applications own con-
figure script or tweak the makeles, followed by make com-
mand invocation. The detailed configure script options
and build ags for each benchmark code can be found in
Table 2.

Amber

Kraken: ./congure --no-updates -static -crayxtb -mpi
(gnu/intel jpgi)

Gordon: ./congure --no-updates -mpi (gnufintel /pgi)
CPMD

GNU: export FFLAGS=-02 -fopenmp -fcray-pointer
export CPPFLAGS=-D __Linux -D_GNU -
DFFT_(FFTW/FFTW3) -DPOINTERS -
DPARALLEL =parallel

Intel: export FFLAGS=-02 -openmp -mkl

export CPPFLAGS=-D _Linux -
DFFT_(FFTW/FFTW3) -DPOINTERS -
DPARALLEL =parallel

PGI: export FFLAGS=-02 -mp

export CPPFLAGS=-D __Linux -D_PGI -
DFFT_(FFTW/FFTW3) -DPOINTERS -
DPARALLEL=parallel -D_DERF

Gromacs

./congure --with-+t=+ tw(2/3) --enable-mpi --enable-
double --without-gmmm-gaussian --without-x --without-
xml --disable-shared

LAMMPS

export FFT_INC=DFFT _FFTW(2/3)

export FFT_LIB=I( *tw/s tw3)

NAMD

./build charm+ + mpi-linux-x86_64 --no-build-shared -O3
-DCMK_OPTIMIZE=1

Table 2: Important Flags Used to Build Benchmark Codes

The job submission and result collection are also stream-
lined. When the runs are completed, the data are gathered
to plot the performance and are stored in a database. We
aim to build a comprehensive knowledge base containing all
performance data of important HPC applications built with
varieties of compilers and numerical libraries on all XSEDE
platforms. The results would eventually be made available
on the XSEDE Metrics on Demand (XDMoD) website [6].

3. EXPERIMENT RESULTS

In our test, each build version of an application is executed
three times and the shortest execution time is selected for
the charting and analysis. The benchmark is done in the
strong scaling manner, that is, the input problem and pa-
rameters stay xed but the number of cores varies. As later
results will demonstrate, when the core count grows, the



performance di* erence due to compilers or libraries usually
diminishes. This should not be surprising because as the
number of cores goes up, the amount of per-core work de-
creases and the serial part and inter-process communication
overhead starts to dominate.

In the following paragraphs we describe for each applica-
tion, the compilers and libraries used, the input dataset, and
the result analysis. For consistency, in all plots we use xed
colors for compiler vendors: green for PGI, red for GNU,
and blue for Intel. Regarding the FFTW libraries, we dis-
tinguish by point types: triangle for FFTW2 and circle for
FFTW3.

3.1 Amber

We built Ambers PMEMD using all three compiler a-
vors. PMEMD uses FFTW3 but not BLAS & LAPACK. We
tested the Joint Amber/Charmm (JAC) benchmark input:
23,558 atoms, explicit TIP3P solvent PME, 1 fs step size,
1,000 steps, 9 A direct space cuto*, NFFT=64+ 64+ 64,
shake_tol = 10" 7, NVE, and ntpr=100. Figure 1 shows the
results. On Kraken the Intel version does not run, so there
is no result for it.

On Gordon, the PGI version falls behind GNU and Intel
versions by up to 30%, and the Intel version has a slight per-
formance advantage over the GNU version. Ambers scala-
bility on JAC benchmark starts to worsen as the core count
grows beyond 64 (4 nodes) so we do not include that part
in the plot. The case for Kraken is more interesting. On
Kraken the PGI version runs faster when core count is 12
and 24. The performance deteriorate signicantly when we
use 48 cores (4 nodes) or more.

3.2 CPMD

CPMD is a typical application that can be optimized
by many build options: compiler, BLAS/LAPACK library,
and FFTW version. Theoretically we are able to produce
3+ 3+ 2 =18 versions of CPMD on Kraken. However, the
latest source code version of CPMD is not compatible with
the version of GNU compiler on Kraken, we thus only pro-
duced 12 builds of CPMD on Kraken. We drove CPMD sim-
ulation with input problem Sisq2: Local-Density Approxima-
tion, Kleinman pseudo-potential, 20 Ry wavefunction cutos,
» 320K plane waves, 108+ 108+ 108 real space mesh.

Due to memory requirement, the minimal core count to
run Sis12 benchmark on Kraken is 48. From the benchmark
results in Figure 2, it is obvious that on Kraken, the choice
of compiler has substantial inuence on the performance.
Overall, the PGl compiler produces much faster CPMD ex-
ecutables. In most cases, the Intel versions run three to six
times slower than their PG| counterparts. The only two
exceptions are intel-libsci-* tw2 and intel-libsci-* tw3, which
have very similar performance to PGI versions. The use of
FFTW library does not seem to have signicant impact.

On Gordon, the inuence of compiler become smaller. On
the other hand, the choice of numerical library does matter:
the MKL versions outperform ACML versions to a great ex-
tent. The di* erence caused by numerical libraries diminish
when more cores are used. As we can see from the gure,
intel-mkl-+ tw3 is the best combination that we can use to
build CPMD on Gordon.

3.3 Gromacs
Gromacss main simulation program mdrun supports
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Figure 1: Amber on Kraken (top) and Gordon (bottom)
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a variety of FFT libraries and we built for FFTW2 and
FFTW3. Regarding BLAS/LAPACK, Gromacs only makes
use of them in its utility programs but not inmdrun, so we
omit them. The benchmark input is d.dppc: 1,024 DPPC
lipids with 23 water molecules per lipid (121,856 atoms in to-
tal), twin-range group based cutoe : 1.8 nm for electrostatics
and 1.0 nm for Lennard-Jones interactions, long-range con-
tribution to electrostatics updated every 10 steps, and 5,000
steps (10 ps step size)

The results are shown in Figure 3. Overall, PGI builds are
the worst on both systems, lagging behind Intel and GNU
by 6-11% on Kraken and 10-18% on Gordon. Regarding
FFTW2 and FFTWS3, intel-* tw3 is the fastest build combi-
nation on Kraken, but there is no clear winner on Gordon.

34 LAMMPS

We compiled six versions of LAMMPS, one for each com-
piler and FFTW combination. LAMMPS does not need
BLAS/LAPACK. The benchmark problem is Rhodo: rhodopsin
protein in solvated lipid bilayer, CHARMM force eld with
a 10A cuto* Lennard-Jones cuto* (440 neighbors per atom),
particle-particle particle-mesh (PPPM) for long-range Coulom-
bics, and NPT integration.

Figure 4 shows the result. Generally, the e*ect due to
FFTW libraries is almost negligible on Gordon, while on
Kraken, they have certain impact when 48 cores are used.
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The GNU and Intel versions have very similar performance,
while the Intel version is only slightly faster than its GNU
counterpart on Kraken. The PGI version, on the other hand,
is slower by a large margin of 8-16%.

3.5 NAMD

NAMD is built merely for each compiler avor because
the sole numerical library NAMD uses is single-precision
FFTW?2 (version 2.1.5). The input dataset is a one-million-
atom large molecular system, Satellite Tobacco Mosaic Virus
(STMV), and the simulation parameters are: 216+ 216+ 216
PME grid size, 12A cutor , PME every 4 steps, periodic, and
500 steps.

Figure 5 shows the result. On Kraken, the PGI build is
not able to run, so there are no results for this conguration.
The GNU version exhibits 2-8% performance advantage over
Intel . On Gordon, the PGI version fails to produce expected
result when core counts are 256 and 512. Overall, Intel edges
out GNU and trumps PGI by 15%.

4. SUCONVERSION AND CONSUMPTION
ANALYSIS

The experimental results in previous sections enable us to
validate the present XSEDE SU conversion against the ac-
tual cross-platform application performance. As mentioned
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in Section 1, the SU conversion is based on the core-wise
High Performance LINPACK (HPL) benchmark result®. The
current o* cial SU conversion rate stands at one Gordon SU
equal 2.42 Kraken SUs (=4.93/2.04. See Table 3.) We sus-
pect this conversion is anachronistic and is based on an out-
dated Kraken conguration, which achieved 7.02 GFLOPS
per core?, against a modern Gordon, which scored 17.69
GFLOPS per core®. Kraken has since undergone major
hardware upgrades in late 2009 (faster processors) and early
2011 (more nodes) and attained 8.14 GFLOPS per core,
16.5% speedier than the old Kraken. We believe a more sen-
sible HPL-based SU conversion rate should be 17.69/8.14 =
2.17. In other words, if XSEDE SU is fungible like money,
then Kraken has been underpriced. In Table 3, we list ratios
computed with known specs of Kraken and Gordon.

For application-oriented SU conversion and performance
comparison, we need to account for di*erent run sizes on
Kraken and Gordon (multiples of 12 vs. 16). We use the
following formula:

Kraken SUs consumed

Gordon/Kraken Ratio =
ordon/raxen Ratio Gordon SUs consumed

3 Available at http://www.top500.0rg
4463 TFLOPS on 66,000 cores. See June 2009s Top500 list.

5286 TFLOPS on 16,160 cores. See November 2012s Top500
list.
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For comparable run sizes (e.g., 12 and 16 (one node), 24
and 32 (2 nodes), etc.), we calculate ratios: SU consumed by
a Krakens run vs. SU consumed by a Gordons run, for all
compiler/libraries builds. If the application-based SU con-
version rate drops below the o+ cial rate of 2.42, it suggests
that Kraken is the cheaper platform to run that applica-
tion because it costs less XD SUs. From Figure 6f we can
see that Kraken is the preferable platform to run Gromacs
and NAMD. For NAMD, regardless of compilers used, its
SU conversion rate is never greater than 1.2. This means,
although it takes 20% more time to run NAMD on Kraken
than on Gordon for similar run sizes, Gordon nevertheless
charges more than twice of XD SUs.

We calculated the 95% condence intervals of the mean
SU conversion rates for each applications and the average,
see Figure 6f and Table 4. Moreover, we gathered perfor-
mance proles of each run on Kraken. In Table 4, we also
list average percentage of communication time out of total
walltime on Kraken. Here are interesting observations: rst,
there is a strong correlation between Gordon-Krakens SU
conversion rate and communication time of an application.
The SU conversion rate is lower when an application spends
less time on communication. Second, we nd a very big
range for the condence interval of Amber SU conversion
rate. This is due to the performance di+ erences on Kraken
and Gordon for certain number of nodes. Notice from Fig-
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Per Core Kraken Gordon
CPU 2.6GHz 2.6GHz
AMD Intel  Xeon
Opteron E5-2670
2435
Memory Interface DDR2-800 DDR3-1333
Peak GFLOPS 10.4 20.8
HPL GFLOPS 8.14 17.69
L3 Cache (MB) 1 2.5
Memory Size (GB) 1.33 4
Memory Bdwth (GB/s) 213 5.33
Peak MFLOPS/Watt 380.02 937.62
HPL MFLOPS/Watt 297.44 797.43
Comparison Gordon/Kraken Ratio
Peak FLOPS 2
HPL FLOPS 2.17
Memory Bandwidth 25
Peak MFLOPS/Watt 2.46
HPL MFLOPS/Watt 2.68
O+ cial SU Conv. Factor 2.42

Table 3: Kraken and Gordon Comparison. The HPL result
is from November 2012s TOP500 list.

ure 1 that Ambers performance drops from using 2 nodes
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Figure 6: SU consumption comparison and conversion rates

4 nodes situation, see Table 5. Therefore, in order to achieve
the best performance, the number of nodes requested on
di* erent supercomputers varies even for the same scientic



Applications | Application-Based SU Conversion Rate
Amber 3.03
CPMD 5.10
Gromacs 1.69
LAMMPS 2.55
NAMD 1.07

95% Condence Interval Average Communication
(2.00, 4.05) 84%
(4.47, 5.73) 62%
(1.61, 1.77) 28%
(2.34, 2.76) 74%
(1.04, 1.11) 3%

Table 4: The application-based SU conversion rates between Kraken and Gordon for ve applications.

applications.

Applications SU Conversion Rate
Amber 4 nodes 5.68
Amber 1 & 2 nodes 1.70

Table 5: The SU conversion rates for Amber.

Third, based on the statistical inference on the benchmark
testing data, we are 95% condence that the application-
based SU conversion rate is between 2.72 and 3.22.

A closely related topic concerns the SU consumption. An
XSEDE allocation proposal must specify the amount of XD
SUs required, and it is imperative that users are mind-
ful of their SU burn rates and ensure their allocation is
not depleted too fast. Therefore, we examine how many
SUs are consumed for our benchmark codes. Figure 6a-6e
show the SU consumption for the best, mean, and worst
run time (among all compiler/libraries builds) of Amber,
CPMD, Gromacs, LAMMPS and NAMD. If a parallel code
has perfect scalability (in the strong scaling sense), its con-
sumed SUs should remain at without regard to the core
count because SU represents the amount of work done. All
of the three codes shown here have increasing SU consump-
tion in proportion to the number of assigned cores. We
theorize two possible causes: either the code itself indeed
has considerable parallel overhead, or there are environmen-
tal e* ects such as interconnect tra* ¢ and node distance and
topology. Our result also points out that the best way to
preserve SUs while getting computation done is to use the
smallest run size.

5. CONCLUSION AND FUTURE WORK

In this paper we report performance analysis of popular
molecular dynamics codes compiled with various compilers
and numerical libraries and executed in di* erent modes on
Kraken and Gordon XSEDE systems. Our results shed light
on the best way to compile these codes for optimal perfor-
mance. We also derive the application-based SU conversion
factors and compare them against the o+ cial SU conversion
factors. We nd that Kraken is more cost-e* ective to run
molecular dynamics applications such as NAMD and Gro-
macs.

In the future we would also like to assess the impact of
MPI implementations (Intel MPI, MVAPICH1/2, and Open
MPI) and topology-aware process placement strategies on
application performance. We will extend our work to all
XSEDE platforms, with higher priority on heterogeneous
systems such as Keeneland (NVidia CUDA) and Stampede
(Intel Xeon Phi/MIC) because they have received much at-
tention regarding their usability and power/performance ef-
ciency. We will also cull applications from broader elds
of science and cover all of Phil Colellas parallel dwarfs,

e.g. computational chemistry, weather/climate, and data-
intensive codes.
Finally, an easy-to-use charting and analysis tools for our

benchmark data is under construction and will be part of
XSEDE Metrics on Demand (XDMoD) website [6].
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