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ABSTRACT

We present the design of a dynamic provisioning system that is
able to manage the resources of a federated cloud environment
by focusing on their utilization. With our framework, it is not
only possible to allocate resources at a particular time to a
specific Infrastructure as a Service framework, but also to utilize
them as part of a typical HPC environment controlled by batch
queuing systems. Through this interplay between virtualized and
non-virtualized resources, we provide a flexible resource
management framework that can be adapted based on users'
demands. The need for such a framework is motivated by real
user data gathered during our operation of FutureGrid (FG). We
observed that the usage of the different infrastructures vary over
time changing from being over-utilized to underutilize and vice
versa. Therefore, the proposed framework will be beneficial for
users of environments such a FutureGrid where several
infrastructures are supported with limited physical resources.

Categories and Subject Descriptors

D.4.8 [Performance]: Operational Analysis, Monitors,
Measurements D.4.7 [Organization and Design]: Distributed
systems

General Terms
Management, Measurement, Performance, Design, Economics.

Keywords
Cloud Metric, Dynamic Provisioning, RAIN, FutureGrid,
Federated Clouds, Cloud seeding, Cloud shifting.

1. INTRODUCTION

Batch, Cloud and Grid computing build the pillars of today’s
modern scientific compute environments. Batch computing has
traditionally supported high performance computing centers to
better utilize their compute resources with the goal to satisfy the
many concurrent users with sophisticated batch policies utilizing
a number of well managed compute resources. Grid Computing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

FederatedClouds’12, September 21, 2012, San Jose, California, USA.
Copyright 2012 ACM 978-1-4503-1754-2/12/09...$15.00.

25

®Center for Computational Research
University at Buffalo
701 Ellicott St
Buffalo, New York 14203

and its predecessor meta-computing elevated this goal by not
only introducing the utilization of multiple queues accessible to
the users, but by establishing virtual organizations that share
resources among the organizational users. This includes storage
and compute resources and exposes the functionality that users
need as services. Recently, it has been identified that these
models are too restrictive, as many researchers and groups tend
to develop and deploy their own software stacks on
computational resources to build the specific environment
required for their experiments. Cloud computing provides here a
good solution as it introduces a level of abstraction that lets the
advanced scientific community assemble their own images with
their own software stacks and deploy them on large numbers of
computational resources in clouds. Since a number of
Infrastructure as a Service (IaaS) exist, our experience [1] tells
us the importance of offering a variety of them to satisfy the
various user community demands. In addition, it is important to
support researchers that develop such frameworks further and
may need more access to the compute and storage hardware
resources than is provided by the current [aaS frameworks. For
this reason, it is also important to provide users with the
capabilities of staging their own software stack. This feature has
also been introduced by other test-beds. This includes
OpenCirrus [2], EmuLab [3], Grid5000 [4] and FutureGrid [5].
Within FutureGrid we developed a sophisticated set of services
that simplify the instantiation of images that can be deployed on
virtualized and non-virtualized resources contrasting our efforts.

The work described here significantly enhances the services
developed and described in our publications about FutureGrid
focusing on dynamic provisioning supported by image
management, generation, and deployment [1] [6].

In this paper, we enhance our services in the following aspects:

a) Implementation of a uniform cloud metric framework for
Eucalyptus 3 and OpenStack Essex.

b) Design of a flexible framework that allows resource re-
allocation between various laaS frameworks, as well as
bare-metal.

c¢) Design of a meta-scheduler that re-allocates resources
based on metric data gathered from the usage of different
frameworks.

d) Targeted prototype development and deployment for
FutureGrid.
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The paper is organized as follows. In Section 2, we introduce the
current state of Cloud Metrics as used in various IaaS
frameworks. In Section 3 we give a short overview of
FutureGrid. In Section 4 we present our elementary
requirements that are fulfilled in our design, presented in Section
5. In Section 6 we outline the current status of our efforts and
conclude our paper in Section 7.

2. ACCOUNTING SYSTEMS

Before we can present our design it is important to review
existing accounting systems, as they will become an integral part
of our design and solution. This not only covers accounting
systems for clouds, but also for HPC and Grid computing as
motivated by user needs and the ability of FutureGrid to provide
a testbed for clouds, HPC, and Grid computing as discussed in
more detail in Section 3.

Accounting systems have been put into production since the
early days of computing stemming back to the mainframe,
which introduced batch processing, but also virtualization. The
purpose of such an accounting system is manifold, but one of its
main purposes is to define a policy that allows the shared usage
of the resources:

*  Enable tracking of resource usage so that an accurate
picture of current and past utilization of the resources can
be determined and become an input to determining a proper
resource policy.

*  Enable tracking of jobs and service usage by user and
group as they typically build the common unit of
measurement in addition to the wall clock time as part of a
resource allocation policy.

*  Enable a metric for economic charge so that it can be
integrated into resource policies as one input for scheduling
jobs within the system.

*  Enable a resource allocation policy so that multiple users
can use the shared resource. The policy allows users to get
typically a quota and establishes a priority order in which
users can utilize the shared resource. Typically a number of
metrics are placed into a model that determines the priority
and order in which users and their jobs utilize the resource.

*  Enable the automation of the resource scheduling task to a
systems service instead of being conducted by the
administrator.

One of the essential ingredients for such an accounting system
are the measurements and metrics that are used as input to the
scheduling model and is part of the active computer science
research since 1960 with the advent of the first mainframes.

2.1 High Performance Computing

As High Performance Computing (HPC) systems have always
been shared resources, batch systems usually include an
accounting system. Typically metrics that are part of scheduling
policies include number of jobs run by a user/group at a time,
overall time used by a user/group on the HPC system, wait time
for jobs to get started, size of the jobs, scale of the jobs, and
more. Many batch systems are today available and include
popular choices such as Moab which originated from Maui,
SLURM [7], Univa Grid Engine [8] which originated from
CODINE [9], PBS [10], and others.. Recently many of these
vendors have made access to manipulation of the scheduling
policies and the resource inventory, managed by the schedulers,
much easier by adding Graphical user interfaces to them [10-
12]. Many of them have also added services that provide cloud-
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bursting capabilities by submitting jobs for example to private or
public clouds such as AWS.

One of the more popular accounting systems with the
community is Gold [13]. Gold introduces an economical charge
model similar to that of a bank. Transactions such as deposits,
charges, transfers, and refunds allow easy integration with
scheduling tools. One of the strength of Gold was its free
availability and the possibility to integrate it with Grid
resources. Unfortunately, the current maintainers of Gold have
decided to discontinue its development and instead provide an
alternative as a paid solution. It has to be seen if the community
will continue picking up Gold or if they switch to the new
system.

An interesting projects that has recently been initiated is the
XDMod project [14] that is funded by NSF XD and is integrated
into the XSEDE project. One of the tasks of this project includes
the development of a sophisticated framework for analyzing
account and usage data within XSEDE. However, we assume
this project will develop an open source version that can be
adapted for other purposes. This component contains an
unprecedented richness of features to view, and creates reports
based on user roles and access rights. It also allows the export of
the data through Web services.

2.2 Grids

Accounting systems in Grids were initially independent from
each other. Each member of a virtual organization had, by
design, its own allocation and accounting policies. This is
verifiable by the creation of the earliest virtual organization
termed GUSTO [15], but also in more recent efforts such as the
TeraGrid [16], XSEDE [17] and the OpenScience Grid [18].
Efforts were put in place later to establish a common resource
usage unit to allow trading between resources, as for example in
TeraGrid and XSEDE. The earliest metric to establish usage of
Grid services outside of such frameworks in an independent
fashion was initiated by von Laszewski et al. [19] for the usage
of GridFTP and later on enhanced and integrated by the Globus
project for other Grid services such as job utilization. Other
systems such as Nimrod [20] provided a platform to the users in
the Grid community that introduced economical metrics similar
to Gold and allowed for the creation of trading and auction
based systems. They have been followed up by a number of
research activities [21] but such systems have not been part of
larger deployments in the US.

2.3 Clouds

The de facto standard for clouds has been introduced by
Amazon Web Services [22]. Since the initial offering, additional
laaS frameworks have become available to enable the creation
of privately managed clouds. As part of these offering, we have
additional components that address accounting and usage
metrics. We find particularly relevant the work conducted by
Amazon [23], Eucalyptus [24], Nimbus [25], OpenStack [26],
and OpenNebula [27]. Other ongoing community activities also
contribute in the accounting and metric area, most notably by
integrating GreenIT [28, 29]. In addition, some of these cloud
platforms can be enhanced by external monitoring tools like
Nagios [30] and Ganglia [31].

For IaaS frameworks we make the following observations.

Amazon CloudWatch [23] provides real-time monitoring of
resource utilization such as CPU, disk and network. It also
enables users to collect metrics about AWS resources, as well as



publish custom metrics directly to Amazon CloudWatch.
Eucalyptus enables, since version 3.0, usage reporting as part of
its resource management [24, 32]. However, it does not provide
a sophisticated accounting system that allows users and
administrators to observe details about particular VM instances.
To enable this third party tools such as Nagios, Ganglia and log
file analyzers [24] have to be used. An integrated sophisticated
and convenient framework for accounting is not provided by
default.

Nimbus claims to support per-client usage tracking and per-user
storage quota in its image repository and in Cumulus (Nimbus
storage system) as accounting features. The per-client usage
tracking provides information of requested VM instances and
historical usage data. The per-user storage quota enables
restriction of file system usage. Nimbus also uses Torque
resource manager for gathering accounting logs. For monitoring
features, Nimbus utilizes Nagios and Cloud Aggregator, which
is a utility to receive system resource information.

OpenNebula has a utility named OpenNebula Watch [27] as an
accounting information module. It stores activities of VM
instances and hosts (clusters) to show resource utilization or
charging data based on the aggregated data. OpenNebula Watch
requires database handler like sequel, sqlite3 or MySQL to store
the accounting information. It checks the status of hosts so
physical systems can be monitored, for example, CPU and
memory except network.

OpenStack is currently under heavy development in regards to
many of its more advanced components. An on-going effort for
developing accounting systems of OpenStack exists which is
named Efficient Metering or ceilometer. It aims to collect all
events from OpenStack components for billing and monitoring
purposes [33]. This service will measure general resource
attributes such as CPU core, memory, disk and network as used
by the nova components. Additional metrics might be added to
provide customization. Efficient Metering is planned to be
released in the next version of Openstack (Folsom) late in 2012.
Besides this effort, other metric projects include several billing
projects such as Dough [34] and third party OpenStack billing
plugin [35].

Microsoft Azure has a software called System Center Monitoring
Pack that enables the monitoring of Azure applications [36].
According to Microsoft, the monitoring pack provides features
such monitoring da and performance data, with integration to
Microsoft supported products such as Azure, .NET. The
performance monitoring can also be enabled by using some
tools like Powershell cmdlets for Windows Azure [37] and
Azure Diagnostics Manager 2 from Cerebrata [38]. The
monitoring data can be visualized using System Center
Operation Manager Console.

Google Compute Engine is an laaS product launched end of
June, 2012 and still under development [39]. Google currently
supports several options for networking and storage while
managing virtual machines through the compute engine.
Presently, there is no accounting APIs for Google Compute
Engine, but there is a monitoring API for Google App Engine. It
delivers a usage report for displaying resource utilization of
instances in the administration console [40] and provides a
runtime API [41] to retrieve measured data from the application
instances such as CPU, memory, and status. We expect that
similar functionality will become available for the Google
Compute Engine as well.
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3. FUTUREGRID: AS A TESTBED FOR
FEDERATED CLOUD RESEARCH

FutureGrid [42] provides a set of distributed resources totaling
more than 4300 compute cores. Resources include a variety of
different platforms allowing users to access heterogeneous
distributed computing, network, and storage resources. Services
to conduct HPC, Grid, and Cloud projects including various
laaS and PaaS are offered. Interesting interoperability and
scalability experiments that foster research in many areas,
including federated clouds, becomes possible due to this variety
of resources and services. Users can experiment with various
laaS frameworks at the same time, and also integrate Grid and
HPC services that are of special interest to the scientific
community. One important feature of FutureGrid is that its
software services can make use of the physical resources
through both virtualization technologies and dynamic
provisioning on bare-metal. This feature is provided by our
software called Rain [1, 6], which allows us to rain a software
stack and even the OS onto a compute server/resource.
Authorized users have access to this feature that is ideal for
performance experiments. Via the help of Rain, we can now
devise a design and implementation that can re-allocate compute
servers into various clouds determined by user demand. We
refer to this new functionality as cloud shifting.

4. REQUIREMENTS

In [1] we presented qualitative and quantitative evidence that
users are experimenting with a variety of laaS frameworks. To
support this need, we have instantiated multiple clouds based on
multiple IaaS frameworks on distributed compute clusters in FG.
However, the association of compute servers to the various laaS
frameworks is currently conducted manually by the system
administrators through best effort. As this can become a labor
intensive process, readjustments based on utilization needs occur
infrequently, or not at all as some clusters have been dedicated
to a particular laaS framework regardless of utilization.
However, our operational experience shows that readjustments
are desirable while observing the usage patterns of over 240
projects hosted on FutureGrid. One such use pattern arises from
educational classes in the distributed computing area. We
observe that classes cycle through topics to teach students about
HPC, Grid, and Cloud computing. When teaching cloud
computing they also introduce multiple cloud IaaS frameworks.
Thus, the demand to access the resources one after another is a
logical consequence based on the way such classes are taught.
However, this leads to resource starvation as at times certain
services offered are underutilized, while others are over utilized.

Additionally, we observe that some projects utilize the resources
in a federated fashion either while focusing on federation within
the same [aaS framework [43], but more interestingly to federate
between laaS frameworks while focusing on scientific
workflows that utilize cycle scavenging [44] or select
frameworks that are most suitable for a particular set of
calculations as part of the workflow [45]. These projects do not
take into account that it is possible to conduct cloud shifting
instead of scavenging resulting in a simplification of the
development and utilization aspect for application developers.

In a coordinated response to our observations, we derived the
following requirements that shape the design of the services in
support of cloud federation research:

*  Support for multiple laaS: This includes OpenStack,
Nimbus, Eucalyptus, and OpenNebula. Furthermore, we



would like to integrate with AWS and potentially other
clouds hosted outside of FG.

*  Support for bare-metal provisioning to the privately
managed resources: This will allow us to rain custom
designed software stacks on OS on demand onto each of
the servers we choose.

*  Support for dynamic adjustment of service assignments:
The services placed on a server are not fixed, but can
change over time via Rain [1, 6].

*  Support for educational class patterns: Compute classes
often require a particular set of services that are accessed
by many of its members concurrently leading to spikes in
the demand for one service type.

*  Support for advance provisioning: Sometimes users know
in advance when they need a particular service motivating
the need for the instantiation of services in advance. This is
different from advance reservation of a service, as the
service is still shared by the users after the provisioning has
taken place. Such a service will help to reduce resource
starvation.

*  Support for advance reservation: Some experiments
require the exclusive access to the services.

*  Support for automation: Managing such an environment
should be automatized as much as possible.

*  Support for inter-cloud federation experiments: Ability to
access multiple [aaS instances at the same time.

*  Support for diverse user communities:  Users,
Administrators, Groups, and services are interested in using
the framework. These groups require different access rights
and use modalities.

We intend to implement this design gradually and verify it on
FG. The resulting software and services will be made available
in open source so others can utilize them as well.

Due to these requirements we must support four very important
functions of our framework. These functions include:

Cloud-bursting enables access to additional resources in other
clouds when the demand for computing capacity spikes. It
outsources services in case of over-provisioning, or inter-cloud
federation enabling to use compute or storage resources across
various clouds.

Cloud-seeding enables the instantiation of new cloud

frameworks within FutureGrid.

Cloud-shifting enables moving (or re-allocating) compute
resources between the various clouds and HPC.

Resource Provisioning is a basic functionality to enable cloud-
seeding and -shifting as it allows the dynamic provisioning of
the OS and software stack on bare-metal.

S. DESIGN

Before we explain our architecture, we have to point out some
features of the resource and service fabric that are an integral
part of our design. We assume that the Resource Fabric consists
of a resource pool that contains a number of compute services.
Such services are provided either as a cluster or as part of a
distributed network of workstations (NOW). The resources are
grouped based on network connectivity proximity. This will
allow the creation of regions within cloud IaaS environments to
perform more efficiently among its servers. We assume a rich
variety of services offered in the Service Fabric. This includes
multiple laaS, PaaS frameworks, and HPC environments.
Instead of assuming that there can only be one cloud for a
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particular laaS framework, we envision multiple independent
clouds. This assumption potentially allows users to host their
own privately managed clouds and also integrate them with
public clouds. We have already deployed such an infrastructure
as part of the FutureGrid, allowing users to access a variety of
preconfigured clouds to conduct interoperability experiments
among the same laaS and also different IaaS frameworks, as
well as the inclusion of dedicated HPC services.

Having access to such a comprehensive environment opens up a
number of interesting design challenges. We observe that our
operational mode is significantly enhanced in contrast to other
academic clouds that typically only install a single IaaS
framework on their resource [46, 47]. Thus, such environments
cannot offer by themselves the comprehensive infrastructure
needed to conduct many of the topics that arise in cloud
federation.

One of the questions we need to answer is how we can best
utilize such an environment that supports inter-cloud and bare-
metal demands posed by the users as we have practically
observed in FutureGrid and how we can integrate these
requirements into a software architecture.

We have designed a software architecture to address the
requirements presented earlier. We distinguish the user layer
allowing administrators, but also users (and groups of users) to
interact with the framework. In addition, we point out that Web
services can interact with it to develop third party automated
tools and services leveraging the capabilities. Access to the
various functions is provided in a secure fashion. Due to the
diverse user communities wishing to use the environment, our
design supports a variety of access interfaces including
command line, dashboard, web services, as well as libraries and
APIs.

An important aspect is to be able to integrate existing and future
information services to provide the data to guide dynamic and
automatic resource provisioning, cloud-bursting, cloud-seeding,
and cloud-shifting. Due to this reason, we allow in our design
the integration of events posted by services such as Inca,
Ganglia, and Nagios. Moreover, we obtain information from the
running clouds and, when the provided information is not
sufficient, we will be able to ingest our own information by
analyzing log files or other information obtained when running a
cloud. For clouds, we also host an instance archive that allows
us to capture traces of data that can be associated with a
particular virtual machine instance. A metric archive allows the
registration of a self-contained service that analyses the data
gathered while providing a data series according to the metric
specified. Metrics can be combined and can result in new data
series.

At the center of this design is a comprehensive RAIN service
Layer. Rain is an acronym for Runtime Adaptable [Nsertion
service signifying services that on the one hand adapt to runtime
conditions and on the other allow inserting or dynamically
provisioning software environments and stacks. We use the
terms rain and raining to refer to the process of instantiating
services on the resource and service fabrics. In this analogy, we
can rain onto a cluster services that correspond to an IaaS, a
PaaS, or a HPC batch system. Rain can be applied to virtualized
and non-virtualized machine images and software stacks. In
addition, Rain can also be used to move resources between
already instantiated environments, hence supporting cloud-
shifting. The most elementary operation to enable cloud-seeding



User Layer

Administrator } (

J(

Users Services

Interface Layer

| Dashboard/GUI l

Security

Command Line '

WS Query
Library/API '

Information Layer

laaS&PaaS

Instance
Archive

Information Ingestion
FG Cloud Log
Analyzer

Instance

Archive

Inca

Templates

Metric Archive

Metric
data OpenStack
series

OpenNebula
Eucalyptus

RAIN Service Layer

busting

Image
Generation

FReservation j ﬁstance Analyza

Queue

Image Repository [

J [ State Prediction J

Resource Fabric

Z

Resource Pool

Service Fabric

Service Pool

Compute Cluster A Compute Cluster B

Cloud 1

Region 1

HPC 1

Region 2

Region 1

Region 2

Figure 1: Design of the rain-based federated cloud management services.

and cloud-shifting is to provision the software and services onto
the resources. We have devised this elementary operation and
introduced in [6] and can now build upon it. In our past effort,
we took on the problem of image management. In this work we
focus on cloud-shifting, which is a logical extension in order to
satisfy our users' needs.

Image Management. Rain allows us to dynamically provision
images on laaS and HPC resources. As users need quite a bit of
sophistication to enable a cross platform independent image
management, we have developed some tools that significantly
simplify this problem. This is achieved by creating template
images that are stored in a common image repository and
adapted according to the environment or laaS framework in
which the image is to be deployed. Hence, users have the ability
to setup experiment environments that provide similar
functionality in different IaaS such as OpenStack, Eucalyptus,
Nimbus, and HPC. Our image management services support the
entire image lifecycle including generation, storage, reuse, and
registration. Furthermore, we have started to provide extensions
for image usage monitoring and quota management.

Cloud Shifting enables the re-allocation of compute resources
within the various clouds and HPC. To enable cloud-shifting we
have introduced a number of low-level tools and services that
allow the re-allocation of resources from an laaS or HPC service
to another. A typical cloud-shifting request follows these steps:

1. Identify which resources should be moved (re-allocated) as
part of the shift. This can be done by simply providing the
names of the resources or by letting the service identify
them according to service level agreements and specifiable
requirements, such as using free nodes which have some
specific characteristics.

De-register the resources from the service they are
currently registered on. This involves identifying running
jobs/VMs on the selected resource. If they exist, the service
will wait a fixed amount of time for them to finish or it will
terminate them. The behavior is selected when placing the
request. Once a resource becomes available it will be
placed into an available resource pool.
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3. Pick resources from the available resource pool and rain
the needed OS and other services onto each resource (if not
already available).

4. Register the resources with the selected service and
advertise their availability.

5. The resources are now integrated in the service and can be
used by the users.

Cloud-Seeding allows us to deploy a new service such as cloud
infrastructure, from scratch, in FutureGrid. Thus, cloud-seeding
enhances and makes use of the previously described cloud-
shifting. A cloud-seeding request includes:

1. Install the new service (cloud or HPC infrastructure) in the
selected resources.

2. Set up the new service with some predefined configuration
or following some given specifications. These
specifications may include private IP range, ACL policies,
and users’ profiles.

3. Make use of cloud-shifting to add resources to the newly
created service.

4. Announce and advertise the availability of the new service
to the users and other services.

This is not a simple process, because it requires a great deal of
planning and knowledge about the available infrastructure.
Currently, we do this planning step by hand, but we intend to
further automatize it as much as possible

Queue Service. We anticipate that users may have demands that
cannot be immediately fulfilled by using a single request of the
cloud shifting or cloud seeding services. Therefore, our design
includes the introduction of a queuing service that can
coordinate multiple requests. In this way, users can create a
workflow that will subsequently call different services to create
the desired environment. Such a queuing service could be
hidden from the users and integrate with cloud-bursting services
to integrate additional resources in case of overprovisioning.
Once no additional resources are available requests are queued.

Reservation Service. Our design also includes the introduction
of a reservation service to satisfy users with definite requests to
be fulfilled at predefined times. This is the case for tutorials,
classes, and regularly executed experiments.

State Prediction Service. This service will provide accounting
and usage information, as well as, access to customized metrics
while monitoring our different services to predict their
anticipated usage. For cloud IaaS frameworks, our instance
database and instance analyzer (that we developed) will collect
valuable input of the resource and service fabrics.

Metrics. Elementary inputs to our prediction service are the
metrics to guide our framework. These metrics are fed by
elementary information in regards to job and virtual machine
traces.

Traditional computing systems provide common resource
metrics such as CPU, memory, storage, network bandwidth, and
electricity utilization.

In case of VMs, we have to expand these metrics with VM
specific information such as VM state, size, type, OS, memory,
disk, CPU, kernel, Network IP, owner, and label. In addition, we
are concerned with how much time it costs to create the VM,
transfer it to a resource, instantiate and dynamically provision it,
as well as bringing it in a state that allows access by the user.
Furthermore, once the machine is shut down, we need to account

30

FutureGrid

Cloud Metric

Number of VM instances on India in the month of June2012

Tak-Lon Wu
instances

Lin

[]Andrea Lomo
[] Andrea Moio
[JHemanth Mak
[]Jiaan Zeng
[ Jonathan Kiin
[[]Koji Tanaka

Jonathan Klinginsmith [_JMassimo Can

[] Pawel Koperek |_|

[V] Tak-Lon Wu

M [ Thomas Hacker

Zhanguan Sun

instances

Order: instances
71112

F

Figure 2: Screenshot of our Cloud Instance Analyzing

for the shutdown time and eventual cleanup or removal of the
VM. Naturally we also need to keep track of which user, group
or project instantiated the VM and if the image is a replication
run in parallel on other resources in the fabric.

When dealing with services that are dependent on performance
metrics, we also have to deal with periodicity of the events and
filter out events not only based potentially on a yearly, monthly,
weekly, daily, hourly, minute or per second basis, but to
eliminate events that do not contribute significantly to the trace
of a virtual machine image. We have practically devised such a
service for Eucalyptus that reduced four million log events to
about 10000 trace events for virtual machine images. This
allows us to query needed information for our predictive
services in milliseconds rather than hours of reanalyzing such
log entries over and over again. Hence, our design is not only to
retrieve standard information such as average, sum, minimum
and maximum, as well as count of VM related events, but it can
also input this data efficiently into a time series analysis and
predictive service. In addition, we have integrated metrics for
OpenStack and are in the process of expanding to Nimbus.
Clearly, this framework is a sophisticated tool in support of
federated heterogeneous and homogeneous clouds.

6. STATUS AND IMPLEMENTATION

As already pointed out, we have developed the basic
infrastructure to support rain by enabling the image
management services. These services are in detail documented
in [1, 6, 42]. Recently we started the development of rain
services that address the issue of cloud-shifting. We developed
the ability to add and remove resources dynamically to and from
Eucalyptus, OpenStack and HPC services. This allows us to
easily move resources between OpenStack, Eucalyptus, and
HPC services. We used this service to shift resources in support
of a summer school held at the end of July 2012 where more
than 100 participants were taught a variety of laaS and PaaS
frameworks. Within a short period of time we were able to adapt



our resource assignments to more closely serve the requirements
of the projects executed at the time. As currently, some features
in Nimbus are missing that are necessary to integrate with our
framework, FutureGrid is also funding the Nimbus project to
enhance their services so they will allow similar features as
other laaS frameworks already provide in order to support our
image management framework. In parallel, we have
significantly contributed towards the analysis of instance data
for Eucalyptus and OpenStack clouds. Such data is instrumental
for our planned predictive services. This effort includes the
creation of a comprehensive database for instance traces that
records important changes conducted as part of the VM instance
runtime documented in our design section. A previous analysis
effort that analyses log files in a repeated fashion was designed
and implemented by von Laszewski, Wang, and Lee, replacing
an effort that allows the ingestion and extraction of important
log files from newly created log events [48]. As a result, we
were able to significantly reduce the log entries, which led to a
speedup of our analyzing capabilities from hours to
milliseconds. In addition, we made the framework independent
from web frameworks and chart display tools. A convenient
command shell that can also be accessed as a command line tool
was added to allow for interactive sampling and preparation of
data. Web services, as well as a simple graphical interface to this
data will be available (see Figure 2). At the same time the code
was significantly reduced and modularized so that future
maintenance and enhancements become easier. Examples for
data currently presented in our Web interface are based on the
utilization of several metrics. This includes total running hours
of VM instances; total number of VM instances in a particular
state and time interval; CPU core, memory and disk allocations;
delay of launching and termination requests, the provisioning
Interval, and geographical locations of VM instances. Metrics
projecting a per user, per group, or per project view, metrics per
cloud view, as well as metrics for the overall infrastructure and
metrics related to the resource and service fabric are under
development. Additional metrics such as traffic intensity for a
particular time period [49, 50] are also useful in considering
optimized utilization. Future activities will also include our
strategy to use DevOps frameworks that we started from the
beginning of the project and have also been independently been
used by the FutureGrid community [51]. Clearly our framework
can also be beneficial for integrative cloud environments such as
CometCloud [52].

7. CONCLUSION

In this paper, we have presented a design of a federated cloud
environment that is not focused singly on supporting just an laaS
framework. Our understanding of federation includes various
laaS frameworks on potentially heterogencous compute
resources. In addition, we are expanding our federated cloud
environment to include and integrate traditional HPC services.
This work is a significant enhancement to our earlier work on
dynamic image generation and provisioning in clouds and bare-
metal environments by addressing challenges arising in cloud
seeding and cloud shifting. One of the other contributions of this
paper is the creation of an accounting and metric framework that
allows us to manage traces of virtual machine instances. This
framework will be an essential component towards automating
cloud-shifting and seeding as projected by our architectural
design. We welcome additional collaborators to contribute to
our efforts and to use FutureGrid.
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