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ABSTRACT

Trust has been identified as a central factor for effective human-
robot teaming. Existing literature on trust modeling predominantly
focuses on dyadic human-autonomy teams where one human agent
interacts with one robot. There is little, if not no, research on trust
modeling in teams consisting of multiple human agents and mul-
tiple robotic agents. To fill this research gap, we present the tru-*
inference and propagation (TIP) model for trust modeling in mul
human multi-robot teams. We assert that in a multi-human mul
robot team, there exist two types of experiences that any huma
agent has with any robot: direct and indirect experiences. The TI
model presents a novel mathematical framework that explicit.
accounts for both types of experiences. To evaluate the model, w
conducted a human-subject experiment with 15 pairs of participan
(N = 30). Each pair performed a search and detection task wit
two drones. Results show that our TIP model successfully capture
the underlying trust dynamics and significantly outperformed
baseline model. To the best of our knowledge, the TIP model is tt
first mathematical framework for computational trust modeling i
multi-human multi-robot teams.
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1 INTRODUCTION

Trust has been identified as one central factor for effective human-
robot teaming [14, 17, 18]. Despite research efforts over the past
thirty years, existing literature predominantly focuses on dyadic
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human-robot teams where one human agent interacts with one
robot [12]. There is little, if not no, research on trust modeling in
teams consisting of multiple human agents and multiple robots.
Consider a scenario where two human agents, x and y, and two
robots, A and B, are to perform a task. The four agents are allowed
to form sub-teams to enhance task performance (e.g., maximizing
throughput and/or minimizine task completion time). For instance.
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Figure 1: Four agents can form sub-teams. In Part 1, human
x and robot A form a dyad, and human y and robot B form
a dyad. In part 2, two dyads merge. In part 3, human x and
robot B form a dyad, and human y and robot A form a dyad.

In this scenario, we assert that there exist two types of expe-
riences that a human agent has with a robot: direct and indirect
experiences. Direct experience, by its name, means that a human
agent’s interaction with a robot is by him-/her-self; indirect ex-
perience means that a human agent’s interaction with a robot is
mediated by another party. Fig. 2 illustrates Part 3 of the task shown
in Fig. 1. Human x works directly with robot B (i.e., direct experi-
ence). Even though there is no direct interaction between x and A
in part 3, we postulate that x could still update his or her trust in A
by learning y’s experience with A, i.e., y’s direct experience with A
becomes x’s indirect experience. y’s trust in A propagates to x.

Under the direct and indirect experience framework, prior work
on trust modeling in dyadic human-robot teams can be regarded as
examining how direct experience influences a person’s trust in a
robot. In multi-human multi-robot teams, we postulate that both
direct and indirect experiences drive a human agent’s trust in a robot.
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1 Part £anductedanhnmanssyhiact experiment with 15 pairs of partici-
pants (N = 30). Each pair worked with two drones to perform a

threat detection task for 15 sessions. We compared the TIP model

(i.e., accounts for both the direct and indirect experiences) and a
direct-experience-only model (i.e., only accounts for the direct ex-
perience a human agent has with a robot). Results show that the

TIP model successfully captured people’s trust dynamics with a
significantly smaller root-mean-square error (RMSE) compared to

the direct-experience-only model. To the best of our knowledge,

the proposed TIP model is the first mathematical framework for
computational trust modeling in multi-human multi-robot teams.

2 RELATED WORK

Several computational trust models in dyadic human-robot teams
exist [3, 6, 13, 16]. Notably, Xu and Dudek [16] proposed the online
probabilistic trust inference model (OPTIMo) utilizing Bayesian net-
works to estimate human trust from automation’s performance and
human behavior. Hu et al. [8] proposed to classify trust or distrust
based on electroencephalography (EEG) and galvanic skin response
(GSR) signals. Soh et al. [15] modeled trust as a latent dynamic
function for predicting human trust in robots across different tasks.
Guo and Yang [6] and Bhat et al. [1] proposed to model trust as
a Beta random variable and predicted trust value in a Bayesian
framework. For a detailed review, refer to [11].

Even though the amount of research on trust modeling in multi-
human multi-robot teams is extremely limited, some inspiration can
be drawn from research on reputation/trust management. Central
to the reputation management system is a propagation mechanism
that allows a buyer to obtain the reputation/trustworthiness values
of a seller, especially when the buyer had no prior transactions with
the seller [7]. Examples include the Beta reputation system [10] and
the FIRE trust management model [9]. Variants of such propagation
mechanisms can be found in several multi-agent systems, such as
e-commerce [2] and social networks [4].

3 MATHEMATICAL MODEL

We present the detailed TIP model. Our objective is to develop a
fully computational trust propagation model that works in general
human-robot interaction settings.
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3.1 Assumptions

We make two major assumptions. First, we assume that each hu-
man agent communicates trust as a single-dimensional value [5, 6].
Second, we assume that human agents are cooperative, i.e., they
report their trust truthfully to their human teammates.

3.2 Proposed Model

Trust as a Beta random variable. We define a trust value as
a real number in [0, 1], where 0 stands for “[do] not trust at all”
and 1 stands for “trust completely”. We take a probabilistic view
to model trust as in [6]. At time k, the trust t;:’b
agent a has towards another agent b follows a Beta distribution,

ab pab ab a,b
ie., tk ~ Beta (ak ,ﬂk ), where a and ﬁk

and negative experiences a had about b up to time k, respectively,
k=0,1,2,.... When k =0, ag’b and ﬂg’b are the prior experiences
that a had before any interaction with b. The expected trust is given

by ,uZ’b = aZ’b / (aZ’b + ﬁ]‘:’b). Here we note that t:’b is the self-

reported trust given by the agent a, which has some randomness

that a human

are the positive

due to subjectivity, while pk’b is the expected trust determined by
the experiences.

Trust update through direct experience. Similar to [6], we up-
date the direct trust experience at time k by setting

a,b ab qb

o= 1+s Pk W
b _ pa, b b

B = ﬂk_l +f*7pL

Here pllz and j_)z are the measurements of b’s success and failure
during time k, respectively; s*? and f? are a’s unit experience
gains with respect to success or failure of b, respectively. We require

b and f @b to be positive to ensure that cumulative experiences

are non-decreasing. The updated trust tZ’b follows the distribution

b pab
Beta((x: ,ﬁZ ).
Trust update through indirect experience propagation. Let x
and y denote two human agents and let A denote a robot agent, as

illustrated in Fig. 2. At time k, y communicates his or her trust ti’ A
on A with x, and then x updates his or her indirect trust experience

by

XA _ xA XA x,y . A x,A +

G EgI S [tk hZ 1] o
XA _ px,A A XY LA yA

B =B T [tk 17 % ]

where the superscript ‘+" means taking the positive part of the
corresponding number, i.e., t* = max{0, t} for a real number ¢, and
t]f’A ~ Beta(aZ’A, ﬂz’A).

The intuition behind this model is that x needs to reason upon

A . s . s A .
ty’ ,i.e,y’strust towards A. First, x compares y’s trust t]f with his

or her previous trust t Let At = t;: B ,’éi be the difference. If
At > 0, x gains pos1t1ve 1nd1rect experience about A, which amounts
to the product of the trust difference At, a coefficient 4 and a
discounting factor t;’y, i.e., x’s trust on y; if At < 0, then x gains
negative indirect experience about A, which is defined similarly.
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3.3 Parameter Inference

The proposed model characterizes a human agent’s tr
bot by six parameters. For instance, the parameter of

A, which is defined as %4 = ((xg’A, ﬂg’A, §5A, fx’A,
including x’s prior experiences a(’;’A and ﬂg’A, the uni
perience gains s and f}, and the unit indirect experi
§ and f +- We denote the indices of x’s direct and inc
updates with A up to time k as Dy, and Dy, respectively
can compute az’A and ﬂk’A, according to Egs. (1) and (.

xA _ x,A x,A Z A | A Z xy |, yA _  x,
o =a +s pj +5 tj [tj tj,

J€Dk jEBk
X, A _ px,A x,A Z A, 7 Z XY | A YA
B =Py +f A pj+f & tj [tj—l g J
J€Dk j€Dk

The optimal parameter Qf’A maximizes the log likelihood function
K
H (GX’A) = Z log Beta (tz’A‘a:’A, ﬁz’A) s
k=0
z’A and ,Bk’A are defined in Eq. (3).

We note that log Beta(tz’A|az’A, ﬁ]’g’A) is concave in 64 by the
A

©

where a

composite rule that the function is concave in (a’kC’A, ﬁl’g’A) and txlf’
and ﬂ’kc’A are non-decreasing linear functions of 4. Consequently,

H(6*%4) is concave in 64 because it is a summation of several
concave functions. Therefore, we can run the gradient descent
method to compute the optimal parameters.

4 HUMAN-SUBJECT STUDY

We conducted a human-subject experiment to evaluate the pro-
posed model. The experiment, inspired by [19], simulated a threat
detection task, where two human agents work with two smart
drones to search for threats at multiple sites.

4.1 Participants

A total of N = 30 participants (average age = 25.3 years, SD = 4.3
ages, 16 females, 14 males) with normal or corrected-to-normal
vision formed 15 teams and participated in the experiment. Each
participant received a base payment of $15 and a bonus of up to
$10 depending on their team performance. To promote cooperation
between a pair of players, team performance instead of individual
performance was used to calculate the bonus.

4.2 Experimental Task and Design

In the experiment, a pair of participants performed a simulated
threat detection task with two assistant drones for K = 15 sessions
on two separate desktop computers. At each session, each partici-
pant was assigned one drone and worked on the detection tasks.
After the session, they were asked to report their trust in each drone
and their trust in their human teammate. For clarity, we named the
two drones A and B and colored them in red and blue, respectively;
and we denoted the participants x and y. A trust rating is denoted
as t;:’b, where the superscript a € {x, y} stands for the trustor, the
superscript b € {x,y, A, B} stands for the trustee, and the subscript
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(a) Flow of experimental task

(b) Task interface. The drone will highlight the potential threat in
bright red. The participant is asked to click the ‘Danger’ button if a
threat is present and to click the ‘Clear’ button otherwise.

Figure 3: Experimental task and design

k is the session index. For example, t;C’A is person x’s trust in drone
A after the 2nd session. The range of a trust rating is [0, 1], where 0
stands for “(do) not trust at all” and 1 stands for “trust completely”.
The flow of the experimental task is illustrated in Fig. 3a.

Initial trust rating: At the start, each participant gave their
initial trust in the two drones based on their prior experience with
automation/robots. Additionally, they gave their initial trust in each
other. These trust ratings were indexed by 0, e.g., x’s initial trust
rating on A was denoted as .

Robot assignment: At each session, each participant was ran-
domly assigned one drone as his or her assistant robot.

Detection task: Each session consisted of 10 locations to detect.
As shown in Fig. 3b, four views were present at each location. If a
threat, which appeared like a combatant, was in any of the views,
the participant should click the ‘Danger’ button; otherwise, they
should click the ‘Clear’ button. Meanwhile, his or her drone would
assist and highlight a view if the drone detected a threat there. In
addition, a 3-second timer was set for each location. If a participant
did not click either button before the timer counted down to zero,
the testbed would move to the next location automatically. After all
the 10 locations, an end-of-session screen was shown, displaying
how many correct choices the participant and the drone had made
in the current session. Correct choices mean correctly identifying
threats or declaring ‘Clear’ within 3 seconds.

Trust rating: After each session, participants reported three
trust values. First, each participant updated his or her trust in the
drone s/he just worked with, i.e., through direct experience. Next,
each participant submitted and communicated their trust score to
their human teammate. After that, each participant updated his or
her trust in the drone the human teammate just worked with (i.e.,
the other drone) and his or her trust in the human teammate. After
participants completed all 15 sessions, the experiment ended.



HRI ’23 Companion, March 13-16, 2023, Stockholm, Sweden

Yaohui Guo, X. Jessie Yang, & Cong Shi

N ——

11 1-2 2-1

P :

= EW

Figure 4: Fitting results. Red curves are for drone A while blue curves are for drone B. The solid lines are the participants’
self-reported trust, while the dashed lines are the expected trust value predicted by the model. The shaded areas indicate the
90% probability interval of the Beta distribution at each session. The index i-j stands for the jth participant in the ithe group.

4.3 Experimental Procedure

Before the experiment, each participant signed a consent form and
filled out a demographic survey. Two practice sessions were pro-
vided, wherein a practice drone was used to assist the participants.
The participants were told that the practice drone differed from
the two drones used in the real experiment. After the experiment
started, the assignment of drones was randomized in each group.
Specifically, we assigned drone A with equal change to either par-
ticipant and then assigned drone B to the other participant. The
threat detection accuracy of the practice drone, drone A, and drone
B were set to 80%, 90%, and 60%, respectively.

5 RESULTS AND DISCUSSION

We use the gradient descent method in Sec. 3.3 to compute the opti-
mal parameters or 4 and or B for each participant p;. The fitting
results are shown in Fig. 4. We calculate the performance measure-
ments of drone A at session k as p;? = Ay /10and 1_)‘,? = 1—p£, where
Ay is the number of correct choices drone A made in the kth session;
and we define pf and ﬁg similarly. To measure the performance of
the model, we calculate the fitting error at each session for each par-
i Pi.R PR _ pi.R piR . .
ticipantase, " = |,uk —t |,R € {A, B}, where B s the partic-
ipant’s self-reported trust while yzi’R is the expected trust defined in

section 3.2 and computed based on Hf i ’R; and, we calculate the root-
mean-square error (RMSE) between the ground truth and the ex-
pected trust value as RMSER = [% Zﬁl ﬁ Zfzo(eﬁi’R)z] 1/2 for
R € {A, B}. The RMSE results for the TIP model are RMSE# = 0.057
and RMSEP = 0.082.
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Fig. 4 shows the fitting results of the TIP model. The shaded
regions indicate the 90% confidence interval of the Beta distribution
at each session. We observe that for most participants, such as 7-2
and 10-2, the proposed TIP model can accurately fit the trust curve
with a narrow confidence interval; but for some other participants,
such as 5-2 and 8-1, the model cannot fit the trust curve due to trust
oscillation. However, in the latter case, the fitted curve has a similar
trend with the ground truth and can cover most data points with
the 90% confidence interval.

For comparison, we consider a direct-update-only model that
only accounts for the direct experience a human agent has with
a robot. The direct-update-only model is equivalent to the TIP
model with zero unit indirect experience gains, i.e., §%4 = fx’A =0.
We recompute the model parameters for the direct-update-only
model, and the corresponding RMSE errors are RMSE’4 = 0.085
and RMSE’B = 0.107. Furthermore, we compare each participant’s
fitting error ePoR = 1/(K+1) Zf:o ezi’R of the TIP model (A:
0.044 £ 0.037; B: 0.069 + 0.045) and that of the direct-update-only
model (A: 0.075 + 0.041; B: 0.095 + 0.051) using a paired-sample
t-test. Results show that the former is significantly smaller than the
latter, with ¢(29) = —6.18, p < .001 for drone A, and #(29) = -7.31,
p < .001 for drone B.
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