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Abstract
Our study examines the application of using blue intensity (BI) methods to develop a late
summer maximum temperature (Tmax) reconstruction for the Southern Rocky
Mountains—a mid-latitude (i.e., 36° N), arid region in North America. We reconstruct
August–September (AS) Tmax for the period 1735–2015 CE using a composite latewood
BI (LWB) Engelmann spruce (Picea engelmannii Parry ex Engelm.) chronology from
multiple sites across the Sangre de Cristo Mountains in Northern New Mexico, USA.
This study presents the first BI-derived temperature reconstruction for the lower mid-
latitudes (30–45° N) of North America. We compare the climate response of multiple
tree-ring parameters: LWB, earlywood BI (EWB), ΔBI (earlywood BI minus latewood
BI), ring width (RW), and maximum latewood density (MXD). Of all parameters, the
site-composite LWB and ΔBI chronologies show the strongest correlations with AS Tmax.
Reconstructed AS Tmax demonstrates fluctuating warm and cool periods during the latter
portion of the Little Ice Age (ca. 1730–1850) and pronounced warming through the early
to mid-twentieth century (ca. 1920–1950s). The reconstruction also documents substan-
tial warming over the last decade, the trend of which appears to be anomalous within the
context of the past ca. 280 years. We highlight the potential for BI methods to be
successfully used at high-elevation, mid-latitude locations where temperature proxy
datasets are scarce or non-existent. As many places across the mid-latitudes lack contig-
uous, temporally resolved, decadal-scale paleotemperature proxies, we suggest here that
BI methods can be effective at improving the spatial gaps in the Northern Hemisphere
temperature proxy network.
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1 Introduction

Climate change is one of the foremost drivers of ecosystem modification (Mooney et al. 2009)
and imposes increasing vulnerabilities on both human and natural communities (Thornton
et al. 2014). As much of our understanding of climate change relies heavily on the assessment
of instrumental data limited to the modern era, proxy datasets are useful tools for better
understanding of the effects of human influence on climate variability over longer temporal
scales. Warming surface air temperatures over the last century are one of the most widely
documented effects of climate change globally (Jones et al. 1999). In North America,
increasing annual surface air temperatures are particularly pronounced in the American
Southwest and Southern Rocky Mountains region of the USA, where in some areas, average
surface air temperatures have increased upwards of 0.6 °C over the last decade (Blunden and
Arndt 2016). As this warming trend is expected to continue, mean surface air temperatures are
projected to increase across the region by at least 2.5 °C within the next 30 years (Garfin et al.
2014). In 2019, instrumental records documented anomalously warm summer (June–August)
mean temperatures across the Southwest United States (US). In August 2016, Utah, Colorado,
and New Mexico all experienced the warmest monthly mean temperatures on record (NOAA
2016). The implications of the current warming trend are particularly challenging in the
Southwest US, one of the driest regions of the country, where the sustainability of both human
and natural systems rely on water resource availability.

The Southwest US has one of the fastest growing regional populations that is projected to
increase 68%, reaching to 94 million by 2050 (Jardine et al. 2013). In a region that is expected
to only get hotter and drier, projections suggest that increased heat, coupled with changes to
warm season (e.g., rainfall) and cool season (e.g., snowpack) precipitations, will drastically
affect the lives and economies of over 56 million people.

Recent advances in dendrochronology have allowed for the development of temperature
reconstructions of varying spatial scales, ranging from local to hemispheric. Tree-ring-based
temperature reconstructions were historically accomplished using instrumental data in combina-
tion with chronologies developed from tree-ring parameters such as tree-ring width (RW) or
maximum latewood density (MXD). In North America, the majority of tree-ring-derived temper-
ature reconstructions originate from high latitudes (> 50° N), where temperature is expected to be
the greatest limiting factor on tree growth (Jacoby and D’Arrigo 1989; Briffa et al. 1992, 2001;
Davi et al. 2003; Anchukaitis et al. 2013; Wiles et al. 2014; Wilson et al. 2016). However, the
development ofMXD and RWnetworks in themid-latitudes of the continental US throughout the
late 1980s and 1990s (e.g., Briffa et al. 1988, 1992; Schweingruber et al. 1993; Schweingruber
and Briffa 1996) increased the density of chronologies which allowed for reconstruction of
summer temperatures across portions of the previously under-represented areas of NorthAmerica.
Networks of tree-ring-derived climate proxies, which often also allow for longer-term reconstruc-
tions of precipitation and temperature, are necessary to better understand regional spatial patterns
of ecosystem response to climate change.

As chronology networks are important for examining current and past climate over large
spatial extents, they must be updated regularly to account for the most recent decades and
added to in places where the spatial representation of local climate variables by tree-ring
parameters is weak or non-existent (Schneider et al. 2015; Stoffel et al. 2015; Wilson et al.
2016). Despite having MXD is a robust parameter for reconstructing past summer tempera-
tures, only a few MXD-derived paleoclimate endeavors have been accomplished within the
continental US compared to within Europe, Canada, and the Alaskan US. Compared to ring
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width, substantially fewer millennial length MXD records exists for North America (e.g.,
Luckman and Wilson 2005), especially in the low to mid-latitudes. The high cost associated
with producing tree-ring densitometry data is often prohibitive to research institutions. This, in
combination with time-consuming laboratory sample preparation requirements, is likely a
deterrent to conducting rigorous, widespread updates to existing MXD chronologies so that
they account for warming trend since ca. 1990.

In attempts to remedy the issues relating to the time and cost-intensive nature of generating
MXD data, the application and skill of alternative tree-ring parameters for temperature
reconstructions are increasingly being evaluated. In recent years, refinement of blue intensity
(BI) methods have allowed for the development of a temperature-responsive, alternative tree-
ring parameter to MXD (McCarroll et al. 2002; Campbell et al. 2007; Björklund et al. 2014;
Rydval et al. 2014; Wilson et al. 2014; Linderholm et al. 2015). Early development of BI
methods emphasized the use of imaging analysis techniques to examine wood density
properties, with the hypothesis that a strongly coupled relationship between reflected visible
light in the blue wavelengths and wood density allowed the former to act as a surrogate
parameter for the latter (McCarroll et al. 2002). Sheppard et al. (1996) first demonstrated the
successful use of reflected light brightness values across earlywood and latewood to recon-
struct temperature. As late summer temperatures were found to be influential on the lignifica-
tion of the secondary cell wall (Gindl et al. 2000) and shorter radiation wavelengths are more
readily absorbed by lignin, the strongest association was identified between MXD and
brightness resulting from the blue spectrum (McCarroll et al. 2002). Refinement in the analysis
of blue spectrum–reflected light and standardization of laboratory methods have resulted in the
latewood blue intensity (LWB) parameter producing consistently comparable correlations to
temperature as MXD (e.g., Björklund et al. 2015). Further, LWB offers a more time-efficient
and cost-effective alternative to MXD for reconstructing temperature (Björklund et al. 2019).
Despite these advantages over MXD, most BI studies to date are primarily geographically
restricted to the high latitudes. Given that BI methods are relatively new and still in an
experimental phase, more studies are needed to evaluate the applicability of BI methods across
different regions, especially at high-elevation, low-latitude locations, where certain tree species
still produce consistent annual growth rings (e.g., Brookhouse and Graham 2016; Buckley
et al. 2018; Heeter et al. 2019). To date, no published BI data exist within the non-Alaskan
continental US, and temperature proxy data is especially spatially and temporally limited at
high elevations in the mid-latitudes (30–50° N). Further, only a few attempts have been made
to reconstruct temperature using tree-ring parameters in the arid Southwest US (Briffa et al.
1992; Schweingruber and Briffa 1996; Salzer and Kipfmueller 2005). If BI methods can be
successfully used to reconstruct summer temperatures in places where MXD records are either
absent or temporally limited, this technique may improve the incomplete spatial and temporal
coverage of paleoclimate records across North America and elsewhere. We identified the
Southern Rocky Mountains region of the USA (southern Colorado, Northern New Mexico) as
a prime area to evaluate novel methods of developing tree-ring-based climate reconstruction
for a variety of logistical and environmental reasons. The Southern Rocky Mountains has
adequate spatial and continuous temporal coverage of instrumental station data capable of
documenting temperature trends since the turn of the twentieth century. Additionally, the
complex relief of the Southwest US allows for local dominance and persistence of many long-
lived, temperature-limited tree species growing at high elevation (> 3000 m). Similar to how
they perform at high latitudes, temperature proxies have historically been most successful at
high altitudes, where inter-annual climate variability strongly influences tree growth as the
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limiting factor (Fritts 1976). Because of its persistence at high elevations and latitudes,
Engelmann spruce (Picea engelmannii Parry ex Engelm.) has been shown to be an exceptional
species for developing climate reconstructions from tree-ring data (Parker and Henoch 1971;
Wilson and Luckman 2003). This long-lived (> 600 years), shade-tolerant, canopy-dominant
species occupies a range extending from British Columbia in the north, through the Western
US and becomes disjunct at the southern range extent in south-central New Mexico (NM). At
its southern range periphery, Engelmann spruce becomes less dominant, as its distribution
becomes scarcer and is limited to near tree line (Alexander and Sheppard 1984). Engelmann
spruce habitat is typically characterized as humid with long, cold winters and short, cool
summers, with heavy snowfall and extreme temperature ranges. This habitat is considered one
of the highest-elevation and coldest forest environments in the non-Alaskan continental US.

In this study, we assess the efficacy of using BI methods within the mid-latitudes of the
Southern Rocky Mountains using three Engelmann spruce sites distributed across Northern NM.
Our successful demonstration of the ability of the LWB metric to track late summer maximum
temperature (Tmax) enabled us to develop a temperature reconstruction for the northern Sangre de
Cristo range of north-central NM.We reconstructed late summer (August–September) Tmax using
a composite Engelmann spruce LWB chronology spanning the period 1735–2015. Further, we
enhanced our assessment of the application of BI methods with the examination of pre-existing
RWand MXD data available within our immediate study area. Our study highlights the potential
of using BI methods to produce larger-area temperature reconstructions for the mid-latitudes
encompassing the American Southwest and elsewhere across the Western US.

2 Methods

2.1 Study area

Our study area comprises three Engelmann spruce sites located at the southern geographical
range limit of the species within the Sangre de Cristo Mountains, Northern NM: Wheeler Peak
(WHE) (36.57° N, − 105.42° W), Serpent Lake (JIS, near Jicarita Peak) (36.06° N, − 105.56°
W), and San Leonardo Lakes (SLE) (36.00° N, − 105.65° W) (Little and Viereck 1971; Fig. 1).
The sampling elevation at the WHE and JIS sites was between 3400 and 3600 m, which was at
or near tree line at these sites (Fig. 1, Table 1). At SLE, however, steep (> 40°), unstable talus
slopes restricted us to sampling at 3450 m, despite tree line being located at ca. 3750 m.
Instrumental data obtained nearest to our sample locations indicate the local climate is
characterized by minimum monthly average temperatures ranging from − 11.8 in January to
11.1 in July, and maximum monthly average temperatures ranging from 4.2 in January to 29.2
in July. Annual precipitation ranges from 13.9 mm in February to 52.3 mm in August
(averaged 1895–2018; US Climate Data 2019). For our study region, July and August are
characterized as having the highest average maximum temperatures (29.2 and 27.7, respec-
tively) as well as receiving the greatest amount of monthly precipitation (36 mm and 48 mm,
respectively) (US Climate Data 2019).

2.2 Sample collection

At each site, we collected increment cores from the largest-diameter and oldest-looking
Engelmann spruce individuals between 3500- and 4000-m elevations. All cores were extracted
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Fig. 1 Map showing the locations and topographic settings (contours) of the three Engelmann spruce sites
sampled for blue intensity, including a Wheeler Peak (WHE), b Serpent Lake (JIS), and c San Leonardo Lakes
(SLE) sites within the Sangre de Cristo Mountains, NM, located at the southern range limit for the species (gray
polygon; Little and Viereck 1971). Approximate tree sampling locations and elevations at each site are circled.
Green lines in panels a–c represent hiking trails

Table 1 Site location and chronology

WHE JIS SLE

Latitude (° N) 36.65 36.06 36.00
Longitude (° W) 105.42 105.56 105.65
Sampling elevation (m) 3600 3600 3450
RW
No. of cores (trees) 26 (16) 27 (20) 18 (13)
Full period 1667–2015 1637–2014 1653–2015

BI
No. of cores (trees) 26 (16) 27 (20) 18 (13)
Full period 1667–2015 1637–2014 1653–2015

MXD
Elevation 3120 – –
No. of cores (trees) 20 (10) – –
Full period 1830–1983 – –

Ring width, blue intensity, and maximum latewood density information for the Wheeler Peak, Serpent Lake, and
San Leonardo Lakes study sites within the Sangre de Cristo Mountains, Northern NM

WHE Wheeler Peak, JIS Serpent Lake, SLE San Leonardo Lakes, RW ring width, BI blue intensity, MXD
maximum latewood density
a Information from Briffa et al. (1992)
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at breast height (1.3 m above ground surface) using a 5.0-mm diameter increment borer. We
sampled two cores from each tree parallel to the contour of the slope to reduce abnormalities in
ring growth (Stokes and Smiley 1968). We targeted trees that showed minimal outward
evidence of landslide, insect, or wind damage. We collected a total of 32 increment cores
from 16 trees at WHE, 54 cores from 27 trees at JIS, and 44 cores from 22 trees at SLE.

2.3 MXD data compilation

We gathered the MXD raw measurement dataset for WHE from the International Tree-Ring
Data Bank (ITRDB) (Briffa et al. 1992). The MXD dataset fromWHE spans the period 1830–
1983, and increment cores were collected from trees at 3120 m.

2.4 Chronology development

While the development of BI methods is still in relative infancy compared to MXD, and due to
the fact that BI-derived data produced by different laboratories are likely to be combined
across regions, the importance of ensuring methods is standardized within the context of
accuracy and precision is paramount (Björklund et al. 2019). Engelmann spruce cores were
dried and mounted, then sanded at 220, 400, 600, and 1000 American National Standards
Institute (ANSI) grit increments. Cores were finished by hand sanding with a 9-μm film (Speer
2010). Because the Engelmann spruce wood collected at these sites is characterized by a light
color and generally does not exhibit any discoloration due to heartwood/sapwood differences
or resins, no chemical pigment extraction, often necessary for BI methodology, was required
for our samples. Before scanning, all samples were first cross-dated visually using a × 40
microscope.

We first calibrated our scanner to ensure accuracy of generated BI values, then scanned all
samples at 2400 dpi on an Epson Expression 12000XL scanner using an IT8.7/2 calibration
card coupled with the 89 SilverFast software to ensure replication. We scanned a total of 52
series. We conservatively excluded cores from scanning if they possessed excessive amounts
of traumatic resin ducts that formed across the entire radial width of an annual ring, because a
failure to avoid these cellular abnormalities results in inaccurate blue reflectance values. We
also excluded cores that had continuous blue fungal stain. Although initial field sample
collection was specifically designed to target the oldest trees with no outward obvious signs
of insect, landslide, or wind damage, all agents which increase the likelihood of these types of
wood abnormalities, we still removed between two and four cores from each site dataset for
this reason. After cores were scanned, we delineated growth ring boundaries using automated
detection in the program CooRecorder (Larsson 2014) to generate RW values to the nearest
0.001 mm precision.

After obtaining RW measurements, we checked our dating accuracy using the software
COFECHA (Holmes 1983). Once we were confident that all samples were accurately dated,
we collected BI values using the CooRecorder software wood BI (LWB) and ΔBI data.
Although Engelmann spruce collected from our sites did not show any sapwood/heartwood
color changes, we decided to collect and examine the ΔBI metric to further explore the climate
response and relationship between ΔBI and LWB. Because samples exhibited moderate age-
related trends, we detrended the Engelmann spruce RW, MXD, LWB, and ΔBI series. Since
raw LWB is negatively correlated with MXD, we inverted the raw LWB data to allow for
detrending of the data by methods similar to those used for MXD data (Rydval et al. 2014). We

Climatic Change (2020) 162:965–988970



initially used interactive detrending to examine the effects of various conservative smoothing
splines within the signal-free detrending (SFD) (Melvin and Briffa 2008) framework
(Figure S1). All series were standardized using the power-transformed residuals. We detrended
the ΔBI data similarly to the LWB data, because the calculation of this metric inherently results
in a positive correlation between inverted LWB and ΔBI (Wilson et al. 2017a). We ultimately
detrended the RW, BI, and MXD data using the age-dependent spline (ADS) (Melvin et al.
2007) within the SFD framework, because the ADS produced the best curve fit to the data.
This combination also best reduced the medium-frequency distortion (e.g., over-exaggeration)
at the beginning and end segments of our chronologies (e.g., the twenty-first-century climate
warming trend) resulting from the curve fitting process. Similar to this study, Wilson et al.
(2019) also apply this detrending approach to both RWand LWB for the purpose of examining
relationships between growth/density and summer temperatures. We used the expressed
population signal (EPS; Wigley et al. 1984) with an arbitrary threshold of 0.80 to help evaluate
the quality of our chronologies and to determine the period over which we had sample
replication adequate for developing a reconstruction.

2.5 Climate response

We used the Pearson correlation analysis to test temporal relationships between temperature
data and RW, MXD, earlywood BI (EWB), LWB, and ΔBI data using the treeclim package in
R (Zang and Biondi 2015). Further, we used the KNMI Climate Explorer (Trouet and Van
Oldenborgh 2013) to assess spatial correlations between temperature data and RWI, MXD,
EWB, LWB, and ΔBI data. We performed these tests using monthly Tmax and mean temper-
ature (Tmean) from the parameter-elevation relationships on independent slopes model (PRISM)
(Daly et al. 1994) surface temperature dataset at 4k resolution and averaged over the Southern
Rocky Mountains (37.25–35.90° N, 104.15–106.05° W). Prior examination of all tree-ring
metrics (RW, MXD, and BI metrics) with minimum temperature indicated either no or very
weak significant relationships; thus, we excluded minimum temperature as a variable in any
subsequent analysis for this study. We chose to use PRISM data because this gridded data
product adequately provides high-spatial resolution monthly temperature data that performs
well in regions characterized by complex terrain, such as in the heavily dissected landscapes of
the Southern Rocky Mountains. While PRISM pulled temperature data from multiple stations
in the region (Table S1), the primary data source for the area encompassing our sample area is
Red River, a rural station located in cool conifer mountain terrain at 2644 m and provides
temporally reliable and consistent temperature data from 1906 to 2015. Correlations were
calculated over the period 1895–2015. We tested for signal stability by performing forward
moving interval correlation analysis using treeclim (Zang and Biondi 2015). We assessed the
spatial homogeneity between the three site chronology signals using principal component
analysis (PCA) across all series over the well-replicated common period (1735–2015). Further,
we examined the spatial loadings of the individual chronologies based upon the most
prominent principal component (e.g., Wilson et al. 2007b).

2.6 Climate reconstruction

We chose a principal component regression (PCR) technique to reconstruct late summer
maximum temperatures (August–September (AS) Tmax) for the Southern Rocky Mountains.
We initially pre-whitened the BI data and temperature data to provide a conservative estimate
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of BI-climate relationships that did not exhibit inflation due to auto-correlation. We used three
correlation tests—Pearson, robust Pearson, and Spearman—to examine the BI-climate rela-
tionships and retained chronologies that were significantly (p < 0.01) related to AS Tmax over
the common period (1907–2015). For BI series which were significant, their original, non-pre-
whitened chronologies were included in the PCR. Following the Kaiser-Guttman rule
(Guttman 1954; Kaiser 1960), we retained the first n eigenvectors with eigenvalues > 1.0 for
the multiple regression. We determined the final subset of PCs by using the minimum Akaike
information criterion (AIC), which includes a penalty term for increasing the number of
predictors in the model (Akaike 1974).

We split the instrumental period (1907–2015) into two equal periods termed the early
period (1907–1961) and late period (1962–2015) to validate and cross-validate the AS Tmax

reconstruction model (Table S5). To ensure stability over time, model validation was per-
formed by calculating calibration statistics for the early period (1907–1961) and verification
statistics for the late period (1962–2015), and vice versa. We used two goodness-of-fit tests to
validate the models: the reduction of error (RE) and coefficient of efficiency (CE) statistics
(Fritts 1976; Cook et al. 1999). When RE values (ranges from − ∞ to + 1) are positive, the
calibration model is a more skillful predictor of the target data than the mean of the
instrumental data during the calibration period. Although CE has the same range and
calculation, a positive CE value is more difficult to obtain because it relies on the verification
period mean for a baseline of predictive skill. The validation statistics produced were
calibration and verification period coefficient of determination (CR2 and VR2), validation
period reduction of error (VRE), validation period coefficient of efficiency (VCE), and root-
mean-square error (RMSE). After successful determination that the model is time-stable, we
used linear regression to estimate AS Tmax calibrated over the full PRISM 4k instrumental
period (1907–2015) with the composite LWB chronology, and evaluated the model residuals
for linear trends and first-order auto-correlation (Durbin-Watson statistic) (Durbin and
Watson 1971).

To assess model uncertainty, we used the maximum entropy bootstrapping (MEBoot)
method (Vinod and López-de Lacalle 2009) to produce 1000 reconstruction replicates. We
used the MEBoot method because it produces an empirical probability distribution for each
reconstructed estimate (e.g., each year) on which the estimation of uncertainty is based (Cook
and Kairiukstis 2013). Additionally, the MEBoot method does not assume stationarity and
preserves the auto-correlation structure of the time series, and calculations of uncertainty
estimates for the calibration and verification statistics are semi-parametric (Cook et al. 2013).

3 Results and discussion

3.1 Signal strength and homogeneity

Individually, WHE contains 26 series, spanning the period 1667–2015 for RW, EWB, LWB,
and ΔBI data (Table 1). MXD data for WHE contains 20 series and spans the period 1830–
1983. JIS is comprised of 27 series and spans the period 1637–2014. SLE contains 18 series
and spans the period 1653–2015. For the period 1637–2014, SLE contains 18 series and spans
the period 1653–2015. For each individual site, both mean inter-series correlation (RBar) and
EPS values indicate that RW maintains the strongest common signal over the period where the
EPS is > 0.80 in comparison with BI and MXD (Table 2). The RBar for RW across the three
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sample sites is 0.57 (ranging 0.54–0.59). For EWB, the RBar is 0.27 (ranging 0.26–0.27). For
LWB, the RBar is 0.28 (ranging 0.25–0.31), which is comparable with the EWB RBar and the
ΔBI RBar of 0.31 (ranging 0.29–0.35). The RBar for MXD, which comprised of only one site
(WHE), is 0.49.

The mean number of series from across the three sites required to meet an arbitrary EPS
value of 0.80 is 3 for RW, 10 for EWB, 11 for LWB, 9 for ΔBI, and 5 for MXD. At each site,
BI requires at least three times the amount of measured series than RW to meet the EPS
threshold. This is consistent with other BI studies conducted in North America and Europe,
which suggests that one of the caveats of BI is that it requires substantially more trees to reach
the point of theoretical infinite replication and maintain a signal adequate for developing a
reconstruction (Wilson et al. 2017a, 2019). The development of local networks comprised of
data obtained across multiple nearby sites, such as in the case we present here, can be an
effective way to overcome this problem of low sample depth. The LWB signal in the Southern
Rocky Mountains is surprisingly strong for the relatively few trees needed to reach the EPS
threshold (Table 2). This may be attributed to increased commonality in growth response
among individuals across these three study sites, or potentially be a result of increased
densiometric (here, referring to the process of latewood lignification) synchrony of Engelmann
spruce compared to other species (e.g., Picea glauca, white spruce). Similarly, the RBar values
for RWat each site are almost twice as high as those for BI. However, MXD displays superior
signal commonality to BI, second to RW. Comparatively, MXD, like RW, requires fewer
samples to achieve a strong common signal. The RBar is also more comparable to RW than to
any BI metric. Both EWB and the LWB have comparable signal commonality to ΔBI. This
similarity can be expected due to the nature of the calculation of ΔBI, as ΔBI quantifies the
difference between BI measurements collected from the earlywood and latewood zones of the
annual ring.

Overall, tree-ring metrics across each site correlate strongly with one another (Table S2).
Strong, positive correlations (p < 0.01) between metrics across different sites suggest a strong
spatial correspondence between overall growth and physiological response of same-species
individuals at closely situated sample sites. The high level of agreement between tree-ring

Table 2 RBar and the number of series needed to attain an EPS of 0.80 for all individual sample sites (Wheeler
Peak (WHE), Serpent Lake (JIS), and San Leonardo Lakes (SLE))

WHE JIS SLE Mean

RW RBar 0.590 0.586 0.540 0.572
No. series EPS 3 3 4 3
Year EPS 0.80 1699 1709 1707 1705

EWB RBar 0.259 0.262 0.274 0.265
No. series EPS 9 10 12 10
Year EPS 0.80 1800 1759 1778 1779

LWB RBar 0.309 0.286 0.252 0.282
No. series EPS 0.80 9 11 12 11
Year EPS 0.8 1797 1768 1802 1789

ΔBI RBar 0.294 0.350 0.295 0.313
No. series EPS 0.8 10 8 10 9
Year EPS 0.80 1804 1737 1818 1786

MXD RBar 0.493 – – –
No. series EPS 0.80 5 – – –
Year EPS 0.80 1833 – – –

For RBar values, all data were detrended using the age-dependent spline in the signal-free framework (AD-sf)
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metrics at these three sites was the motivation to develop a composite chronology. As LWB,
like MXD, acts as a representation of latewood density (Björklund et al. 2019), we should
expect similar trends of cross-metric correlations between BI and RW as between MXD and
RW. Under this assumption, we should expect that MXD is more highly correlated with LWB
than with RW. As raw LWB data displays an inverse relationship with MXD, high correlations
found between MXD and the inverted LWB is consistent with the literature. Surprisingly, the
MXD taken from WHE correlates higher with JIS ΔBI (r = 0.57) than WHE LWB or WHE
ΔBI (r = 0.48 and 0.34, respectively). This is likely a result of differences in sampling locations
of WHE MXD and WHE BI/RW, as WHE MXD was collected at a significantly lower
elevation (Table 1) and from different trees than those for WHE RW/BI. Across the three sites,
SLE and JIS have the weakest positive correlation for the LWB variable. For each individual
site, EWB has the weakest coupling with RW of all BI metrics, followed by LWB and ΔBI
(Table S2).

While the BI chronologies display strong signal commonality for the most recent 200 years,
they are not adequately replicated enough to meet an EPS value of 0.80 prior to 1786. The
separate PCAs for RW, EWB, LWB, and ΔBI over the period 1735–2015 revealed similar
loadings for each of the four variables. The explained variance on the first eigenvector is
40.9% for RW, 30.7% for EWB, 35.3% for LWB, and 30.8% for ΔBI (Table S3). In
comparison to a series originating from WHE and SLE, a series from JIS load weakly to
PC1. This difference in loading is likely partially influenced by varying microtopographical
variables and JIS being the only site located on an east aspect rather than a west aspect. Based
on PCA results, a series from individual sites were pooled into one regional composite
chronology for RW, EWB, LWB, and ΔBI to maximize signal commonality over a longer
time period. Our resulting composite chronologies for each parameter are better replicated over
longer periods of time compared to individual site chronologies. Additionally, these composite
chronologies allow for direct comparisons of multiple tree-ring parameters and for the better
examination of various detrending techniques. While the composite chronologies extend from
1635 to 2015, chronology variants for RW, EWB, LWB, ΔBI, and MXD (Figure S1) indicate
that these composite chronologies have adequate signal commonality and sample representa-
tion (EPS > 0.80) back to 1735. The composite RW chronology displays the highest amount of
common signal variability (RBar = 0.33) and maintains an EPS > 0.80 to 1713 (Table S4). The
LWB composite chronology shows the second highest common signal (RBar = 0.29) and
maintains an EPS > 0.80 to 1738.

The examination of using various detrending methods resulted in relatively similar resultant
chronologies, especially in most recent 100 years, for all tree-ring metrics except for the EWB
parameter. The LWB chronology shows the least sensitivity to various modes of detrending
compared to all other tree-ring metrics examined in this study (Figure S1). The two-third and
NEGEXP smoothing splines over- and under-exaggerate, respectively, the end effects of the
EWB chronology post 1950. All modes of detrending show the greatest amount of variability
prior to 1800, where the sample depth is comparatively lower. For RW, EWB, LWB, and ΔBI,
the chronology versions using the two-third spline track the ADS variants, the most similarity.
From 1653 to present, the NEGEXP variants for composite RW, LWB, and ΔBI chronologies
display lower mean z scores over this period and thus show higher variance from 1653 to 1800
(period where EPS < 0.80) than the two-third spline and ADS variants. This exaggerated
decrease in early period mean chronology values exemplifies the end effect artifact from
applying a stiff, linear curve fit model to the data. We ultimately used a constrained ADS to
minimize the loss in climate signal in the most recent period (Wilson et al. 2019). Compared to
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the composite RW chronology, the composite chronologies for all BI metrics show less
variability over the entire period. This is consistent with other similar studies, which compare
variants of RW and LWB (e.g., Wilson et al. 2019). The lower-frequency (e.g., multi-decadal
to centennial) signals are greatly affected by both the mode and practice of detrending
(Figure S1), as well as by innate proxy characteristics (e.g., changes in series length and
sample depth). This notion is the impetus for further examination into the effects of combi-
nations of such variables for continual refinement of novel methods in developing
paleoclimate proxy records from natural sources (e.g., BI from tree rings). The EPS value
intermittently waivers around 0.80 for LWB and ΔBI between 1725 and 1760 before consis-
tently dropping below the 0.80 threshold. From here, we limit further analysis of our
composite tree-ring chronologies to the period 1735–2015, where we have adequate sample
replication across all tree-ring metrics.

3.2 Climate response and regional expression

Our climate response analysis of RW, EWB, LWB, and ΔBI is conducted over the period
1907–2015, where there is continuous data from at least two individual stations within the
sample region. Within the Sangre de Cristo Mountains range of the Southern Rocky Moun-
tains (37.25–35.90° N, 104.15–106.05° W), all parameters are more strongly correlated with
Tmax than Tmean (Table S4). At each individual site, AS Tmax consistently shows the strongest
relationships with both BI metrics (Fig. 2a). The pooling of series from all sites into one
regional chronology improves the climate response of all three BI metrics to AS Tmax (Fig. 2a).
Individually, RW shows a minor positive response to AS Tmax at JIS and SLE but does not
exhibit any significant response when pooled into the composite chronology. The lack of
temperature signal of RW found here differs from signals found from RW in spruce-dominated
boreal forests of higher latitude studies (e.g., Wilson et al. 2019; Luckman and Wilson 2005).
We suggest that RW shows less of a temperature response because even though these high-
elevation spruce-dominated forests of Northern NM are more humid than most other areas of
the Southwest US, the comparatively arid climate still heavily influences patterns of radial
growth. We examined this further by running correlation tests for all composite chronologies
against PRISM 4k precipitation data from the same spatial and temporal extents used to
examine PRISM temperature data (Table S5). Although RW is the only metric that shows a
weak, positive correlation with precipitation (current and previous year (− 1) data) over the
entire 1907–2015 period, this metric does show strong, positive correlations with May (− 1)
precipitation over the period 1980–2015 (r = 0.54, p < 0.01). This increasing response of RW
to precipitation is coupled with decreased sensitivity to temperature in the most recent period
(Figure S4) and suggests the possibility of precipitation becoming an increasingly limiting
factor on radial growth at high elevations within this region. EWB, LWB, and ΔBI show
significant negative correlations with current year August precipitation. Similar to the trend
seen with RW, these relationships strengthen after 1980. Here, the data suggest that changes in
precipitation are increasingly influenced by changes in temperature (e.g., twenty-first century
warming). This modern trend is well documented across other parts of the Southwest US
(Weiss et al. 2009; Cayan et al. 2010; Harley et al. 2020).

The strongest relationship with temperature exists between LWB and seasonal Tmax

(r = 0.64). The regional LWB chronology is also a strong predictor of Tmean (r = 0.54). The
temperature signal of the EWB composite chronology is weaker and more spatially limited
than the signals found in the LWB and ΔBI composite chronologies. Examination of EWB
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from these sites indicates that while the composite chronology shows significant positive
relationships with both AS Tmean and AS Tmax over the entire tested observational period
(r = 0.21 and 0.37, respectively), the temperature signal strength is spatially limited beyond the
extent of the immediate study area (Figure S3). Additionally, the EWB metric shows signif-
icant positive correlations with March Tmax in the more recent decades (1960–present)
(Figure S4). This trend warrants further examination, as it may have important implications
regarding the recent phenomenon of the earlier onset of spring warming in the region,
especially within the context of examining differences in the anatomical basis for density
between earlywood and latewood (e.g., Björklund et al. 2017). Changes to the seasonal timing
and pace of spring snowmelt driven by rapidly warming spring temperatures in the latter
twentieth century are well documented across the Western US (Cayan et al. 2001; Westerling
et al. 2006); Cayan parameter has not yet been widely examined (e.g., Björklund et al. 2014,
2017; Buckley et al. 2018), and future studies examining the temperature sensitivity of the
EWB parameter warrant additional consideration.
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Fig. 2 aMonthly climate response of tree-ring metrics (RW, LWB, ΔBI, and MXD) to regional PRISM 4k Tmax

data for both the individual sites (WHE, JIS, SLE) and the AD-sf-detrended composite chronologies from
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To compare climate response of the WHE MXD data to the other metrics, we conducted
additional analysis over a shortened period (Table S4), which only includes the years during
which MXD is represented (1907–1983). Compared to LWB, the climate response of MXD to
AS Tmean and Tmax is relatively low. This is consistent with results using these same MXD
chronology data by Briffa et al. (2002). Strictly comparing LWB and MXD at WHE, there is a
slight seasonal response difference between these two metrics. The decoupling of late-growing
season temperature response between MXD and LWB is somewhat inconsistent with findings
from other studies comparing climate response of MXD versus BI at higher latitudes (e.g.,
Björklund et al. 2014, 2015; Wilson et al. 2014; Fuentes et al. 2018; Kaczka et al. 2018).
Instead, at WHE, MXD appears to have improved temperature response throughout the
majority of the growing season (May–August) (Figure S4). The difference in monthly climate
response between LWB and MXD may be influenced by the ways in which each individual
proxy represents lignification, as this process occurs after all radial cell growth has ceased at
the end of the growing season (Gindl et al. 2000). While slight seasonal differences between
the temperature response of MXD and LWB at WHE are likely due to the innate proxy
characteristics themselves, we also consider the influence of differing sample locations for
each proxy (e.g., differences in individual trees sampled, topographic position of sampled
trees). For example, while both MXD and BI data originate from samples collected at WHE,
MXD samples were taken from trees located at a lower elevation and different aspects. We
suggest that future studies aiming to develop paleotemperature proxies from BI methods in the
Southwest US should consider sampling at high elevation as possible in order to capture the
most robust temperature response from samples. Moreso, additional exploration is needed to
better understand the influence of microtopography on temperature-limited trees in the mid-
latitudes of North America (e.g., Büntgen et al. 2008).

We assess the temporal stability of positive relationships between PRISM 4k AS Tmax data
from the study region and RW, EWB, LWB, and ΔBI over the period 1907–2015, as well as
the stability for MXD over the period 1907–1983 (Fig. 2b, Figure S4). Both the forward and
backward moving correlation analyses indicate that the relationships between AS Tmax and
LWB and ΔBI are strong over the entire instrumental period. However, LWB shows less
weakening in the relationship with temperature than ΔBI. We suspect the weakening in the ΔBI
signal is likely attributed to the influence of the EWB data used for the calculation of the ΔBI
data. MXD shows temporal stability similar to that of ΔBI, but only for the month of August.
RW generally shows a weak and temporally unstable relationship to Tmax over the test period.
However, RW does show a significant (p < 0.01) negative relationship with March Tmax in the
most recent decades. RW also shows weak but significant positive correlations with August
Tmax in the early instrumental period (1910–1960) but exhibits a high degree of divergence
from instrumental temperature data after 1960. We suspect that the weak and unstable RW-
temperature signal is partially due to the presence of the strong previous spring precipitation
signal in the composite RW chronology (Table S5). These data suggest that warmer-than-
average spring temperatures could have an increasingly negative affect on overall radial
growth of Engelmann spruce at high elevations in this region, and that ring width is not an
adequate parameter for capturing and preserving a temperature signal. Further, the data support
that within this region of the Southern Rocky Mountains, precipitation is becoming more of a
limiting factor on radial tree growth than in previous decades.

The time stability of the composite LWB chronology over the full instrumental period is
notable for this region. Unlike many of the extant RW-based chronologies encompassing the
Western US—including the composite RW chronology presented in this study—the composite
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LWB chronology does not exhibit a high degree of divergence (Wilson et al. 2007a; D’Arrigo
et al. 2008) from regional temperature data in the most recent decades. As this is the first
known publication of a LWB chronology published for this region, this study demonstrates the
potential for this tree-ring parameter to improve the spatial resolution of temperature proxy
records that adequately capture climatic trends of the most recent decades over broader regions
(e.g., gridded network reconstructions). For example, hemispheric-scale temperature recon-
structions, such as the temperature reconstruction for the Northern Hemisphere presented by
Wilson et al. (2007a), used two chronologies from the mid-latitude continental US (Biondi
et al. 1999; Salzer and Kipfmueller 2005) due to the limited number of adequately
temperature-responsive tree-ring chronologies in this area. While using a small number of
tree-ring chronologies to accomplish a broad-scale, gridded network of temperature recon-
structions may not be overly problematic due to the highly auto-correlated nature of instru-
mental temperature data, increasing the density of robust tree-ring-based temperature proxy
datasets will likely lead to subregional improvements in predictive skill for such reconstruction
efforts. As the development and integration of BI methods at lower-latitude, temperature-
limited locations continues to enhance the field of dendroclimatology, we suspect that the
modern period can be adequately captured with the use of BI methods, in conjunction with
MXD, to improve understandings of the temporal and spatial variability of past temperatures.

Compared to other tree-ring metrics explored in this study, LWB shows the strongest and most
spatially resolved temperature signal over the entire instrumental period (Figure S3). As expected
due to the nature of the calculation, the strength and spatial distribution of correlations between
ΔBI and AS Tmax most resembles that produced by the LWB chronology. However, because we
see no necessity to use the ΔBI metric due to heartwood/sapwood color homogeneity in our
composite chronology series, we limit further examination of BI methods for late summer
temperature reconstruction to the LWB metric. The spatial distributions of correlations produced
by both the non-transformed and first-differenced versions of the composite AD-sf LWB chro-
nology and PRISM 4k Tmax closely resemble one another (Figure S2). Both non-transformed and
first-differenced versions of the LWB chronology demonstrate strongly (r > 0.50) significant
(p < 0.01) relationships between the study area surface air temperatures and the temperatures over
the greater geographic area extending north-south along the Southern Rocky Mountains region
(39.0–37.0° N, 106.0–105.0° W) of New Mexico and Colorado. While the non-transformed
version of the LWB chronology shows the strongest (r > 0.60) relationship with maximum
temperature within the immediate study area, with the centroid of the strongest spatial correlation
located along the Sangre de Cristo range, the first-differenced chronology indicates a northward
shift of the highest spatial correlations centered around the RioGrandeNational Forest in southern
Colorado. Additionally, the first-differenced chronology shows greater spatial smoothing and
more concentric diffusion of the regional expression. Overall similarity of the non-transformed
and first-differenced versions of the chronology suggests that the composite LWB record (1) is a
robust and skillful representation of the regional climate, especially for AS Tmax and (2) maintains
the regional temperature signal over the entire instrumental period and is therefore a promising
candidate to develop a reconstruction.

3.3 Climate reconstruction

We provide a late summer maximum temperature (AS Tmax) reconstruction for the Southern
Rocky Mountains that spans the period 1735–2015 (Fig. 3). The predictor time series in the
reconstruction model is the AD-sf-detrended composite LWB chronology, which is strongly

Climatic Change (2020) 162:965–988978



and positively calibrated with the predictand data, AS Tmax, during the instrumental period
(1907–2015). The LWB chronology explains 42% of the instrumental AS Tmax variance
(R2 = 0.42) from 1907 to 2015 (Fig. 3a, b). Model performance is consistent and time-stable,
with both early- and late-period (and vice versa) statistics passing validation tests (Table S6).
The strongest model verification occurred by calibrating the model during the late period
(1962–2015) and validating over the early period (1907–1961), which is a common finding
likely due to the improved accuracy of instrumental data over time (e.g., Maxwell et al. 2017;
Harley et al. 2017; Harley and Maxwell 2018).

The AS Tmax reconstruction for the Southern Rocky Mountains indicates multiple decadal-
scale warming and cooling events over the past ca. 120 years (Fig. 3). Comparison of our
LWB-based reconstruction with other regional tree-ring-based summer temperature recon-
structions indicates overall general commonality of multi-decadal patterns for across many
parts of Northern America (Fig. 4). Four of the five warmest single-year anomalies occur from
1924 to 1939, and the 1930s, 1940s, and 1950s all rank as the 2nd, 1st, and 3rd warmest
decades, respectively (Fig. 4, Table S7). The warmest decadal anomalies from our reconstruc-
tion show agreement with other regional summer temperature reconstructions. The two
warmest decadal anomalies (1930s and 1940s) are also within the top five warmest decadal
anomalies of reconstructions by Briffa et al. (1992).

The two warmest decadal anomalies (1930s and 1940s) are also within the top five warmest
decadal anomalies of reconstructions by Briffa et al. (1992), Trouet et al. (2013), and Wilson
et al. (2014, 2019) (Fig. 4). The coldest decadal anomalies from our reconstruction also closely
align with those from the LWB-based reconstruction (Wilson et al. 2019), placing the 1760s,
1810s, and 1830s as the three coldest decades. In particular, the MXD-based reconstruction
presented by Briffa et al. (1992) shows the most similarity of multi-decadal trends (r = 0.53,
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p < 0.01) over the common reconstructed period. This should be expected due to the regional
overlap between our reconstruction and the one presented by Briffa et al. (1992).

Late summer temperature conditions during the twentieth and twenty-first centuries are
most notable in the reconstruction from the Southern Rocky Mountains region (Fig. 4). The
twentieth century is characterized by steady warming until ca. 1955, with a marked imprint of
the Dust Bowl of the 1930s—a series of anomalously dry and warm events experienced
throughout portions of the southern plains of the USA into northeast NM (Cook et al. 2014).
Our reconstruction, which documents an average decadal anomaly of + 0.88 during this time
(Table S7), agrees with the temperature anomalies presented by Cook et al. (2014), who
document summer temperature anomalies for the Southern Rocky Mountains (ranging from +
1 to + 2) that are linked to the Dust Bowl of 1934. The period of prolonged warming in the
1930s through the 1950s is consistent with other reconstructions in other areas of North
America (Briffa et al. 1992; Trouet et al. 2013; Wiles et al. 2019). This warming is most

Fig. 4 Paleotemperature comparisons for western North America. Plotted are the records of the Southern Rocky
Mountains LWB AS Tmax reconstruction presented in this study with Wilson et al.’s (2014) LWB May–August
Tmax record for British Columbia, Canada (orange); Wilson et al.’s (2019) LWB May–August Tmax record over
Yukon Territory, Canada (purple); Trouet et al.’s (2013) ring-width annual Tmean record over western North
America (blue); and Briffa et al.’s (1992) MXD-based reconstruction of April–September Tmean over the
American Southwest (red; plotted is grid point #30 from 35° N, 110° W)
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comparable with the warming period from 1930 to 1950 presented in the MXD-based
reconstruction from Briffa et al. (1992) as well as the reconstruction from Trouet et al.
(2013). Primary causes of the Dust Bowl are linked to La Niña conditions in the Pacific
Ocean, warm sea surface temperatures (SSTs) in the North Atlantic Ocean, and human-
induced land degradation (Seager et al. 2008). A combination of dust storms and the
vegetation reduction via the replacement of drought-resistant prairie grass with drought-
sensitive wheat during the 1920s are shown to be amplifiers of the anomalously high
temperatures (Cook et al. 2009). Most maps detailing the spatial imprint of Dust Bowl
temperature anomalies (e.g., Cook et al. 2008) include the easternmost NM counties. Here,
we suggest that even at the highest elevations of the Sangre de Cristo Mountains of north-
central NM, the Dust Bowl era includes the most pronounced warming event in the context of
the past ca. 280 years.

After 1955, a cooling trend occurs for the next ca. 50 years until 2000. The most recent
decade is marked by a rapid, extreme warming trend, a rate of change that appears unprece-
dented since at least 1735. The warming trend of the early twentieth century, followed by a 50-
year cooler-than-average period, followed by rapid warming in the last 15 years somewhat
differs from many of the more general warming trends documented across the majority of the
Southwest US, which suggest continual warming from 1900 until present. Despite this
difference, we are confident that the reconstruction we present here is truly representative of
the local climate, as seen through the lens of the local instrumental record. At high elevations
proximal to cool mountain lakes, such as those sampled in this study, the general warming of
the twentieth century is captured but not nearly as pronounced as in other areas of North
America. While our reconstruction is in close agreement with Wilson et al.’s (2019) recon-
struction from the Yukon Territory, Canada, the Southern Rocky Mountains reconstruction
does not show a dramatic warming trend in the beginning of the twenty-first century, except
for the last ca. 5 years of the record. Comparison of this period trend in both reconstructions
begins to address the varying magnitudes of warming at different latitudes within North
America, but further comparisons are ultimately limited by the non-contemporary lengths of
the records (the Yukon reconstruction ending in 2004). Overall multi-decadal trends between
our reconstruction and the reconstruction presented byWilson et al. (2014) for southern British
Columbia are relatively similar, but they do display some misalignment of cold decades. The
dissimilarities between maximum summer temperatures between southern British Columbia
and the Southern Rocky Mountains suggest implications of broader climate dynamics across
North America that warrants future examination.

The reconstruction also shows indications of cool periods aligning with the last ca. 100 years
of the Little Ice Age (LIA; ca. 1300–1850 CE), a period of below-average temperatures. The
LIA has been the focus of many studies, and recent work suggests that the onset, duration, and
intensity of the LIA appear to have subregional spatial difference (e.g., Wahl and Smerdon
2012; Neukom et al. 2019). Because our reconstruction only covers the last ca. 100 years of the
LIA, relative comparisons with other reconstructions documenting the full duration of this
period are precluded by the length of our record. Nonetheless, we demonstrate contrasting cool
and warm phases within the latter part of the LIA. The trend of the reconstruction shows a
cooling period from 1735 to 1835, then slightly warmer-than-average conditions from 1840 to
1885. After 1885, increasingly warming conditions persist until 1955.

In the Southern Rocky Mountains region, we discovered close coupling between maximum
summer temperature and hydroclimate over the past ca. 280 years. We note substantial
association between our AS Tmax reconstruction and the summer drought reconstruction from
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El Malpais, NM (34.79° N, 108.00° W; Oliver et al. 2019) with regard to intensity of
anomalies, especially since the turn of the twentieth century (Fig. 5). We attribute this strong
coupling between temperature and hydroclimate to the growing influence of modern (the start
of the instrumental record to present) increasing surface air temperatures on the hydrologic
cycle, as this is recently documented across the American Southwest (Weiss et al. 2009; Cayan
et al. 2010; Udall and Overpeck 2017). The decreased synchrony between either wet + cool or
dry + warm events in the earlier parts of the record suggests that the relationship between
temperature and hydroclimate in this region was more decoupled prior to the Industrial
Revolution, and hence, this phenomenon is specific to the twentieth-twenty-first centuries
(at least within the context of the past 280 years). The shift in synchrony between our
temperature reconstruction and Oliver et al.’s (2019) hydroclimate reconstruction after ca.
1835 alludes to the influence of anthropogenic warming on the modern hydrologic system in
this region. Based on this trend, we suggest that more well-validated, long-term temperature
proxy records are increasingly important in areas such as the Southwest US for placing modern
hot droughts into historical context, as has been shown for the Midwest US (Maxwell and
Harley 2017). The multi-millennial hydroclimate reconstruction by Oliver et al. (2019) extends
from 2015 back to 492 BCE. Although our record currently extends to the 1730s, developing a
longer-term record could be possible across the region, especially at high-elevation sites in the
Sangre de Cristo Mountains. In particular, we discovered an abundance of submerged, remnant
Engelmann spruce logs at the SLE site (Figure S5). Future efforts should be placed on
extending the Southern Rocky Mountains temperature reconstruction back in time by incor-
porating remnant and subfossil spruce material. Such an effort would allow for longer-term
understandings of hydroclimate-drought relationships, especially comparing the current
warming trend with conditions during the Medieval climatic anomaly and LIA.

Within the context of developing temperature reconstruction networks over greater spatial
extents, LWB offers an efficient and effective alternative tree-ring parameter to MXD for
developing temperature-sensitive chronologies that account for periods of time that should be
interpreted cautiously due to low sample depth. These periods include prior to 1400 CE and
post 1988 CE (Anchukaitis et al. 2017). While this reconstruction is limited from 1735 to
2015, we do account for the most recent decades. Although the reconstruction we present here
offers valuable insight regarding temperature variability over the Southern Rocky Mountains
during the last 280 years, this study would be improved by additional sampling efforts
resulting in the ability to evaluate longer-term, multi-centennial variability in the region. While
we demonstrate the successful application of BI methods on living Engelmann spruce located
at the southern range limit for the species, further investigation regarding the efficacy of BI on
remnant samples (e.g., Wilson et al. 2017b) must be examined. The three sites from this study
are all located up-slope from Alpine lakes, which contain many large, likely old, logs as a
result from prolonged geomorphological events (e.g., rock slide, avalanche) (Figure S5).
Future sampling of these logs will allow for the development of a composite chronology that
extends further back in time with increased sample depth. However, one of the major issues
using BI methods on non-living trees is the increased presence of discoloration due to decay
and algal/fungal staining (Björklund et al. 2014; Wilson et al. 2017b). While this issue may be
remedied by pre-treating discolored cores with a combination of acetone and ethanol (Rydval
et al. 2014), living tree samples are often generally brighter than samples from older remnant
material (Björklund et al. 2014). To reduce potential bias resultant from brightness differences
between samples of live and dead trees, the ΔBI metric may be of increased importance here.
As LWB and ΔBI exhibit similar relationships to monthly Tmax, the ΔBI metric may have
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additional use for investigating BI methods on subfossil wood and combining remnant BI
chronologies with BI chronologies from live trees.

To our knowledge, this study is the first instance of a temperature reconstruction using BI
methods at the mid-latitudes of North America. While attempts have been made to develop
chronology networks in the Western US (Schweingruber 1988), these tree line networks do not
include BI-derived data. Although a considerable number of BI-derived Engelmann spruce
chronologies exist in Western Canada (e.g., Wilson et al. 2014), future efforts should also be
placed towards extending the BI data network towards the southern half of the natural species
range (e.g., Utah, Colorado, Wyoming, Idaho, Montana, USA). Such an effort would enable
connections between the record presented here for the Southern Rocky Mountains, and the BI-
derived temperature records from the Yukon (Wilson et al. 2019) and British Columbia
(Wilson and Luckman 2003), thus resulting in the ability to consider a number of BI-
derived Engelmann spruce chronologies, exist in Western Canada (e.g., Wilson et al. 2014);
future efforts should also be placed towards extending the BI data network towards the
southern half of the natural species range (e.g., Utah, Colorado, Wyoming, Idaho, Montana,
USA). Such an effort would enable connections between the record presented here for the
Southern Rocky Mountains, and the BI-derived temperature records from the Yukon (Wilson
et al. 2019) and British Columbia (Wilson and Luckman 2003), thus resulting in the ability to
produce broad-scale, long-term temperature information for western North America during
this period of rapidly changing climate.

Fig. 5 Hydroclimate-temperature comparisons for the Southern Rocky Mountains. Comparison of 11-year
anomalies of (top) west-central New Mexico hydroclimate conditions presented by Oliver et al. (2019) and
(bottom) reconstructed AS Tmax presented in this study over the period of overlap (1735–2015). Identified is a
period of coupled wet + cool and dry + warm conditions across the region
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4 Conclusions

In this study, we demonstrate the successful application of BI methods on tree cores collected
across three high-elevation, mid-latitude populations of Engelmann spruce located at the
species southern geographical range limit. To our knowledge, this is the first published study
to explore the application of this technique in the mid-latitudes of North America for the
purpose of developing a temperature reconstruction. We reconstructed late summer tempera-
tures spanning from 1735 until 2015 using the LWB metric, and we demonstrate that BI
metrics can provide robust climate proxy data in the mid-latitudes of the USA. As this study
shows both spatially and temporally resolved temperature responses for the southern Rocky
Mountains region of the USA, this study does suggest that BI methods are useful for producing
temperature-responsive parameters which are alternative to MXD. In possessing many attrac-
tive qualities such as cost and time efficiency, which do not appear to have exhibited a
divergence issue as seen in other tree-ring metrics, BI methods offer an important alternative
approach to spatially improving under-represented locations within pre-existing temperature
networks that rely heavily on MXD. In places such as the American Southwest, where even
MXD records are spatially and temporally limited, further wide-scale examination of BI
methods is necessary for more adequately capturing broader regional climate trends and
placing current warming trends into greater spatial and historical contexts.
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