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Figure 1: Sensitive information on reflection rendering with/without our defense. In the 1st and 3rd columns, sensitive information
from the physical environment can appear as part of the rendered reflections and be leaked to viewers. In the 2nd and 4th columns, we show
that our proposed defense can effectively eliminate such information leakage while still keeping high visually coherent reflections.

ABSTRACT

Many augmented reality (AR) applications rely on omnidirectional
environment lighting to render photorealistic virtual objects. When
the virtual objects consist of reflective materials, the required light-
ing information to render such objects can consist of privacy-
sensitive information outside the current camera view. In this paper,
we show, for the first time, that accuracy-driven multi-view envi-
ronment lighting can reveal out-of-camera scene information and
compromise privacy. We present a simple yet effective privacy at-
tack that extracts sensitive scene information such as human faces
and text from rendered objects under several application scenarios.

To defend against such attacks, we develop a novel IPC2S de-
fense and a conditional R? defense. Our IPC2S defense, combined
with a generic lighting reconstruction method, preserves the scene
geometry while obfuscating the privacy-sensitive information. As
a proof-of-concept, we leverage existing OCR and face detection
models to identify text and human faces from past camera observa-
tions and blur the color pixels associated with detected regions. We
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evaluate the visual quality impact of our defense by comparing ren-
dered virtual objects to ones rendered with a generic multi-lighting
reconstruction technique, ARKit, and R? defense. Our visual and
quantitative results demonstrate that our defense leads to struc-
turally similar reflections with up to 0.98 SSIM score across various
rendering scenarios while preserving sensitive information by re-
ducing the automatic extraction success rate to at most 8.8%.
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1 INTRODUCTION

Augmented reality (AR) has the promise to transform many aspects
of our lives, including education [19], healthcare [2], and busi-
ness [25]. By 2023, mobile AR is predicted to be a hundred-billion
dollar market, with hundreds of millions of users [1]. Today, many
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popular social media apps such as TikTok and YouTube are increas-
ingly supporting a new form of AR application. This new applica-
tion scenario, which we refer to as AR content creation/streaming,
allows users to create videos augmented with 2D/3D assets [45].
The AR content can then be shared via social media platforms. For
example, a streamer may engage her community with a virtual
sunglasses try-on session where she will try on different sunglasses
based on the text chat suggestions from the community.

This engagement-driven AR content creation often calls for good
visual effects, which further translates to the high rendering quality
of the virtual objects. That is, the virtual objects appearing in the
video stream should exhibit visual coherency to the physical world
background and should be rendered in a photorealistic way. It is
desirable for AR applications to have omnidirectional environment
lighting to achieve good visual effects. To provide accurate lighting
information, existing AR frameworks often require AR users to
scan the physical environment and leverage deep learning models
to estimate the lighting [17, 23, 59]. Without loss of generality, we
refer to this type of lighting estimation approach as multi-view
lighting reconstruction.

However, environment scanning will capture multiple glimpses
(i.e., camera views) of the physical environment, some of which
can consist of privacy-sensitive information and be out-of-camera
scene during the streaming session. The privacy problem is further
exacerbated with the advent of 3D vision sensors (e.g., LIDAR).
This newly endowed capability to mobile devices is a double-edged
sword: it allows mobile devices to more efficiently capture and
accurately reconstruct physical scenes for better AR features; it
also presents an immediate threat in a new form of reflection-based
privacy. Figure 1 demonstrates two examples where sensitive in-
formation such as a driver’s license and a credit card can appear in
reflective virtual objects. Consequently, when streaming AR con-
tent consisting of such objects (as will show in Figure 2), it can lead
to undesired information leakage to any streaming viewers without
the AR streamers necessarily noticing.

In this paper, we show, for the first time, that visual quality-
driven multi-view lighting reconstruction can reveal out-of-camera
scene information and compromise privacy for AR content creators.
Existing works supporting reflective rendering, including commer-
cial methods in ARKit [23] and academia research GLEAM and
FusedAR [37, 59], all require the step to capture multiple glimpses
of the physical environment. Without loss of generality, we present
a privacy attack based on a recently proposed lighting reconstruc-
tion technique FusedAR [59], that extracts sensitive scene informa-
tion such as human faces and text from the rendered objects under
several plausible application scenarios. One of our key goals in
demonstrating the effectiveness of this simple attack is to increase
the awareness of privacy issues associated with reflection rendering
for AR applications.

We note that visual privacy protection is not a new problem [8,
36]. Prior work has proposed many defenses for traditional multi-
media, such as images and videos [54, 62]. Even for emerging mixed
reality applications, we have also observed increased research ef-
forts to ensure that an immersive virtual environment is built with
security and privacy implications in mind [34, 35, 41]. Our paper
falls into the broad AR/VR privacy research; one of our main con-
tributions is uncovering this new reflection-based privacy issue in

2910

Yiqin Zhao, Sheng Wei, and Tian Guo

the emerging AR applications. We argue that the demonstrated at-

tack is a natural progression from improved mobile sensors and

environment understanding algorithms [16, 42, 44]. In other words,
this reflection rendering-based attack is a consequence of improved
lighting reconstruction for AR applications.

To defend against such attacks, we develop a novel privacy-
preserving IPC2S defense that preserves the geometry information
while obfuscating the privacy-sensitive objects. Preserving the geo-
metric information is critical in addressing the key challenge of
simultaneously preserving privacy while still delivering visually
coherent rendering. Additionally, we propose a R? defense that can
bypass the lighting reconstruction and provide effective protection
in dynamic environment conditions such as low lighting or motion
blur. We leverage existing OCR and face detection models [6, 26] to
identify text and human faces from past camera observations and
blur the color pixels associated with detected regions. The trans-
formed RGB images with the unmodified depth information are then
combined into a point cloud, a 3D intermediate data we use to
generate the final environment map for rendering.

To demonstrate that our IPC2S defense can successfully obfus-
cate private information while delivering good visual effects, we
evaluate the defense pipeline under 32 different rendering scenarios.
We show that our IPC2S defense achieves high visual quality with
up to 36db PSNR and 0.98 SSIM while significantly reducing the au-
tomatic extraction success rate from 97.1% to 8.8% when compared
to the privacy-risking reflection renderings. Lastly, we find that
in addition to the three factors—physical scene, virtual object, and
sensitive information, the accuracy of the face and text recognition
models also can impact the information extraction success rate and
the visual quality. We make the following main contributions.

o We present the first look at the out-of-camera visual privacy issue,
i.e., the reflection-based privacy, that arises in AR applications.
To demonstrate the prevalence of the privacy issue, we showcase
a multi-view attack based on the ARKit and a recent lighting
reconstruction technique [59] that successfully extracts sensitive
information from reflective virtual objects.

e We propose an effective IPC2S defense to automatically remove
sensitive information from user-defined categories, such as hu-
man faces or textual information, and a conditional R? defense.
Our IPC?S defense is a lightweight pipeline that leverages ma-
chine learning models and image blurring techniques and can run
in parallel to the current reflective rendering in AR frameworks.

e We implement the pipelines for lighting reconstruction, attack,
and defense and evaluate the visual quality and sensitive infor-
mation extraction. Relevant research artifacts are available at
https://github.com/cake-lab/ar-reflection-privacy.

2 BACKGROUND

Virtual Object Rendering in AR Streaming. Imagine a content
streamer Alice that uses AR-enabled applications, such as TikTok,
to stream using platforms such as Twitch [49]. In this case, Alice
is interested in augmenting her video stream with rendered ob-
jects. Depending on the streaming scenarios, e.g., virtual try-on
of glasses or furniture shopping, Alice would also like overlaying
visual-coherent virtual objects in her physical space. To produce
visual-coherent virtual objects, the AR frameworks need to have
access to accurate environment lighting information [37, 57]. The
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Figure 2: The reflection-based privacy issues in AR content creation and streaming. We demonstrate the general workflow of AR
streaming to highlight how the rendered reflection of virtual sunglasses can contain sensitive information from the streamer Alice’s physical

surroundings and be leaked to the viewer Malice.

current commercial AR frameworks such as ARKit or ARCore of-
ten require mobile users to move around the cameras to scan the
physical environment [17, 23]. The scanning phase will allow AR
frameworks to collect useful environment information, which will
further be used as input for a lighting estimation module to output
lighting information [43]. The environment lighting information,
often represented in the form of environment map [13], will then
be used by rendering frameworks to overlay the virtual objects
either in a user-specified world position [58] or a position based
on tracking results [47]. Finally, each video frame augmented with
virtual objects can be piped to existing streaming software such as
OBSStudio [11] to use services like Twitch.

Visual Privacy Considerations in AR. Considering the AR stream-
ing scenario described above, we will describe scenarios leading
to privacy issues. The key privacy problem arises when the AR
frameworks use captured environment images as part of the input
for reconstructing environment lighting information [37, 59]. These
environment images captured during the environment scanning
phase (before the streaming) can lead to out-of-camera information
leak when the AR framework uses a high-quality environment map
to render reflective objects. We refer to this privacy problem as
reflection-based privacy in which sensitive information from outside
the current camera frame can appear on the virtual objects. Figure 4
shows example rendering effects of our proposed simple attack that
leverages a popular AR framework ARKit and a recently proposed
multi-view lighting reconstruction method [59]. When streaming
the augmented video frames, such sensitive information will then
become accessible to any viewers over the internet. More gener-
ally, such privacy issues can happen in many AR applications that
satisfy the following characteristics. (i) The need for photorealistic
rendering. Many compelling use cases of AR require photorealistic
rendering. For example, in a 3D advertisement where an influencer
tries to sell products (as rendered assets) to followers. (ii) Physically
separated users. While many AR applications are multi-user, we
have observed scenarios where AR users record and share their
experiences via various platforms like Snapchat. In such scenarios,
the existing platform users do not have to engage in AR technology
directly but rather as consumers of AR content (see Figure 2).

3 LIGHTING RECONSTRUCTION PREMIER

We describe the multi-view lighting reconstruction, serving as the
basis for the privacy issues we pinpoint in §4 and defenses in §5.

Step 1: Capturing Environment Data. Most mobile devices only
have cameras with relatively small field-of-view, e.g., 77° [18].

2911

Therefore, to capture omnidirectional environment observations,
AR content creators are typically required to move the mobile
device around and scan the surroundings. Traditionally, the cap-
turing can be performed with the assistance of a physical chrome
ball [13, 37]. In recent years, the increasingly popular mobile depth
sensor [22, 24] enables the possibility of capturing highly accurate
scene geometry. Similar to recent work [59], we perform lighting re-
construction with RGB-D images and device tracking data captured
by mobile devices without requiring additional scene setups.

Step 2: Combing Multi-View Data. Next, we combine the cap-
tured multi-view data into a 3D point cloud representation in the
same world space. We select the point cloud based on the virtual
object rendering position within a cubic space with a size of 2 me-
ters as near-field. To ensure the reconstruction quality, we only
select the points with high depth confidence values, which mea-
sures the accuracy of the depth-map data. Moreover, we perform
view-wise point cloud registrations using iterative closest point
registration [4] to address noisy real-world tracking data.

Step 3: Finalizing Environment Lighting. Last but not least, we
convert the collected near-field point cloud into an environment
map, which is composed of near and far-field components: (i) The
near-field component consists of the projection of the textured sur-
face mesh reconstructed from the collected point cloud; (ii) for the
far-field component, we use an indoor blurred HDR panorama im-
age, similar to the far-field reconstruction policy described in [59].

4 REFLECTION-BASED PRIVACY ISSUES
4.1 Privacy Attack Overview

Figure 2 presents an overview of the AR streaming workflow where
reflective rendering can lead to creators’ physical environment
information being recovered by viewers. As we defined previously,
AR streaming is an emerging and popular form for indie streamers
to reach out to followers via platforms such as Tiktok, YouTube,
and Twitch [33, 47]. We assume that streamers use existing AR
software to create videos with seamlessly overlayed virtual objects.

To generate quality content, e.g., photorealistic rendered objects
coherently inserted into the physical scenes, our streamer Alice
often needs to use the camera device to scan her physical surround-
ings. This step of environment scanning is a basic requirement of
existing commercial AR frameworks such as ARCore or ARKit to
obtain useful AR information, including world tracking data, cam-
era intrinsic, and camera pose. As a consequence of this scanning,
the AR session (and subsequently the AR stream) will have access
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to the physical world information surrounding Alice. Note that, if
not directly captured by the camera during the streaming, we as-
sume that such physical world information should not be available
to viewers. However, in the AR streaming case, when rendering
virtual objects with reflective materials, e.g., the streamer wants
to show the sunglasses try-on experience, the virtual sunglasses
will be rendered with environment lighting information captured
previously. Simply put, the virtual sunglasses might reflect different
sensitive information, such as human faces or credit card infor-
mation, when the streamer looks around (recall Figure 1). Finally,
the attacker, i.e., the AR viewer, can access the rendered images or
videos shared by the AR streamers directly on the attacker’s device.

4.2 Sensitive Information Extraction

To demonstrate the prevalence of privacy issues in reflection ren-
dering, we design a simple attack and show that we can successfully
extract sensitive information from the rendered reflections. Our
attack first reveals the out-of-camera sensitive information cap-
tured during lighting reconstruction by obtaining reflective virtual
objects. For example, the attacker could ask the streamer to use
existing reflective objects or hack the model assets used by the
streamers and insert reflective components. Then, we perform au-
tomated sensitive information extraction by running face and OCR
recognition models. Optionally, the attacker can unwrap the reflec-
tion area based on either virtual object geometry, viewing perspec-
tive, or both, if known. The unwrapping step will further increase
the chance of automated information extraction as it removes the
projection distortion.

In §6.2, we demonstrate that the automated attack can achieve
a face/text extraction success rate of 63.24%/57.44%, on average,
across a diverse set of rendering scenarios. In summary, given the
ease of attack and the effectiveness in extracting sensitive infor-
mation, we argue the rising need to protect AR content creation
applications. Content creators might not realize that the visual in-
formation of their physical environment is being utilized for virtual
object rendering. Such information leakage is unintended and un-
desirable. We believe it is necessary to have an automatic pipeline
to identify privacy concerns and provide robust mechanisms to
minimize unintended privacy leakage.

5 PRIVACY-PRESERVING REFLECTION

We present the design of two defense mechanisms that effectively
and efficiently protect reflection-based privacy. Specifically, we de-
sign index-based point cloud color swapping, an automatic defense
method we refer to as IPC2S defense, for face and text information.
As shown in Figure 3, IPC%S defense is designed to run in parallel
to the lighting reconstruction supporting reflection rendering and
addresses the visual privacy issue by blurring out the sensitive
information fields. We further extend our defense design to support
dynamic environments and propose a restricted rendering-based
method (referred to as R? defense) to protect privacy when the
automatic defense IPC2S defense falls short.

5.1 Key Design Challenge and Questions

Recall that the reflection-based privacy issue arises as AR frame-
works strive to improve the visual coherency of the AR content.
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The key challenge when designing the defense is to minimize the
impact on user-perceived visual quality while providing robust pri-
vacy protections for AR content creators. We tackle this challenge
by answering two key design questions. First, how to integrate the
defense with the existing AR pipelines (§5.2)? To generate visually
coherent environment lighting for rendering virtual objects, AR
frameworks such as ARKit often need to transform the environment
scene observations multiple times based on viewing perspectives
and scene geometries. It is therefore critical to carefully choose
where and how to perform the image obfuscation for visual pri-
vacy without introducing visual artifacts or performance overhead.
Second, how to ensure privacy protection in dynamic environments
(§5.3)? It is common for AR content creators to work in dynamic
environments, e.g., with a rapid change of environment lighting
or moving cameras. These environments can be challenging for
automatic defenses using deep learning models [32].

5.2 Index-based Point Cloud Color Swapping

To address the reflection-based privacy issue via image obfuscation,
there are three main locations in the lighting reconstruction pipeline
one can choose to obfuscate: (i) reconstruction client device camera
RGB images; (ii) reconstructed lighting environment maps; and (iii)
the rendered virtual object frames. However, neither (ii) nor (iii)
are ideal as they are subject to image distortion from the panoramic
image projection and geometry/viewing-perspective-related distor-
tion in rendering, respectively. Instead, our IPC2S defense pipeline
takes the input directly from the RGB images collected from mobile
devices as such images do not suffer from lighting reconstruction
and rendering-related distortions. By doing so, we can avoid the
negative impact of image distortion on recognition [32].

However, such a design comes with its unique challenge. Obfus-
cating the RGB images at the early stage of lighting reconstruction
can impact the lighting reconstruction accuracy, as the obfuscated
pixel color information could be used in point cloud registration.
To address this challenge, we propose the IPC2S defense, a novel
design that allows identifying privacy issues at the early lighting
reconstruction stage while waiting to obfuscate the privacy content
in a later stage. The key idea is to correctly and efficiently map the
pixels of sensitive information to the points in the intermediate
point cloud.

As shown in Figure 3, parallel to the main reconstruction pro-
cess, we spawn a separate process that first generates blurred RGB
images for each RGB image received by the lighting reconstruction
pipeline. Then, in the defense execution process, we run face and
text detection models to recognition the information fields that ap-
peared on each RGB image and use a bounding box to describe the
information field regions. Next, the identified regions are recorded
as pixel and frame number indexes, which correspond to the index
of points in the intermediate point cloud of the lighting reconstruc-
tion. At the later stage of lighting reconstruction (i.e., before mesh
texturing), we swap the previously identified sensitive information
regions based on point cloud indexes. This design enables both high
accuracy face/text recognition and eliminates the impact of image
obfuscation on lighting reconstruction quality.

Furthermore, the IPC2S defense runs in parallel to the unmod-
ified lighting reconstruction pipeline, which has the potential to
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Figure 3: Our proposed defense for preserving reflection-based privacy for AR streaming. Our defense pipeline is designed around
the key idea of index-based point color swapping to obfuscate the visual detail of the sensitive information while still maintaining the overall
reflection color pattern. Moreover, the defense pipeline can run in parallel to the generic lighting reconstruction pipeline described in Sec 3.

minimize the latency impact of IPC%S defense and to be integrated
with other reconstruction pipelines. Empirically, our measurements
show an average execution time of face/text recognition at 0.05s/0.13s
compared to the 30s needed by the point cloud registration. More
concretely, this means that the high-quality lighting information
(used to render reflection) can take up to 30 seconds using the
reference pipeline implemented based on FusedAR [59]. Our de-
fense pipeline does not pose a performance bottleneck on normal
AR usage as its main steps are complete well before the lighting
information is ready.

5.3 Defense in Dynamic Environments

Besides image distortion, the automatic face/text recognition ac-
curacy can be affected by other environmental factors like light-
ing, camera movements, etc. For example, in AR content creation
and streaming applications, lighting reconstruction is usually per-
formed in two cases: before the beginning of streaming and during
the streaming. Automatic face/text detection failures caused by
sudden environmental changes in the pre-streaming scenario may
not cause immediate privacy issues as AR content creators can
be allowed to re-scan the environment to avoid sharing sensitive
information with the viewers. However, our defense should handle
the dynamic environment during the AR streaming, as recognition
failures will lead to imminent privacy leakage.

Therefore, in addition to IPC%S defense, we propose the R? de-
fense, which bypasses the lighting reconstruction and can provide
immediate protection. R? defense controls the maximum material
reflection rate and roughness, which can be executed easily and
efficiently in most modern graphics rendering engines. In particular,
we limit the maximum material reflection to 0.8 (from 1.0) and min-
imum roughness to 0.2 (from 0.0). The changing environments can
be detected by leveraging built-in hardware sensors, e.g., ambient
light sensor, accelerometer, and gyroscope.

6 EXPERIMENTS

We evaluate our proposed defense’s effectiveness in preserving pri-
vacy and the respective impact on the rendering quality of virtual
objects. Our evaluation centers around answering the key question:
how well does our defense work in preserving privacy and maintaining
good visual coherency? We test a total of 32 rendering scenarios,
where each scenario refers to an instance of (scene, reflective object,
sensitive information). Our key findings are summarized as follows:
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(i) Our simple attack can successfully extract up to 100% human
faces and at least 92% textual information when inspecting the ex-
tractions manually (§6.2). (ii) Our IPC?S defense effectively reduces
the information extraction success rates to at most 8.8% and 23.8%
under automatic and manual inspections for all tested rendering
scenarios. (§6.3.2). (iii) Compared to the R? defense, our IPC2S de-
fense achieves an average of 9.31% better SSIM while successfully
preserving privacy under manual inspection(§6.3.1). (iv) Automatic
extraction poses more difficulty for identifying faces than texts, for
both the attack and the defense.

6.1 Experimental Setup

Implementations. To demonstrate the prevalence of the reflection-
based privacy issues in AR, we implement a simple lighting recon-
struction pipeline, following the generic lighting reconstruction
pipeline paradigm, by leveraging widely available open-source
tools and libraries. The lighting reconstruction pipeline consists
of both an iOS app developed with Unity3D [52] and the ARFoud-
nation framework [51] as the client and a Python server. During
reconstruction, we first stream the collected AR scene information,
RGB-D image, device tracking data, and camera pose, from the
mobile client to the backend server and store the scene information
for further processing. Next, we perform the point cloud registra-
tion and surface reconstruction on the backend server using the
Open3D [60] and the Meshlab [9] libraries. Finally, we generate
environment maps from reconstructed meshes using Blender [10].

We use the reconstructed environment map to implement our at-
tack by first rendering reflective objects using Blender. Then, we im-
plement the automatic sensitive information extraction of face and
text recognition with OpenCV [6] and EasyOCR [26] libraries. We
envision the attack will occur as a natural progression of AR frame-
works supporting reflective rendering—malicious users/viewers do
not need to investigate the inner-working of the pipeline; rather, ma-
licious users simply need to gain access to the rendered reflections.
We choose to implement our defense pipeline as a parallel compo-
nent to the generic lighting reconstruction pipeline described in the
FusedAR paper [59]. Using the collected RGB image during lighting
reconstruction, we use the same face and text recognition tools for
the defense (as the attack for a fair comparison) to identify sensitive
information and blur sensitive information of the rendered images
using the PIL framework [50]. The IPC2S defense is implemented



MM °22, October 10-14, 2022, Lisboa, Portugal

as a NumPy [20] ndarray operation and the R? defense as a special
material in Blender.

Rendering Scenarios. We first use an iPad Pro with a LiDAR
sensor to capture RGB-D images and device tracking information
in four indoor scenes with different scene geometries and physical
objects and reconstruct the environment lighting for each scene.
To render the reflection, we choose two virtual objects with rep-
resentative geometries, a metallic sphere and a flat mirror. For the
sensitive information, we select two sample US driver’s licenses
(Massachusetts and California), one group photo with 14 persons,
and one sample credit card with seven information fields, to repre-
sent three types of information leakage—a mixed of text and human
face, human face-only, and text-only, respectively. Driver’s license 1
contains a total of 19 (1 face and 18 texts) information fields, and the
driver’s license 2 contains a total of 19 (2 faces and 17 texts) infor-
mation fields. For simplicity, we display the sensitive information
on a screen of a Macbook Pro 15" inside each scene.

At a high level, the environment capturing process involves a
user scanning the indoor scene containing sensitive information.
The depth map is captured at the resolution of 256x192, and the
RGB color image is captured at the resolution of 1280x960. We
then import the reconstructed environment mesh into Blender to
generate an environment cubemap with 2048x2048 resolution per
cube face. The environment map is composed of near and far-field
components: (i) The near-field component consists of the projection
of the near-field textured scene geometry; (ii) for the far-field com-
ponent, we use an indoor blurred HDR panorama image, similar
to the far-field reconstruction policy described in [59]. Note that
all of our attack and defense evaluations are based on the near-
field geometries—any panorama image can be used for the far-field
without impacting the observed results. With the generated envi-
ronment maps, we use Blender with the Principled BSDF shader [5]
to render the virtual objects, which will then be displayed.
Evaluation Baselines and Metrics. We choose a commercial
AR framework ARKit [23] and a recent lighting reconstruction
pipeline FusedAR [59] as the baselines of visual quality. To evaluate
whether the proposed attack can successfully extract the sensitive
information, i.e. the effectiveness of the attack, we use the success
rate of information extraction as our metric.

# of successful cases of information extraction

success rate = -
# of valid test cases

For each detected text field, we calculate the Levenshtein distance
between the recognized value and its ground truth value. A recog-
nition is considered successful if the following conditions are both
met: (i) the recognized value is not empty; and (ii) the Levenshtein
distance is less than 10. For face recognition, we draw face bounding
boxes on the reflection renderings and manually inspect whether
each face is detected or not.

Furthermore, we use Peak signal-to-noise ratio (PSNR) and Struc-
tural Similarity Index (SSIM), commonly used image quality metrics,
to quantify the impact of our defense on perceptible visual quality.
PSNR and SSIM values are calculated by comparing the virtual
objects rendered with and without the proposed defense.
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Table 1: The high success rate of our attack. On average we can
manually extract 100% human face information and at least 92%
textual information. The automatic extraction has lower success
rates but still poses considerable privacy issues.

Sensitive  Virtual Face Recognition Text Recognition
Info Object Automatic Manual Automatic Manual
Driver’s  Metal Ball 50.00% 100.00% 33.33%  87.50%
License 1 Mirror 100.00%  100.00% 81.94%  97.83%
Driver’s  Metal Ball 100.00%  100.00% 20.59%  94.12%
License 2 Mirror 100.00% 100.00% 80.88% 95.59%
Group Metal Ball 17.85% 100.00% N/A N/A
Photo Mirror 96.42%  100.00% N/A N/A
Credit Metal Ball N/A N/A 75.00%  96.42%
Card Mirror N/A N/A 71.42%  96.42%
Average  Metal Ball 29.41% 100.00% 35.11%  91.67%
Average Mirror 97.06% 100.00% 79.76%  95.83%

6.2 Information Extraction of Our Attack

We evaluate the effectiveness of our proposed attack by attempting
to extract sensitive information from images of reflective virtual
objects rendered with reconstructed environment lighting. Using
environment lighting reconstructed from 4 scenes, we generate 8
renderings of both metallic ball and mirror objects for each scene.
We evaluate the success rates of both automatic extraction and
manual inspection methods of 17 faces and 42 text fields appearing
in the reflection renderings.

Figure 4 visualizes different types of sensitive information we
can extract from reflective virtual objects. We note that visually, a
human user can easily identify sensitive information by inspecting
the images displayed in row two. Table 1 shows that by leveraging
automatic face recognition, our attack can recognize, on average,
29.41% and 97.06% faces automatically on the metal ball and mirror
objects, respectively. For automatic text recognition, we see an
average success rate of 35.11% and 79.76% on the metal ball and
mirror objects. Further, via manual inspection of the renderings, we
achieve 100% face recognition rate on both metal ball and mirror
objects, and up to 95.8% recognition rate of textual information on
the mirror object.

We make three key observations. First, we can extract almost
all sensitive information through manual inspection, despite the
severe information distortions on virtual object renderings. Auto-
matic recognition effectively extracts information from a flat object,
suggesting the risk of large-scale automated reflection-based pri-
vacy attacks. Second, the manual inspection leads to a much higher
information extraction success rate than the automatic recogni-
tion from the metal ball object. We suspect that image distortion
plays a key role in determining the success rate. Third, as image
distortion can be caused by many factors such as the geometry
of the scene, the geometry of the virtual object, and the viewing
perspective, it can be challenging to devise an automatic unwrap-
ping method. However, to further improve the success rate of the
automatic recognition, we believe one can resort to more accurate
recognition methods as they are developed.

6.3 Effectiveness of the Defense

We evaluate the visual quality impact and the visual perturbation
effectiveness of our IPC%S defense on the reflective rendering. For
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Figure 4: The visual effectiveness of our attack on reflection-based privacy. Row one shows the reflection rendering of two virtual
objects; row two zooms in on the four types of sensitive information leakage.
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Figure 5: The low visual impact of our defense on reflection-
based privacy. IPC2S defense achieves similar reflective visual
quality compared to a re-implemented pipeline [59].
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Figure 6: Quantitative comparisons of our IPC2S defense and
R? defense. IPC2S defense achieves high PSNR and SSIM scores
while R? defense has at least 0.91 and 0.82 SSIM values.

the visual quality impact, we compare the rendered objects to the
ones generated by ARKit, FusedAR, and our R? defense; we also
quantity the visual impacts using two image-based metrics (PSNR
and SSIM) by calculating against the reflection renderings gener-
ated by FusedAR. Our results show that IPC%S defense has a low
visual impact compared to the undefended privacy-risking render-
ings (up to 36db PSNR and 0.98 SSIM). Further, our IPC2S defense
effectively preserves reflection-based privacy, successfully decreas-
ing the automatic information extraction rate to at most 8.8%/5.4%
compared to 97%/80% when undefended.

6.3.1  Visual Quality Impacts. Figure 5 visualizes the two reflective
objects rendered with environment lighting information consist-
ing of the driver’s license one !. We first observe that our IPC%S

The visualization of other rendering scenarios is omitted due to space limitations.
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defense can keep the detail of scene objects and geometries while
only obfuscating the desirable information fields, compared to the
rendering effects achieved with the re-implemented lighting recon-
struction pipeline based on FusedAR (column two). The R? defense
also successfully obfuscates the sensitive information fields but low-
ers the overall visual quality. Specifically, with the reduction of the
metallic property and introduction of roughness, reflective objects
appear to have a matte-like looking. As a reference, we also include
the rendering generated using ARKit; we note that ARKit currently
does not sufficiently support reflective renderings. However, as
newer lighting reconstruction techniques are adopted [37, 43, 59]
in commercial AR frameworks, the reflection-based privacy issue
will become more prevalent.

Figure 6 compares the rendering quality achieved by our IPC2S
defense and R? defense against the undefended rendering. We first
note that our IPC2S defense achieves, on average 36.03db and
27.03db PSNR values for the metal ball and mirror objects across all
four scenes. The IPC2S defense and R? defense achieve high SSIM
scores for all tested rendering scenarios. Furthermore, our IPC2S
defense outperforms the R? defense on both metal ball and mirror
objects. In particular, our IPC2S defense achieves 74.75% and 7.43%
higher PSNR and SSIM than R? defense on the metal ball object, as
well as 74.86% and 11.39% higher PSNR and SSIM than R? defense
on the mirror object. These results suggest that one should priori-
tize the use of IPC%S defense over R? defense as much as possible
to minimize the impact on visual quality. As we described in §5,
we only fall back to R? defense when the automated recognition
accuracy and confidence fall below a certain threshold. As part of
future work, we will investigate runtime policies to regulate the
use of these two complementary defenses.

6.3.2 Defense Success Rate. Finally, we evaluate the effectiveness
of our defenses following a similar methodology and metric as
described in §6.2. Table 2 shows the information extraction suc-
cess rate when using our IPC2S defense?. First, we see that IPC2S
defense can prevent at least 88.14% and 76.19% of face and text
information extraction under manual inspection. This is in stark
contrast to the 100% human face and at least 92% textual informa-
tion extraction, if left undefended, as shown in Table 1. Second, we
show that our IPC?S defense is effective across all 32 rendering
scenarios. For the automatic extraction, we can prevent all sensi-
tive information from being leaked for the metal ball object and at

2R? defense results are omitted as none of the sensitive information can be extracted.



MM °22, October 10-14, 2022, Lisboa, Portugal

Table 2: The low success rate when using our IPC2S defense.
On average, this defense effectively decreases the success rate of
automatic extraction to at most 8.8%/5.4% and manual extraction
to at most 11.8%/23.8% for face/text information.

Sensitive  Virtual Face Recognition Text Recognition
Info Object Automatic Manual Automatic Manual
Driver’s  Metal Ball 0.00% 0.00% 0.00%  16.67%
License 1 Mirror 0.00% 0.00% 6.94% 18.06%
Driver’s  Metal Ball 0.00% 0.00% 0.00%  30.88%
License 2 Mirror 0.00% 0.00% 5.88%  36.76%
Group Metal Ball 0.00%  14.29% N/A N/A
Photo Mirror 10.71%  14.29% N/A N/A
Credit Metal Ball N/A N/A 0.00% 3.57%
Card Mirror N/A N/A 0.00% 7.14%
Average  Metal Ball 0.00%  11.76% 0.00%  20.24%
Average Mirror 8.82%  11.76% 5.36%  23.81%

least 91.2% of information for the mirror object. Third, the larger
difference in automatic extraction rates across the attack and the
IPC?S defense suggests that our point cloud-based, rather than
image-based, defense design is more recognition model friendly.

7 RELATED WORK

AR/VR Security/Privacy. With the growing popularity of AR/VR
applications, the potential security and privacy issues caused by
hybrid physical and virtual environments have recently emerged
as a new research domain. Many research efforts have focused on
the security/privacy implications of on-device sensors, as these
sensors are increasingly utilized to capture sensitive user data or
behaviors to build the immersive virtual environment [27, 34, 35,
40, 41]. Also, the sensitive nature of virtual objects constructed
and presented in the AR/VR scenes has led to research efforts on
deceptive virtual objects that mislead the users (i.e., the integrity
issue) [28, 29], as well as sensitive virtual objects [48] that can be
abused by adversaries (i.e., the confidentiality issue). Our work falls
into the broad AR/VR privacy research: it differs from state-of-
the-art works by targeting the non-conventional, reflective virtual
objects rendered with views outside of any capturing devices.

Visual Privacy Protection. Visual privacy protection has been
a well-studied research topic for traditional multimedia, such as
2D images and videos [38]. The existing approaches to eliminating
visual privacy leakage can be divided into two main categories.
The first category aims to intervene/interfere with the sensors or
scenes in the physical world to prevent privacy-sensitive content
from being captured in the first place [21, 36, 62]. The second cate-
gory focuses on removing, replacing, or blurring sensitive objects in
the virtual world using computer vision techniques, such as image
inpainting [3, 8], body/face de-identification [7, 12, 15], and image
obfuscation [14, 39, 46, 5355, 61]. It is possible to apply existing
techniques that remove reflection from an image [30, 31, 56] by
treating the rendered virtual object the same as its physical object
counterpart. Though it is unclear how well existing techniques
will work for more geometrically complex virtual objects or with
distortion. In contrast, our defense mechanisms were designed with
the knowledge of the inner working of the lighting reconstruc-
tion pipeline and thus can work more synergistically. Our work
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is inspired by the existing obfuscation-based approaches for vi-
sual privacy protection; in contrast to prior work, we target the
privacy issues arising with the nascent development of photoreal-
istic rendering [37, 57] in AR—a new multimedia that comes with
brand new challenges, including intricate visual quality, privacy,
and performance trade-offs.

8 CONCLUSION AND FUTURE WORK

In this paper, we argued that unintentional privacy leakage could
happen as augmented reality applications become popular. Specif-
ically, sensitive information (such as human faces) can be leaked
via reflective rendering—an integral part of photorealistic AR. To
underpin the importance of the reflection-based privacy issues, we
showcased a simple attack leveraging a recently proposed multi-
view lighting reconstruction [59]. Our attack can successfully ex-
tract sensitive information under various rendering scenarios. We
also noted that such attacks are not specific to a particular lighting
reconstruction method and can happen with existing commercial
AR frameworks [23] and other academic works [37]. The fundamen-
tal issue about this unintentional privacy leakage—in our example,
between an AR content creator and a viewer—comes down to the
seemingly conflicting goals of visual coherency and privacy.

As explained previously, achieving visual coherency for AR ob-
jects requires an accurate understanding of the physical environ-
ment. Based on current common practices to achieve visual co-
herency, it is inevitable that sensitive information will be captured
and included as part of the environment scans. However, we showed
that we can still achieve good visual coherency while preserving
privacy by carefully designing the defense pipeline in tandem with
the lighting reconstruction. Specifically, we proposed two comple-
mentary defenses (IPC2S and R? defense) to obfuscate sensitive in-
formation, even under dynamic environments, automatically. Even
if the sensitive information were captured during the AR sessions,
it would not be subject to unintentional information leakage.

Our proposed defense is far from complete—there are many
unsolved challenges we plan to address. For example, many objects
can be considered private, and we only showcased the defense
mechanism when considering human face and text information are
sensitive. Currently, our work does not consider physical object
reflection. As AR deals with both virtual and physical spaces, we
agree that an effective and complete system should consider both
types of reflections to preserve user privacy. Further, many practical
scenarios, e.g., moving objects and varying environmental lighting,
exacerbate the problem. Robustly identifying private information
with minimal human user involvement can be an exciting direction.
Another direction is to devise better privacy-preserving techniques.
Currently, we use a simple blurring technique to obfuscate sensitive
information. We envision more sophisticated techniques such as
automatically generating suitable replacements in real-time can
achieve better visual quality. We hope our study can improve the
community’s awareness of the need to support privacy-preserving
reflection rendering.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive reviews.
This work was partly supported by NSF Grants #1815619, #1912593,
and #2105564, and VMWare.



Privacy-preserving Reflection Rendering for Augmented Reality

REFERENCES

(1]

[2

—

(3]

=

[10

[11]

[12

[13

[14]

[15]

[17
[18
[19]

[20

[29]

Thomas Alsop. 2020. Augmented reality (AR) - statistics & facts. https://www.
statista.com/topics/3286/augmented-reality-ar/. Accessed: 2020-7-2.
Christopher Andrews, Michael K Southworth, Jennifer N A Silva, and Jonathan R
Silva. 2019. Extended Reality in Medical Practice. Curr. Treat. Options Cardiovasc.
Med. 21, 4 (March 2019), 18.

Marcelo Bertalmio, Luminita Vese, Guillermo Sapiro, and Stanley Osher. 2003.
Simultaneous structure and texture image inpainting. IEEE transactions on image
processing 12, 8 (2003), 882-889.

Paul J Besl and Neil D McKay. 1992. Method for registration of 3-D shapes. In
Sensor fusion IV: control paradigms and data structures, Vol. 1611. Spie, 586-606.
Blender. 2022. Principled BSDF. https://docs.blender.org/manual/en/latest/render/
shader_nodes/shader/principled.html.

G. Bradski. 2000. The OpenCV Library. Dr. Dobb’s Journal of Software Tools
(2000).

Karla Brkic, Ivan Sikiric, Tomislav Hrkac, and Zoran Kalafatic. 2017. I know that
person: Generative full body and face de-identification of people in images. In
IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).
1319-1328.

Dongwook Cho and Tien D Bui. 2008. Image inpainting using wavelet-based inter-
and intra-scale dependency. In International Conference on Pattern Recognition
(ICPR). 1-4.

Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepiane, Fabio
Ganovelli, Guido Ranzuglia, et al. 2008. Meshlab: an open-source mesh processing
tool.. In Eurographics Italian chapter conference, Vol. 2008. Salerno, Italy, 129-136.
Blender Online Community. 2018. Blender - a 3D modelling and rendering package.
Blender Foundation, Stichting Blender Foundation, Amsterdam. http://www.
blender.org

The OBS Project Contributors. 2017. Open Broadcasting Software. https://
obsproject.com/.

Enric Corona, Albert Pumarola, Guillem Alenya, Gerard Pons-Moll, and Francesc
Moreno-Noguer. 2021. SMPLicit: Topology-aware generative model for clothed
people. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 11875-11885.

Paul Debevec. 2006. Image-based lighting. In ACM SIGGRAPH 2006 Courses.
4-es.

Liyue Fan. 2019. Practical Image Obfuscation with Provable Privacy. In IEEE
International Conference on Multimedia and Expo (ICME). 784-789.

Oran Gafni, Lior Wolf, and Yaniv Taigman. 2019. Live face de-identification in
video. In IEEE/CVF International Conference on Computer Vision (ICCV). 9378~
9387.

Marc-André Gardner, Kalyan Sunkavalli, Ersin Yumer, Xiaohui Shen, Emiliano
Gambaretto, Christian Gagné, and Jean-Frangois Lalonde. 2017. Learning to
Predict Indoor Illumination from a Single Image. ACM Transactions on Graphics
(2017).

Google. 2020. ARCore. https://developers.google.com/ar.

Google. 2021. Pixel 5a with 5G Tech Specs.

Google for Education. 2022. Bringing virtual and augmented reality to school |
Google for Education. https://edu.google.com/products/vr-ar/?modal_active=
none. Accessed: 2022-4-10.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernandez del Rio, Mark Wiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020.
Array programming with NumPy. Nature 585, 7825 (Sept. 2020), 357-362. https:
//doi.org/10.1038/541586-020-2649-2

Carlos Hinojosa, Juan Carlos Niebles, and Henry Arguello. 2021. Learning
Privacy-Preserving Optics for Human Pose Estimation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV). 2573-2582.
HUAWETL. 2022. HUAWEI Mate 30 Pro Specifications | HUAWEI Global. https:
//consumer.huawei.com/en/phones/mate30-pro/specs/. Accessed: 2022-4-10.
Apple Inc. 2020. Introducing ARKit 4. https://developer.apple.com/augmented-
reality/arkit/.

Apple Inc. 2020. iPad Pro 2020. https://www.apple.com/ipad-pro/specs/.

Inter IKEA Systems B. V. 2017. IKEA Place. https://apps.apple.com/us/app/ikea-
place/id1279244498. Accessed: 2020-7-2.

JaidedAR. 2022. EasyOCR. https://github.com/JaidedAI/EasyOCR.

Suman Jana, David Molnar, Alexander Moshchuk, Alan Dunn, Benjamin Livshits,
Helen ] Wang, and Eyal Ofek. 2013. Enabling Fine-Grained Permissions for Aug-
mented Reality Applications with Recognizers. In USENIX Security Symposium
(Security). 415-430.

Kiron Lebeck, Kimberly Ruth, Tadayoshi Kohno, and Franziska Roesner. 2017.
Securing augmented reality output. In IEEE Symposium on Security and Privacy
(S & P). 320-337.

Kiron Lebeck, Kimberly Ruth, Tadayoshi Kohno, and Franziska Roesner. 2018.
Towards security and privacy for multi-user augmented reality: Foundations

MM °22, October 10-14, 2022, Lisboa, Portugal

with end users. In IEEE Symposium on Security and Privacy (S & P). 392-408.
Yunfei Liu, Yu Li, Shaodi You, and Feng Lu. 2022. Semantic Guided Single Image
Reflection Removal. ACM Trans. Multimedia Comput. Commun. Appl. (jan 2022).
Yu-Lun Liu, Wei-Sheng Lai, Ming-Hsuan Yang, Yung-Yu Chuang, and Jia-Bin
Huang. 2020. Learning to See Through Obstructions. In IEEE Conference on
Computer Vision and Pattern Recognition.

Z Liu, G Lan, J Stojkovic, Y Zhang, C Joe-Wong, and M Gorlatova. 2020. CollabAR:
Edge-assisted Collaborative Image Recognition for Mobile Augmented Reality. In
2020 19th ACM/IEEE International Conference on Information Processing in Sensor
Networks (IPSN). 301-312.

Zhicong Lu, Chenxinran Shen, Jiannan Li, Hong Shen, and Daniel Wigdor. 2021.
More Kawaii than a Real-Person Live Streamer: Understanding How the Otaku
Community Engages with and Perceives Virtual YouTubers. In Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan)
(CHI °21, Article 137). Association for Computing Machinery, New York, NY, USA,
1-14.

Shiqing Luo, Xinyu Hu, and Zhisheng Yan. 2022. HoloLogger: Keystroke Inference
on Mixed Reality Head Mounted Displays. IEEE Conference on Virtual Reality
and 3D User Interfaces (VR) (2022).

Shiging Luo, Anh Nguyen, Chen Song, Feng Lin, Wenyao Xu, and Zhisheng Yan.
2020. OcuLock: Exploring human visual system for authentication in virtual real-
ity head-mounted display. In Network and Distributed System Security Symposium
(NDSS).

Shwetak N Patel, Jay W Summet, and Khai N Truong. 2009. Blindspot: Creating
capture-resistant spaces. In Protecting Privacy in Video Surveillance. Springer,
185-201.

Siddhant Prakash, Alireza Bahremand, Linda D Nguyen, and Robert LiKamWa.
2019. Gleam: An illumination estimation framework for real-time photoreal-
istic augmented reality on mobile devices. In Proceedings of the 17th Annual
International Conference on Mobile Systems, Applications, and Services. 142—154.
Siddharth Ravi, Pau Climent-Pérez, and Francisco Florez-Revuelta. 2021. A Review
on Visual Privacy Preservation Techniques for Active and Assisted Living. arXiv
preprint arXiv:2112.09422 (2021).

Zhongzheng Ren, Yong Jae Lee, and Michael S Ryoo. 2018. Learning to anonymize
faces for privacy preserving action detection. In European conference on computer
vision (ECCV). 620-636.

Franziska Roesner, Tadayoshi Kohno, and David Molnar. 2014. Security and
privacy for augmented reality systems. Commun. ACM 57, 4 (2014), 88-96.
Cong Shi, Xiangyu Xu, Tianfang Zhang, Payton Walker, Yi Wu, Jian Liu, Nitesh
Saxena, Yingying Chen, and Jiadi Yu. 2021. Face-Mic: inferring live speech and
speaker identity via subtle facial dynamics captured by AR/VR motion sensors.
In International Conference on Mobile Computing and Networking (MobiCom).
478-490.

Gowri Somanath and Daniel Kurz. 2021. HDR Environment Map Estimation for
Real-Time Augmented Reality. https://arxiv.org/pdf/2011.10687.pdf

Gowri Somanath and Daniel Kurz. 2021. HDR Environment Map Estimation for
Real-Time Augmented Reality. CVPR (2021).

Shuran Song and Thomas Funkhouser. 2019. Neural Illumination: Lighting
Prediction for Indoor Environments. CVPR (2019).

VRoid Studio. 2022. VRoid Studio. https://vroid.com/en/studio.

Qianru Sun, Ligian Ma, Seong Joon Oh, Luc Van Gool, Bernt Schiele, and Mario
Fritz. 2018. Natural and effective obfuscation by head inpainting. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR). 5050-5059.

Man To Tang, Victor Long Zhu, and Voicu Popescu. 2021. AlterEcho: Loose
Avatar-Streamer Coupling for Expressive VTubing. In 2021 IEEE International
Symposium on Mixed and Augmented Reality (ISMAR). 128-137.

Zhongze Tang, Xianglong Feng, Yi Xie, Huy Phan, Tian Guo, Bo Yuan, and
Sheng Wei. 2020. VVSec: Securing Volumetric Video Streaming via Benign Use
of Adversarial Perturbation. In International Conference on Multimedia (MM).
3614-3623.

Twitch. 2022. Twitch. https://www.twitch.tv.

P Umesh. 2012. Image Processing in Python. CSI Communications 23 (2012).
Unity. 2020. AR Foundation 4.2.2. https://docs.unity3d.com/Packages/com.unity.
xr.arfoundation@4.2/manual/index.html.

Unity3D. 2022. Unity. https://unity3d.com. Accessed: 2022-4-9.

Sen Wang and ] Morris Chang. 2020. Privacy-Preserving Image Classification in
the Local Setting. arXiv:2002.03261 (2020).

Hao Wu, Xuejin Tian, Minghao Li, Yunxin Liu, Ganesh Ananthanarayanan,
Fengyuan Xu, and Sheng Zhong. 2021. PECAM: privacy-enhanced video stream-
ing and analytics via securely-reversible transformation. In International Confer-
ence on Mobile Computing and Networking (MobiCom). 229-241.

Mengmei Ye, Zhongze Tang, Huy Phan, Yi Xie, Bo Yuan, and Sheng Wei. 2022.
Visual Privacy Protection in Mobile Image Recognition Using Protective Pertur-
bation. In ACM Multimedia Systems Conference (MMSys).

Xuaner Zhang, Ren Ng, and Qifeng Chen. 2018. Single Image Reflection Separa-
tion with Perceptual Losses. In IEEE Conference on Computer Vision and Pattern
Recognition.


https://www.statista.com/topics/3286/augmented-reality-ar/
https://www.statista.com/topics/3286/augmented-reality-ar/
https://docs.blender.org/manual/en/latest/render/shader_nodes/shader/principled.html
https://docs.blender.org/manual/en/latest/render/shader_nodes/shader/principled.html
http://www.blender.org
http://www.blender.org
https://obsproject.com/
https://obsproject.com/
https://developers.google.com/ar
https://edu.google.com/products/vr-ar/?modal_active=none
https://edu.google.com/products/vr-ar/?modal_active=none
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://consumer.huawei.com/en/phones/mate30-pro/specs/
https://consumer.huawei.com/en/phones/mate30-pro/specs/
https://developer.apple.com/augmented-reality/arkit/
https://developer.apple.com/augmented-reality/arkit/
https://www.apple.com/ipad-pro/specs/
https://apps.apple.com/us/app/ikea-place/id1279244498
https://apps.apple.com/us/app/ikea-place/id1279244498
https://github.com/JaidedAI/EasyOCR
https://arxiv.org/pdf/2011.10687.pdf
https://vroid.com/en/studio
https://www.twitch.tv
https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@4.2/manual/index.html
https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@4.2/manual/index.html
https://unity3d.com

MM °22, October 10-14, 2022, Lisboa, Portugal

[57] Yigin Zhao and Tian Guo. 2020. PointAR: Efficient Lighting Estimation for Mobile
Augmented Reality. In Computer Vision — ECCV 2020, Andrea Vedaldi, Horst
Bischof, Thomas Brox, and Jan-Michael Frahm (Eds.). Springer International
Publishing, Cham, 678-693.

[58] Yiqin Zhao and Tian Guo. 2021. Xihe: A 3D Vision-based Lighting Estimation
Framework for Mobile Augmented Reality. In The 19th ACM International Con-
ference on Mobile Systems, Applications, and Services.

[59] Yiqin Zhao and Tian Guo. 2022. FusedAR: Adaptive Environment Lighting
Reconstruction for Visually Coherent Mobile AR Rendering. IEEE Conference on

2918

[60

[61

[62

Yiqin Zhao, Sheng Wei, and Tian Guo

Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW) (2022).
Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. 2018. Open3D: A Modern Library
for 3D Data Processing. arXiv:1801.09847 (2018).

Bingquan Zhu, Hao Fang, Yanan Sui, and Luming Li. 2020. Deepfakes for Medical
Video De-Identification: Privacy Protection and Diagnostic Information Preser-
vation. In AAAI/ACM Conference on Al Ethics, and Society (AIES). 414-420.
Shilin Zhu, Chi Zhang, and Xinyu Zhang. 2017. Automating visual privacy
protection using a smart led. In International Conference on Mobile Computing
and Networking (MobiCom). 329-342.



	Abstract
	1 Introduction
	2 Background
	3 Lighting Reconstruction Premier
	4 Reflection-based Privacy Issues
	4.1 Privacy Attack Overview
	4.2 Sensitive Information Extraction

	5 Privacy-preserving Reflection
	5.1 Key Design Challenge and Questions
	5.2 Index-based Point Cloud Color Swapping
	5.3 Defense in Dynamic Environments

	6 Experiments
	6.1 Experimental Setup
	6.2 Information Extraction of Our Attack
	6.3 Effectiveness of the Defense

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References

