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ABSTRACT
Trust has been identified as a central factor for effective human-
robot teaming. Existing literature on trust modeling predominantly
focuses on dyadic human-autonomy teams where one human agent
interacts with one robot. There is little, if not no, research on trust
modeling in teams consisting of multiple human agents and mul-
tiple robotic agents. To fill this research gap, we present the trust
inference and propagation (TIP) model for trust modeling in multi-
human multi-robot teams. We assert that in a multi-human multi-
robot team, there exist two types of experiences that any human
agent has with any robot: direct and indirect experiences. The TIP
model presents a novel mathematical framework that explicitly
accounts for both types of experiences. To evaluate the model, we
conducted a human-subject experiment with 15 pairs of participants
(𝑁 = 30). Each pair performed a search and detection task with
two drones. Results show that our TIP model successfully captured
the underlying trust dynamics and significantly outperformed a
baseline model. To the best of our knowledge, the TIP model is the
first mathematical framework for computational trust modeling in
multi-human multi-robot teams.

CCS CONCEPTS
• Human-centered computing→ Human computer interac-
tion (HCI); • Computer systems organization → Robotics.
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1 INTRODUCTION
Trust has been identified as one central factor for effective human-
robot teaming [14, 17, 18]. Despite research efforts over the past
thirty years, existing literature predominantly focuses on dyadic
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human-robot teams where one human agent interacts with one
robot [12]. There is little, if not no, research on trust modeling in
teams consisting of multiple human agents and multiple robots.

Consider a scenario where two human agents, 𝑥 and 𝑦, and two
robots, 𝐴 and 𝐵, are to perform a task. The four agents are allowed
to form sub-teams to enhance task performance (e.g., maximizing
throughput and/or minimizing task completion time). For instance,
they could initially form two dyadic human-robot teams to complete
the first part of the task, merge to complete the second part, and
split again with a different configuration to complete the third part
of the task, and so on (see Fig 1).

𝐴𝐴 𝐵𝐵𝑥𝑥 𝑦𝑦

Part 1: agents form into two dyads

𝑥𝑥 𝐵𝐵 𝑦𝑦 𝐴𝐴

Part 3: agents reform into two dyads

𝐴𝐴 𝐵𝐵𝑥𝑥 𝑦𝑦

Part 2: agents merge
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𝑡𝑡𝑥𝑥,𝐵𝐵 𝑡𝑡𝑦𝑦,𝐴𝐴𝑡𝑡𝑥𝑥,𝑦𝑦

𝑡𝑡𝑥𝑥,𝐴𝐴

𝐵𝐵 𝑥𝑥 𝑦𝑦 𝐴𝐴

Figure 1: Four agents can form sub-teams. In Part 1, human
𝑥 and robot 𝐴 form a dyad, and human 𝑦 and robot 𝐵 form
a dyad. In part 2, two dyads merge. In part 3, human 𝑥 and
robot 𝐵 form a dyad, and human 𝑦 and robot 𝐴 form a dyad.

In this scenario, we assert that there exist two types of expe-
riences that a human agent has with a robot: direct and indirect
experiences. Direct experience, by its name, means that a human
agent’s interaction with a robot is by him-/her-self; indirect ex-
perience means that a human agent’s interaction with a robot is
mediated by another party. Fig. 2 illustrates Part 3 of the task shown
in Fig. 1. Human 𝑥 works directly with robot 𝐵 (i.e., direct experi-
ence). Even though there is no direct interaction between 𝑥 and 𝐴
in part 3, we postulate that 𝑥 could still update his or her trust in 𝐴
by learning 𝑦’s experience with 𝐴, i.e., 𝑦’s direct experience with 𝐴
becomes 𝑥 ’s indirect experience. 𝑦’s trust in 𝐴 propagates to 𝑥 .

Under the direct and indirect experience framework, prior work
on trust modeling in dyadic human-robot teams can be regarded as
examining how direct experience influences a person’s trust in a
robot. In multi-human multi-robot teams, we postulate that both
direct and indirect experiences drive a human agent’s trust in a robot.
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𝐴𝐴 𝐵𝐵𝑥𝑥 𝑦𝑦
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Figure 2: An arrow points from a trustor to a trustee, repre-
senting the trust 𝑡 trustor,trustee. Human 𝑥 updates her trust in
robot 𝐵 via direct experience. Even though 𝑥 does not have
direct interaction with 𝐴, 𝑥 could still update his or her trust
toward 𝐴 through a third party, 𝑦.

In this study, we develop the Trust Inference and Propagation
(TIP) model for multi-human multi-robot teams, explicitly account-
ing for the direct and indirect experiences a human agent may have
with a robot. We examine trust dynamics under the TIP framework
and prove theoretically that trust converges after repeated (direct
and indirect) interactions. To evaluate the proposed TIP model, we
conducted a human-subject experiment with 15 pairs of partici-
pants (𝑁 = 30). Each pair worked with two drones to perform a
threat detection task for 15 sessions. We compared the TIP model
(i.e., accounts for both the direct and indirect experiences) and a
direct-experience-only model (i.e., only accounts for the direct ex-
perience a human agent has with a robot). Results show that the
TIP model successfully captured people’s trust dynamics with a
significantly smaller root-mean-square error (RMSE) compared to
the direct-experience-only model. To the best of our knowledge,
the proposed TIP model is the first mathematical framework for
computational trust modeling in multi-human multi-robot teams.

2 RELATEDWORK
Several computational trust models in dyadic human-robot teams
exist [3, 6, 13, 16]. Notably, Xu and Dudek [16] proposed the online
probabilistic trust inference model (OPTIMo) utilizing Bayesian net-
works to estimate human trust from automation’s performance and
human behavior. Hu et al. [8] proposed to classify trust or distrust
based on electroencephalography (EEG) and galvanic skin response
(GSR) signals. Soh et al. [15] modeled trust as a latent dynamic
function for predicting human trust in robots across different tasks.
Guo and Yang [6] and Bhat et al. [1] proposed to model trust as
a Beta random variable and predicted trust value in a Bayesian
framework. For a detailed review, refer to [11].

Even though the amount of research on trust modeling in multi-
humanmulti-robot teams is extremely limited, some inspiration can
be drawn from research on reputation/trust management. Central
to the reputation management system is a propagation mechanism
that allows a buyer to obtain the reputation/trustworthiness values
of a seller, especially when the buyer had no prior transactions with
the seller [7]. Examples include the Beta reputation system [10] and
the FIRE trust management model [9]. Variants of such propagation
mechanisms can be found in several multi-agent systems, such as
e-commerce [2] and social networks [4].

3 MATHEMATICAL MODEL
We present the detailed TIP model. Our objective is to develop a
fully computational trust propagation model that works in general
human-robot interaction settings.

3.1 Assumptions
We make two major assumptions. First, we assume that each hu-
man agent communicates trust as a single-dimensional value [5, 6].
Second, we assume that human agents are cooperative, i.e., they
report their trust truthfully to their human teammates.

3.2 Proposed Model
Trust as a Beta random variable. We define a trust value as
a real number in [0, 1], where 0 stands for “[do] not trust at all”
and 1 stands for “trust completely”. We take a probabilistic view
to model trust as in [6]. At time 𝑘 , the trust 𝑡𝑎,𝑏

𝑘
that a human

agent 𝑎 has towards another agent 𝑏 follows a Beta distribution,
i.e., 𝑡𝑎,𝑏

𝑘
∼ Beta

(
𝛼
𝑎,𝑏

𝑘
, 𝛽
𝑎,𝑏

𝑘

)
, where 𝛼𝑎,𝑏

𝑘
and 𝛽𝑎,𝑏

𝑘
are the positive

and negative experiences 𝑎 had about 𝑏 up to time 𝑘 , respectively,
𝑘 = 0, 1, 2, . . . . When 𝑘 = 0, 𝛼𝑎,𝑏0 and 𝛽𝑎,𝑏0 are the prior experiences
that 𝑎 had before any interaction with 𝑏. The expected trust is given
by 𝜇𝑎,𝑏

𝑘
= 𝛼

𝑎,𝑏

𝑘
/
(
𝛼
𝑎,𝑏

𝑘
+ 𝛽𝑎,𝑏

𝑘

)
. Here we note that 𝑡𝑎,𝑏

𝑘
is the self-

reported trust given by the agent 𝑎, which has some randomness
due to subjectivity, while 𝜇𝑎,𝑏

𝑘
is the expected trust determined by

the experiences.

Trust update through direct experience. Similar to [6], we up-
date the direct trust experience at time 𝑘 by setting

𝛼
𝑎,𝑏

𝑘
= 𝛼

𝑎,𝑏

𝑘−1 + 𝑠
𝑎,𝑏 · 𝑝𝑏

𝑘

𝛽
𝑎,𝑏

𝑘
= 𝛽

𝑎,𝑏

𝑘−1 + 𝑓
𝑎,𝑏 · 𝑝𝑏𝑘

. (1)

Here 𝑝𝑏
𝑘
and 𝑝𝑏𝑘 are the measurements of 𝑏’s success and failure

during time 𝑘 , respectively; 𝑠𝑎,𝑏 and 𝑓 𝑎,𝑏 are 𝑎’s unit experience
gains with respect to success or failure of 𝑏, respectively. We require
𝑠𝑎,𝑏 and 𝑓 𝑎,𝑏 to be positive to ensure that cumulative experiences
are non-decreasing. The updated trust 𝑡𝑎,𝑏

𝑘
follows the distribution

Beta(𝛼𝑎,𝑏
𝑘
, 𝛽
𝑎,𝑏

𝑘
).

Trust update through indirect experience propagation. Let 𝑥
and 𝑦 denote two human agents and let 𝐴 denote a robot agent, as
illustrated in Fig. 2. At time 𝑘 , 𝑦 communicates his or her trust 𝑡𝑦,𝐴

𝑘
on𝐴 with 𝑥 , and then 𝑥 updates his or her indirect trust experience
by

𝛼
𝑥,𝐴

𝑘
= 𝛼

𝑥,𝐴

𝑘−1 + 𝑠
𝑥,𝐴 · 𝑡𝑥,𝑦

𝑘
·
[
𝑡
𝑦,𝐴

𝑘
− 𝑡𝑥,𝐴

𝑘−1

]+
𝛽
𝑥,𝐴

𝑘
= 𝛽

𝑥,𝐴

𝑘−1 + 𝑓
𝑥,𝐴 · 𝑡𝑥,𝑦

𝑘
·
[
𝑡
𝑥,𝐴

𝑘−1 − 𝑡
𝑦,𝐴

𝑘

]+, (2)

where the superscript ‘+’ means taking the positive part of the
corresponding number, i.e., 𝑡+ = max{0, 𝑡} for a real number 𝑡 , and
𝑡
𝑥,𝐴

𝑘
∼ Beta(𝛼𝑥,𝐴

𝑘
, 𝛽
𝑥,𝐴

𝑘
).

The intuition behind this model is that 𝑥 needs to reason upon
𝑡
𝑦,𝐴

𝑘
, i.e.,𝑦’s trust towards𝐴. First, 𝑥 compares𝑦’s trust 𝑡𝑦,𝐴

𝑘
with his

or her previous trust 𝑡𝑥,𝐴
𝑘−1. Let Δ𝑡 := 𝑡

𝑦,𝐴

𝑘
− 𝑡𝑥,𝐴
𝑘−1 be the difference. If

Δ𝑡 ≥ 0, 𝑥 gains positive indirect experience about𝐴, which amounts
to the product of the trust difference Δ𝑡 , a coefficient 𝑠𝑥,𝐴 , and a
discounting factor 𝑡𝑥,𝑦

𝑘
, i.e., 𝑥 ’s trust on 𝑦; if Δ𝑡 < 0, then 𝑥 gains

negative indirect experience about 𝐴, which is defined similarly.
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3.3 Parameter Inference
The proposed model characterizes a human agent’s trust on a ro-
bot by six parameters. For instance, the parameter of 𝑥 on robot
𝐴, which is defined as 𝜃𝑥,𝐴 =

(
𝛼
𝑥,𝐴
0 , 𝛽

𝑥,𝐴
0 , 𝑠𝑥,𝐴, 𝑓 𝑥,𝐴, 𝑠𝑥,𝐴, 𝑓 𝑥,𝐴

)
,

including 𝑥 ’s prior experiences 𝛼𝑥,𝐴0 and 𝛽𝑥,𝐴0 , the unit direct ex-
perience gains 𝑠𝑥

𝐴
and 𝑓 𝑥

𝐴
, and the unit indirect experience gains

𝑠𝑥
𝐴
and 𝑓 𝑥

𝐴
. We denote the indices of 𝑥 ’s direct and indirect trust

updates with 𝐴 up to time 𝑘 as 𝐷𝑘 and 𝐷𝑘 , respectively. Then, we
can compute 𝛼𝑥,𝐴

𝑘
and 𝛽𝑥,𝐴

𝑘
, according to Eqs. (1) and (2), as

𝛼
𝑥,𝐴

𝑘
=𝛼

𝑥,𝐴
0 + 𝑠𝑥,𝐴

∑︁
𝑗∈𝐷𝑘

𝑝𝐴𝑗 + 𝑠
∑︁
𝑗∈𝐷𝑘

𝑡
𝑥,𝑦

𝑗

[
𝑡
𝑦,𝐴

𝑗
− 𝑡𝑥,𝐴

𝑗−1

]+
𝛽
𝑥,𝐴

𝑘
=𝛽

𝑥,𝐴
0 + 𝑓 𝑥,𝐴

∑︁
𝑗∈𝐷𝑘

𝑝
𝐴
𝑗 + 𝑓

∑︁
𝑗∈𝐷𝑘

𝑡
𝑥,𝑦

𝑗

[
𝑡
𝑥,𝐴
𝑗−1 − 𝑡

𝑦,𝐴

𝑗

]+ . (3)

The optimal parameter 𝜃𝑥,𝐴∗ maximizes the log likelihood function

𝐻

(
𝜃𝑥,𝐴

)
:=

𝐾∑︁
𝑘=0

log Beta
(
𝑡
𝑥,𝐴

𝑘

���𝛼𝑥,𝐴
𝑘

, 𝛽
𝑥,𝐴

𝑘

)
, (4)

where 𝛼𝑥,𝐴
𝑘

and 𝛽𝑥,𝐴
𝑘

are defined in Eq. (3).
We note that log Beta(𝑡𝑥,𝐴

𝑘
|𝛼𝑥,𝐴
𝑘

, 𝛽
𝑥,𝐴

𝑘
) is concave in 𝜃𝑥,𝐴 by the

composite rule that the function is concave in (𝛼𝑥,𝐴
𝑘

, 𝛽
𝑥,𝐴

𝑘
) and 𝛼𝑥,𝐴

𝑘

and 𝛽𝑥,𝐴
𝑘

are non-decreasing linear functions of 𝜃𝑥,𝐴 . Consequently,
𝐻 (𝜃𝑥,𝐴) is concave in 𝜃𝑥,𝐴 because it is a summation of several
concave functions. Therefore, we can run the gradient descent
method to compute the optimal parameters.

4 HUMAN-SUBJECT STUDY
We conducted a human-subject experiment to evaluate the pro-
posed model. The experiment, inspired by [19], simulated a threat
detection task, where two human agents work with two smart
drones to search for threats at multiple sites.

4.1 Participants
A total of 𝑁 = 30 participants (average age = 25.3 years, SD = 4.3
ages, 16 females, 14 males) with normal or corrected-to-normal
vision formed 15 teams and participated in the experiment. Each
participant received a base payment of $15 and a bonus of up to
$10 depending on their team performance. To promote cooperation
between a pair of players, team performance instead of individual
performance was used to calculate the bonus.

4.2 Experimental Task and Design
In the experiment, a pair of participants performed a simulated
threat detection task with two assistant drones for 𝐾 = 15 sessions
on two separate desktop computers. At each session, each partici-
pant was assigned one drone and worked on the detection tasks.
After the session, they were asked to report their trust in each drone
and their trust in their human teammate. For clarity, we named the
two drones 𝐴 and 𝐵 and colored them in red and blue, respectively;
and we denoted the participants 𝑥 and 𝑦. A trust rating is denoted
as 𝑡𝑎,𝑏

𝑘
, where the superscript 𝑎 ∈ {𝑥,𝑦} stands for the trustor, the

superscript 𝑏 ∈ {𝑥,𝑦,𝐴, 𝐵} stands for the trustee, and the subscript

Robot 
assignment

Detection 
task

Trust 
rating

Initial trust 
rating

(a) Flow of experimental task

(b) Task interface. The drone will highlight the potential threat in
bright red. The participant is asked to click the ‘Danger’ button if a
threat is present and to click the ‘Clear’ button otherwise.

Figure 3: Experimental task and design

𝑘 is the session index. For example, 𝑡𝑥,𝐴2 is person 𝑥 ’s trust in drone
𝐴 after the 2nd session. The range of a trust rating is [0, 1], where 0
stands for “(do) not trust at all” and 1 stands for “trust completely”.
The flow of the experimental task is illustrated in Fig. 3a.

Initial trust rating: At the start, each participant gave their
initial trust in the two drones based on their prior experience with
automation/robots. Additionally, they gave their initial trust in each
other. These trust ratings were indexed by 0, e.g., 𝑥 ’s initial trust
rating on 𝐴 was denoted as 𝑡𝑥,𝐴0 .

Robot assignment: At each session, each participant was ran-
domly assigned one drone as his or her assistant robot.

Detection task: Each session consisted of 10 locations to detect.
As shown in Fig. 3b, four views were present at each location. If a
threat, which appeared like a combatant, was in any of the views,
the participant should click the ‘Danger’ button; otherwise, they
should click the ‘Clear’ button. Meanwhile, his or her drone would
assist and highlight a view if the drone detected a threat there. In
addition, a 3-second timer was set for each location. If a participant
did not click either button before the timer counted down to zero,
the testbed would move to the next location automatically. After all
the 10 locations, an end-of-session screen was shown, displaying
how many correct choices the participant and the drone had made
in the current session. Correct choices mean correctly identifying
threats or declaring ‘Clear’ within 3 seconds.

Trust rating: After each session, participants reported three
trust values. First, each participant updated his or her trust in the
drone s/he just worked with, i.e., through direct experience. Next,
each participant submitted and communicated their trust score to
their human teammate. After that, each participant updated his or
her trust in the drone the human teammate just worked with (i.e.,
the other drone) and his or her trust in the human teammate. After
participants completed all 15 sessions, the experiment ended.

641



HRI ’23 Companion, March 13–16, 2023, Stockholm, Sweden Yaohui Guo, X. Jessie Yang, & Cong Shi

1-1 1-2 2-1 2-2 3-1 3-2

4-1 4-2 5-1 5-2 6-1 6-2

7-1 7-2 8-1 8-2 9-1 9-2

10-1 10-2 11-1 11-2 12-1 12-2

13-1 13-2 14-1 14-2 15-1 15-2

Figure 4: Fitting results. Red curves are for drone 𝐴 while blue curves are for drone 𝐵. The solid lines are the participants’
self-reported trust, while the dashed lines are the expected trust value predicted by the model. The shaded areas indicate the
90% probability interval of the Beta distribution at each session. The index 𝑖- 𝑗 stands for the 𝑗th participant in the 𝑖the group.

4.3 Experimental Procedure
Before the experiment, each participant signed a consent form and
filled out a demographic survey. Two practice sessions were pro-
vided, wherein a practice drone was used to assist the participants.
The participants were told that the practice drone differed from
the two drones used in the real experiment. After the experiment
started, the assignment of drones was randomized in each group.
Specifically, we assigned drone 𝐴 with equal change to either par-
ticipant and then assigned drone 𝐵 to the other participant. The
threat detection accuracy of the practice drone, drone 𝐴, and drone
𝐵 were set to 80%, 90%, and 60%, respectively.

5 RESULTS AND DISCUSSION
We use the gradient descent method in Sec. 3.3 to compute the opti-
mal parameters 𝜃𝑝𝑖 ,𝐴∗ and 𝜃𝑝𝑖 ,𝐵∗ for each participant 𝑝𝑖 . The fitting
results are shown in Fig. 4. We calculate the performance measure-
ments of drone𝐴 at session𝑘 as 𝑝𝐴

𝑘
= 𝐴𝑘/10 and 𝑝𝐴𝑘 = 1−𝑝𝐴

𝑘
, where

𝐴𝑘 is the number of correct choices drone𝐴made in the 𝑘th session;
and we define 𝑝𝐵

𝑘
and 𝑝𝐵𝑘 similarly. To measure the performance of

the model, we calculate the fitting error at each session for each par-
ticipant as 𝑒𝑝𝑖 ,𝑅

𝑘
= |𝜇𝑝𝑖 ,𝑅

𝑘
−𝑡𝑝𝑖 ,𝑅
𝑘

|,𝑅 ∈ {𝐴, 𝐵}, where 𝑡𝑝𝑖 ,𝑅
𝑘

is the partic-
ipant’s self-reported trust while 𝜇𝑝𝑖 ,𝑅

𝑘
is the expected trust defined in

section 3.2 and computed based on 𝜃𝑝𝑖 ,𝑅∗ ; and, we calculate the root-
mean-square error (RMSE) between the ground truth and the ex-
pected trust value as RMSE𝑅 = [ 1

𝑁

∑𝑁
𝑖=1

1
𝐾+1

∑𝐾
𝑘=0 (𝑒

𝑝𝑖 ,𝑅

𝑘
)2]1/2, for

𝑅 ∈ {𝐴, 𝐵}. The RMSE results for the TIP model are RMSE𝐴 = 0.057
and RMSE𝐵 = 0.082.

Fig. 4 shows the fitting results of the TIP model. The shaded
regions indicate the 90% confidence interval of the Beta distribution
at each session. We observe that for most participants, such as 7-2
and 10-2, the proposed TIP model can accurately fit the trust curve
with a narrow confidence interval; but for some other participants,
such as 5-2 and 8-1, the model cannot fit the trust curve due to trust
oscillation. However, in the latter case, the fitted curve has a similar
trend with the ground truth and can cover most data points with
the 90% confidence interval.

For comparison, we consider a direct-update-only model that
only accounts for the direct experience a human agent has with
a robot. The direct-update-only model is equivalent to the TIP
model with zero unit indirect experience gains, i.e., 𝑠𝑥,𝐴 = 𝑓 𝑥,𝐴 = 0.
We recompute the model parameters for the direct-update-only
model, and the corresponding RMSE errors are RMSE′𝐴 = 0.085
and RMSE′𝐵 = 0.107. Furthermore, we compare each participant’s
fitting error 𝑒𝑝𝑖 ,𝑅 := 1/(𝐾 + 1)∑𝐾

𝑘=0 𝑒
𝑝𝑖 ,𝑅

𝑘
of the TIP model (𝐴:

0.044 ± 0.037; 𝐵: 0.069 ± 0.045) and that of the direct-update-only
model (𝐴: 0.075 ± 0.041; 𝐵: 0.095 ± 0.051) using a paired-sample
t-test. Results show that the former is significantly smaller than the
latter, with 𝑡 (29) = −6.18, 𝑝 < .001 for drone 𝐴, and 𝑡 (29) = −7.31,
𝑝 < .001 for drone 𝐵.
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