
Technical Note

Multispectral Imaging for Identification of High-Water
Marks in Postdisaster Flood Reconnaissance
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Abstract: Flooding annually causes thousands of fatalities and billions of dollars in damage globally. Predicting future floods has become
increasingly challenging due to changing urban environments and land surface conditions. Simultaneously, severe floods are likely to increase
due to climate change and associated shifts in rain patterns, resulting into potentially stronger and more consequential flood events. High-
water marks represent key information to be collected after flooding for advancing the understanding of flood impacts and the development of
mitigation strategies. However, high-water marks often become increasingly difficult to detect with time passing after a flood event due to
drying. In addition, access into flooded areas can be complicated by destroyed infrastructure, leading to significant loss of data or risk to
personnel entering these recently flooded areas. Here, initial data are presented demonstrating the application of multispectral imagery in
rapidly collecting and mapping high-water marks after flooding. The multispectral images were collected 3–4 weeks after the July 14, 2021,
western European flood events in the town of Mayschoss, Germany, along the Ahr River. At that time, affected buildings, walls, and soil were
exposed to high summer temperatures and solar radiation, as well as dust from surrounding emergency response and repair works. High-water
marks were barely visible by eye. Preliminary results showed the high-water mark is significantly enhanced in the blue band (wavelength 443
to 507 nm) and can be modally isolated through linear combination of the blue band and red-edge band (wavelength 705 to 729 nm). The
results illustrate the potential to apply this technique in postdisaster reconnaissance to quickly and safely map high-water levels to identify the
magnitude and extent of flooding in urban areas. DOI: 10.1061/NHREFO.NHENG-1735. This work is made available under the terms of
the Creative Commons Attribution 4.0 International license, https://creativecommons.org/licenses/by/4.0/.

Introduction

Flooding accounts for 80%–90% of documented natural disasters
globally (CRED 2021), causing extensive damage, death, and dis-
ruption. The recent 2021 flooding in western Europe serves as a
potent example of risks posed by extreme flooding. With over
230 fatalities, the July 14–15, 2021, event was the most destructive
flooding Europe has experienced in the 21st century (Statista
2022). Early estimates of flood-related damage suggested approx-
imately 350 million Euros of damage in Belgium (Kreienkamp
et al. 2021), 300–600 million Euros in the Netherlands (Jonkman
et al. 2021), and 17 billion Euros in Germany (AON 2021). More
recent analyses by the German reinsurance company Munich Re
approximated total damages closer to 54 billion Euros, of which
33 billion Euros were in Germany alone, and only 17 billion Euros

in total insured losses. This makes the western European flood the
world’s second costliest recorded natural disaster in terms of mon-
etary cost in 2021, after Hurricane Ida (Munich Re 2022). Rainfall
volume of 240 L=m2 in some areas was estimated to have reached,
an amount typical for up to an entire year, and localized high-water
levels were measured to be as high as 11.75 m above the river water
level at the time of measurement.

Preliminary estimates of the return period for the flooding in the
Ahr and Erft catchments in Germany—some of the most severely im-
pacted regions—were so large that precise values are difficult to obtain
and estimates range from a 700- to 15,000-year event (Kreienkamp
et al. 2021). Based on statistical flood data between 1980 and
2010, studies conducted by the European Environment Agency
(Vanneuville et al. 2016) suggest an increase of flooding instances
by 17-fold by 2080. With more rain expected due to current trends
in climate shifts, flood losses in Europe could be expected to increase
fivefold by 2050 and up to 17-fold by 2080 (Vanneuville et al. 2016).

Preflood risk assessment and postflood management require
proper assessment of hazard and resulting damage. Postevent as-
sessment is often categorized into immediate response information
required for organizing and managing rescue and emergency
response units, and data collected for long-term hazard assessment
and mitigation (e.g., risk analyses, insurance losses, policymaking,
repair and retrofit work, and academic research). Reconnaissance
efforts, such as those deployed through the Geotechnical Extreme
Event Reconnaissance Association (GEER Association 2023) are
critical pillars in collecting and preserving perishable information
following natural hazard events. These data provide historical obser-
vations and measurements to calibrate and correlate damage levels
with flood parameters (e.g., rainfall volume and local river geology,
geometry, and flow properties). Remote sensing and on-ground
imaging have played a key role in supporting these efforts across
the world, particularly for rapid-onset natural hazards [i.e., floods,
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cyclones and other windstorms, earthquakes, landslides and other
mass movements, wildfires, and volcanic eruptions (Kucharczyk
and Hugenholtz 2021; Twigg 2004)].

Although remote sensing significantly improves the ability to
quickly collect data to broadly map the extent of flooding and
associated damage, mapping high-water levels on structures or
natural features still requires direct measurement by personnel
on the ground. This is both time-consuming and limited by access
to visually identify and physically measure high-water levels. One
major challenge regarding the detection and measurement of high-
water marks is the lack of timely, safe access for surveyors. This
may lead to loss of high-water marks due to drying, coverage from
dust and other environmental impacts, or repair work.

Multispectral imagery is proposed to automatically identify
features, such as high-water marks on structures, trees, and other
natural and human-made features. Although this technology has
not yet been applied specifically for this purpose, it has previously
been used for related applications, such as mapping flood regimes
(Davranche et al. 2013), flood mapping (Genc et al. 2005; Smith
et al. 2004; Gläßer and Reinartz 2005; Muñoz et al. 2021; Wang
et al. 2019; Chen et al. 2020), and shoreline detection (Mitra et al.
2017). These applications have primarily focused on the use of
satellite-based multispectral imagery applied across relatively large
regions with coarser resolution than what might be necessary to
identify localized damage to individual neighborhoods and struc-
tures. Unmanned aerial vehicle (UAV)-borne multispectral imagery
has found broad application in vegetation monitoring (Jenal et al.
2019), and ground-based multispectral image collection has been
applied for material identification in building facades (Lerma 2005;
Zahiri et al. 2021, 2022).

In this article, an approach is presented for using multispectral
imagery to extract the high-water mark from flooding approxi-
mately 3–4 weeks postflood. Ground-based five-band multispectral
and thermal images of a building that was impacted by the 2021
western Europe flood are used to illustrate how images can be proc-
essed to isolate pixels associated with the building facade that were
at or below the maximum flood level. This approach potentially
could be broadly applied in postflooding reconnaissance to gener-
ate rapid estimates of water elevations, and thus, flooding severity
and extent. The remainder of this paper is organized as follows. The
means by which the images were collected is briefly presented, fol-
lowed by a description of how the images were processed to isolate
the signal associated with the high-water mark. This is followed by
a discussion of the results and the conclusions, including potential
applications and limitations of the preliminary results presented in
this paper.

Data Collection and Processing

The methodology for image collection and processing is illustrated
in Fig. 1. The image collection process, as shown on the first row,
is discussed in the “Data Collection” section. The steps for trans-
forming raw radiometric images into calibrated reflectance images,
as shown on the second and third rows, is discussed in the “Data
Processing” section.

Data Collection

A team from GEER was deployed to western Europe to gather
perishable data and document the impacts of the flood in August
2021 (Stark et al. 2021). The team explored the use of ground-
based multispectral imagery with the objective to apply this tech-
nology in postdisaster data collection and reconnaissance efforts. In
total, 112 images were collected, of which seven images contained

the flooded building used to extract the high-water mark. The mul-
tispectral imagery collection was limited to a section of the Ahr
River south of Mayschoss (Fig. 2).

Multispectral images were collected using a MicaSense Altum
camera (Seattle), which simultaneously takes images in the blue
(443 to 507 nm), green (533 to 587 nm), red (654 to 682 nm),
red-edge (705 to 729 nm), near-infrared (785 to 899 nm), and ther-
mal or long-wave infrared (5 to 17 μm) bands. Normally, this type of
camera is deployed using UAVs and is mounted such that primarily
nadir images are captured. However, in the case of postdisaster
reconnaissance, certain features of interest, such as building walls
or trees, for example, may not be adequately captured through purely
nadir imagery. Thus, as part of this exploratory application, multi-
spectral images were collected by carrying the camera by hand.
The hand-held utilization was enabled by powering the camera
externally using battery packs and manually triggering image collec-
tion through a cellphone connected to the camera’s Wi-Fi network.

Additionally, as shown in Fig. 3, the downwelling light sensor
(DLS) was connected to the camera to ensure it moved with the
camera when images were taken. Although the setup shown in
Fig. 3 ensured that the global positioning system (GPS) location

Fig. 1. Overview of image collection and processing methodology.
Image collection, as shown on the first row, is discussed in the “Data
Collection” section, and image processing, as shown on the second and
third rows, is discussed in the “Data Processing” section.

Fig. 2. Location of data collection near Mayschoss, Germany. Images
were collected looking east on the western side of the structure. (Image
by Google, Image © 2023 Maxar Technologies.)

© ASCE 06023002-2 Nat. Hazards Rev.

 Nat. Hazards Rev., 2023, 24(2): 06023002 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f N
ev

ad
a 

- R
en

o 
on

 0
3/

31
/2

3.
 C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

rig
ht

s r
es

er
ve

d.



for the images was correct, the orientation of the DLS for measur-
ing incident light was off by 90°, and thus did not provide accurate
measurements of sun-to-sensor angle and the direct and diffuse
irradiance components. As such, the DLS measurements were not
used for time-varying calibration, which instead relied on calibrated
reflectance panel images taken at the beginning and end of date
collection to convert radiance images to reflectance.

Data Processing

Radiometric Calibration
The digital number pixel values from the multispectral imagery
must be converted to reflectance values in order to calculate spec-
tral indices. As mentioned in the “Data Collection” section, this
conversion is determined based on images of a calibrated reflec-
tance panel taken at the beginning and end of data collection. The
processing discussed below was performed manually using func-
tionality provided by MicaSense (2023) in their image processing
GitHub repository.

The first step in this process was converting the raw pixel values
to absolute spectral radiance, L, which for the MicaSense sensors
was done as follows (MicaSense 2022):

L ¼ Vðx; yÞ · a1
g
·

p − pBL

te − a2y − a3tey
ð1Þ

where p = normalized digital number pixel value; pBL = normal-
ized black level value; a1, a2, and a3 = radiometric calibration
coefficients; Vðx; yÞ = vignette polynomial function for a pixel
located at ðx; yÞ; te = image exposure time; and g = sensor gain
setting. The parameters and settings in Eq. (1) were read from
the image metadata. MicaSense sensors use a radial vignette model,
defined as follows:

Vðx; yÞ ¼ 1

k
ð2Þ

where

k ¼ 1þ k0rþ k1r2 þ k2r3 þ k3r4 þ k4r5 þ k5r6 ð3Þ

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − cxÞ2 þ ðy − cyÞ2

q
ð4Þ

where cx, cy, and the polynomial coefficients k1 through k6 were
read from the image metadata. Once the digital number pixel values
have been converted to radiance, a transfer function for each of the
sampled bands is calculated based on the average radiance of pixels
on the calibrated panel area (MicaSense 2022)

Fi ¼
ρi
L̄i

ð5Þ

where Fi = radiance-to-reflectance factor for band i; ρi = reflec-
tance value for the calibrated panel for band i; and L̄i = mean
radiance of pixels on the calibrated panel area. The panel image was
taken to match the orientation of the camera during image
collection—normally the panel is placed flat on the ground because
nadir images are collected from UAVs, but in this case images
were collected with the camera orientation approximately parallel
to the ground.

Spectral Index Calculation
Once the images have been radiometrically corrected, the images
from different bandwidths must be aligned in order to generate
pixel-accurate spectral indices or composite images. During the
alignment process, an affine transformation is found to align
each of the band images to a common band (the green band in our
analyses). Once a transformation is found, the images are aligned
and pixels that do not overlap are removed. Fig. 4 shows a true-
color composite image created by combining the red, blue, and
green band images, and Fig. 5 shows the set of reflectance images
from which this true-color image was created.

The high-water mark from flooding is still visible to the trained
eye in the red-green-blue (RGB) composite image (Fig. 4), but it
manifests clearly in the blue band, where there is a visible differ-
ence in the reflectance for plaster portions of the structure that were
above and below the physically mapped high-water mark. This sig-
nal also appears in the green and red bands, but not as strongly as in
the blue band. Comparatively, the near-infrared and red edge bands
show evidence of the high-water mark, but the signal is not as clear
or consistent throughout the region of the building facade that was
below the flood level. The high-water mark in the different bands is
likely associated with increased adsorption with increased moisture
content. This concept was illustrated by Conde et al. (2016), where
the relative change in adsorption of concrete as a function of mois-
ture content was shown to differ across wavelengths and shown to
be more prominent in the blue and green bands compared with red
and red-edge bands. This matches our observation where the blue

Fig. 3. MicaSense Altum with downwelling light sensor (DLS) con-
nected directly to camera. The DLS is the flat plastic piece connected to
the wire above the camera, as indicated on the image. A cellphone used
to manually trigger camera through Altum Wi-Fi. (Image by Michael
Gardner.)

Fig. 4. True-color composite image created by combining the red, blue,
and green band images. Here, the high-water mark was measured in the
field, as indicated by the horizontal line. (Images by authors.)

© ASCE 06023002-3 Nat. Hazards Rev.
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band was displaying regions of the building facade below the high-
water mark (which can be assumed to have a higher residual mois-
ture despite the time passed since the event) most clearly. The exact
composition of the building facade is unknown, but appears to be a
painted plaster-material.

Based on the initial manifestation of the high-water mark in
the blue band, we explored combining different spectral bands
to help isolate the signal associated with the water level on the
building facade. Given that the high-water mark can be seen with
varying levels of confidence across all bands, there likely are

(a)

(b)

(c)

Fig. 5. (a–c) Calibrated reflectance images of western face of the building where x- and y-scales indicate pixel locations. A clear manifestation of the
high-water level in the blue band is shown in plot (a). (Images by authors.)

© ASCE 06023002-4 Nat. Hazards Rev.
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material-specific reflectance characteristics that modify reflectance
in different bands. Additionally, as can be seen in Fig. 4, the
coloration of the building was modified due to soil particles that
adhered to the facade after flood levels subsided, which may also
be contributing to the varying reflectance in different bands. Based
on these observations, we calculated the difference between the
red-edge and blue bands on a pixel-by-pixel basis. This combina-
tion of the blue and red-edge bands is designed to amplify the
sections of the building facade that have increased adsorption in
the blue band due to material-specific changes as a function of
moisture content, as well as the increased adsorption in the red-
edge band due to higher moisture content.

By subtracting the blue band from the red-edge band, which
have similar reflectance values above the high-water mark, the
resulting index value will be smaller. For regions below the high-
water level, the difference in reflectance values is increased which
yields a larger index value. Thus, higher values for the difference
between red-edge and blue bands potentially indicate material that
is below the high-water mark. Fig. 6 shows the histogram of pixel
values for the difference between the red-edge and blue bands, in
which three modes can be distinctly separated. Mode 1 is associ-
ated with pixels that contain portions of the sky [Fig. 7(a)], whereas
Mode 2 is associated primarily with concrete on the structure and
reflections in windows [Fig. 7(b)]. When visualizing the pixels as-
sociated with Mode 3 [Fig. 7(c)], the portions of the building facade
that are below the high-water mark can be distinguished based on
the difference between the red-edge and blue bands.

Fig. 7(c) shows a strong signal that appears to be associated with
the flood level. Noise was removed from this image due to pixels
that were either not part of the building or a distinctly different
material that may have different reflectance characteristics than
the building facade. To remove any plants from the index calcula-
tion, we masked pixels for which the Normalized Difference Veg-
etation Index (NDVI) (Tucker 1979) was greater than 0.2. This is
based on observations that the NDVI for plants ranges from 0.2 to
1.0. Fig. 8(a) shows all pixels that have an NDVI of 0.2 or greater;
these are the pixels that were masked to remove noise associated
with pixels that contain plants.

To further remove noise due to soil pixels and building materials
different from the plaster in the facade, we used patterns from the
thermal images that were collected simultaneously with the other
multispectral bands. Contours of the temperature are overlain on
the true-color composite to illustrate the heat signature across the
entire image [Fig. 8(b)]. Because the thermal images are a lower
resolution compared with the other spectral bands, a Lanczos in-
terpolation over a 8 × 8 pixel neighborhood was applied when

overlaying the thermal imagery on the multispectral images. The
temperature across a building facade is generally lower in areas
below the flood level, but significantly warmer areas on the same
material can be identified above the flood level. Other building
materials, such as concrete and roofing, also have substantially
higher temperatures than the plaster on the building exterior. We
suspect this difference in temperature is also at least partially
due to moisture content within the building facade, as has been
noted by others (Avdelidis et al. 2003; Moropoulou et al. 2018).
Based on these observations, we further masked pixels where
the temperature was higher than 27°C, as shown in Fig. 8(c), which
almost entirely isolates the pixels that were below the high-water
level and effectively depicts the high-water mark. The selected tem-
perature threshold will be influenced by the time of day the pictures
are taken because temperature differences potentially would be
higher due to varied material heating rates during warmer parts of
the day.

In order to isolate the high-water mark into a single mode that
can be identified automatically, we further explored normalizing
the difference between the red-edge and blue bands, denoted as
NDRE-B for brevity:

NDRE-B ¼ Red-Edge − Blue
Red-Edgeþ Blue

ð6Þ

where Red-Edge = calibrated reflectance in the red-edge band; and
Blue = calibrated reflectance in the blue band. Fig. 9(a) shows the
histogram of calculated pixel values for this normalized index,
where a single mode can be seen ranging from approximately 0.0
to 0.2. Applying the same NDVI and temperature filters as were
applied to the Mode 3 plots [Fig. 8(c)], NDRE-B is shown in
Fig. 9(b). The high-water mark can also be clearly seen in this
image, although it is important to note the high values of the index
in the shaded regions just below the roof of the structure.

Discussion

The initial results presented here promise potential for using
multispectral imagery for postflood high-water mark display and
mapping. This is illustrated in Figs. 9 and 10, which show the
high-water mark estimated from the mulstispectral imagery using
the proposed index calculation. Specifically, Figs. 9(b) and 10(c)
show very good matching between the high-water mark estimated
from the multispectral imagery and the physically observed value.
The estimated values were within centimeters of those observed
by the GEER team during the reconnaissance mission and are

Fig. 6.Histogram on pixel-by-pixel basis of red-edge band minus blue band. Mode 1 is associated with pixels that contain portions of the sky, Mode 2
is associated primarily with concrete on the structure and reflections in the windows, and Mode 3 is excited by portions of the building facade.

© ASCE 06023002-5 Nat. Hazards Rev.
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consistent across the entire facade of the flooded building. High-
water marks represent key information to document the extent and
severity of flooding. In this case, multispectral images were taken
by a surveyor carrying the camera when safe access to the disaster
area was possible. Future deployments could also utilize UAVs to
collect images of structures and infrastructure in areas that may not
be accessible on foot in order to broadly map high-water levels
spatially.

To apply the technique presented in this paper more broadly,
additional research is underway to establish the suitability of this
approach for different building materials. As visible in Fig. 7, the
concrete material located at the bottom of the building did not bin to
the Mode 3 region (Fig. 6) like the plaster material, even though
both materials were clearly below the high-water mark. This can
also be seen in portions of these images where the plaster has
been damaged and removed, yielding different reflectance values
compared with immediately adjacent material. Thus, reflectance
characteristics for commonly used building facade materials need
to be established, particularly to develop an automated high-water
mark detection procedure.

Images with a broader range of spectral bands may also improve
confidence in the high-water mark identification because the five
bands sampled in this case study may not be sufficient for all types
of material used in building facades. Furthermore, high-water
marks apply naturally over large areas under a certain elevation;
thus, the application of an averaging or stochastic data analysis

procedure, as well as edge-detection algorithms, should be ex-
plored because it is unlikely that the current approach is prepared
for any materials encountered in postflood reconnaissance. This
will help eliminate false high-water marks [as seen immediately
beneath the roof in Fig. 10(c)] where the index values of several
pixels would indicate that the high-water extended to this elevation;
however, neighboring index values indicate that pixels at lower
elevations do not support labeling this elevation as the high-water
mark. This work is ongoing and outside the scope of this article.

The manifestation of the high-water mark in the multispectral
imagery is typically linked to the moisture content or soil and other
material particles stuck to the original structure or object. Moisture
content can be subject to change with time from environmental con-
ditions such as solar radiation or new rainfall. Similarly, particle
traces can be washed away by new rainfall or by active cleaning
efforts. In this study, it was assumed that the high-water mark is
mostly representing a change in moisture content, despite an ex-
tended period of high air temperatures and solar radiation after
the flood and before the data collection. This assumption was based
on the decreasing signal strength across the portion of the building
facade, as seen in Figs. 7(c) and 8(c), when approaching southern
directed faces of the structure. These portions of the building
receive sunlight more directly and for longer hours, so likely were
drier than other portions of the building at the time of image
collection. Flooding occurred from July 14 to 15, 2021, and
the image collection only occurred on August 11, 2021 (i.e., almost

(a)

(c)

(b)

Fig. 7. Pixels associated with modes in Fig. 6: (a) Mode 1; (b) Mode 2; and (c) Mode 3. The contrast in index values can be seen for pixels above and
below the high-water mark for Mode 3. (Images by authors.)
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1 month after flooding). We suspect the image signal to be more
uniform closer to the time of flooding; however, that the flooding
level can still be clearly seen in the multispectral images several
weeks after flooding occurred represents a key finding because

it promises higher reliability in high-water mark detection in situa-
tions where immediate access for postdisaster surveyors is difficult
and measurements cannot be taken until days or weeks after
the event.

(a) (b)

(c)

Fig. 8. Filtering to remove pixels associated with plants and building materials different from those in the building facade: (a) pixels with NDVI
greater or equal to 0.2; (b) thermal contours (°C); and (c) Mode 3 pixels with masking applied for pixels with NDVI greater or equal to 0.2 and
temperature greater than 27°C. (Images by authors.)

(a) (b)

Fig. 9. Normalized difference between red-edge and blue bands (NDRE-B): (a) histogram of NDRE-B pixel values showing single mode ranging
from approximately 0.0 to 0.2; and (b) pixels with NDRE-B ranging from 0.0 to 0.2. Shady areas immediately beneath roof also yielded a high value
for this index. (Images by authors.)
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Lastly, the reflectance characteristics of the building materials
will be influenced by the amount and type of sediment transported
during flooding and how it adheres to building surfaces after flood-
ing has subsided. Based on the authors’ preliminary analyses, it
was not immediately evident how much sediment adherence may
contribute to the signal in the multispectral imagery; however, it is
likely an effect that cannot be ignored. This is illustrated in Fig. 10,
where the true color composite and the difference between the red-
edge and blue bands are shown side by side. The lighter-colored
region near the interface between the single- and two-story portions
of the structure does not show the below-flood level as clearly as
other regions of the building facade [Fig. 10(b)]. However, this is
not the case for the lower signal strength in the lower right portions
of the building facade shown in Fig. 8(c), where the discoloration is
uniform, indicating the decrease in signal is associated with a dif-
ferent characteristic—potentially moisture content, as discussed
previously.

Conclusion

In order to better meet the challenges posed by the evolving hazard
associated with extreme flooding, it is necessary to be able to
quickly and effectively map the extent of flooding and the damage
caused by it. One of the key pieces of information desired in flood
reconnaissance data collection is high-water marks. However, high-
water marks can change with time postflood due to environmental
conditions and active repair and cleanup efforts, and postflood
surveyors can often not safely access the disaster immediately after
the event. Thus, there is a need for increasing the detection, and
reliability in detection, of high-water marks days to weeks after
the flood event.

This case study suggests a great potential for using multispectral
images to map high-water marks on buildings affected by flooding,
in this case, approximately 4 weeks after the event and after sig-
nificant exposure to heat, solar radiation, and local cleanup efforts.
This application of multispectral imagery for high-water mark de-
tection will allow for rapid and broad mapping of spatially varying
high water. This will enable more accurate assessment of the flood
extent and depth, as well as a means to determine potential volumes
of waste that may be generated during recovery and reconstruction
efforts.

The high-water mark clearly manifested in the blue band
through increased adsorption in portions of the building that were
below the high-water level and likely featured higher moisture

content in the building facade material. The high-water mark
was modally isolated through a linear combination of the blue
and red-edge bands. This linear combination amplified the in-
creased adsorption in both the blue and red-edge bands. By differ-
encing these two bands, regions with higher reflectance (lower
adsorption due to lower moisture content) canceled out, whereas
regions with lower reflectance (higher adsorption due to higher
moisture content) were amplified due to the large differences in
adsorption characteristics between the blue and red-edge bands for
the building material investigated.

Initial data collection was limited and presented results for only
one type of building facade material. Different building materials
will likely have varying spectral signatures, and it may be necessary
to establish which bands should be sampled or to explore stochastic
data analysis procedures and change detection to ensure that flood-
ing characteristics can be broadly mapped using multispectral
imagery. Careful consideration of temperature variations due to
material heating rates, intensity, and length of time buildings are
exposed to solar radiance, time of day images were collected, and
potential interaction with sediment adhering to the building facade
should be included in future research. Future applications may also
consider the combined use of ground-based and UAV-based image
collection.

Data Availability Statement

Some or all data, models, or code generated or used during the
study are available in a repository or online in accordance with
funder data retention policies. All data collected during the GEER
reconnaissance can be found at this link (https://doi.org/10.17603
/ds2-0ddt-ss87). All the functionality provided by MicaSense can
be found in the GitHub repository at this link (https://github.com
/micasense/imageprocessing).
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