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ABSTRACT This paper presents a novel reinforcement learning (RL) framework to design cascade feedback
control policies for 3D bipedal locomotion. Existing RL algorithms are often trained in an end-to-end manner
or rely on prior knowledge of some reference joint or task space trajectories. Unlike these studies, we propose
a policy structure that decouples the bipedal locomotion problem into two modules that incorporate the
physical insights from the nature of the walking dynamics and the well-established Hybrid Zero Dynamics
approach for 3D bipedal walking. As a result, the overall RL framework has several key advantages,
including lightweight network structure, sample efficiency, and less dependence on prior knowledge. The
proposed solution learns stable and robust walking gaits from scratch and allows the controller to realize
omnidirectional walking with accurate tracking of the desired velocity and heading angle. The learned
policies also perform robustly against various adversarial forces applied to the torso and walking blindly
on a series of challenging and unstructured terrains. These results demonstrate that the proposed cascade
feedback control policy is suitable for navigation of 3D bipedal robots in indoor and outdoor environments.

INDEX TERMS Motion control, legged locomotion, machine learning.

I. INTRODUCTION

While human and biological bipeds can naturally learn com-
plex motion planning, it is still a challenging task for bipedal
robots due to the highly unstable nature of bipedal robots.
Properties like underactuation, unilateral ground contacts and
impacts, nonlinear dynamics, and high degrees of freedom
significantly increase the complexity of synthesizing feasi-
ble robot motions. Various learning-based solutions, espe-
cially with the recent progress on deep learning, have shown
remarkable performance in solving challenging control prob-
lems in bipedal locomotion. In general, these learning-based
approaches can be further classified into end-to-end methods,
and reference trajectory learning approaches.
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Bipedal locomotion’s most common learning objective is
a feedback control policy that directly maps the state inputs
to the torque control output or the joint angles. Typically, this
policy is constructed in an end-to-end manner, and the learned
policy serves the general purpose of stability maintenance
(i.e., walking without falling). Various learning methods have
shown effectiveness in learning an end-to-end control pol-
icy. Policy gradient based approaches such as DDPG and
PPO have demonstrated competitive performance for gen-
eral robotic locomotion tasks in simulations with end-to-end
learning using torque output policies [1], [2] and real-world
experiments (typically combined with dynamics randomiza-
tion) using torque output-based end-to-end learning [3], [4]
and joint angle-based end-to-end learning [5], [6].

Some more advanced methods also seek to achieve veloc-
ity tracking [7], push-recovery [8], and walking in various
terrain conditions [9] through more structured frameworks.
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FIGURE 1. Overview of the proposed learning framework. A cascade controller combines the RL motion planning module with the feedback regulator
module to realize stable and robust locomotion. The learned policy is successfully transferred to hardware, allowing the Digit robot to walk on different
challenging terrains using the same policy. An overview video of all the experimental results can be found at https://sites.google.com/view/rl-cmpd.

The velocity tracking policy from [7] relies on prior knowl-
edge of a good joint reference trajectory and only learns
small compensations added to the known reference trajectory.
Siekmann et al. proposed to combine PPO with recurrent
neural network (RNN) for learning the direct control policy
for Cassie [10]. Some also extend the deep reinforcement
learning approach with provided guidance for motion mim-
icking [11], [12].

Another learning objective is to acquire a reference track-
ing trajectory of a selected anchor point (e.g., the center of
gravity point of the upper torso). A lower-level controller then
seeks to track such a learned reference through basic model
information such as kinematics. Morimoto et.al. [13], [14]
learned the Poincare map of the periodic walking pattern and
applied the method to two 2D bipedal robots. Some recent
work has proposed to learn the joint-level trajectory as the
reference motion through supervised learning [15] and rein-
forcement learning [16]—[18]. The authors in [19] learn linear
policies that map the reduced robot’s state to parameterized
elliptical trajectories for the robot’s feet. These approaches
often simplify the design of the lower-level tracking, which
can be as simple as a PD controller.

Despite the empirical success, most of the aforementioned
learning-based approaches are sampling inefficient (millions
of data samples) and are usually over-parameterized (thou-
sands of tunable parameters). It is also worth emphasizing
that the reference-trajectory-learning approach makes it eas-
ier to induce gait symmetry and smooth control signals within
the bounded admissible space. On the other hand, the end-
to-end approach is difficult to handle symmetry and torque
constraints, hence may lead to unnatural walking gaits and
sparky control signals [20].

In this work, we propose a trajectory-based RL framework
to address some of the challenges found in the learning of
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bipedal locomotion. By decoupling the problem of bipedal
locomotion as a two-phase process: trajectory planning and
feedback regulation, we propose a modular solution that
incorporates the physical insights of dynamic locomotion and
its hybrid nature into the learning process of the policy. In par-
ticular, we leverage the exploration potential of RL algo-
rithms to find reference trajectories for dynamic locomotion
using a reduced state of the robot. Then, we improve these
reference trajectories using feedback regulation to obtain sta-
ble and robust walking gaits. This decoupled structure signif-
icantly simplifies the neural network’s complexity, enhancing
sampling efficiency and robustness of the learned policy.

A method similar to ours is presented in [21], where the
authors propose a decoupled structure that uses DRL to learn
a Finite State Machine (FSM) based policy that outputs ref-
erence trajectories for particular joints of the robot. A simple
linear balance feedback controller is then used on top of the
reference trajectories to produce robust locomotion. In our
proposed work, we compute continuous joint-space trajecto-
ries by means of Sth-order Bézier Polynomials. In addition,
we use different high-level commands, e.g., desired velocity
tracking, as part of the reduced-order state of our learning
framework, whereas [21] uses the full-order state of the robot
in addition to desired gait parameters: step length, step dura-
tion, and maximum swing foot height during a step.

Our proposed method is evaluated with different robot
models, including simulation of the bipedal robots Rabbit,
Cassie, and Digit. In addition, we show that the proposed
controller structure can be used to transfer the learned policy
successfully to hardware with minimal tuning. The resulting
controller is extensively tested in hardware with the Digit
robot, showing effective velocity tracking performance, and
robustness to different disturbances such as external adver-
sarial forces and uneven terrains.
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Preliminary results of this work were presented in con-
ference papers [18], [22]. In this paper, we extend the pre-
liminary results to further increase the efficiency of the
learning method, consider an additional degree of freedom
to include constrained arm’s motion into the walking gait,
include additional regulations to improve the performance of
the controller, and perform an extensive series of indoors and
outdoors experiments to demonstrate the good performance
of the learned policy on hardware. Our contribution can be
summarized as follows:

« We propose a complete RL framework to learn robust
and stable walking gaits from scratch for 3D bipedal
robots. The method takes insights from the hybrid and
symmetric nature of dynamic walking to significantly
reduce the state and action spaces of the policy, enhanc-
ing the sample efficiency of the learning process and
robustness of the walking gait.

« We design a regulator policy that uses simple but effec-
tive feedback regulators to improve the stability and
robustness of the learned walking gait. Different from
the earlier conference version, we also develop an esti-
mator of the terrain slope to improve the swing foot ori-
entation regulator, which is the key to successful outdoor
experiments. Moreover, we add a stance foot regulation
that facilitates velocity tracking on hardware.

o We demonstrate that the proposed framework can be
easily extended to robots with different DoF and mor-
phology. We use the proposed learning framework to
control the bipedal robot Cassie (no arm joints) and
the humanoid robot Digit (with arm joints). The results
show the same RL framework learns stable walking gaits
for both robots. The results have also been validated
extensively in both simulation and hardware.

« We conduct extensive experiments to test the perfor-
mance of the policy on real hardware, demonstrating the
learned policy has a good tracking performance on the
desired waking velocity and the desired torso orienta-
tion. These results enable the application of the proposed
RL framework with confidence for terrain navigation in
indoor and outdoor environments. Most of the learning
frameworks for bipedal locomotion proposed in the lit-
erature do not provide details about the performance of
the learned policy for tracking high-level commands like
the torso’s desired velocity and orientation.

The remainder of the paper is organized as follows.
Section II introduces the problem of bipedal locomotion
and its formulation as a cascade motion control framework.
In Section III we present the motion policy design as a RL
problem with a reduced state and action spaces. Section IV
introduces the design of the feedback regulator policy used
to convert the joint action commands into admissible torques
applied to the joints. In Section V, we show the details of
the application of the proposed framework to two different
bipedal robots, Cassie and Digit, and Section VI presents
the simulation and hardware results. Finally, Section VII
provides concluding remarks about this work.
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Il. PRELIMINARIES AND PROBLEM FORMULATION

A. BIPEDAL ROBOT MODEL

Bipedal locomotion consists of a collection of phases of con-
tinuous dynamics with discrete events that trigger the transi-
tions between these continuous dynamics phases; formally,
modeling both continuous and discrete dynamics together
results in a hybrid system model. The configuration space
Q of a robot can typically be represented by a floating-base
generalized coordinate system, defined as

q=Ipv. ¥, qr] € Q, ey

where p, = (qx, gy, q;) € RR? denotes the relative position of
the robot’s base, ¢, € SO(3) denotes the orientation of the
robot’s base frame, and g, € R™ denotes the relative angles
of articulated joints. Throughout this paper, we use p, =
(vx, vy, vz) to represent the velocity of the robot’s frame, ¢, =
(qy+ 96, q¢) as the Euler’s angle representation (roll, pitch,
yaw) of the robot’s base orientation, and ¢, = (gy . 46, 44)
represents the angular velocity of the robot’s base.

Letting x = (g, q) € X denote the robot states, u € U C
R™ a vector of actuator inputs, and w € 2 € R" a vector of
disturbances and uncertainties, the hybrid system model for
bipedal locomotion can be defined as

Jx=fx,u;0) x¢D
Z'{x+=A(x_) X~ €D, @

where, f represents the continuous dynamics. The switching
surface D is typically the (hyper-) surface of points corre-
sponding to the height of the swing leg above the ground
being zero, and A : D — X, the reset map or impact
map [23], determines the post-impact state values xT just
after switching as a function of the pre-impact state values
x~ just before switching.

B. BIPEDAL LOCOMOTION PROBLEM

In general, the bipedal locomotion problem seeks to establish
a motion control policy 7 : X x C — U with C being a set of
high-level locomotion commands, such that some properties
are achieved. For example, the desired properties may include
(i) following commands, (ii) maintaining feasibility condi-
tion, (iii) satisfying admissibility condition, (iv) exhibiting
naturalistic locomotion, and (v) robustness against uncer-
tainties and disturbances. Here, we mathematically define the
aforementioned properties as follows to define the bipedal
locomotion problem formally.

Following Command. We would like the robot to follow
specific high-level commands, such as desired velocities or
target locations. In this paper, we are particularly interested
in velocity tracking, which can be defined as the asymptotic
convergence to the desired velocity profile v¥(z), given as,

mfo-vol=0 o

where V(x) denotes the average velocity over a walking step.
State Feasibility Condition. Let Z C X be a set of
forbidden states that are prohibitive for the robot. Hence the
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feasibility criterion is equivalent to ensuring the set X* =
X \ Z forward invariant given the dynamics model (2), i.e.,

Vx(0) € X* — x(t) € X*, V¥t > 0. )

Input Admissibility Condition. Let {/* be the nominal
admissible actuator input set of the robot determined by
the actuators’ physical capability. The admissibility criterion
requires the actuator inputs are persistently feasible, i.e.,

w(x,c)eUd* VxeX* cel. 5)

Naturalistic Locomotion. Moreover, the bipedal appli-
cations also expect naturalistic motion for various causes
(e.g., environment adaptation and energy efficiency). Exam-
ples of naturalistic motion include maintaining the upper-
body straight, the Center-of-Mass (CoM) within the support
polygon described by the robot feet, avoiding the collision of
the robot’s feet with each other, etc. In this paper, we con-
sider the torso angle limits and the constrained Center-of-
Mass (CoM) position to characterize the naturalistic behavior.
In particular, let Oy (x) X — SO(3) represents the
orientation of the robot’s torso, the following constraint is
expected to be satisfied:

bior(x) € ©, Vx e X, (6)

where ® € SO(3) represents the admissible range for the
roll, yaw and pitch angles of the robot’s torso. In addition,
let peom : X — R3 be the CoM position with respect to
the stance foot in the Cartesian coordinate. The following
condition confines the projection of CoM within a enclosed
region determined by both feet and the height of CoM within
a certain threshold:

Pecom(x) € P Vx € X, (N

where P C R3 represents the admissible CoM range.

Problem 1 (The Bipedal Locomotion Problem): Consider
the robot model in (2), the Bipedal Locomotion Problem
seeks to establish a motion control policy 7 : X x C — U,
such that the criterion defined in (3) - (7) are satisfied with
the presence of model uncertainty and external disturbance.

In practice, solving the above problem is challenging as
the hybrid dynamical system in (2) is too complex to have a
model-based solution that guarantees the satisfaction of all
desired properties. Moreover, the various properties speci-
fied cannot be satisfied simultaneously in principle (e.g., the
velocity tracking requirement may be relaxed in exchange for
the safety assurance). In this paper, we propose to solve the
problem using a cascaded structure that combines the rein-
forcement learning (RL) based motion planning and model-
based feedback control design.

C. CASCADED MOTION CONTROL FRAMEWORK

Our proposed approach takes inspiration from the general-
ized Hybrid Zero Dynamics (G-HZD) framework presented
in [24], [25]. As shown in Figure 2, the motion control policy
7 in Problem 1 consists of a feature selection module, G,
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FIGURE 2. The cascaded structure of the proposed motion control policy
framework for bipedal locomotion.

and two cascaded policies: a motion policy 7y and a feed-
back control policy m;,. To clearly identify the objectives of
this paper, we formally define the proposed motion control
framework as follows, where the design of each component
will be presented in detail in the following sections.
Problem 2 (Cascade Motion Control Policy Design): The
motion control policy & in Problem 1 can be designed as

7 = m() 0 7y(+) 0 G(). ®)

The feature selection module G : X x C — S maps the full-
order states and external commands to a reduced-dimensional
feature states s € S. The motion policy 7,(-) : S — A will
be designed to generate feasible joint actions @ € A, with
A being the action space, that satisfy the conditions defined
in (3) - (7). Finally, the feedback control policy m,,(-) : X x
A — U converts the joint action commands to admissible
actuator inputs with the objective of keeping the robot from
falling and simultaneously satisfying (3) - (7).

While there are various ways to design the motion pol-
icy for bipedal locomotion in literature, our work par-
ticularly focuses on reinforcement learning (RL) design
approaches [6], [10], [11]. Despite recent success of
RL-based approaches in robust sim-to-real transfer of the
policy on robot hardware, existing approaches still suffer
from sampling inefficiency and often requires prior knowl-
edge of good reference trajectories in training [10], [11].
The proposed trajectory-based RL motion policy design (see
Section III) aims to tackle existing limitations of RL-based
approaches in bipedal locomotion by incorporating insights
from model-based control methods with data-driven rein-
forcement learning to realize robust bipedal locomotion poli-
cies. In addition, an intuitive feedback regulation controller
policy (see Section IV) is designed to improve the overall
robustness of the motion policy.

Remark 1: A classic end-to-end RL solution to the bipedal
locomotion problem can be considered as a special case of
Problem 2. Instead of using the decoupled structure, the end-
to-end approaches train a single neural network (NN) policy
w(-) : X — U that maps the full order states directly to the
actuator inputs. However, this approach blindly uses all the
data available without insights about the nature or structure
of the bipedal locomotion problem, resulting in largely inef-
ficient training with learned policies that are not feasible to
be implemented safely in hardware [1].

IlIl. MOTION POLICY DESIGN
In this section, we present a sample efficient RL frame-
work for the motion policy design problem described in
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FIGURE 3. Overall structure of the proposed Trajectory-based RL framework. The trajectory planning phase is done by the neural network policy while
the feedback regulation block uses the robot’s sensor information to guarantee the stability of the walking gait and the velocity tracking performance.

Section II. The overall structure of the proposed RL-based
cascade motion policy is presented in Figure 3. We will start
with the formal definition of the RL framework for our later
discussion. Then we will comprehensively discuss the design
of reduced state and action spaces and the specific learning
procedure for bipedal locomotion.

A. REINFORCEMENT LEARNING FRAMEWORK

A typical reinforcement learning approach considers a
Markov Decision Process (MDP) as a tuple of components,
defined as

M:=(S, AP, r & y). )

Here S is the feature state space, and A is the feasible action
space. Specifically, given s; € S at time ¢, an agent (i.e., the
motion planner) takes an action «; € A, transits into the next
feature state s;+1 € S according to the transition probability
P(s¢+11s:, a¢) and receives a reward r(s;, oy, s;+1). Moreover,
& denotes the distribution of the initial state s9 € S and
y € (0,1) denotes the discount factor. The goal of the
reinforcement learning (RL) framework is to find an optimal
motion policy 7* : & — A that maximizes a long-term
accumulated reward, defined as

o
J) = (1= PELY y' (e e sl (10)

t=0
To cast bipedal motion policy as a RL problem, one
requires (i) adapting the model (2) to the MDP form of (9),
and (ii) configuring the criterion in Problem 1 to align with
the RL settings. It is immediate that the probabilistic transi-
tion part in (9) is equivalent to the described bipedal robot
model (2). The stochastic transition of the MDP process
captures the disturbances and uncertainties w such as the
random sampling of initial states in the policy training and
dynamics uncertainty due to the random interactions with the
environment (e.g., early or late ground impacts). Moreover,
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the desired properties in Problem 1 can be either charac-
terized as rewards or hard constraints in RL. In this paper,
we formulate criterion (3), (5), (6), (7) as rewards, and (4) as
hard constraints.

B. STATE SPACE

In our proposed framework, a neural-network motion policy
m, maps a feature s € S to an action « € A via a probability
distribution my(-|s). In particular, the feature can be decom-
posed into an endogenous component, ¢, and an exogenous
component, 1. The endogenous component ¢ is a reduced
dimensional representation of the robot states. The exogenous
component 7 corresponds to the external commands, such as
desired walking speeds or turning directions, terrain slope,
whose transitions will not be affected by the agent through
actions [26]. The inclusion of exogenous components enables
a single motion policy to capture various locomotion tasks
and smooth transitions among these tasks.

Reduced Dimensional Feature Representation. Many
existing learning-based approaches for bipedal locomotion
use the full-order state as the input of the neural network
policy, which significantly reduces the sampling efficiency
of the training process, resulting in unnecessarily large neu-
ral networks and prolonged training time. In this paper,
we take inspiration from classic model-based approaches in
bipedal locomotion to design a lightweight neural network
policy structure to improve sampling efficiency and reduce
the training time. In particular, we choose as a reduced
set of features of the policy the average velocity of the
robot’s pelvis, the desired velocity of the robot, and the
error between the desired and the actual average velocity.
This selection is inspired by the Hybrid Zero Dynam-
ics (HZD)-based feedback controllers for bipedal locomo-
tion [27] and the simplicity but effectiveness of the LIP
model to provide reference trajectories of the COM and step
length [28].
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C. ACTION SPACE

In our motion planning framework, the action determines the
parameterized desired joint trajectories. It has been shown
that trajectory actions typically provide a better representa-
tion of locomotion than the direct actuator inputs [29]. Param-
eterized trajectories also allow model-free joint references to
be tracked by the feedback controller, thereby enabling the
seamless sim-to-real transfer of the learned policy on robot
hardware.

As discussed later in this section, the motion policy does
not need to determine desired trajectories for all actuated
joints of the robot. Let N be the number of actuated joints
determined by the motion policy y, the desired trajectory of
each joint i € 0,..., N will be parameterized as an M-th
order Bézier polynomial with coefficients o; € RY*!, given
as

M M!
d o , ! ki \M—k
yi (T, o) = kE_OOéz[k]—k!(M — k)!T 1—-o"F, A
where 7 = % € [0, 1] is the scaled time-based phase

variable over one walking step with = being the time at the
beginning of the step, and Ty is the time duration of one
walking step.

Dimension Reduction of Action Space. In order to reduce
the output size, thereby the overall size, of the neural network
policy y, we reduce the action space dimension by incorpo-
rating the unique nature of bipedal locomotion.

Redundant Joints. The desired trajectory of some actuated
joints will be directly commanded by the feedback regulator
policy m,, described in Section IV. Therefore, the motion
policy 7y, does not need to provide reference trajectories for
these joints, significantly reducing the number of outputs
required. Specifically, the torso regulation takes care of the
stance leg hip roll and pitch joints, the swing foot orientation
regulation takes care of the swing ankle roll and pitch joints,
and the stance foot regulation takes care of the stance ankle
roll and pitch joint. We provided a detailed description of
each of these regulations in the following section. Moreover,
if arm joints are present (e.g., Digit, see Section V), we can
treat the arm as a single pendulum by controlling the motion
of the shoulder pitch joint only through the motion policy.
Thus, we can lock other arm joints at constant angles, further
reducing the policy outputs.

Gait Symmetry. For bipedal locomotion, there exists sym-
metry between the right and left stance gaits. This allows us
to only learn the right stance gait parameters, and determine
the left stance gait parameters using the symmetry condition.
Assuming that the set of coefficients for the right stance gait
ok is given, the set of coefficients for the left stance gait o”
can be computed by

ol = TaR (12)

where T e RM*VN is an invertible sparse transformation
matrix that captures the symmetry between the robot’s joints
on the right and left sides.
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Impact Invariance. To encourage the smoothness of the
control actions after the swing foot impacts the ground,
we enforce an equality constraint such that at the beginning
of every step, the initial point of the Bézier polynomial
(determined by alR[O]) coincides with the current position of
the i-th robot’s joint. To determine the switching condition
between right and left stances, we detect the impact of the
swing foot with the ground by estimating the ground reac-
tion force (GRF) and comparing it with a fixed threshold
easily tuned based on experiments performed both in sim-
ulation and hardware. Although this threshold is kept fixed
during training and evaluation of the policy, early or late
contact conditions are indirectly managed by the learned
policy through the update of the reference trajectories at the
switching conditions. Finally, we enforce the position of the
actuated joints to be the same at the end of the right stance and
the beginning of the left stance. This encourages continuity in
the joint position trajectories after switching the stance foot.
When using Bézier polynomials, this condition can be easily
enforced through ot[R[M ] = Oll-L [0]. Therefore, two Bézier
coefficients for each joint can be obtained through the above
conditions. This means we only need to find the remaining
M — 1 coefficients for each of the N reference trajectories,
which results in an action space of dimension N x M — 1.

D. LEARNING PROCEDURE
The proposed framework can use any RL algorithm that
handles continuous action spaces, including but not limited
to evolution strategies (ES), proximal policy optimization
(PPO) [2], and deterministic policy gradient (DDPG) [30].
In this work, we use the ES algorithm because of its simple
implementation for parallel processing, and its promising
results in environments with a high number of time steps in
an episode, actions with long-lasting effects, or with no good
estimations available for the value function [31]. All of these
conditions are present in the problem of bipedal locomotion.
The reward function adopted in this work is determined
by a vector of 9 customized rewards with their respective
weights w. Specifically:

T T
r=w[n, Tvys Thy Tus FCoM; Fang» Tangvel, ¥'fd, raf]” . (13)

These rewards are designed accordingly to the desired prop-
erties described in Section II-B by criteria (3) - (7). That is,
encouraging the policy performance in four sub-tasks: veloc-
ity tracking, feasible states (height maintenance), admissible
actions (energy efficiency), and naturalistic behavior.

To encourage better velocity tracking performance for
desired average walking speeds in the longitudinal and lateral
direction, rewards ry,, ry, are defined as

d)2

—pv/(x — vy if [vy — V)Lci| > €yx

B {max (0o/(x = + &), 1) if |7 — V| < ey
Vy —
_ max(ou/y — Ve + ), 1) if [iy v < ey
Vy — - . -
T /Gy —v? if [vy —vi| > ey
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where p, is a scaling variable that makes the reward function
sharp about the desired walking velocity to encourage better
velocity tracking, ¢ is a bias term to prevent singularities
when the tracking error is zero, and ey, e, are the bounds
for the maximum error allowed in the tracking of the desired
average velocity.

To encourage the policy to maintain a desired robot’s
height, we define the reward

max {(q:/¢?)*, 1} if lg: — ¢?| < eqe. q: < ¢
'h = § max {(QZI/QZ)Zs 1} if|g; — qzl| = ey 4z > q;l
—(q; — Q?)z if |g; — ‘I?| > €z

where qf is the desired height and e, is the maximum error
allowed for the height of the robot’s base.

The torque efficiency reward encourages the learning to
reduce the torque applied to the joints.

ry = — llull? (14)

Four rewards are designed to encourage the naturalistic
behavior of the walking gaits by keeping the center of mass
inside the support polygon, keeping the torso upright during
the walking motion, and keeping the distance between the feet
within a desired nominal range. In particular, (15) handles the
case when pym, the projection of the center of mass on the
xy plane, is out of P, the area determined by a radius of 0.1 m
about the midpoint between the projection of the two feet on
the xy plane, denoted by Q.

pa/d if peom € P
—1/pa(d = 0.1)* if pom & P
where pg is a scaling variable, and d is the distance between
Peom and Q.

In (16) and (17), the torso’s angles (gy, o, q4) and angular

velocities (¢y, o, §¢) are used to penalize the deviation of
the torso from an upright position during the walking motion.

FCoM = (15)

rang = —(qy, + 45 + q3) (16)

Fangvel = —(&3, + 43 + 43) (17)
To prevent that the robot’s feet spread apart from each other
significantly, or the collision of the feet between each other,
a penalization to the reward based on the distance between
the robot’s feet is added in the form of (18).
_(Af - Afmin)2 if AA}"<Afmin
—(Af = Apma)® if Ap>Apmax (18)
0 otherwise

rfd =

where Appin and Agmax are the minimum and maximum
desired distance distance between the robot’s feet.

Finally, the reward in (19) is used to encourage the stance
foot to remain static on the ground.

2 2
roaf = — Vsl ™ — Wil (19)

where vgr and wgs correspond to the linear and angular
velocity of the stance foot.
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IV. FEEDBACK REGULATOR POLICY DESIGN

The feedback regulator policy 7, modifies some of the tra-
jectories generated by the motion planning policy , for
some of the robot’s joints and generates new trajectories for
some other joints. This allows the motion planning policy
7y to reduce the number of outputs needed to be learned,
significantly improving the sample efficiency of the learning
framework. The regulations applied are intuitive yet powerful
and allow the controller to compensate for uncertainties in
the model used for training the high-level planner policy
and adapt it to unknown disturbances like external forces
or challenging irregular terrains that the learned policy has
not experienced during training in simulation. These regula-
tions were originally proposed by Raibert in [32], and they
have been applied successfully on the control and balance
of legged robots in several works, including [33]-[36]. As
shown in Figure 3, the feedback regulations are composed of
two submodules: 1) trajectory regulations and tracking, and
ii) direct torque regulations for torso orientation.

A. TRAJECTORY REGULATIONS AND TRACKING

Letting ¢¢ be the desired trajectories for the robot’s actuated
joints provided by the motion policy my, then the regulated
trajectories ¢"® are determined by

4"t = ¢* + As,, (20)

where §, is the vector of compensations applied on top of the
trajectories for some of the robot’s joints directly related with
the swing foot placement, swing foot orientation and stance
foot orientation. The matrix A is an assignation matrix that
assigns the compensation term with its corresponding joint.
Thus, we will use simple PD controllers to track the regulated
reference trajectories at the joint level to compute the torque
inputs for the actuated joints of the robot. In this paper, the
PD controllers are defined as

u=—Kp(g—q"*) — Ka(g — 4%, 21

where Kp and Ky are the matrices of PD gains associated
with the actuated joints of the robot.
The following joint regulations are applied in this paper:

5= [o. o s spr.apw o 6] (22)
which is determined by:
8 =PxE+B, (23)

where, P is a gain matrix, E is a vector of velocity errors, and
B is a vector of feed-forward correction terms, respectively
defined as follows:

0 0 S)’K]f;zvr Sngivfr 07
Kw Ky 0 0 0
0 0 0 0 1
P=| 0 O 0 0 0}, (24)
0 0 0 0 O
Kyp 0 00 0
L0 o0 KJ 0 0]
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vy — 14
Py — Is
X X
E=|¥u—], (25)
by — A
96 — 44
B = [By B 0 & & 00]". (26)

The underlying motivation of the joint regulators is
described as follows. The swing foot regulations, i.c., 5,
8, and 52;’, are originally inspired by the LIP model and
has been applied to improve the stability and robustness of
model-based feedback controller for 3D bipedal based on the
tracking of the average walking speed [32]-[36]. The com-
pensation for lateral speed regulation §;" gives a trajectory
compensation for the swing leg’s hip roll angle. Analogously,
82;”, the compensation for the longitudinal speed regulation,
outputs a trajectory compensation for the swing leg’s hip pitch
joint. Moreover, SZ;Y, the compensation for the heading angle
of the robot’s torso, adds a trajectory compensation to the
swing leg’s hip yaw angle to keep the torso’s yaw orientation
at the desired angle. Sy € {1, —1} depends on the swing
foot being left or right, vy, vy are the longitudinal and lateral
average velocities of the robot, vff, v§s are the velocities at the
end of the previous step, vff, v;l are the reference velocities,

and KI%’, K 5};, Klf;fr, K ;;lvr are the proportional and derivative

gains of hip pitch and roll joints, respectively. The phase
variable t is used to smooth the regulation at the beginning of
each walking step and reduce torque overshoots. The terms B,
and By, are outputs of an additional PI controller used to com-
pensate for the accumulated error in the velocity and prevent
the robot from drifting towards a non-desired direction.

The swing foot orientation regulations, i.c., Sfpw and &7,
are applied to keep the swing foot parallel to the walking
surface to ensure a proper landing orientation of the swing
foot. These compensations are decoupled for the roll (6}
and pitch (8;)") joints of the robot’s ankle of the swing foot.
These regulations are obtained by applying decoupled inverse
kinematics (IK) to the robot’s leg. Therefore, we represent
them as &, and &;, in (26) as they are dependant on the kine-
matic tree of the robot and the slope estimation of the walking
surface. To estimate the terrain’s slope, we assume the stance
foot of the robot is aligned with the terrain’s surface, and we
use the measurements of the robot’s IMU and joint angles
to compute the orientation of the stance foot through forward
kinematics. In Section V, we provide detailed expressions for
these regulations.

Finally, the stance foot orientation regulations, i.e., Stsp’
and 8/, are added to improve the tracking performance of
the desired average walking speed. The compensations 8‘,‘;
and &/ are applied to the stance ankle’s pitch and roll joints,
respectively, to add a trajectory that modifies the current
position of these joints.

B. TORQUE REGULATIONS
The torque regulation module applies torque compensations
directly to stance hip joints to maintain the desired torso
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FIGURE 4. Robot model.

orientation. The torso regulation is used to keep the robot’s
torso in an upright position, which is desired for a natural
motion of the walking gait. Assuming that the stance foot is
fixed to the ground during the single support phase and that
we have a discrete instantaneous impact during the double
support phase, the orientation of the torso is directly con-
trolled by the hip roll and hip pitch joints of the robot’s stance
leg. Therefore, the PD torque regulation denoted by (u;’,) and
(”2;;) can be applied respectively to the hip roll and hip pitch
joint of the stance leg to keep the torso upright.

ay — 4,

o | |Kpy Kay 0 0 | |gy—4
|:MZJ o |: 0 0 SeKpo SGKd0i| 0 — 4
q0 — 4

in which, Sy € {1, —1} depends on the stance foot being left
or right, qg, q‘é, qg, and c‘,g’ are desired torso roll and pitch
angles and angular velocities, and Kpy, Ky, Kpg, Kgg are
manually tuned PD gains.

V. ILLUSTRATION EXAMPLES

In this section, we present the details of the implementation
of the proposed framework on an underactuated bipedal robot
Cassie and a humanoid robot Digit, both built by Agility
Robotics.

Cassie has 20 degrees of freedom (DoF) and 10 actuated
joints. Each leg has five actuated joints corresponding to the
motors located on the robot’s hip, knee and ankle, and two
passive joints corresponding to the robot’s shin and tarsus
joints. During the single support phase (only one foot on the
ground), the robot is underactuated because of its narrow feet.

Digit has the same leg morphology as Cassie, with addi-
tional joints for the ankle roll, shoulder, and elbow. This
makes Digit a more complex system with 30 DoF and 20 actu-
ated joints. Moreover, Digit is equipped with a full stack of
vision sensors, including an RGB camera, four depth cam-
eras, and a LiIDAR. Figure 4 shows the kinematic structure of
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TABLE 1. Details of the state and action space and NN implemented in
Cassie and Digit.

Description Cassie  Digit
dim(S) 6 6
Outputs of motion policy (N) 6 7
dim(A) 24 28
Hidden layers in NN 4 4
Number of units per layer 32 32

Total number of parameters NN 4184 4316

TABLE 2. Comparison of the total number of parameters of the neural
network with other learning frameworks for bipedal locomotion with the
robot Cassie. The neural network implemented in our method has about
20x fewer parameters when compared with the other methods.

Method State Action Layers Units Total parameters
Ours 6 24 4 32 4184
[7] 80 10 2 256 89098
[10] 49 10 2 128 225034
[6] 277 10 2 512 410122

Cassie and Digit with a description of the notation used for
the robot’s floating base and joints.

A. STATE AND ACTION SPACE

Following the motion policy design presented in
Section III-B, the feature state space S is determined by
s; = (0, &) with n, = (vff,v;l), and & = (Vy,Vy), where
(Vx, Vy) are the average longitudinal and lateral velocity, and
(vff, v;l) correspond to the desired average walking speed.
We consider the average speed during one walking step of
the robot, which lasts about 400 ms for Cassie and 500 ms
for Digit. Similarly, following the considerations discussed
in Section III-C, the number of outputs determined for the
motion planning policy for Digit is N=7, whereas for Cassie
N=6 because we do not have arms motion. More details about
the dimension of the state and action spaces are provided in
Table 1.

B. NEURAL NETWORK STRUCTURE

The structure of the lightweight neural network used in our
framework is shown in Figure 5, and the details about its
parameters are shown in Table 1. ReLU activation func-
tions are used between hidden layers, whereas the final layer
employs a sigmoid function to limit the range of the outputs.
Moreover, Table 2 shows a detailed comparison of the NN
structure of our method with state-of-the-art RL frameworks
for bipedal locomotion. For a fair comparison, we only con-
sidered studies implemented on the robot Cassie. Table 2
shows the NN is considerably smaller in size, making the
proposed RL framework more lightweighted, faster to train,
and feasible to implement on real-time controllers even on
budget-limited processors. This is the smallest NN imple-
mented in simulation and hardware to realize robust and
stable locomotion on the 3D bipedal robots Cassie and Digit
to the best of our knowledge.

C. TRAINING SETUP
To train the NN presented in Section V-B we used the
evolution strategies (ES) algorithm [31], using the tuning
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FIGURE 5. Detailed structure of the neural network implemented for the
robots Cassie and Digit. By incorporating insights from the symmetry and
dynamics of the walking motion, plus simple but effective feedback
regulations, we reduce significantly the dimension of the state and action
spaces, which results in the smallest NN used for locomotion of real 3D
bipedal robots.

TABLE 3. Tuning parameters used for training of the policy using
Evolution Strategies (ES).

Parameter Value
Population 24
Standard deviation 0.1
Decay standard deviation ~ 0.9999
Limit standard deviation le-4
Learning rate 0.01
Decay learning rate 0.9999
Limit learning rate le-4

parameters shown in Table 3. Our learning pipeline uses a
model-based balancing controller to obtain a pool of initial
states that are feasible to be implemented in both simulation
and the real robot. We use a customized environment using
MulJoCo [37], with each episode starting from a robot’s state
chosen randomly from the pool of balanced initial states and
uniformly sampled desired walking velocities. We denote
that the trained policy learns to walk from scratch without
using previously known reference trajectories or policies pre-
trained with expert demonstrations. In Table 4, we detail the
values of the gains and bounds used for the rewards intro-
duced in Section III-D. We denote that the weight correspond-
ing to rgf, the reward associated with keeping the stance foot
static during the step, is equal to zero for Cassie. This reward
was added particularly for the Digit because the robot’s torso
is significantly heavier than Cassie’s, which caused Digit’s
stance foot to slip on the ground. In addition, to encour-
age policies that realize sustained walking, we increased
the episode length from 10000 simulation steps (Cassie) to
15000 (Digit), which are equivalent to 5 and 7.5 seconds,
respectively. The episode has an early termination if any of
the following conditions are violated:

lgy| < 0.5, lgg] <0.5, |gpl <0.5,
lgyl <2, lgal <2, |lggl <2,
08 <g; <12, Afmin < Af < Afmax, 27)

where g; is the height of the robot’s pelvis and Ay is the dis-
tance between the feet. In addition, we use dynamic random-
ization in our training process to improve the robustness of the
policy and the sim-to-real transfer success. These parameters
are shown in Table 5.
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TABLE 4. Coefficients and weights used for the rewards during the
training of each environment.

Coefficient Cassie Digit
Pv le=3 le=3
€ le=® le™®
evz 0.1 0.1
evy 0.2 0.2
q¢ 0.91 1.00
€qz 0.05 0.04
Pd 0.01 0.01
d 0.1 0.1
A fimin 0.2 0.2
A fiax 0.4 0.4
w [0.8,0.2,0.1, 0.01, [0.3,0.3,0.2,0.1,

0.1,0.5,0.5,5,017  0.5,05,0.5,5,0.5]7

TABLE 5. Dynamic properties and sample range used for dynamic
randomization during training.

Parameter Range Unit

[0.85,1.15] kg
[0.95,1.05] m

Link Mass
Link Center of Mass

TABLE 6. Comparison between different RL frameworks for bipedal
locomotion with the robot Cassie.

Task Training time [h]  Samples
Ours  Various speeds 3 0.6e7
[7] One speed 2.5 -
[10] Various speeds 8 le7
[38] Various speeds 16 -
[6] Various speeds - 1e7

Figure 6 shows the evolution of the normalized mean
reward during training for both Cassie and Digit. The number
of training episodes needed by the policy to achieve a stable
reward is significantly higher in the Digit’s environment.
This result is expected given the higher level of complexity
imposed by the model of the Digit robot.

Comparing the sample efficiency between different RL
frameworks for bipedal locomotion is difficult because of the
particular settings used for each training setup (e.g., learning
task, episode length, policy update frequency, learning algo-
rithm, prior knowledge of the walking gait, performance
of the trained policy). In addition, not all the methods
present information about the number of samples required
to learn a stable walking gait. However, Table 6 shows a
comparison between state-of-the-art learning-based frame-
works for bipedal locomotion. To promote a fair compari-
son, we only considered methods that use the bipedal robot
Cassie. The results show that our method needs fewer sam-
ples than other approaches for the reward to converge to a
stable value. In addition, Table 6 shows that the proposed
framework requires less wall time than other approaches,
except for [7], which learns policies that walk at a single
desired walking speed using known reference trajectories.
On the other hand, our method learns a single policy that
tracks various speeds without using known reference tra-
jectories. The policy is trained using a single 12-core CPU
machine.
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FIGURE 6. Learning process of the trained policy for Cassie (blue) and
Digit (red).

TABLE 7. Gains and IK functions used in the feedback regulator policy for
Cassie and Digit.

Gain Cassie Digit
K ;m 1 0.5
gy o
K Bl 0 O 1 O. 1

dhp . .
iy : 002
KZ;; 100 3500
Kgy 20 500
Ky 100 2000
Kag 20 500

Eir Qw-&-Qfo-i-)w +v
&tp 9+ qp, tApt+o

@y +qw + A+
90 +ap,, TApto

D. FEEDBACK REGULATIONS

The gains of the compensations described in Section IV-A
and Section IV-B for Cassie and Digit are detailed in Table 7.
We denote that the regulation for the stance foot orientation
is applied only to Digit to enhance the speed tracking perfor-
mance of the controller in hardware experiments. In addition,
given the kinematic tree for Cassie and Digit, the IK functions
used in the swing foot orientation regulation are defined in
Table 7 as &, and &;,, where A, and A, are offsets that depend
on the geometric design of the swing leg, and y, o are the
inclination of the terrain with respect to the robot’s floating
base.

VI. SIMULATION AND EXPERIMENTAL RESULTS

Once the trained policy has been exhaustively tested in sim-
ulation, we deploy the learned controller on the hardware
and evaluate its performance under challenging conditions
and terrains. This section shows the performance of the pro-
posed controller structure when evaluated in terms of speed
tracking, stability of the walking gait, and robustness against
external disturbances and challenging terrains. A sequence of
the learning process of the policy and the sim-to-real transfer
can be seen in the accompanying video.

A. SIMULATION RESULTS ON CASSIE

1) SPEED TRACKING

For evaluation of speed tracking, we assigned a desired veloc-
ity profile with fast changes in both longitudinal (v,) and
lateral (vy) directions with respect to the robot’s body frame.
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FIGURE 7. Speed tracking performance of the proposed controller in
simulation with the robot Cassie. The controller tracks the desired speed
for different walking directions: walking forward (vx > 0), backward

(vx < 0), to the right (vy > 0), to the left (v, < 0), diagonal (any
combination of the previous cases).

The results presented in Figure 7 show that the controller
keeps good tracking of the desired velocities in both direc-
tions, and it can effectively handle the changes in the speed
profile even for large speed changes without significant over-
shoot. We denote that depending on the combination of the
velocity profiles in both directions, the robot can perform
different behaviors such as walking in place, walking to the
right, left, forward, backward, and walking in a diagonal
direction.

2) STABILITY AND FEASIBILITY OF THE WALKING GAIT

To evaluate the stability of the generated walking gait, we ana-
lyzed the periodicity described by joint limit cycles. Figure 8
shows that the phase portrait for the actuated joints while
the robot is walking at a constant desired velocity. The plot
shows the convergence of the orbits to a periodic limit cycle,
demonstrating the stability of the walking gait. Furthermore,
the corresponding orbits for the left and right are approxi-
mately symmetrical, which was expected by the conditions
enforced in the formulation of the RL framework. The minor
discrepancies, mostly noticed in hip roll joints, are due to the
swing leg regulator’s efforts to maintain the lateral stability
of the robot.

B. EXPERIMENTAL RESULTS ON DIGIT

1) SPEED TRACKING

We evaluate the speed tracking performance of the controller
in hardware by assigning a velocity profile with variations in
the desired velocities in both directions. The results presented
in Figure 9.a show that the controller keeps good tracking of
the desired velocities, especially for the velocity in the lon-
gitudinal direction (v,). We observe that the tracking error is
higher for the lateral velocity (vy), which could be caused by
the continuous motion of the robot from left to right and vice-
versa, asymmetries in the hardware joints associated with
the lateral movement, and drifting in the IMU measurements
used to estimate the linear velocity. In addition, Figure 9.b
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FIGURE 8. Walking limit cycle of the learned policy when tracking a
longitudinal velocity v,“’ = 0.4 m/s, and lateral velocity v}‘,’ =0m/s.
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FIGURE 9. Speed tracking performance of the proposed controller. The
controller tracks the desired speed for different cases: walking in place
(vx =0, vy =0), forward (vx > 0), backward (vx < 0), to the right

(vy > 0), to the left (v, < 0), and diagonal (any combination of the
previous cases).

shows that the controller keeps the torso upright during the
walking gait and accurately tracks the desired heading angle.
This tracking performance enables the application of the pro-
posed RL-based cascade motion policy for navigation indoors
and outdoors.

2) STABILITY AND FEASIBILITY OF THE WALKING GAIT
Figure 10 shows the phase portrait of the actuated joints of the
robot’s leg while walking at a constant desired velocity. Simi-
lar to the simulation results, the plot shows the convergence of
the orbits to a periodic limit cycle, empirically demonstrating
the stability of the walking gait. As expected, the limit cycles
of the joints are noisier than the ones obtained in simulation,
particularly for the joints that are being modified by the
feedback regulator policy.

3) ROBUSTNESS
We perform two tests to evaluate the robustness of the cas-
cade controller: i) robustness to external disturbances and
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FIGURE 10. Walking limit cycle of the learned policy when tracking a
longitudinal velocity v{ = 0.0 m/s, and lateral velocity vy =0m/s.
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FIGURE 11. Disturbance rejection when external forces are applied in the
backward direction.

ii) robustness when walking on challenging terrain. For the
first test, external disturbances are applied to the robot’s
torso while walking forward (vy = 0.11 m/s, v, = Om/s).
Figure 11 shows the performance of the controller to keep
tracking of the desired walking speed, while Figure 12 shows
the limit walking cycle of some of the robot joints before,
during, and after the disturbance. These results show the
controller can recover effectively from disturbances while

SN,

=

FIGURE 13. Digit walking on different terrains using the learned policy: concrete slopes (top-left), rubber surface (top-right), grass (bottom-left), and
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FIGURE 12. Disturbance rejection when adversarial forces are applied in
the forward and backward direction.

keeping a good tracking performance of the desired walking
speed and maintaining the stability of the walking limit cycle.

For the second test, we set Digit to walk blindly on a series
of challenging irregular terrains. To test the robustness of the
controller on different slopes, we conducted rigorous experi-
ments on a treadmill varying the slope inclination from O to
11 degrees. In addition, we evaluate the controller’s perfor-
mance to real-world scenarios by conducting experiments
outdoors on different terrains, including concrete ground,
vinyl, pavement, grass, and slopes of different inclinations.
Figure 13 shows tile plots of the robot walking on some of
these terrains. More details about these experiments can be
seen in the accompanying video submission.

We evaluate the speed tracking performance of the con-
troller along all the different terrains. The results presented
in Figure 14 show the proposed controller structure is able
not only to keep stable walking but also to keep a good speed
tracking performance on every single terrain. This demon-
strates that our learned policy can be used with confidence
for navigation in real-world scenarios.

pavement (bottom-right). The top-right tile plots also show the robustness of the policy against external forces applied to the torso of the robot.
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FIGURE 14. Speed tracking performance of the controller while walking
blindly on different challenging terrains.

We denote that the same learned policy is used to navigate
the robot in all the terrains mentioned above, without the need
for additional training or tuning between different terrains.
It is important to denote that no disturbances or terrain ran-
domization were applied during the training. Therefore, the
robustness of the policy is the result of the enhanced structure
of the controller that allows the external and internal loop
to be updated at different rates. The inner loop (feedback
regulation) facilitates the feedback response of the controller
to external disturbances while the outer loop (NN-based tra-
jectory planning) keeps updating the reference trajectories for
different desired speeds at a lower rate.

VII. CONCLUSION

This paper presents a novel RL framework for the design
of a cascade motion policy that simultaneously addresses
two important problems in bipedal locomotion: trajectory
planning and feedback regulation. By incorporating the phys-
ical insights of dynamic walking such as symmetry motion,
invariance through impact condition, and heuristic regula-
tions into the learning process, we provide a complete and
effective solution for the design of feedback controllers that
realize stable and robust walking gaits without any prior
knowledge of reference trajectories. The method relies on
a small-size network with reduced state and action spaces,
resulting in improved sample efficiency and reduced train-
ing time. The proposed method is tested in simulation with
two bipedal robots Cassie and Digit, and successful sim-to-
real transfer of the learned policy is demonstrated on Digit
with minimal tuning. Extensive hardware experiments show
the learned policy can track desired walking speeds in any
direction while maintaining stable walking gaits. Moreover,
the policy is robust to external disturbances and challeng-
ing terrains, including rubber ground, pavement, grass, and
slopes.
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