Resource Distribution Under Spatiotemporal Uncertainty of Disease

Spread: Stochastic versus Robust Approaches

Beste Basciftci* Xian Yu! Sigian Shen!

Abstract

We consider the problem of optimizing locations of distribution centers (DCs) and plans
for distributing resources such as test kits and vaccines, under spatiotemporal uncertainties of
disease spread and demand for the resources. We aim to balance the operational cost (including
costs of deploying facilities, shipping, and storage) and quality of service (reflected by demand
coverage), while ensuring equity and fairness of resource distribution across multiple populations.
We compare a sample-based stochastic programming (SP) approach with a distributionally
robust optimization (DRO) approach using a moment-based ambiguity set. Numerical studies
are conducted on instances of distributing COVID-19 vaccines in the United States and test kits,
to compare SP and DRO models with a deterministic formulation using estimated demand and
with the current resource distribution plans implemented in the US. We demonstrate the results
over distinct phases of the pandemic to estimate the cost and speed of resource distribution
depending on scale and coverage, and show the “demand-driven” properties of the SP and DRO
solutions. Our results further indicate that if the worst-case unmet demand is prioritized, then
the DRO approach is preferred despite of its higher overall cost. Nevertheless, the SP approach
can provide an intermediate plan under budgetary restrictions without significant compromises

in demand coverage.

Keywords: COVID-19 pandemic; vaccine distribution; resource allocation; stochastic integer pro-

gramming; distributionally robust optimization; multi-objective optimization

1 Introduction

With the rapid spread of the coronavirus disease 2019 (COVID-19), testing is central to planning
response activities in all countries during and post the pandemic. Effective and efficient testing
can lead to early outbreak detection, to quickly isolate and treat infected patients, guide people

consciously performing social distancing, and also lock down certain areas/activities if needed.
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Establishing efficient testing systems involves distributing test kits to test centers while considering
potential demand uncertainty for testing (see, e.g., Lampariello and Sagratella, 2021; Santini, 2021).
A similar resource distribution problem arises in the production and distribution of COVID-19
vaccines that became available in December 2020 — That is, upon needs and orders from different
regions, a central government sends limited amounts of vaccines to local agents using the information
of regional infection status. This problem was solved in the United States (US) during the first two
quarters of Year 2021 for distributing COVID-19 vaccines and is relevant to many countries when
vaccines become available globally, or for distributing resources to respond to future outbreaks of
other diseases.

In the US, policymakers seek efficient ways to distribute vaccines to states and jurisdictions, and
then to local hospitals, clinics, pharmacies, schools, communities and so on. Given certain vaccine
allocation policies, how to distribute vaccines from production sites or distribution centers (DCs)
to downstream demand is challenging and emergent. Meanwhile, it is hard to quantify the cost and
speed trade-off for distributing medical resources such as vaccines or test kits, as there exist hidden
costs associated with unsatisfied demand that may come from high-risk population groups. Given
the evolving pandemic and rapidly changing demand, it is also challenging to locate DCs and make
shipping plans optimally to achieve the best trade-off. Moreover, the scale of the problem can be
enormous, involving millions of vaccines (or test kits) and large-scale distributed demand for oper-
ating the system for the whole country. A scientific way to conduct vaccine and test-kit distribution
needs to rely on mathematical models and algorithms for processing and utilizing information from
large datasets about the COVID-19 infection trends and demand for testing/vaccination.

In the supply chain literature, there has been a large body of research studies on how to site
retail stores, optimize inventory and production, manage stock levels as demand for products fluctu-
ates by season (Daskin, 2011; Shen et al., 2011; Snyder, 2006; Basciftci et al., 2021). Among them,
many focus on facility locations under uncertain demand, using stochastic or robust optimization
approaches. Establishing a COVID-19 resource distribution system presents a set of similar chal-
lenges under various uncertainties, but in addition, it requires to incorporate more decisions such
as resource distribution, inventory control, and demand shortage control into the multi-period fa-
cility planning problem. In this work, we present a mathematical framework that encapsulates
allocation and distribution stages of disease-control resources (e.g., vaccines and test kits) by con-
sidering spatiotemporal uncertainty in the demand and ambiguity of the probability distribution of
demand over a multi-period horizon. We optimize the locations of DCs, their capacities, shipment
amounts and inventory levels. As the provided framework is presented in a generic form, it aims to
address various resource allocation problems during different phases of a pandemic by comparing
deterministic, stochastic and distributionally robust decision-making approaches.

The main contributions of the paper are threefold. First, we combine mathematical program-
ming and statistical learning, for optimally locating DCs for disease-control resources and deriving
shipping plans, customized for counties and states with diverse demographics and disease spread
patterns. Our research can be utilized at the national level to balance the distribution, or at the

state or county level to facilitate local operations. Second, through data-informed location opti-



mization, we can effectively identify the most critical and vulnerable groups to prioritize testing or
receiving vaccines under constrained amounts of resources and as a result, can protect other popu-
lation groups. Third, we conduct extensive numerical studies using real COVID-19 infection data
in the US and in the State of Michigan, to compare different approaches in terms of the operational
cost and speed of resource distribution, by testing a diverse set of instances having different scales
and parameter settings.

The rest of the paper is organized as follows. In Section 2, we review the most relevant lit-
erature in disease control, facility location, and vaccine supply chain management. In Section 3,
we present the stochastic programming model based on a set of demand samples generated from a
given probability distribution and in Section 4, we consider that the exact demand distribution is
unknown and present the distributionally robust optimization model to optimize decisions against
the distributional ambiguity. In Section 5, we conduct numerical studies using COVID-19 infection
data to demonstrate results of distributing vaccines and test kits, and compare our solutions with
what were implemented by the Centers for Disease Control and Prevention (CDC). In Section 6,

we conclude the paper and present future research directions.

2 Literature Review

Resource distribution is of vital importance in many applications, in particular the ones related
to disease control and disaster relief, as the resources are usually scarce (Cao and Huang, 2012;
Gupta et al., 2016). For COVID-19, personal protective equipment (PPE), test kits, hospital beds
and ventilators, and, most recently, vaccines are among the resources that need to be effectively
distributed at all levels (Emanuel et al., 2020). Bertsimas et al. (2021a) formulate a deterministic
optimization model to improve ventilator allocation by allowing sharing of ventilators between
hospitals from different states in the US. Billingham et al. (2020) study a similar problem to
optimize ventilator sharing. Lampariello and Sagratella (2021) consider a single-period COVID-
19 test-kit allocation problem by maximizing utility functions corresponding to disease detection
capabilities in different regions, to determine the amount of test kits to be allocated in each region
given a certain budget. Santini (2021) considers the distribution of swabs and reagent to laboratories
for maximizing the number of COVID-19 tests processed. The author formulates the problem as
a deterministic integer programming model by considering sharing of swabs and reagent among
different laboratories over a multi-period planing horizon. Although most of the existing literature
consider different stages of resource planning and sharing during the pandemic, they use regression
tools to forecast average demand, without explicitly modeling the spatiotemporal infection and
demand uncertainties at the resource-planning phase.

Assuming demand being stochastic, Mehrotra et al. (2020); Blanco et al. (2020) propose stochas-
tic programming approaches to address this issue by generating scenarios with different patterns to
represent the randomness in the amount of patients due to uncertain disease spread, to re-allocate
and share medical resources among different hospitals. Yin et al. (2021) extends this problem to

a risk-averse multi-stage stochastic programming setting by incorporating changing transmission



dynamics. We note that these studies consider the resource allocation and redistribution between
certain regions with existing facilities, and facility location decisions with their corresponding ca-
pacities have not been incorporated to the decision making process. Recently, Parker et al. (2020)
use robust optimization by assuming an unknown number of patients for each specific day within
a certain range from a nominal value, e.g., the average across a certain period. In addition to
the studied settings, the probability distribution of the uncertain demand for resources may be
ambiguous during emergency or disaster relief operations due to the inherent and abrupt nature of
these events (see, e.g., Liu et al., 2019; Wang and Chen, 2020). This motivates the development of a
distributionally robust optimization approach in our paper for robustly allocating resources during
an unprecedented event such as the COVID-19 pandemic. To the best of our knowledge, this paper
is the first work that leverages distributionally robust optimization for COVID-19 related medical
resource distribution and facility location decision-making problems.

The supply chain operations of vaccines for infectious disease control involve vaccine produc-
tion, allocation and distribution stages, with decisions on which vaccines to produce, how many
doses to produce, who should be vaccinated, how the vaccines can be distributed, and so on (see
Duijzer et al., 2018). Equitable and timely allocation of vaccines to different population groups
becomes necessary in order to eliminate infectious diseases worldwide (Tebbens and Thompson,
2009). In that regard, Huang et al. (2017) provide a retrospective study over 2009 HIN1 pandemic
by developing deterministic optimization models to ensure fair and equitable allocation of vaccines
through first determining coverage levels of each region and then finding an allocation plan within
certain tolerance from the targeted levels.

Golan et al. (2020) conduct a comprehensive literature review that focuses on the resilience of
vaccine supply chains, and point out that the lack of network-based, modeling-based, quantitative
analysis is a major gap that needs to be bridged in order to create methods of real-time analy-
sis and decision tools for the COVID-19 vaccine supply chain. For COVID-19 specifically, Bubar
et al. (2020) discuss strategies for vaccine prioritization among different population groups; Babus
et al. (2020) estimate occupation-based infection risks and use age-based infection fatality rates in
a model to assign priorities over populations with different occupations and ages; Bertsimas et al.
(2020) capture vaccine effects and the variability in mortality rates across sub-populations, and
then integrate a predictive model into a prescriptive model to optimize vaccine allocation; Chen
et al. (2020) focus on how priority and population groups should be identified over time under
limited supply. Nevertheless, as the majority of the literature is focusing on COVID-19 vaccine al-
location, few studies develop mathematical approaches for solving the operational problems related
to vaccine distribution. Among them, Bertsimas et al. (2021b) optimize vaccine site selection and
the assignment of population to different sites while ensuring optimal subsequent vaccine allocation.
They show that the proposed solution achieves critical fairness objectives and is also highly robust
to uncertainties and forecasting errors. Different from most of the existing COVID-19 vaccine al-
location studies, in this paper, we study a broader class of vaccine-related operational problems
involves locating facilities to produce or store vaccines and shipping them to demand locations in

a daily basis with inventory and unmet demand (i.e., lost sales or backlogging) being considered.



This study is closely related to the literature of facility location under uncertainty, which uses
different approaches depending on the available information about the uncertain demand (Snyder,
2006). When the distribution of the uncertain parameter is known or can be estimated accurately,
the facility location problem can be modeled as a stochastic program by optimizing the expected
total cost in its risk-neutral setting (Shen et al., 2011; Bidhandi and Yusuff, 2011; Tolooie et al.,
2020). In contrast to the generic stochastic facility location models, in certain problem settings
as in this study, operational decisions may need to be integrated into this strategic level problem
Schiitz et al. (2009); Georgiadis et al. (2011). This study extends this line of research by determin-
ing facility location and capacity decisions with inventory, shipment and unmet demand amounts
within a two-stage stochastic programming framework, while providing extensions of this model
to address more complex settings that can involve inventory at distribution centers, lead time of
shipping and different types of distribution centers. On the other hand, when the distribution of the
uncertain parameter is not fully known (i.e. there exists ambiguity in the distribution), the decision
maker can be more conservative by optimizing the problem over the worst-case distribution, which
can be modeled using distributionally robust optimization (Lu et al., 2015; Basciftci et al., 2021).
Although these studies consider uncertain demand when planning facilities, an integrated decision
framework for optimizing the facility location decisions together with multi-period capacity alloca-
tion, inventory control and resource distribution plans has not been studied under distributional
ambiguity of the multivariate demand, due to the modeling and computational complexity. Thus,
this paper also presents contributions to the facility location literature by addressing this complex

setting with a distributionally robust optimization approach.

3 A Stochastic Programming Approach

In this paper, we consider the distribution of vaccines or test kits in a given region as a capacitated
facility location problem involving multiple periods of shipment planning. A decision maker may
need to solve the problem for either national- or state-level operations, to distribute manufactured
vaccines and test kits to different states or counties from located DCs. Here, the DCs could also be
the manufacturing sites, as manufactures can dispatch productions to states or to counties directly.
In addition, the federal or state governments can act to open up new DCs to improve the efficiency
of operations and increase demand coverage.

Denote Z, J, T as the sets of potential sites for locating DCs, demand locations and finite
periods, respectively. Let ¢, c?, ijw C}Lp cJI-t be the cost of operating DC 4, unit cost of installing
capacities in DC ¢, unit shipping cost from DC i to demand site j in period ¢, unit penalty cost of
unsatisfied demand and unit cost of inventory at demand site j in period ¢, forall: € Z, j € J, t €
T, respectively. (Varying cost parameter c;‘t can help ensure fair resource distribution to prioritized
demand locations based on their demographics and infection status over time.) Denote B; as the
total capacity of manufacturing resources across all DCs in period t for all t € T, determined by
the total amount of raw materials, space, workers, etc., needed for manufacturing the resources

during each period. Let d be the vector of uncertain demand (i.e., the number of people who



need to be vaccinated or tested) and P be its probability distribution. We use the Monte Carlo
sampling approach (Kleywegt et al., 2002) to replace P with an empirical distribution constructed
using 2| scenarios with each scenario w € ) having an equal probability p* = 1/|€2|. We consider
a finite set ) of realizations of the random vector d. Specifically, for each scenario w € 2, we
use dj;(w) to represent the demand realization at site j in period ¢ for all j € J and ¢t € T, and
therefore d = [dj;(w), w € Q, j € J, t € T]". Throughout this paper, bold letters are used for
representing vectors and matrices. For notational convenience, we also use notation [m] to indicate
set {1,...,m}.

We define binary variables x; € {0,1}, Vi € Z such that z; = 1 if DC ¢ is built, and z; =
0 otherwise. For each built DC ¢ and period t € T, we also decide its capacity h;; > 0 for
manufacturing or storing resources. Both variables & and h are planning decisions and their values
need as determined before realizing uncertain demand d. For each scenario w € €2, we define
variables s;5;(w) > 0 as the amount of resources sent from DC i to demand location j in period t,
forallieZ, j€ J, t e T. For each demand site j € 7, we allow to keep inventory if the received
resources are more than the total demand or to back order otherwise. In particular, we assume that
people who cannot receive vaccines or test kits in the current period will wait to be administered
in future periods. Accordingly, we define variables I;;(w) > 0 and u;;(w) > 0 as the inventory and
backlog recourse variables for each j € J,t € T, and w € Q. Moreover, input parameters I;p and
ujo denote the initial inventory and backlog at demand location j for all j € J, whose values are
the same across all scenarios.

We first employ a two-stage stochastic mixed-integer linear programming (SMIP) framework
to formulate the problem, where in the first stage, we decide values of variables x; and h; for all
i €Z, t € T. In the second stage, given each demand value d;;(w), we optimize the corresponding

shipping and inventory plans using variables s;j:(w), Ijt(w) and uj(w) for each scenario w € €.
The SMIP model is given by:

min Zch + Z clhi + Z P Z ciisije(w) + Z (c]I Iy (w) + c;tujt(w)) (1a)

i€T i€ teT weQ i€L,jeT teT JET teT

s.t. hit S Mixi, Vi € I, te T, (].b)
> hi <Bi, VteT, (1c)
icT
> sijtw) <hi, Vi€ teT, weq, (1d)
JjET
Z sije(w) + Li—1) (W) + ujt(w) = dje(w) + Lie(w) +uje—1)(w), Vi€ T, teT, we, (le)
ieT
T; € {O, 1}7 hit; sijt(w), Ijt(w), th(w) > O, Vi € I, j S j, te T, w € Q, (lf)

where the objective function (1a) minimizes the total cost of opening DCs, installing their capacities,
and the total expected cost of shipping, holding inventory and back-orders. Constraints (1b)
prohibit assigning any capacity to a DC that is not in use, where M; is the capacity limit of the

DC i for all 1 € Z. Constraints (1c) impose temporal limitation on the total production capacity



of all DCs. Constraints (1d) link the first-stage variables with the second-stage recourse decisions
such that the total shipment from each DC is no more than its installed capacity during any period
in any scenario. Constraints (le) are “flow-balance” constraints to reflect the changes of inventory
and back-order levels, depending on the amount of resources received and demand level at each site
j, for each period t in each scenario w. Constraints (1f) require binary valued x-variables and set

all the other variables to be non-negative.

3.1 Model extension I: Inventory at DCs

When the costs of production capacity (cf.) and shipment (ijt) are time-independent, it is without
loss of generality to assume that there is no inventory kept in DCs because those additional products
can be shipped to and stored at customer sites. However, if these costs vary over time, it may be
beneficial to keep some products in DCs and ship them in the future. In this case, we define
additional variables I?(w) as the inventory at DC i in period ¢ with scenario w for all i € Z, t €

T, w € Q. Accordingly, Constraints (1d) can be modified as follows:

S sigew) + IR W) = ha + 15 (), Vi€ T, teT, we,

JjeTJ
where I (w) = I, Yw € Q is the (given) initial inventory at DC i. Moreover, the objective
function (1a) can be recast as

min Zcf:ci + Z M+ Zp“’ ( Z CijeSije(w) + Z il IE (W) + Z (cJI-tht(uI) +c;§ujt(w))> ,

i€T €L, teT weN i€EL,jETLET €L teT JETLET

where ciItD is the unit inventory cost at DC 4 in period t for alli € Z, t € T.

3.2 Model extension II: Lead time for shipping

The SMIP model (1) assumes that there is no lead time when shipping from DCs to demand
locations. In the case of a constant lead time for every DC and demand-location pairs, we can
simply shift the optimal production and shipment plans accordingly. However, if the lead time
varies by location, it is worthwhile to add lead time into our model. We denote L;; as the lead time
in sending resources from DC i to customer location j for all ¢ € Z, j € J. Then, Constraints (le)

can be adjusted to

Z Sij(t—Li;) (W) + Lit—1(w) + uje(w) = djr(w) + Lip(w) + uje—1(w), Vi €T, t €T, we Q.
iEI:tZLij

(2)

3.3 Model extension III: Different types of DCs

In practice, the total demand could be satisfied by multiple types of resources, and the DCs may
have different processing, stocking and distributing costs, depending on their specialties. In such a
setting, one can differentiate DCs in terms of their unit production, shipping and inventory costs



and capacities by the types of resources they hold and distribute. For this purpose, we define £
as the set of resource types with different requirements and let x; variable to be 1 if DC i of type
[ is built, and 0 otherwise. Similarly, we extend capacity h;y, shipment s;j4(w), inventory Iy(w),
unmet demand w4 (w) decision variables and their associated costs to this setting by incorporating
the type index [. We further introduce a new decision variable thl (w) for representing the amount
of the total demand in location j at time ¢ satisfied by the product type [. The resulting extension
of SMIP model (1) is given by:

min E chra + E c?l R

i€Z,lel €T teT ,leL
+ o p” > Snsin@)+ D> (alin(w) + Sfyujn(w)) (3a)
weN i€L,jeTJ teT,lel JET teT,lEL
sit. hiyy < Myxy, YieZ, teT,leL, (3b)
> hiu < By, VteT, (3¢)
i€T,leL
> siju(w) <hin, VieL, teT, leL, we, (3d)
jeT
Z siju(w) + Lig—1y(w) + ujn(w) = thl(w) + Lin(w) +ujp—1yp(w), Ve T, teT, leLl, we,
ieT
(3e)
Y dju(w) =dp(w), Vi€T, teT, we, (3f)
lel

Zi € {0, 1}, hi, sijtl(w), Ijtl(w), thl(w), djtl(w) >0, Viel, j € J, le E, te T, w € . (3g)

Constraints (3e) satisfy the inventory and shipment relationship for each demand location, planning
period, product type and demand realization, whereas Constraints (3f) ensure that the total demand

is partitioned into different types of resources.

4 A Distributionally Robust Optimization Approach

The stochastic programming approach introduced in Section 3 assumes that the distribution of the
underlying uncertainty is perfectly known and one can have access to a large amount of samples
from the true distribution. However, these may not be true in practice, specifically during a
pandemic, where the distribution may be misspecified under limited information. To model this
type of distributional ambiguity, we consider a distributionally robust optimization model, in which
optimal solutions are sought for the worst-case probability distribution within a family of candidate
distributions, called an “ambiguity set” and denoted by P. We denote the random demand vector
by & =[dj, jeJ, te 71" and the unknown probability distribution by P. A distributionally
robust analogous model of the SMIP model (1) is:

- 0. hp
min Z clx; + | Z cthis + %Ea%{E[g(h, &) (4a)
i€T €L teT
st. hy < Myx;, VieT, te T, (4b)



> hi < By, VteT, (4c)

€T
z; €{0,1}, hyy >0, VieZ, teT, (4d)
where
g(h, &) = min Z CiieSijt + Z (CJI‘tI't + cyue) (5a)
€L, jET ET JETLET
st Y s <hi, Vi€, teT, (5b)
jeg
Z sijt + Lj—1) +uje = &e + g +uj—1), V€T, t€T, (5¢)
i€l
Sijt, Ij,ta Ut 20, V’i€I, jGj, teT. (5d)

The objective function (4a) minimizes the cost of opening DCs, installing their capacities, and the
worst-case expected cost under the set of candidate distributions in the ambiguity set P. The inner
problem (5) corresponds to the second-stage problem and minimizes the total cost of shipping,
holding inventory and backlogging given first-stage decision h.

To express the form of uncertainty in distribution, two main classes of ambiguity sets can be
defined for distributionally robust optimization models. They are (i) statistical distance-based am-
biguity sets that consider distributions within a certain distance to a reference distribution (Jiang
and Guan, 2016; Mohajerin Esfahani and Kuhn, 2018), and (ii) moment-based ambiguity sets that
consider distributions based on moment information (Delage and Ye, 2010; Zhang et al., 2018a).
Since a reference distribution is essential in constructing the former class of ambiguity sets, such a
distribution might be misleading in the case of a pandemic with abrupt and unprecedented changes
in events and requires further data points to ensure its accuracy with a high level of confidence.
Therefore, we focus on the moment-based ambiguity sets for describing possible distributions cor-
responding to the underlying demand uncertainty. To construct our ambiguity set, we bound a
set of moment functions of £ by certain parameters. Specifically, we consider m different moment
functions f := (f1(£),..., fm(€))T. We assume that the random vector € has a finite support set
S containing possible realizations S = {51, e }, for a given distribution P. In this paper, we
consider a finite support set for computational tractability. If using continuous support sets, the
reformulation of the problem becomes as a semi-infinite integer program with an infinite number
of constraints and mixed-integer binary variables, and thus cannot be optimized directly using the
state-of-the-art solvers. For example, Zhang et al. (2018b) develop approximation algorithms for
solving 0-1 semi-definite program for the problem of distributionally robust surgery planning and
we leave the continuous support case for our problem for future research but will test different sizes
of the discrete support case to justify its proximity and result sensitivity.

Consequently, we reformulate E[g(h, £)] as Eke[K] prg(h, €F) and the inner problem (5) can be
represented for each realization from the set {£!, ..., €%}, Then for each s € [m], the corresponding
moment function fs(€) =[] jeTteT 5?;”, where kgj; is a non-negative integer indicating the power

of &j; for the s-th moment function. The lower and upper bounds are defined by I := (ly,.. ., In)T



and w := (ug,...,un)", respectively. Correspondingly, we specify the ambiguity set P as follows.

P=qPeRI[1< ) mf(€) <uy. (6)
ke[K]

Note that to guarantee that the ambiguity set (6) defines a set of probability distributions, one
of the moment functions of f and its corresponding lower and upper bound values Is, us, can be
set as Y ke[k] Pk = 1. The following theorem demonstrates a reformulation of Model (4) given the

moment-based ambiguity set in (6).

Theorem 1. If the ambiguity set defined in (6) is non-empty, then Model (4) can be reformulated

as a single-level problem in the form:

min Z S + Z c?hit —a'l+8u (7a)
1€T i€ teT

s.t. (4b)—(4d)
(—a+B)Tf(€F) > g(h, &), Wk € [K], (7b)
a, B8>0. (7¢)

Proof. Explicitly stating the constraints in the ambiguity set P, we first express the inner maxi-

mization problem as

max Z prg(h, €F) (8a)
ke[K]

st S mfE) =1, (8h)
ke[K]

> mef(€h) <, (8¢)
ke[K]

pr >0, Vk € [K]. (8d)

Letting a, B be the dual variables associated with the lower- and upper-bound constraints in (8),

respectively, we obtain its dual formulation as

min —a'l+8"u (9a)
st (—a+B) f(€) > g(h, &), Vk € [K], (9b)
a, B8>0. (9¢)

Following the strong duality between (8) and (9), and replacing maxpep > _re(r) Prg (R, £F) with (9)

in the outer optimization problem (4), we obtain the desired result. ]

Denote the empirical first and second moments of the uncertain demand parameter at location

10



j and period t as pj; and Sj;, respectively. We examine a special form of ambiguity set (6), where
for the first and second moments of each demand parameter, we consider their lower and upper

bounds as follows:

P:{peR§|2pk:1, (10a)

ke[K]
G — el < E<up+e, vjed, teT 10b
Hjt gt = pk&;t > Mgt Nz J € ) € ) ( )
ke[K)]
Sjtﬁjst S Z pk(gjkt)z S Sjtgfta v] S ja te T} (100)
ke[K]

Here, Constraint (10a) is a normalization constraint to ensure that {pj}rex] form a probability
“w
jt
mean fi;;, and constraints (10c) bound the second moment of parameter &;; via scaling the empirical
second moment Sj; with parameters 0 < gft <1< é}-gt for all j € J, t € T. We note that under the

distribution. Constraints (10b) bound the mean of parameter £;; in an €’ ,-interval of the empirical

perfect knowledge assumption of first and second moment information, the robustness parameters

can be set as e?t =0,and €}, =€}, =1, for all j € J, t € T. Under the uncertainty of a pandemic,

adjusting these parameters helps decision makers make inferences for representing spatiotemporal
demand by considering different phases of the pandemic and taking into account potential deviations
from predictive results.

To obtain a mixed-integer linear programming reformulation of the single-level formulation (7)
given ambiguity set (10), we first describe some intermediate steps and results. In this regard, we

analyze certain properties of the function g(h, £¥).
Proposition 1. Function g(h,£") is a convex piecewise linear function in h for every k € [K].

Proof. First, note that problem (5) is always feasible as it has complete recourse. Letting 6;;, ;¢

be the dual variables, we obtain the dual of problem (5) as follows.

T
max Z Z hitbir + Z ngkﬂjt + Z(ﬁ?ﬁ +ujo — Ljo)vj1 (11a)

i€ teT JEJ t=2 JET

st O+ <y, Viel, jeJ, teT, (11b
— Vit + V1) < le‘ta vied, te[lT 1],
—yr < cip Vi€ J,
Vit = Vi) < Ciy Vi€ T, te [T 1],
Yir < cip Vi € T,
0 <O0VieI teT. (11g

As the dual problem (11) is feasible, at least one of the optimal solutions of this problem is at one

of its extreme points. Considering the fact that objective function of this problem is linear in h, the

11



resulting optimal objective value can be represented as the maximum of the extreme-point-based

function values. Hence, g(h, Ek ) becomes a convex piecewise linear function in h. ]

Lemma 1. Denote g(h,£) by a compact form miny{c"y : Ay > h,Dy > f}. Then, set
T! := {(h,m) : g(h,&") < m} for each £&* € S has a polyhedral representation Y2 := {(h,m) :
Jyst.c'y<m, Ay>h, Dy > f}.

Proof. Demonstrated in Proposition 1, g(h,£&¥) is a convex function. Consider any (h,m) € Y.
The optimal solution of g(h,&¥), say y!, satisfies ¢'y! < m, Ay' > h,Dy' > f, proving that
(h,m) € Y2, For the other direction of the proof, consider any (h,m) € Y2. Then, there exists a
vector y? such that it satisfies ¢! y? < m, Ay®? > h, Dy? > f. As y? is a feasible solution of the
problem miny{c"y : Ay > h, Dy > f}, g(h,£&") < c¢"y? < m, and therefore, (h,m) € T1. O

Combining Lemma 1 with the single-level formulation (7), we propose a mixed-integer linear

programming reformulation of Model (4) as follows.

Theorem 2. Using the ambiguity set defined in (10), Model (4) is equivalent to the following

mixed-integer linear program:

; h 2 24,8
min Z C;-):L‘i + Z C; hit — a1 — Z azjt(ﬂjt — 6715) — Z Oé3jt(,ujt + th>§jt

€L €L LET JET T JET teT
FB+ D Bl ei)+ Y Bap(pd + o3)ey (12a)
jeTteT jeTieT

st (4b)(4d)
—ar B+ Y Gil—agie+ B+ Y (§) (—azse + Baye) > ®F, Vk € [K], (12D)

JETET JET LT
ok — Z ijtsfjt + Z (c§tlﬁ + C}Ltuft) , Vk € [K], (12¢)
€L, jeT ET JETET
> shy <hig, VieI teT, Vke K], (12d)
JjeJ
Dot Loy Tl = €+ D+, Vi€ T, teT, Vhe K], (12¢)
€L
sy I, Wb, >0, VieT, jed, teT, Vke K], (12f)
a, 8>0. (12g)

Proof. To obtain the mixed-integer linear programming reformulation, we first revise the single-level
formulation (7) under the ambiguity set defined in (10). Then, we derive a polyhedral representation
of the set {(h,m) : g(h,&*) < m} where m is the left-hand side of constraint (7b). Using Lemma
1 and the definition of the function g(h, &), we derive the resulting formulation (12). O
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5 Case Studies of COVID-19 Vaccine and Test Kit Distribution

In this section, we present two comprehensive case studies of the presented optimization frameworks
to conduct resource distribution under uncertain spatiotemporal demand for COVID-19 testing
and vaccination. In Section 5.1, we consider COVID-19 vaccine distribution in the US, and in
Section 5.2, we consider COVID-19 test kit distribution in the State of Michigan. For both types
of instances, we compute solutions of three different approaches, namely, the deterministic (DT)
approach where the SMIP model (1) only contains one representative scenario in set €2, which can
be the mean values of demand, the stochastic programming (SP) approach described in Section 3,
and the distributionally robust optimization (DRO) approach described in Section 4. For the SP
and DRO approaches, we construct the optimization models based on 100 in-sample scenarios that
are independently and identically generated from a given nominal distribution of the demand, and
parameters in the nominal distribution follow estimated demand mean and variance based on real-
world COVID-19 infection data in the corresponding regions of interest that we will describe later.
Different solutions will be evaluated in out-of-sample scenarios to see their performance in terms of
operational cost and possible lost sale/backlog (if demand values in the out-of-sample tests become
extremely high). Note that the out-of-sample scenarios can be generated from the same nominal
distribution for generating the in-sample data, or be a different one. The latter represents the case
when future infection trends and thus future demand values become significantly different from
what has been observed. We will test both cases in Section 5.1.2 to examine how the differences in
data-generating distributions affect the solution performance. We will also describe details about
how to generate out-of-sample scenarios and the results for the vaccine-distribution instances and
test-kit distribution instances separately.

We use Gurobi 9.0.3 coded in Python 3.6.8 for solving all mixed-integer programming models.
Our numerical tests are conducted on a Windows 2012 Server with 128 GB RAM and an Intel 2.2

GHz processor.

5.1 Vaccine Distribution in the US
5.1.1 Experimental design and setup

We test different vaccine-allocation phases following the government and CDC’s guidelines, where
in the earlier phases only healthcare workers and prioritized population groups (e.g., seniors more
than 65 years old) are targeted for vaccination and in the later phases, larger segments of the
population are recommended for vaccination to stop virus transmission. Specifically, we follow a
recent epidemiological study by Wang et al. (2020) and consider three phases to distribute the
vaccines, aiming to vaccinate 6.18%, 41.97%, 51.85% of the overall adult population in the US,
respectively. We also take into account certain levels of vaccine hesitancy in the population during
each phase, and follow the results by Malik et al. (2020) who surveyed the US adult population
to understand the acceptance of COVID-19 vaccines, among 10 Department of Health and Human
Services (DHHS) regions listed below.
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e Region 1 — Boston (Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and

Vermont);
e Region 2 — New York (New Jersey, New York, and Puerto Rico);

e Region 3 — Philadelphia (Delaware, District of Columbia, Maryland, Pennsylvania, Virginia,
and West Virginia);

e Region 4 — Atlanta (Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South

Carolina, and Tennessee);
e Region 5 — Chicago (Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin);
e Region 6 — Dallas (Arkansas, Louisiana, New Mexico, Oklahoma, and Texas);
e Region 7 — Kansas City (Iowa, Kansas, Missouri, and Nebraska);
e Region 8 — Denver (Colorado, Montana, North Dakota, South Dakota, Utah, and Wyoming);
e Region 9 — San Francisco (Arizona, California, Hawaii, Nevada);
e Region 10 — Seattle (Alaska, Idaho, Oregon, and Washington).

We select the representative cities in the DHHS regions as our demand sites, which aggregate the
demand in each region. Based on the acceptance rate estimates and sample sizes of the surveys
conducted by Malik et al. (2020), we compute a 90% confidence interval of the acceptance rate for
each region, depicted in Table 1. We then multiply these values by the total adult population in
each region to obtain lower and upper bounds on the number of people to be vaccinated. As each
person needs to get two doses of vaccines, we multiply these bounds by 2 to determine the number
of doses needed (i.e., potential demand). To represent the demand uncertainty, we sample scenarios
following uniform distributions between the demand lower and upper bounds (i.e., g fiji). Table
2 summarizes the mean values of the estimated demand during the three phases for each DHHS

region.

Table 1: Confidence intervals of COVID-19 vaccines’ acceptance rates in 10 DHHS regions

Regions Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 Region7 Region 8 Region 9 Region 10
Acceptance 68.06% 43.14% 72.04% 59.76% 39.13% 74.42% 72.22% 80.00% 67.61% 70.00%
90% CI LB 59.02% 31.73% 64.39% 50.85% 22.39% 68.95% 54.86% 65.29% 58.47% 60.99%
90% CI UB 77.09% 54.55% 79.70% 68.66% 55.87% 79.89% 89.59% 94.71% 76.74% 79.01%

Table 2: Estimated demand mean values during the three phases in 10 DHHS regions

Regions Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 Region 7 Region 8 Region 9 Region 10 Total

Phase 1 1.0M 1.3M 2.2M 3.9M 2.0M 3.0M 970.0K 920.4K 3.3M 968.5K  19.4M
Phase 2 6.8M 9.0M 14.7M 26.3M 13.4M 20.1M 6.6M 6.3M 22.6M 6.6M 132.4M
Phase 3 8.4M 11.2M 18.2M 32.56M 16.6M 24.8M 8.1M 7.™ 27.9M 8.1M 163.5M
Total 16M 22M 35M 63M 32M 48M 16M 156M 54M 16M 316M
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As the sizes of populations to be vaccinated vary during different phases, we assume the lengths
of the three phases to be 1, 2, and 3 months, respectively, with one period in our models being 2
weeks, and the demand of each phase is evenly distributed for each period. To determine candidate
locations for siting DCs, we first consider the ones being used for vaccine production in the US
currently. There are 5 DCs used by Pfizer-BioNTech and Moderna in the US. As these facilities
are already available, we set their corresponding x-values to 1 in all the models in the default case,
and examine two more cases with this restriction being relaxed or strengthened later. We select
representative cities of the 10 DHHS regions as potential locations to open additional DCs, and
Table 3 depicts all 15 DC locations and 10 demand locations. For each DC ¢ € Z, we calculate the
capacity upper bound M; by assuming the daily maximum production to be 500,000, 750,000 and
1,000,000 doses for Phases 1, 2 and 3, respectively, as manufacturers will raise their daily production
capacity as the demand increases. For each ¢t € T, the temporal capacity of manufacturing vaccines
B; is set as the sum of the maximum capacities over all DCs. We also examine the case when
the supply chain of vaccines experiences certain disruptions and set the corresponding temporal
capacities By as 10% of the normal capacities. The operating cost ¢? for each DC i € 7 is estimated
as 10000 times the local unit warehouse rental price per square foot, by assuming a standard
warehouse is about 10000 square feet. The unit capacity cost czh is set as $25 for each i € Z,
which is the average market price of one dose of COVID-19 vaccine. The unit inventory cost cjl-t is
estimated as the sum of low-temperature inventory cost and energy cost of common refrigerators
for storing vaccines, which is $0.00008 for each j € J, t € T. The unit shipping cost cij for
each region j € J and supplier i € Z consists of two parts: The first part is the shipping cost
for trucks calculated as $3 per mile times the distance traveled from 4 to j in miles divided by
230,400, following the fact that each truck on average can carry 230,400 doses of Moderna vaccines
(Moderna, Inc., 2021), and the second part is the refrigerated trucks’ overall cost per liter of vaccine
transported (PATH, World Health Organization (WHO), 2013). Via sensitivity analysis of different
penalty values for unit demand shortage, the penalty cost cj;, of each unit of unsatisfied demand is
set to $100. The sources used for estimating these parameters are further summarized in Table 13

in the Appendix.

5.1.2 Sensitivity Analysis

We employ DT, SP, and DRO approaches to optimize facility location and resource distribution
for Phases 1, 2, and 3, based on the same in-sample data. At the default setting, we randomly
sample 100 scenarios (i.e., K = 100) for the in-sample computation from a uniform distribution
with the upper and lower bounds calculated based on Table 1. For DT, we set demand mean values
wjt, 3 € J, t €T as the empirical mean values of the 100 in-sample scenarios. For DRO, we set
?t = 0.545¢, and bounding parameters in (10c) as gft = 0.1, Eft =2
for all j € J, t € T. The SP approach uses all the 100 scenarios to form set € in the SMIP

model (1) and the DRO approach uses the in-sample scenarios as its support set for computing

parameter eé‘t in (10b) as €

Phase 1’s solutions. We independently generate 1000 out-of-sample scenarios for evaluating solution

performance of the three approaches. In the last three columns in Table 3, we display the DCs that
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Table 3: Locations of 10 customers sites, 15 candidate DCs and optimal solutions for Phase 1
given by Deterministic (DT), Stochastic (SP) and Distributionally Robust Optimization (DRO)

approaches

City

Customer sites

Status of candidate DCs

DT SP DRO

Kalamazoo, MI
Pleasant Prairie, WI
Bloomington, IN
Norwood, MA
Saint Louis, MO
Boston, MA
New York City, NY
Philadelphia, PA
Atlanta, GA
Chicago, IL
Dallas, TX
Kansas City, KS
Denver, CO
San Francisco, CA
Seattle, WA

Region 1
Region 2
Region 3
Region 4
Region 5
Region 6
Region 7
Region 8
Region 9
Region 10

already opened
already opened
already opened
already opened
already opened
candidate
candidate
candidate
candidate
candidate
candidate
candidate
candidate
candidate
candidate

v

(\
(\
ENEN

AN N N N NN
\
ENENENENENEN

<~

are open (in addition to the existing 5 DCs) in the optimal solutions of the three approaches for

Phase 1’s problem.

To evaluate the impact of data-generating distributions, we present the in-sample and out-of-

sample performance of the three approaches using normal and uniform distributions in Table 4,
where in the normal distributions, we set the mean values to (Hj .+ Hjt)/2 and set the standard
deviation to (fj; — Iz t) /6, respectively. The in-sample and out-of-sample scenarios are generated
according to the same distributions in Table 4. We also record the percentage changes of the out-of-
sample cost compared to the in-sample cost in the bracket. In practice, it is possible that the true
data follows a distribution that is different than what we assume and therefore, we generate some
out-of-sample scenarios by shifting an assumed distribution to the right. (That is, the true distri-
butions have mean values of 1.01y;; with pj; being the mean values of the assumed distributions.)

The corresponding results are summarized in Table 5.

Table 4: In-sample and out-of-sample performance comparison of the three approaches using dif-
ferent demand distribution assumptions and unshifted mean values.

Unmet Demand Overall Cost

Distribution Approach

In-sample Out-of-sample In-sample Out-of-sample

DT 0 20K 97T™M  100M (+2.15%)

Normal SP 3K 3K 98M  98M (+0.02%)
DRO 0 34 99M  99M (+0.003%)

DT 0 294K 489M  518M (+6.02%)

Uniform SP 72K 73K 504M  504M (+0.02%)
DRO 6 752 520M  520M (40.01%)
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Table 5: In-sample and out-of-sample performance comparison of the three approaches using dif-
ferent demand distribution assumptions and shifted mean values.

Distribution  Approach Unmet Demand Overall Cost
In-sample Out-of-sample In-sample  Out-of-sample
DT 0 29K 97TM  100M (+3.01%)
Normal SP 3K 5K 98M 99M (+0.21%)
DRO 1 28 99M  99M (40.003%)
DT 0 3M 489M  767M (456.89%)
Uniform SP 72K 2M 504M  656M (+30.21%)
DRO 6 784K 520M  599M (+15.08%)

From Table 4, the gaps between the out-of-sample and in-sample objective costs given by the
DRO approach are the smallest across all three approaches and are always within 0.01%, while
the DT approach attains the highest gaps at 6.02% when assuming uniformly distributed demand.
These gaps further increase in Table 5 due to the inconsistency of assumed and true distributions.
Notably, even with shifted means, the DRO approach can still achieve an objective cost gap of
0.003% when assuming Normal distributed demand, showing the result robustness when having
distributional ambiguity. Comparing the two demand distribution assumptions, following the Nor-
mal distribution generates much smaller in-sample and out-of-sample gaps. This is mainly because
most of the scenarios generated by the Normal distribution are centered around the mean, and even
with shifted means, the in-sample and out-of-sample scenarios are close to each other. However,
when using the Uniform distribution to generate demand samples, scenarios are scattered between
lower and upper bounds uniformly, and shifting the bounds can change scenarios significantly. Be-
cause of that, we only assume Normal distribution as the true demand distribution in the testing
kit distribution problem in Section 5.2.

Next, we vary the number of in-sample scenarios K from 10 to 100, and present the overall
cost of the DRO approach on the same 1000 out-of-sample scenarios and the computational time
comparison in Figure 1. We also compare two different ambiguity sets in the DRO approach,
where in “First+Second Moment”, we use both first and second moments’ information (10b)-
(10c) to construct the ambiguity set, and in “First Moment”, we only use the first moment’s
information (10b). From Figure 1, using only the first moment can obtain nearly the same out-
of-sample performance as using both first and second moment information, and it scales better
with the number of in-sample scenarios K. As we include more in-sample scenarios in the discrete
support of the DRO approach, there are more choices for the inner-max problem to select the
worst-case distribution and thus we become more conservative. Although the out-of-sample cost is
fluctuating due to the differences between out-of-sample and in-sample scenarios, we can still see
an increasing trend from Figure la. In practice, to trade off between the computational complexity
and conservatism, one can choose a reasonable K between 10 and 100. In our test for solving Phases
2 and 3’s problems, we set K to 10 for DRO approach to produce solutions within a reasonable
time limit.

We also examine the impact of the bounding parameters in the DRO approach, where we present
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Figure 1: Out-of-sample cost and CPU time of the DRO approach with varying K over different
ambiguity sets.

the out-of-sample performance with varying €, in Figure 2a, and the out-of-sample performance

with varying eq in Figure 2b, respectively. From Figure 2, the out-of-sample cost is not very
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Figure 2: Out-of-sample cost and unmet demand changes with varying ¢, and eg.

sensitive to both bounding parameters, as the percentage changes are all within 0.03%. When we
increase €g, there is an increasing trend in both unmet demand and overall cost because we enlarge

the ambiguity set and the results become more conservative.

5.1.3 Results

For solving problems in Phases 2 and 3, in order to obtain solutions for the DRO approach within
a reasonable time limit (e.g., 24 hours), we reduce the number of in-sample scenarios to 10 to form
the support set. Also, in our in-sample computation, we assume that the supply of vaccines matches
the demand and therefore try to minimize the unmet demand only against its uncertainty rather

than also taking into account resource scarcity. We present the unsatisfied demand and overall cost
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of different approaches under full and scarce resources (the latter being 10% of the former) in Table

6, where we mark the percentage increase compared with the optimal one in parentheses. The last

column in Table 6 records the in-sample computational time in seconds for each method.

Table 6: Out-of-sample performance of different approaches in terms of unmet demand and overall
cost for Phases 1, 2, 3 of vaccine distribution in the US.

Phases  Approach Unmet Demand Overall Cost Time (sec.)
Full Resource Scarce Resource Full Resource Scarce Resource
DT 372K (+1.26 x 10'%) 372K (+5.31 x 103%) | $524M (+4.11%) $524M (+4.04%) 0.1
Phase 1 SP 64K (+2.11 x 10°%) 68K (+8.85 x 10%%) $503M $503M 6.5
DRO 3K 7K | $516M (+2.50%) $513M (+1.95%) 2148.8
DT 2M (+2.37 x 103%) 173M $4B (+4.42%) $19B (+8.13 x 10°%) 0.1
Phase 2 SP 166K (+77%) 173M $3B $198 1.3
DRO 94K 173M $3B (4+0.40%) $19B (+4.67 x 107°%) 903.2
DT 3M (+7.38 x 10°%) 131M $4B (+4.40%) $16B (+4.23 x 10~*%) 0.2
Phase 3 SP 313K 131M $4B $16B 2.5
DRO 450K (+43%) 131M $4B (+0.39%) $16B (+7.43 x 1074%) 907.2

From Table 6, in Phase 1, DRO obtains the least amount of unsatisfied demand and the second
highest cost overall, while DT performs the worst in terms of both demand satisfaction and overall
cost. In terms of the overall cost, SP always outperforms the other two approaches. This is because
in the ambiguity set (10), we allow deviations from the predictive results pj;, Sj; and the worst-
case scenario usually achieves a demand mean higher than the empirical mean p;;. Compared to
SP model, DRO always produces a higher manufacturing capacity against the worst-case scenario
(as can be seen from Tables 14-15) and thus leads to a higher overall cost but lower unsatisfied
demand. When facing scarce resource (i.e., 10% of the regular capacity), the results do not change
significantly in Phase 1 because all three approaches do not use up all the resources. However, when
the resource capacity becomes tight (e.g., in Phases 2 and 3), the differences between the three
approaches are almost negligible as there is not much flexibility in making different production and
shipment plans due to limited temporal resources. We note that the raw cost breakdowns of each
approach are detailed in Tables 14 and 15 in the Appendix. Next, we focus on the analysis of
optimal solutions of different methods under the setting of full resources.

The average shipments in the optimal solutions of SP and DRO for Phase 1’s vaccine distribution
are presented in Figures 3 and 4, respectively. From Figure 3, seven DCs are selected in the optimal
solution, and among them four are in regions with high demand volumes, and three are from the
existing Pfizer-BioNTech and Moderna open DCs. On the other hand, the other two existing DCs
do not produce or ship any vaccines either because they are too close to some other open DCs in
the optimal solution or they reside in the areas having low demand volumes. Moreover, the top five
largest shipments are from DCs to their nearest demand sites (i.e., New York City to Philadelphia,
Pleasant Prairie to Chicago, Saint Louis to Kansas City, Dallas to Denver, and San Francisco to
Seattle), and each requires up to five trucks if fully occupied and the delivery time will be all within
two days. All the other longer-distance shipments are in smaller volumes, requiring only one truck.
For example, the longest-distance shipment is from Norwood to Seattle, which may take 4 to 5

days, but it only carries 25 doses of vaccines. Comparing Figure 4 with Figure 3, DRO selects more

19



15M[ T 63M

Y | ontario [Total demand

= > Shipping flow

5 25

Seattle 7N [ 1,000,000

y . 2,000,000

N Brunswick 3,000,000
s Ny f 3791848

' IDCs / Customer sites

y s W DCs
t ) s/ Bosfon @ Customer sites

orwood

Denver — New York City
ansas Ci iladelphia

at Vigfia

Mexico

2021 At & Oparssatap

Figure 3: Average shipments of Phase 1’s vaccines in 1000 out-of-sample scenarios given by the
optimal solution of the SP approach. The background color of 10 DHHS regions indicates the total
demand across all three phases where darker color represents higher demand volume. The black
and gray circles stand for open DCs and demand sites, respectively, while DCs located in New
York City, Atlanta, Dallas and San Francisco are also demand sites themselves and the sizes of
these black circles represent the amount of vaccines they produce for satisfying their own demand.
The black lines represent shipments from open DCs to demand locations with wider lines meaning
higher volumes.

DCs to open, among them only two are existing open ones. The number of shipment routes also
increases significantly. As San Francisco is not an open DC anymore, the largest shipment occurs
between Seattle and San Francisco and requires 8 trucks and 2 days to transit. The second and third
largest shipments are from Philadelphia to New York City and Norwood to Boston, respectively,
both requiring 3 trucks and 1 day.

Furthermore, we present Phase 1’s unsatisfied demand mean, standard deviation, and 75 to 95
percentile values in the 1000 out-of-sample scenarios according to the three approaches in Figure 5a,
and average unsatisfied demand percentages in each region in Figure 5b, respectively. From Figure
5, DRO attains the least amount of unsatisfied demand while DT performs the worst. Comparing
the results in different regions, Region 5 — Chicago does not meet over 4% of the demand in DT
approach, and Region 8 — Denver does not cover about 4% of the demand in SP approach, both of
which have relatively low demand volumes according to Table 2.

In the above results, we assume that the existing 5 open DCs for Pfizer-BioNTech and Moderna
have to be used but we can open additional ones if necessary. Next we examine two other cases
where we either relax this constraint and allow to open facilities in any DC location options, or only

open the 5 DCs. We refer to these two cases as the “best-case” and “most-restrictive” settings,
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Figure 4: Average shipments of Phase 1’s vaccines in 1000 out-of-sample scenarios given by the
optimal solutions of the DRO approach. The background color of 10 DHHS regions indicates the
total demand across all three phases where darker color represents higher demand volume. The
black and gray circles stand for open DCs and customer sites, respectively, while DCs located in
Philadelphia, Chicago, Atlanta, Dallas, Kansas City, Denver and Seattle are also demand sites
themselves and the size of these black circles represent the amount of vaccines they produced for
satisfying their own demand. The black lines represent shipments from open DCs to demand
locations with wider lines meaning higher volumes.

respectively, and compare their Phase 2’s results with the default setting in Table 7. In Column
“Overall Cost”, we display the total cost for each approach and present their percentage changes
from their corresponding costs in the default setting. The last column records the total number of

DCs open by each approach.

Table 7: Out-of-sample performance of different approaches for Phase 2 of vaccine distribution in
the US under different DC settings.

DC Settings Model Operating Capacity Shipping Inventory Penalty Overall Cost # DCs
DT $194K $3B $145K $259  $231M $4B 14

Default SP $175K $3B $126K $752 $17M $3B 13
DRO $107K $3B $545K $519 $9M $3B 8

DT $154K $3B $142K $260 $231M  $4B (—1.21 x 1073%) 10

Best-case SP $154K $3B $118K $744  $17TM $3B (40.01%) 10
DRO $204K $3B $473K $3K $7TM $3B (—0.08%) 14

DT $60K $3B $1M $143  $272M $4B (+1.19%) 5

Most-restrictive ~ SP $60K $3B $1M $522 $18M $3B (40.06%) 5
DRO $60K $3B $1M $455 $10M $3B (+0.03%) 5

From Table 7, after relaxing the constraints on the existing 5 open DCs for Pfizer-BioNTech
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Figure 5: Unsatisfied demand given by vaccine distribution in Phase 1 of different approaches.

and Moderna, both DT and SP reduce the operational and shipping cost in the best-case setting
due to better options of DCs to open. Moreover, the number of open DCs increases from 8 to
14 in the DRO approach because it has more freedom to choose DCs. In the best-case setting,
DRO opens more DCs than the other two benchmarks as the optimal solution is chosen against the
worst-case scenario where the demand mean is higher than the empirical one. Comparing the most-
restrictive setting where only the existing 5 DCs are open with the default setting, all approaches
have increased shipping, penalty and overall costs.

Next, we vary the resource scarcity level between 10% and 30% of the full capacity and present
the out-of-sample performance of different approaches for Phase 2 in Table 8. From the table, the
results with 30% scarcity level are similar to the ones with full capacity. When the scarcity level
decreases, the capacity cost drops while penalty and overall costs increase drastically. Moreover,
results of the three approaches are more similar given low capacity.

We also compare the vaccine allocation results given by the SP and DRO approaches with
the current vaccination distribution status reported by CDC (Centers for Disease Control and
Prevention, 2021c). From CDC’s website (Centers for Disease Control and Prevention, 2021b,a),
Pfizer-BioNTech has started to provide first-dose vaccines since December 14, 2020, while Moderna
started to ship first-dose vaccines on December 21, 2020. Consequently, we let December 14, 2020
be the starting date of our planning horizon and denote December 14, 2020 — January 11, 2021 as
Phase 1, January 11, 2021 — March 8, 2021 as Phase 2, and March 8, 2021 — May 31, 2021 as Phase
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Table 8: Out-of-sample performance of different approaches for Phase 2 of vaccine distribution in
the US under different resource scarcity levels.

Scarcity Model Operating Capacity Shipping Inventory Penalty Overall Cost

DT $194K $3B $145K $260  $231M $4B
30% SP $175K $3B $126K $752 $17M $3B
DRO $131K $3B $419K $536 $10M $3B
DT $194K $3B $150K $15 $2B $5B
20% SP $175K $3B $117K $14 $2B $5B
DRO $178K $3B $159K $12 $2B $5B
DT $105K $2B $48K $0 $17B $19B
10% SP $96K $2B $42K $0 $17B $19B
DRO $105K $1B $41K $0 $17B $19B

3. We report the total number of doses that our SP and DRO approaches have distributed and
CDC has delivered/administered by each checkpoint in Table 9 as of September 27, 2021. We note
that both of our SP and DRO models finish distributing vaccines by the end of Phase 3 (i.e., May
31, 2021) and as a result, the total number of doses distributed until September 27, 2021 remains
the same with the one until May 31, 2021, while CDC still distributes vaccines during this period.

Table 9: Total number of doses distributed in the optimal solutions of SP/DRO and CDC’s delivered
and administered data for each phase as of September 27, 2021

Approaches Until 1/11/2021 Until 3/8/2021 Until 5/31/2021 Until 9/27/2021
SP Distributed 20M 155M 321M 321M
DRO Distributed 21M 157TM 322M 322M
CDC Delivered 24M 116M 366M 472M
CDC Administered 9M 92M 296M 391M

From Table 9, compared with SP and DRO approaches, CDC allocates much more vaccine
doses in Phase 1 and but fewer in Phase 2. By the end of Phase 3, the SP and DRO approaches
have distributed about 321 millions of doses, which are much closer to the real demand (i.e., 296 M)
as reported by CDC’s administered data. As of September 27, 2021, CDC delivered 472 millions
of doses while the total number of doses received by all people in the US is only 391M, leaving
about 81 millions of doses unused, becoming either disposal or inventory. Both of the SP and DRO
approaches are demand-driven, as they can improve CDC vaccine allocation plans by allocating
more vaccines to appropriate regions when demand is high, or by reducing allocation amounts to

avoid unnecessary shipping and inventory cost when demand is low.

5.2 COVID-19 Test Kit Allocation in Michigan, USA
5.2.1 Experimental Design and Setup

To demonstrate that the presented generic approaches are well-suited for distributing various types

of resources in different geographic scales, in this section we consider the COVID-19 test kit resource
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allocation problem in the State of Michigan, and divide the state into eight emergency preparedness
regions according to Figure 6 and consider aggregated demand in these regions. (Regions 2N, 2S,
3 are renamed as Regions 2, 3 and 4 for notation simplicity in the case study.) We pick 29 test-kit

suppliers in Michigan as candidate locations for setting up DCs.

County Health Department

Multi-jurisdiction Health Department

Figure 6: Michigan Emergency Preparedness Regions (source: Michigan state government).

For predicting demand and generating uncertain scenarios, we mainly follow Pei and Shaman
(2020), in which the authors estimate the daily new county-level confirmed cases in the US based
on a meta-population Susceptible-Exposed-Infectious-Removed (SEIR) model. The demand pro-
jections are reported in the 2.5, 25, 50, 75, 97.5 percentiles for each county everyday, and are
regularly updated to capture different trends in virus transmission and intervention policies during
the pandemic. To identify the demand of each emergency preparedness region, we first calculate
the percentiles of the total projected confirmed cases, and divide them by our targeted positivity
rate (i.e., 5%), meaning that we aim to test 100 people if there are 5 confirmed cases. Having
obtained the percentiles of the projected demand, we extract the mean and variance according to
Wan et al. (2014) by assuming the 2.5 and 97.5 percentile values being lower and upper bounds of
the support of the underlying random demand for estimation.

We consider different planning horizons to represent various phases of virus transmission in
Michigan — the number of infected cases reached the first peak in April, 2020; it was then controlled
in June, 2020 with the regulations from governor’s executive orders and closures of businesses
and public services; around December, winter holiday gatherings increased virus spread, and thus
resulted in another peak; most recently, the re-opening of schools in September, 2021 leads to
continued transmissions. Consequently, we select April 5, 2020, June 4, 2020, December 20, 2020

and September 19, 2021 as the starting dates of the planning horizon, where we consider a two-
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week planning horizon with one period being one week. As a result, we examine the presented
approaches over (i) the first peak (i.e., April 5, 2020 — April 19, 2020), (ii) off-peak periods where
we can still observe the effects of lockdown procedures (i.e., June 4, 2020 — June 18, 2020), (iii) the
second peak (i.e., December 20, 2020 — January 3, 2021) and (iv) continued transmission period
(i.e., September 19, 2021 — October 3, 2021).

In terms of parameter choices, we set the upper bound M; of the capacity h; to the maximum
production amount of supplier ¢ € 7 at period t € T depending on the size of each supplier, and the
temporal capacity of manufacturing test kits B; to the sum of maximum capacity over all DCs for
all t € T. We also test the case where there are only scarce resources available (usually in earlier
phases of the pandemic), and set the capacity B; to 10% of the regular capacities for all t € T.
The operating cost ¢ for each supplier 7 € 7 is similar to the one in the vaccine distribution case.
We set the unit capacity cost c? to $20 for all + € Z, and the unit inventory cost c]I-t to the average
pallet storage cost divided by the number of test kits a pallet can store for all j € J, t € T. The

unit shipping costs ¢, for all region j € J and supplier i € Z are calculated as $3 per mile times
the distance in miles divided by the number of test kits a truck can carry. In the state-level test kit
allocation problem, we examine three cases of the unit penalty cj; for unmet demand such that we
can prioritize population groups or regions during different time periods. In particular, in Case (i),
we set c}-‘t to a constant, i.e., c;?t = 100 for all j and ¢; in Case (ii), we let c}‘t be linearly dependent
on the projected demand median for region j at period ¢ and set = dﬁedian + 10, indicating that
we add a small constant to the median as some regions’ demand medians are 0 in early phases and
also penalize demand loss; and in Case (iii), we set c;?t = O.OOlal?lder with dﬁder being the number
of people above 65 years old in region j. In the latter two cases, we prioritize regions with more
infections and more elderly or high-risk population groups, respectively.

To compare the severity of disease transmission in different regions and phases, we display the
weekly projected demand median dﬁedian for 8 regions in Michigan during the four phases as well

as 65 or older populations in each region in Table 10. As can be seen from Table 10, Regions 7 and

Table 10: Projected demand median during different phases and population above 65 for 8 regions

Regions Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 Region 7 Region 8
Demand in Apr. 2020 153 3.6K 2.2K 107 2 407 31 0
Demand in June 2020 43 236 516 61 112 443 0 0

Demand in Dec. 2020 55.5K 100.0K 93.3K 72.7K 52.1K 76.5K 18.8K 12.7K
Demand in Sept. 2021 48.5K 76.0K 72.2K 51.0K 56.4K 83.3K 14.3K 15.8K

Population above 65 181.8K 360.2K 349.2K 216.9K 143.5K 237.2K 84.2K 66.5K

8 have significantly fewer number of new cases each day and senior populations than other regions,
while Regions 2 and 3 have the highest projected demand and senior population and thus will be

most prioritized when we follow the penalty cost cases (ii) and (iii).
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5.2.2 Results

We first obtain optimal solutions of the three models (DT, SP, DRO) based on 100 in-sample
scenarios and 1000 out-of-sample scenarios following the same normal distribution with the esti-
mated mean and variance. For DRO, we set parameters in the ambiguity set as 65‘; = 0.5u¢, gjst =
0.1, Eft = 2 forall j € J, t € T in June 2020, December 2020 and September 2021 and set
eé-‘t = [bjt, gft =0.01, €, =10 for all j € J, t € T in April 2020. Letting the penalty parameter
= 0.001d‘;‘-lder for each region j € J (i.e., Case (iii) penalty setting), we summarize out-of-sample
performance given by solutions of the three approaches under different resource settings in Table
11, where we mark the percentage increase compared with the optimal one in parentheses. The last
column in Table 11 records the in-sample computational time in seconds. The raw cost breakdowns

of each approach are presented in Tables 16 and 17 in the Appendix.

Table 11: Out-of-sample performance of different approaches in the COVID-19 test kit distribution
example

Unsatisfied Demand Overall Cost

Phases Approach Full Resources Scarce Resources Full Resources Scarce Resources Time (sec.)
DT 76K (+5.86 x 10°%) 76K (+3.89 x 10°%) | $29M (+68.27%) $29M (+68.27%) 0.1

Apr. 2020 SP 3K (+2.00 x 10*%) 3K (+36%) $17M $17M 9.5
DRO 13 2K | $20M (+17.02%) $17M (+1.04%) 12.1

DT 5K (+4.24 x 10'%) 5K (+4.24 x 10'%) | $2M (+28.79%) $2M (+28.79%) 0.1

Jun. 2020 SP 691 (+5.78 x 103%) 691 (+5.78 x 103%) $1M $1M 9.4
DRO 12 12 | $2M (+18.69%) $2M (+18.69%) 20.6

DT 40K (42.41 x 10*%) 150K | $22M (+9.75%) $34M 0.1

Dec. 2020 SP 6K (43.89 x 103%) 150K $20M  $34M (+2.80 x 1073%) 5.2
DRO 164 150K | $22M (+10.49%) $34M (+5.03 x 1073%) 12.0

DT 39K 55K | $21M (+9.44%) $22M (+1.32 x 1073%) 0.1

Sept. 2021 SP 10K 55K $19M $2oM 9.8
DRO 0 55K | $21M (+12.17%) $22M (+9.17 x 1073%) 13.0

From Table 11, in the full resource level, DRO always attains the least amount of unsatisfied
demand, while DT has the most. Under scarce resources (i.e., 10% of the full resource level), the
results almost remain the same in April and June 2020, because most of the approaches do not
use up 10% of the total resources. However, when the resource capacity becomes tight such as
in December 2020 and September 2021, the results of the three approaches are almost identical
as there is not much flexibility in producing and shipping test kits. In terms of overall cost, SP
outperforms the other two models in most of the settings.

We display the detailed unsatisfied demand percentages in each region under different cases
of penalty cost patterns in Figure 7. Comparing Figure 7 with Table 10, for Cases (ii) and (iii)
penalty settings, the demand in Regions 2, 3, 4 and 6 is all satisfied, as these regions have more
projected demand in December and more senior populations. On the other hand, Regions 7 and 8
always have the highest unsatisfied demand as they are farther away from the DCs and have less
projected demand.

Next, we present the cost breakdown over different phases in Figure 8. From Figure 8, under
full resources, DRO can satisfy almost all the demand, while DT still leaves thousands of people

untested. However, when we limit the resources to be 10% of the regular amounts (see gray dashed
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Figure 7: Unsatisfied demand percentages in each region in December with full resources given
Cases (i), (ii), (iii) unit penalty.

line in Figure 8), all capacity costs that exceed the gray line will be truncated to the one that uses

only 10% of the original B.

6 Conclusion

In this paper, we presented a generic framework to model resource distribution for epidemic re-
sponse under spatiotemporal demand uncertainties for these resources. Depending on the level of
statistical information available for characterizing the uncertainties, which are impacted by various
factors including infection trends and demographic behavior, we proposed a stochastic program-
ming and a distributionally robust optimization approach to optimize the locations and capacities
of DCs, together with shipping, inventory and demand loss variables. As the proposed optimization
frameworks can be applied to different scales of resource distribution, we presented two case studies
using instances of COVID-19 vaccine distribution in the US and the analogous test kit distribution
in the State of Michigan. Furthermore, we considered different phases of the pandemic, ample

or scarce resources, and three cases of unmet demand penalty settings to compare the results of
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Figure 8: Cost breakdown of test kit distribution over different phases under ample and scarce
resources (in dollars).

deterministic, stochastic and robust optimization approaches.

Our approaches aim efficient and fair distribution of resources by allowing prioritization of re-
gions with more vulnerable population groups or with higher infection susceptibility. The case
studies demonstrated the importance of incorporating demand uncertainty in these planning prob-
lems as the stochastic programming and distributionally robust optimization approaches outperform
the deterministic one in terms of cost and demand coverage. The distributionally robust approach
provided a better most-restrictive performance in terms of unvaccinated or untested people who
qualify, with an overall cost higher than the one of the stochastic programming approach.Our
comparison of the proposed approaches with the CDC’s current distribution status of COVID-19
vaccines shows that our approaches are demand-driven, satisfy more demand in the earlier phases
and also prevent unnecessary production, shipping and inventory costs in the later phases of the
pandemic when demand drops. Furthermore, the case study of test kit distribution demonstrated
the prioritization of resource allocation depending on the infection trend and vulnerable population
percentages over the studied regions.

As a limitation of the work, we did not incorporate the time difference of demand for dose
1 and dose 2 of the Pfizer-BioNTech or Moderna vaccines into the optimization models, but only
consider the aggregated total demand. For future research, it will be interesting to consider different

uncertainties for dose-1 and dose-2 demand, and also incorporate the uncertain time between taking
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two doses into the SP and DRO models. One can also build divergence-based ambiguity sets rather

than using the moment information or consider continuous support case in the DRO approach.
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Appendix: Parameter Sources and More Results

We first present the list of parameters and decision variables of the SMIP model (1), and sources of
parameters in vaccine distribution and test kit allocation problems in Tables 12 and 13, respectively.
Next, we present the detailed results of cost breakdown in the national vaccine allocation and

state-level test kit distribution problems under different phases, resource settings and approaches.
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Table 12: List of sets, parameters and decision variables.

Name | Definition
Sets:
T | Sets of potential sites for DCs
J | Sets of demand sites
T | Sets of time periods in the planning horizon
Parameters:
¢} | Cost of operating DC at location ¢
c? Cost of installing unit capacity for DC at location 4
it Cost of shipping an unit from DC at location ¢ to demand site j at period t
c]I-t Penalty cost of unit unsatisfied demand at demand site j at period ¢
Gy Holding cost of an unit at demand site j at period ¢
B, | Total resource capacity at period ¢
M; | Capacity limit of DC at location i
d;; | Demand of demand site j at period ¢
Decision variables:
x; | Binary variable denoting whether DC at location ¢ is open
h;t | Capacity of DC at location ¢ at period ¢
si5¢ | Amount of resources sent from DC at location ¢ to demand site j at period ¢
I;; | Amount of inventory at demand site j at period ¢
u;j¢ | Unsatisfied demand amount at demand site j at period ¢

Table 13: Parameter sources in vaccine distribution and test kit allocation

Parameter

Vaccine Distribution

Test Kit Allocation

Warehouse rental price

COVID-19 vaccine cost

Vans travel cost + Vaccine dimensions + Vaccine deliver cost

Warehouse rental price
COVID-19 test kit cost
Vans travel cost + Vans capacity

Warehouse storage cost + Energy cost

100

Warehouse storage cost + COVID-19 test kit dimension
Three penalty settings as discussed in the paper

Table 14: Cost breakdown of vaccine distribution under full resources, different phases and ap-
proaches

Phases  Approaches Operating Capacity Shipping Inventory Penalty Overall Cost
DT $97K $486M $39K $34 $37M $524M
Phase 1 SP $63K $496M $48K $155 $6M $503M
DRO $76K $515M $55K $80  $292K $516M
DT $194K $3B $145K $259  $232M $4B
Phase 2 SP $175K $3B $125K $752 $17M $3B
DRO $107K $3B $545K $519 $OM $3B
DT $290K $4B $180K $569  $262M $4B
Phase 3 SP $263K $4B $152K $2K $31M $4B
DRO $259K $4B $411K $935 $45M $4B
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https://www.loopnet.com/michigan/kentwood_warehouses-for-lease/?sort=1:1
https://www.biospace.com/article/comparing-covid-19-vaccines-pfizer-biontech-moderna-astrazeneca-oxford-j-and-j-russia-s-sputnik-v/
https://coronavirus.jhu.edu/from-our-experts/q-and-a-how-much-does-it-cost-to-get-a-covid-19-test-it-depends
https://www.freightwaves.com/news/understanding-total-operating-cost-per-mile
https://www.modernatx.com/covid19vaccine-eua/providers/storage-handling
https://path.azureedge.net/media/documents/TS_opt_in_country_transport_rpt.pdf
https://www.freightwaves.com/news/understanding-total-operating-cost-per-mile
https://www.vanwisegroup.com/news/top-5-vans-with-the-largest-capacity/
https://www.warehousingcompanies.net/resources/prices-for-storing-product-in-a-warehouse/
https://americanbiotechsupply.com/refrigerators/products/pharmacy/premier/36-cu.-ft.-pharmacy-glass-door-refrigerator
https://www.warehousingcompanies.net/resources/prices-for-storing-product-in-a-warehouse/
https://www.copanusa.com/covid-19-sample-collection-kits-for-upper-respiratory-tract-specimens/

Table 15: Cost breakdown of vaccine distribution under scarce resources, different phases and

approaches

Phases  Approaches Operating Capacity Shipping Inventory Penalty Overall Cost
DT $97K $486M $39K $34 $37M $524M

Phase 1 SP $63K $496M $52K $99 $7T™M $503M
DRO $54K $512M $58K $64  $687K $513M

DT $105K $2B $48K $0 $17B $19B

Phase 2 SP $96K $2B $42K $0 $17B $19B
DRO $105K $2B $41K $0 $17B $19B

DT $256K $3B $122K $0 $13B $16B

Phase 3 SP $175K $3B $134K $0 $13B $16B
DRO $209K $3B $221K $0 $13B $16B

Table 16: Cost breakdown of test kit distribution under full resources, different phases and ap-

proaches
Phases Approaches Operating Capacity Shipping Inventory Penalty Overall Cost
DT $2K $13M $4K $3 $16M $29M
Apr. 2020 Sp $4K $17TM $6K $9  $395K $17M
DRO $4K $20M $5K $2 $2K $20M
DT $2K $1M $5K $2  $638K $2M
Jun. 2020 SP $2K $1M $5K $9 $76K $1M
DRO $2K $2M $7K $0 $1K $2M
DT $4K $18M $5K $2 $4M $22M
Dec. 2020 SP $4K $20M $5K $6  $535K $20M
DRO $4K $22M $5K $0 $12K $22M
DT $4K $17M $5K $2 $3M $21M
Sept. 2021 SP $4K $18M $5K $7  $811K $19M
DRO $5K $21M $5K $2 $0 $21M

Table 17: Cost breakdown of test kit distribution under scarce resources, different phases and

approaches
Phases Approaches Operating Capacity Shipping Inventory Penalty Overall Cost
DT $2K $13M $4K $3 $16M $29M
Apr. 2020 SP $4K $17M $6K $9  $395K $17TM
DRO $5k $17M $4K $12  $282K $17TM
DT $2K $1M $5K $2  $638K $2M
Jun. 2020 SP $2K $1M $5K $9 $76K $1M
DRO $2K $2M $7K $0 $1K $2M
DT $4K $17™M $3K $0 $17M $34M
Dec. 2020 SP $4K $17M $3K $0 $17M $34M
DRO $5K $17™M $3K $0 $17TM $34M
DT $4K $17™™M $4K $4 $5M $22M
Sept. 2021 SP $4K $17M $4K $4 $5M $22M
DRO $5K $17™M $4K $4 $5M $22M
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